A protocol alignment system may include a data storage to store data records. The system may map events from the data records to a process map through a recursive matching process. The mapping may include recursively matching the events to nodes in threads in a map based on event times and thread times. One of the recursions may be selected as a best fit based on metrics determined for the recursions.
ABSTRACT

A protocol alignment system may include a data storage to store data records. The system may map events from the data records to a process map through a recursive matching process. The mapping may include recursively matching the events to nodes in threads in a map based on event times and thread times. One of the recursions may be selected as a best fit based on metrics determined for the recursions.
BACKGROUND

[001] It is not uncommon for network devices to communicate using protocols or to otherwise process data according to protocols. However, in certain instances it can be difficult to determine whether the network devices are properly adhering to the protocols. Furthermore, if the network devices fail to adhere to their protocols, it can lead to data loss or inaccurate processing of the data.
BRIEF DESCRIPTION OF THE DRAWINGS

[002] Embodiments are described in detail in the following description with reference to the following figures. The embodiments are illustrated by way of example and are not limited in the accompanying figures in which like reference numerals indicate similar elements.

[003] Figure 1 illustrates a protocol alignment system, according to an embodiment;

[004] Figures 2-11 illustrate screenshots which may be generated by the protocol alignment system, according to an embodiment;

[005] Figures 12A-B illustrate a process map and its threads, according to an embodiment;

[006] Figure 13 illustrates an original thread splitting into parallel threads with one thread processing a looping sequence of events, according to an embodiment;

[007] Figure 14 illustrates a process of advancing through nodes in a best fit recursion per the time stamp on the sequence of events, according to an embodiment;

[008] Figure 15 illustrates threads and events assigned to nodes in the threads, according to an embodiment;
[009] Figures 16A-B illustrate multiple event time-driven recursions determined through the recursive matching process for events in Figure 15, according to an embodiment;

[0010] Figure 17 illustrates pseudocode for processing different types of nodes, according to an embodiment;

[0011] Figures 18-19 illustrate methods, according to embodiments; and

[0012] Figure 20 illustrates a computer system that is operable to be used for the protocol alignment system, according to an embodiment.
DETAILED DESCRIPTION OF THE EMBODIMENTS

[0013] For simplicity and illustrative purposes, the principles of the embodiments are described by referring mainly to examples thereof. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the embodiments. It is apparent however, to one of ordinary skill in the art, that the embodiments may be practiced without limitation to these specific details. In some instances, well known methods and structures have not been described in detail so as not to unnecessarily obscure the description of the embodiments. Furthermore, different embodiments are described below. The embodiments may be used or performed together in different combinations.

[0014] According to an embodiment, a protocol alignment system may include a network device to provide computer-aided data record matching to nodes for a predetermined protocol. The protocol alignment system can render a protocol, such as an industry standard, into a process map. A process map may comprise a workflow that can be visualized on a display. The workflow comprises steps, which may be represented as nodes in the process map generated from the protocol. The workflow may comprise a time-based series of steps determined from the protocol according to guidelines specified in the protocol. The time-based series of steps may be represented in chronological order from earliest to latest in the process map. The process map may comprise multiple threads and the threads may be executed in parallel and/or serially as is further described below. Metrics may be associated with the nodes, such as location and caregiver identity.
The protocol alignment system is also operable to associate data from data records (e.g., events) with particular nodes in the process map, and based on the association, determine protocol compliance metrics. Reports may be generated to specify the compliance metrics and provide additional information related to measuring the quality of service or other metrics related to the protocol.

Through this process, protocol errors in network devices can be reduced, such as reducing network communication errors between network devices that can lead to data collisions and data loss. The protocol alignment system can be used for compliance determination for network services, enterprise application services, or any device or process that needs to execute a protocol. Some of the examples described below refer to electronic medical records (EMRs) and determining whether medical treatment is adhering to a medical protocol based on information mined from EMRs and other data. However, the protocol alignment system may be used to determine adherence to any type of protocol.

The protocol alignment system may utilize query objects comprised of structured query language (SQL) statements including one or more concept identifiers (IDs) related to the protocol. For example, a process map toolset allows a user to create query objects for nodes in a process map or to select existing query objects for the nodes and these query objects may be called by the protocol alignment system to reduce the amount of time it takes to identify data from data records that describe events for a particular node in the process map. Query objects for example, include predetermined concept IDs or a link or pointer to the
predetermined concept IDs that include medical terms determined from medical standards or organizations publishing standard medical terms. The concept IDs may include categories.

[0018] Figure 1 illustrates a protocol alignment system 100, which may be connected to a network 120. The protocol alignment system 100 may include or be hosted by a network device. The network device may include any type of computer system, router, switch, etc., that is connected to a network, such as the network 120. Data Sources 130a-n are shown. The protocol alignment system 100 may receive protocols, EMRs, and other information from the data sources 130a-n, for example, via the network 120. The data sources 130a-n may comprise electronic medical systems capturing medical data and generating EMRs from the medical data. The data sources 130a-n may comprise systems publishing protocols and other medical information. End user devices 140a-f are shown. The end user devices 140a-f may connect to the protocol alignment system 100 to enter data and view compliance reporting and other information generated by protocol alignment system 100. Although not shown, one or more of the data sources 130a-n and the end user devices 140a-f may be connected to the protocol alignment system 100 through a direct link, rather than a network. For example, the protocol alignment system 100 may be part of an electronic medical system that generates EMRs and includes the protocol alignment system 100. Also, the protocol alignment system 100 may include I/O devices, such as a display, keyboard, mouse, etc., that allows users to enter and view data.
The protocol alignment system 100 includes a process map toolset 101, a mapping module 102, a protocol engine 103, an event retrieval module 104, a user interface 105, a network interface 106 and a compliance module 108. Also, a data storage 107 is connected to the protocol alignment system 100 to store any information used by the protocol alignment system 100, such as EMRs, protocols, process maps, reports, etc. The data storage 107 may include a database or other type of storage system. The network interface 106 connects the protocol alignment system 100 to the network 120. The user interface 105 may include a graphical user interface (GUI), which may be viewed on a display connected to the protocol alignment system 100 or viewed on the end user devices 140a-f via network 120, which may include the Internet. The components of the protocol alignment system 100 may comprise computer hardware, software or a combination.

The process map toolset 101 generates process maps from protocols, which may be published by medical experts, health organizations or other entities. The protocols for example are medically related and may include treatment guidelines for various illnesses or medical conditions. The protocols are not limited to illnesses or negative medical conditions. For example, the protocols may include procedures for cosmetic surgery or other medically-related guidelines. The process map toolset 101 provides a workspace that presents a protocol for example received from a health organization, and provides tools for generating a process map from the protocol. The protocol may be provided as text in a document or may be documented directly in the process map toolset 101.
Information from the protocol may be extracted to generate a protocol outline. A user may use tools provided by the process map toolset 101 to generate a process map from the protocol and protocol outline. The workspace provided by the process map toolset 101 may comprise an editor and other features described in further detail below.

[0021] The process map toolset 101 allows a user to create query objects for nodes in a process map or to select existing query objects for the nodes. A query object retrieves events from the data storage 107 that are relevant to a particular node. Query objects include predetermined concept identifiers (IDs) or a link or pointer to the predetermined concept IDs that include medical terms determined from medical standards or organizations publishing standard medical terms. The concept IDs may include categories. EMR data including events stored in the data storage 107 may also include the concept IDs. For example, a user creates a query object for a node in a gestational diabetes process map. The node may be related to observations. The process map toolset 101 provides a drop down menu presenting concept IDs that may be selected by the user for example via the user interface user 105. The user selects observations, and then selects diabetes, and then selects gestational diabetes. Then a query object is generated or selected from a pre-existing set of query objects and stored for the node including concept IDs for observations, diabetes, and gestational diabetes. For example, a pre-existing query object called "diabetes" is selected and populated with a selected parameter that states the type is "gestational" and then
the new query object is stored with the node. In other examples, concept IDs may
be used for orders, labs, results, procedures, and medication administration. In
another example, the node may require an oximetry reading, and a concept ID
from a medical standard such as the Systematized Nomenclature of Medicine
(SNOMED) is selected for the reading, and another concept ID is selected for one
of six ways to perform the reading. The query object may comprise a structured
query language (SQL) statement including one or more of the concept IDs that can
be called by the event retrieval module 104 to retrieve events from the data storage
107 for the node.

[0022] The event retrieval module 104 retrieves events from the data
storage 107 for nodes in a process map. The event retrieval module 104 may be a
sub-module of the mapping module 102. A module or sub-module may include
machine readable instructions executed by hardware, such as a processor. The
retrieved events may be for a specific patient or a group of patients. A query
objects may be created for each decision or activity node in the process map to
retrieve events relevant to each node. The event retrieval module 104 may call the
query objects to retrieve the relevant events. An event includes information for any
action performed to provide care to a patient, such as lab results, vitals (e.g.,
measurements of patient vital functions which may be performed by a nurse or
machine), orders for tests or medications, delivery of medications, medications
administered to patient, physician notes, semi-static patient data (e.g., gender, age,
weight, allergies, etc.), etc. The stored EMR data includes the events. The events

9
may include a description of the action and attributes for the event, such as event
time, location, caregiver, etc.

[0023] The mapping module 102 maps the retrieved events to the process
map. The mapping may include identifying the events retrieved by the event
retrieval module 104 for a node and assigning the events to the node. Assigning
may include providing an indication for the stored event that associates the event
with the node. The mapping module 102 may determine an event time for each
event and order the events for a node or thread chronologically from earliest to
latest. An event time may be an attribute stored in EMR data for an event. The
event time may indicate when the event was performed, such as date and/or time.

[0024] The protocol engine 103 determines a best fit of the events mapped
to the nodes in a process map. Multiple events may be mapped to decision or
activity node in a process map. Also, multiple events may be examined together to
assign events to nodes in the process map. The protocol engine 103 determines a
sequence of the events mapped to the nodes that is a best fit for the protocol
represented by the process map. For example, a process map may have multiple
threads of nodes that may run concurrently. Compliance with a protocol may be
measured by whether particular events were performed in a sequence represented
by the threads in the process map. Given the events mapped to each of the nodes
in the process map, the protocol engine 103 determines a sequence of the events
for the nodes that is a best fit for the threads in the process map such that no event
is included in the best fit if it occurred after one of the threads reached a
termination point for the protocol. For example, blood pressure readings that occurred after a patient was admitted to the hospital may not apply to an emergency room protocol since an event called “admit patient” may have represented the end of the emergency room protocol. The best fitting sequence may be determined based on the event time for each event and a thread time for each thread. A recursive matching process may be performed to determine the best fit. The protocol engine 103 when performing the recursive matching may assign a missing event to a node. A missing event is an event that should have been performed at a given time but is being considered as not to have been performed. Also, through the recursive matching process, many possible sequences of events that match the threads in a process map may be determined. Metrics may be determined to identify the sequence of events that are a best fit. In one example, the metric comprises a ratio of matching events over the number of nodes traversed during the matching process. In this example, the optimal value for this metric is 1 and the numerator cannot exceed the denominator. This ratio may be used for a “look-ahead” to determine whether to abandon a sequence in the recursion as a best fit. For example, if the current numerator/denominator plus the remaining unmapped events added to both the numerator and denominator is less than the numerator/denominator ratio of the best fit to date then the sequence may be abandoned.

[0025] The compliance module 108 measures compliance with the protocol based on the best fitting sequence identified by the protocol engine 103. The
compliance module 108 may generate reports via the user interface 105 indicating the level of compliance with the protocol. The level of compliance may be measured based on the number of missing events. The reports may identify when the quality of care falls short and may be used to detect metrics associated with the causes, such as where, when, how and by whom.

[0026] Figures 2-11 show examples of screenshots generated by the protocol alignment system 100, for example, via the user interface 105 that illustrates various functions of the protocol alignment system 100.

[0027] In one example, the protocol alignment system 100 can be used to map a protocol for sepsis. Sepsis is a complex medical syndrome that is difficult to define, diagnose and treat. Figure 2 shows a screenshot 200 of an overview for a sepsis project that may be created in the protocol alignment system 100 to monitor compliance of quality of care provided to patients for a sepsis protocol. The screenshot 200 includes a project status that illustrates the steps performed with the protocol alignment system 100 and their completion status. The steps include standardizing a protocol for sepsis to create a process map from the protocol; text mining clinical events in EMR data; configuring outcome and compliance measures for evaluating compliance with the protocol and overall quality of care; and defining a population of patients and sepsis analysis from the measures to generate reports. Other sections of the screenshot 200 show events and milestones for the project, messages and alerts and new documents added to the project. The events and milestones show the publication of a sepsis protocol which may be
received and stored in the data storage 107 and may be used to create a process map for the sepsis protocol.

[0028] Figure 3 shows a screenshot 300 of creating a process map from the sepsis protocol. The process map is labeled Sepsis_Comprehensive and is generally divided into three sections comprising Sepsis, Severe Sepsis and Septic Shock. In each section is the workflow that is created from the protocol. The workflow includes nodes, which may represent decision steps, such as shown as diamonds, or other event types of steps, shown as rectangles, circles or other shapes. The process map is a time-based series of nodes representing the workflow for providing care for patients that may have sepsis. The nodes may represent steps for diagnosing, measuring vitals, ordering tests, lab results, or any steps that may be used in providing of care for a sepsis patient. Time-based means the steps and nodes are followed in the sequence as shown to provide care. The process map may include more than one path that can be followed at the same time, so some steps may be performed simultaneously or substantially in parallel. The different paths are referred to as threads.

[0029] The process map toolset 101 provides a workspace for creating the process map based on the sepsis protocol. The workspace may include an editor as shown in figure 3. For example, a user can add, remove or modify nodes in the process map through the editor. Then, the process map can be validated, saved and copied as needed. The process map toolset 101 may generate an initial process map from the protocol. For example, text mining may be used to identify a
series of steps from a published protocol and an initial process map is generated from the identified steps. The initial process map is shown in the editor, and a user may modify the process map as needed.

[0030] Each node in the process map may have attributes similar to the EMR data. Some of the attributes may include event type, time, location and caregiver. For example, one of the nodes in the process map is for the physician to order a lactic acid test every four hours. The attributes may include an event type, such as physician order. A location may include the department in which the physician works. The time may indicate when in the process map the physician is to perform the event of ordering this test. Other attributes may include event subtype, such as laboratory, and order frequency, such as every four hours. Result component, such as lactic acid, is another attribute that may be used for the laboratory event subtype. Attributes for steps may be entered by a user and may be displayed by clicking on a step in the process map.

[0031] The user may also create query objects for the nodes through the process map toolset 101. The process map toolset 101 may provide drop down menus for the user to select concept IDs for the query objects. The query objects may be stored with the process map in the data storage 107.

[0032] After the process map is generated and stored, the event retrieval module 104 retrieves events from the EMR data stored in the data storage 107 for the nodes in the process map, and the mapping module 102 maps the events to the nodes in the process map. For example, EMR data may be collected over a
period time and periodically updated. The EMRs may be from a single entity, such as from a single hospital or physician's office, or may be from multiple entities. The EMR data may include some structured data, such as the identity of the caregiver and an event time of performing a medical event, and the EMR data may include unstructured data, such as text entered by a physician or nurse describing the care given to the patient.

The mapping module 102 temporally aligns events retrieved for each node. Temporally aligning events may include sorting the events assigned to each node by event time. The protocol engine 103 matches the temporally aligned events to the threads in the process map to determine a best fitting sequence of nodes as described in further detail below.

Data mining may be performed to extract attributes of the EMR data from the textual information in the EMR data. The text may include notes or other information entered by a caregiver, for example, in an unstructured format. Figure 4 shows a screenshot 400 for entering data elements that may be used for text mining in order to extract data from a particular event in the process map. As shown in figure 4, the event from the process map is selected. Event is shown as "Protocol Node". In this example, the selected event is "A.1 Physician ROS: Respiratory Distress". This event A.1 may be a step in the process map for determining whether a patient has respiratory distress. The determination may be performed along with other steps to determine whether a patient qualifies a subsequent assessment.
[0035] Determination of respiratory distress may not be specified in structured data of EMRs. Instead, it may be specified in the text in notes in the EMRs or in other information. In the screenshot 400, the document source is selected, which may include EMR data or other information. HPI is selected which stands for history of present illness. Other documents that are selected are physician progress notes and consult notes. These documents are searched to identify whether the patients had respiratory distress.

[0036] The compliance module 108 may define analytic views that can be generated by the protocol alignment system 100, and may determine key performance indicators (KPI's) and other metrics that are available to analyze the quality of care associated with the protocol. Figure 5 shows an example of compliance metrics that be selected for analyzing the quality care provided around the sepsis protocol. The metrics identify the protocol or process map that is relevant, the type of metric (e.g., measurement or outcome), the calculation for determining the metric, notes and modification date.

[0037] Figure 6 shows a screenshot 600 for defining a metric. In this example, the metric is a compliance rate for an antibiotic order within the first hour. The metric is defined by specifying a name, display name and description, and specifying how the metric is calculated. In this example, the metric is defined as a percentage. The numerator is defined as the number of cases that comply with event node B1, which is the antibiotic order, and the denominator is defined as the number of cases that entered the comprehensive sepsis protocol.
In addition to determining metrics, KPIs and analytic views, the protocol alignment system 100 may determine a population or the set of cases to be evaluated. Figure 7 shows a screenshot 700 for selecting filters to identify the population of cases. The EMR data may include EMRs for millions of patients that were provided care for a variety of illnesses. In this example, filters are set to identify EMRs for patients that are suspected of having sepsis. The filters may include attributes and a value for each value and the relationship between the attribute and value. For example, filters may be selected in the screenshot 700 to identify all the cases where the patients have a vital sign of new pain = yes; a drainage issue = yes; respiratory distress = yes; lab results for urine analysis = hazy and any two of the filters shown in the bottom half of the screenshot 700. The filters may be combined through logic (e.g., AND, OR) to select the population. Also, a set of filters may be predetermined, such as shown in the screenshot 700, and some of the filters from the set are selected to identify the population. In many instances, EMR data gathered from the data mining process described above is compared to the filters to determine whether cases from the EMR data should be part of the population to be evaluated for compliance with the protocol. The EMR data is filtered by the selected filters to determine the population. Filtering may include determining EMR data that complies with filter conditions.

The population of cases may be evaluated based on the compliance metrics to determine compliance with the protocol and scores and reports may be generated to indicate compliance and variances from compliance and to provide
analytical views to identify problems with particular individual caregivers, particular departments, particular shifts (e.g., day shift versus night shift), etc. A protocol may be evaluated against a whole population of patient encounters for a particular provider organization, such as a hospital. Reporting and drill-downs can be for the whole population in the whole protocol, for an individual patient encounter, for the whole population on a single node and/or for an individual encounter on a single node.

[0040] The analytic views generated by the protocol alignment system 100 allow for the drill downs which may be used to identify the cause of problems. For example, an initial view may comprise a color-coded display of the process map. A node in the process map may be shown in red or yellow to indicate a high-level or medium-level of variance from the protocol. A user may click on a red node to drill down to additional information, such as compliance metrics for the department responsible for the event. Another drill down may include the metrics for the shifts for the department. Once a problematic shift is identified, another drill down may include compliance metrics for individuals in the shift. Then, remedies may be determined, such as additional training for individuals not adhering to the protocol. In another example, the metrics may identify that the protocol is not being followed during a shift change, so new internal shift change procedures for the department may be specified as a remedy. The reports generated by the protocol alignment system 100 may identify correlations between missing events and outcomes. An outcome may be a result of a medical condition or illness or a procedure and
outcomes may vary. For example, outcomes for a particular type of cancer may be 1, 5 and 10 year survival rates. A report may identify that a missing event for treatment guidelines for a population of the cancer patients caused their survival rate to decrease from 10 years to 5 years or had no impact on their survival rate. This correlation is a statistical correlation between the missing event and a particular outcome that is impacted by the missing event. Reports showing the correlations can be generated by the protocol alignment system 100.

[0041] Figures 8-11 show examples of screenshots of reports generated by protocol alignment system 100 based on comparisons performed by the CQA analytics engine 103. The reports may be based on the metrics defined and selected for the protocol. Figure 8 shows a screenshot 800 of an example of an overall compliance report for the sepsis protocol. The screenshot 800 shows an outcome profile and a compliance profile. The profiles indicate the percentage of compliance for categories of the population.

[0042] Figure 9 shows a screenshot 900 of physician compliance. The report indicates the metrics for each physician including percentage of compliance and average total cost. This report may be used to identify physicians that are not complying or that are over-priced. Figures 10 and 11 show screenshots 1000 and 1100 providing reports of compliance percentages by shift. These reports may be used to evaluate compliance metrics on an hourly basis. The reports in the screenshots 900-1100 may be used as part of a drill down process to identify root causes of poor quality of care as it relates to the protocol.
As discussed above, the protocol engine 103 determines a sequence of the events mapped to the nodes that is a best fit for the protocol represented by the process map. Then, compliance with the protocol may be measured by determining whether events were performed for the nodes as required by the protocol and whether the events were performed in the proper sequence or workflow as required by the protocol. For example, a process map may have multiple threads of nodes that run concurrently. Given the events mapped to each of the nodes in the process map, the protocol engine 103 determines a sequence of the events for the nodes that is a best fit for the concurrent threads in the process map. A recursive matching process may be performed to determine the best fit.

Figure 12A shows a process map for a sepsis protocol that may be generated by the process map toolset 101 and stored in the data storage 107. The process map includes parallel flows, shown as threads 1-9 in figure 12B. A thread is a sequence of nodes that may be connected to another thread through a rendezvous point or that may terminate on a specific node. The process map includes parallel threads, and the threads may fork and rendezvous at certain nodes and depending on the events for a node, different threads may be followed to comply with the sepsis protocol.

Different types of nodes may be used in the process map to represent different actions and expected events for the protocol. Some examples of the types of nodes include: a start node identifying a start of the protocol; an
activity or decision node wherein at least one event is to take place for the activity or decision node; a rendezvous and continue node wherein a new thread is launched from the rendezvous and continue node; a stop thread node (e.g., rendezvous path terminates); a stop all threads except current thread node; and a protocol stop node identifying an end of the protocol (e.g., all active threads terminate).

[0046] Figure 13 shows a portion of a process map that includes an original thread that splits into two parallel threads 1301 and 1302 running concurrently. Query objects may be used to retrieve and assign events from the data storage 107 for each of the nodes 0.1, 1.1-1.3 and 2.1-2.3. For example, one event is retrieved for each of the nodes 0.1 and 1.1-1.3. Multiple events are retrieved for each of the nodes 2.1-2.3. Event times are determined for each of the events and the events are sorted for example by the mapping module 102 according to their event times within a node. T0-T12 represent the event times, whereby T0 is the earliest time and T12 is the latest time.

[0047] To determine the best fit of the retrieved events to the parallel threads 1301 and 1302 for the protocol, the protocol engine 103 finds the optimal time-dependent matches of the events to the nodes in the threads 1301 and 1302. The events are already assigned to the nodes prior to determining the best fit through the mapping performed by the mapping module 102. However, compliance with the protocol is determined by comparing the sequence of the events for the threads with the sequence of the nodes in the threads representing the expected
actions to be performed at particular times within the workflow of the protocol. The protocol engine 103 determines the best fitting sequence so the comparison can be performed. Figure 13 also shows that the matching process may loop through a thread so all events mapped to a node are accounted for. For example, multiple loops were performed for the nodes 2.1-2.3 to match all the events for the nodes.

[0048] To determine a best fitting sequence of events to the nodes, the recursive matching process may be performed based on event times and thread times. For example, the protocol engine 103 splits a core thread into multiple threads (e.g., threads 1301 and 1302) if encountering a fork and a thread time is maintained for each independent thread through the recursion. The thread time may be the event time of the previously matching event. The thread time is compared with event time to assigned events of each node to determine if an event is a match. If it is a match, the event is considered to be included in a particular slot in the sequence of events determined by the fitting process. With each recursive step, the thread whose time is the earliest is selected for advance. Also, when a match is detected, the thread time is updated to the matching event time and the matching process is performed for the next node in the earliest thread which is selected for advance. Determining the sequence of matching events is further illustrated with respect to figures 14 and 15.

[0049] Figure 14 shows the sequence for matching events for threads 1301 and 1302. The matching process starts with the earliest thread which is the original thread in this example and matches the event 1 to the node 0.1. The
original thread is split into parallel threads 1301 and 1302 and the earliest thread is selected. Just after the fork, any of the parallel threads may be selected as the earliest thread because each of them adopts the thread time of the original thread, which is T0 for the matched event 1 of the node 0.1. In one example, the threads are ordered and the first thread in the order is selected. For example, thread 1301 is selected as the earliest thread and node 1.1 is matched with an event. The thread's time is used for comparison with a node's event to determine if it can be included in the sequence of matched events. There is only one event for the node. In this example, the event time for event 1 is after the thread time for thread 1301 so it is determined to be a matching event for node 1.1. This is illustrated by step 1 in figure 14 which shows the event 1 for node 1.1 being a matched to node 1.1 and at this point the thread time of thread 1301 is set equal to the event time of event 1 which is T1. T0-T12 in the chart in figure 14 represent the event times of the matching events for the parallel threads 1301 and 1302. The protocol engine 113 has the option of assigning a missing event to the node if it provides a better match for the sequence.

[0050] With each iteration, the thread with the earliest time is advanced to its next node position. After event 1 at T1 is matched for the node 1.1, the thread pointer is at T1 which becomes the thread time. A next node from the parallel threads 1301 and 1302 may be selected with the earliest event after the thread time T1. In this example, it is event 1 for node 2.1 such as shown at step 2 in figure 14. The next earliest event after the thread time is at node 2.2, which is
shown in step 3 in figure 14. This matching process continues as shown in steps 4-7 of figure 14. If the current node is a decision node, the next node is one of the outputs of the decision node. For example, node 2.3 is a decision node. The next node may be node 2.1 or the next node connected to the right of node 2.3. A missing event may be selected for a node. In this case, the thread time becomes the event time of the next earliest event. For example, if a missing event is matched at node 1.1, the thread time becomes T2 because it is the next earliest event in the parallel threads 1301 and 1302.

[0051] It should be noted that after step 5 in figure 14, the matching loops in the thread 1302 to match the multiple events for each node. For example, at steps 6-8, the matching is repeated for nodes 2.1-2.3. Also, at step 7, the protocol engine 103 determines that the best match for the node 2.2 is a missing event.

[0052] Figure 15 shows threads 1301 and 1301 again but only shows one loop for thread 1302, so events for T9-T12 from figures 13 and 14 are not shown. Figure 16A shows the matching process for the events in figure 15 in the form of a graph to find a best fitting sequence. Figure 16B shows the legend for the graph shown in figure 16A. The matching process shown in figure 16A is the same as shown in figure 14 for the events for T0-T8. Figure 14 shows the best fitting sequence of events for the threads 1301 and 1302. Figure 16A further illustrates how the best fitting sequence is determined through the recursive matching process. For example, at each node the protocol engine 113 tries to match each of the events having an event time greater than or equal to the thread time and a
missing event to determine if it generates the best fitting sequence. Figure 16A illustrates the matching of a missing event with "m". Also, each of the recursions shown in figure 16A start at the node 0.1 and end with a determination that the recursion is the best fitting sequence or with a determination that the recursion has completed and it is not the best possible sequence or with a determination that the recursion is not complete but the sequence being created by the current recursion path cannot mathematically be better than another recursion's sequence. A metric may be used to determine whether the recursion cannot mathematically be better than another recursion. In one example, the metric comprises a ratio of number of matched events over total number of times nodes are traversed for the recursion. In this example, the optimal value for this metric is 1 and the numerator cannot exceed the denominator. For example, for the best matching sequence shown in figure 16A, the denominator is 11 and the numerator is 10 because there is one missing event.

[0053] Node 0.1 has one event. The protocol engine 103 tries two different matches. The protocol engine 103 matches a missing event to the node 0.1 and also matches its event 1 to the node 0.1 as shown in figure 16A. The recursive matching stops for the missing event match because the protocol engine 103 determines that a better pattern is not possible for this recursion after matching node 0.1 with a missing event because the path from the 0.1 recursion attempts to match retrieved events first represented by the recursion path down the left side of the tree shown in figure 16A. However for the event 1 match, the recursive
matching process continues to node 1.1. Node 1.1 has one event with an event
time greater than its thread time, so protocol engine 103 matches a missing event
to the node 0.1 and also matches its event 1. The recursion for the missing event
match stops. However, the recursion for the event 1 match continues to node 2.1.

Node 2.1 has 2 events that are possible matches. At node 2.1, the protocol engine
matches event 1 for the node 2.1, and the recursion continues to node 2.2 because
it has the next earliest event after the thread time, and so on as shown in figure
16A for the best fitting sequence. At node 2.1, the protocol engine 103 recurses for
a match with event 2 and advances to the next node which is node 1.2 in this

recursion. The next match for this recursion is a missing event and the recursion
stops because the protocol engine 103 determines that the recursion cannot be
better than the best fitting sequence shown on the left side. Also, at node 2.1, the
protocol engine 103 matches a missing event, and the recursion stops because the
protocol engine 103 determines that the recursion cannot be better than the best

fitting sequence shown on the left side. This process continues advancing through
the nodes in the parallel threads according to earliest thread times. At some points
of the recursions, such as point 1601, the protocol engine 103 may determine that
the recursion cannot mathematically be better than another recursion based on the
metric and the recursion is stopped.

[0054] Figure 17 shows pseudocode for the recursive matching process.
The pseudocode indicates that the matching process is performed if it is
mathematically possible to improve the matching. The thread with the earliest
timestamp is selected. The node type of the current node is determined and
different steps are performed depending on the type of node. If it is a start node,
such as at the beginning of the process map, the thread is advanced to the next
node. If the type is an activity or decision node, then a matching event is
determined for the node as described above. The protocol engine 103 may use a
maximum missing event threshold to prevent runaway recursion and determine
whether to assign a missing event to a node. The protocol engine 103 does not
assign a missing event to a node if the total number of missing events for the
recursion would exceed the threshold.

If the node type is a rendezvous and continue node, a new thread is
launched for each node connected to a link from the parent thread and the new
threads are assigned the timestamp of the parent thread. A stop this thread node
halts the matching process for the thread. A stop all thread except this thread node
stops the matching process for all other threads and continues the process for the
current thread. A protocol stop node stops the matching process and the protocol
ingine 103 determines the best fitting sequence.

The methods are described with respect to the system 100 shown in
figure 1 by way of example. The methods may be performed by other systems.
Figure 18 shows a method 1800 according to an embodiment. At 1801 a process
map is stored in the data storage 107 for a protocol. The process map may be
created using the process map toolset 101. Query objects may be created for
each node in the process map to retrieve events from the EMR data in the data
storage 107 that is relevant to each node.

[0057] At 1802, the mapping module 102 retrieves and assigns events for nodes in the process map. The nodes may be decision and activity nodes in the process map. A query object assigned to each node may be called to retrieve the events for the node.

[0058] At 1803, the mapping module 102 sorts the events for each node by time. For example, the events assigned to each node are sorted from earliest to latest time.

[0059] At 1804, the protocol engine 103 performs the recursive matching process to determine matching sequences of events for the process map. The recursive matching process uses the event times of the events assigned to the nodes and the thread times to determine the matching sequences.

[0060] At 1805, the protocol engine 103 determines the best fitting sequence from the determined matching sequences. The best fitting sequence may be determined based on a metric. The metric may be calculated based on a number of times nodes are traversed, a number of matching events, and a number of missing events for the recursion or may be a ratio of number of matched events over total number of times nodes are traversed for a recursion..

[0061] At 1806, the compliance module 108 determines compliance with the protocol based on at least one metric for the best fitting sequence. The level of compliance may be measured based on the number of missing events. The reports may identify when the quality of care falls short and may be used to detect
metrics associated with the causes, such as where, when, how and by whom. Figures 5 and 6 show other examples of compliance metrics used to measure and evaluate compliance with the protocol.

[0062] Figure 19 illustrates a method for the recursive matching process and selecting the best fitting sequence of steps 1804 and 1805 of the method 1800. The recursive matching process for example starts at the start node of the process map and advances through the process map according to the thread time of each thread. A thread is a sequence nodes for example representing steps in a protocol ordered according to the sequence the steps are to be performed as specified by the protocol. A thread may split into multiple threads when it encounters a rendezvous and continue node with links to two or more nodes. A thread may end at a rendezvous and continue node, or a thread stop or protocol stop node. The thread time is determined from the event matched for the previous node before advancing to the next node in the protocol map.

[0063] At 1901, the protocol engine 103 encounters parallel paths in the process map. For example, referring to figure 13, the protocol engine 103, matches event 1 for node 0.1 and the thread is assigned the event time of event 1. The protocol engine 103 advances to the next node in the thread, where the thread splits into two parallel paths comprised of thread 1301 and thread 1302.

[0064] At 1902, the protocol engine 103 determines whether the current matched sequence plus remaining unmatched events cannot be the best fitting sequence. If yes, the process ends. If no, at 1903, the thread with the earliest time
is selected. For example, thread 1301 is selected because node 1.1 has an earlier event time than the events for node 2.1. Each thread maintains its own thread time.

[0065] At 1904, the protocol engine 103 matches an event for the next node in the selected thread. The matching includes identifying time qualifying events assigned to the node. For example, a time-qualifying event is any event with an event time later than or equal to the thread time. One of the identified events is selected as a match or a missing event is selected as a match.

[0066] At 1905, the protocol engine 103 determines whether a protocol stop is reached, and whether the sequence is not the best fitting sequence. If not, the recursive matching process repeats steps 1902-1905. Otherwise the process ends. The recursive matching process increments exactly one thread’s position and then recurses into the next steps of the matching process identifying matching events for the recursion. The matching process attempts to use each time-qualifying event in each node and recurses to the next step of the matching. Attempting to use each time-qualifying event in a node is illustrated by the loops shown for thread 1302 in figure 13.

[0067] As discussed above, a recursion may be stopped if the protocol engine 1301 determines the recursion cannot mathematically be better than another recursion. One or more metrics may be used to determine whether the recursion cannot mathematically be better than another recursion and for determining whether a recursion is a best fit.
Some or all of the method and operations and functions described above may be provided as machine readable instructions, such as a computer program, stored on a computer readable storage medium, which may be non-transitory such as hardware storage devices or other types of storage devices. For example, they may exist as program(s) comprised of program instructions in source code, object code, executable code or other formats. An example of a computer readable storage media includes a conventional computer system RAM, ROM, EPROM, EEPROM, and magnetic or optical disks or tapes.

Referring to figure 20, there is shown a computer platform 2000 for the protocol alignment system 100. The computer platform 2000 may be a network device. It is understood that the illustration of the platform 2000 is a generalized illustration and that the platform 2000 may include additional components and that some of the components described may be removed and/or modified without departing from a scope of the platform 2000. Also, the protocol alignment system 100 may be implemented in a distributed computing system, such as a cloud system.

The platform 2000 includes processor(s) 2001, such as a central processing unit, ASIC or other type of processing circuit; a display 2002, such as a monitor; an interface 2003, such as a network interface to a Local Area Network (LAN), a wireless 802.11x LAN, a 3G or 4G mobile WAN or a WiMax WAN; and a computer-readable medium 2004. Each of these components may be operatively coupled to a bus 2008. A computer readable medium (CRM), such as CRM 2004
may be any suitable medium which stores instructions for execution by the processor(s) 2001 for execution. For example, the CRM 2004 may be non-volatile media, such as a magnetic disk or solid-state non-volatile memory or volatile media. The CRM 2004 may also store other instructions or instruction sets, including word processors, browsers, email, instant messaging, media players, and telephony code.

[0071] The CRM 2004 may also store an operating system 2005, such as MAC OS, MS WINDOWS, UNIX, or LINUX and instructions 2006 for the protocol alignment system 100. The operating system 2005 may be multi-user, multiprocessing, multitasking, multithreading, real-time and the like.

[0072] While the embodiments have been described with reference to the disclosure above, those skilled in the art are able to make various modifications to the described embodiments without departing from the scope of the embodiments as described in the following claims, and their equivalents.
What is claimed is:

1. A protocol alignment system comprising:
 a data storage to store
 a process map determined from a protocol, the process
 map including a plurality of threads and each thread including one or more nodes
 ordered in a chronological sequence, and
 data records, the data records including events related
 to the protocol;
 a mapping module including an event retrieval module to determine
 events for the nodes from the data records in the data storage, and the events are
 assigned to the nodes in the process map, wherein each assigned event includes
 an event time, and
 the mapping module is to sort the assigned events by
 their event times; and
 a protocol engine executed by a processor to determine a best fit of
 the events to the plurality of threads based on the event time for each event and a
 thread time for each thread, wherein determining the best fit includes:
 recursively matching the events to the nodes in the
 threads based on the event times and the thread times, wherein the recursive
 matching allows for a missing event to be assigned to a node,
 determining at least one metric for each recursion
 measuring an accuracy of the events matching the nodes in the process map, and
 selecting one of the recursions as the best fit based on
 the metrics for the recursion.
2. The system of claim 1, wherein the protocol engine recursively matching the events to the nodes in the threads includes:

 selecting a thread from the plurality of threads having an earliest thread time, wherein the thread time for each thread is determined from a current matching event,

 selecting a node from the selected thread that is a next node in the thread to be matched,

 assigning, to the selected node, a missing event or an event of the node that has an event time equal to or greater than the thread time,

 if the event is assigned, updating the thread time to the event time of the assigned event, and

 repeating the selecting, assigning and updating for each successive node in the thread until a stop in the thread is identified from the process map.

3. The system of claim 2, wherein the protocol engine assigning the missing event includes assigning the missing event if a total number of missing events for the recursion is less than a threshold.

4. The system of claim 1, wherein the at least one metric includes, for each recursion, a number of times nodes are traversed, a number of matching events, and a number of missing events for the recursion.

5. The system of claim 1, wherein the at least one metric comprises a ratio of number of matched events over total number of times nodes are traversed in the recursion.
6. The system of claim 1, wherein the protocol engine recursively matching the events to the nodes in the threads includes abandoning a recursion during the matching of the events if the recursion cannot produce a better fit of matching events than a previous recursion as determined based on at least one metric.

7. The system of claim 1, wherein the process map comprises a plurality of different types of nodes including a start node identifying a start of the protocol, an activity or decision node wherein at least one event is to take place for the activity or decision node, a rendezvous and continue node wherein a new thread is launched from the rendezvous and continue node, a stop thread node, a stop all threads except current thread node, and a protocol stop node identifying an end of the protocol.

8. The system of claim 1, wherein the event retrieval module is to call query objects for the nodes to retrieve the events for the nodes from the data storage.

9. The system of claim 8, wherein each node to be assigned an event includes a query object having at least one concept ID comprised of a predetermined term used in the data records.

10. The system of claim 1, comprising:
 - a compliance module to determine a level of compliance of the with the protocol based on the best fit of the events to the protocol map; and
 - a user interface to provide a visual indication of compliance for each node operable to have an associated event.
11. The system of claim 1, wherein the plurality of threads include a thread that forks, and a plurality of parallel threads spawned from the thread that forks.

12. The system of claim 1, wherein the recursive matching includes repeating matching events for nodes in a thread until all events for the nodes in the thread are matched or an end in the protocol is reached.

13. A method of determining a best fit of events for a process map representing a protocol, the method comprising:

 storing a process map determined from a protocol, the process map including a plurality of threads and each thread including one or more nodes ordered in a chronological sequence according to a workflow of the protocol;

 storing events;

 retrieving stored events for the nodes;

 assigning the corresponding events to each of the nodes;

 determining, by a processor, a best fit of the events to the plurality of threads based on the event time for each event assigned to the nodes and a thread time for each thread, wherein determining the best fit includes:

 recursively matching the events to the nodes in the threads based on the event times and the thread times, wherein the recursive matching allows for a missing event to be assigned to a node;

 determining at least one metric for each recursion

 measuring an accuracy of the events matching the nodes in the process map, and
selecting one of the recursions as the best fit based on
the metrics for the recursion; and
determine compliance with the protocol based on the best fit of the
events.

14. The method of claim 13, wherein recursively matching the events to
the nodes in the threads comprises:

 selecting a thread from the plurality of threads having an earliest thread
time, wherein the thread time for each thread is determined from an event time for
an event matched to a previous node,

 selecting a node from the selected thread that is a next node in the thread to
be matched,

 assigning, to the selected node, a missing event or an event of the node that
has an event time equal to or greater than the thread time,

 if the event is assigned, updating the thread time to the event time of the
assigned event, and

 repeating the selecting, assigning and updating for each successive node in
the thread until a stop in the thread is identified from the process map.

15. A computer-readable storage medium coupled to one or more
processors and having instructions thereon which, when executed by the one or
more processors, cause the one or more processors to perform operations
according to the method of any one of claims 13 and 14.
Welcome to the Sepsis Project

Sepsis is a complex syndrome that is difficult to define, diagnose, and treat. It is a range of clinical conditions caused by the body's systemic response to an infection, which if it develops into severe sepsis, is accompanied by single or multiple organ dysfunction or failure, leading to death. It is a major cause of mortality, killing approximately 1,400 people worldwide every day. Mortality rates from severe sepsis are on a similar scale to lung, breast and colon cancer, and it is one of the leading causes of conditions caused by the body's systemic response to an infection, which if it develops into severe sepsis.

Project Status

<table>
<thead>
<tr>
<th>Activity</th>
<th>Status</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7. Publish Sepsis Reports</td>
<td>Pending</td>
<td>05/27</td>
</tr>
<tr>
<td>Step 6. Design Sepsis Analysis</td>
<td>In Progress</td>
<td>06/20</td>
</tr>
<tr>
<td>Step 5. Define Sepsis Population</td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>Step 4. Configure Compliance Measures</td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>Step 3. Configure Outcome Measures</td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>Step 2. Identify Text Mining Clinical Events</td>
<td>Completed</td>
<td></td>
</tr>
<tr>
<td>Step 1. Protocolize Standard Sepsis Care</td>
<td>Completed</td>
<td></td>
</tr>
</tbody>
</table>

What’s New

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Modified By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepsis Compliance Report</td>
<td>01/10 Erika C.</td>
<td></td>
</tr>
<tr>
<td>Sepsis Protocol Updates For...</td>
<td>01/10 John L.</td>
<td></td>
</tr>
<tr>
<td>New NQMC Measures</td>
<td>01/10 Isabel L.A.</td>
<td></td>
</tr>
<tr>
<td>NoF Endorsed Standards</td>
<td>01/09 Ted P.</td>
<td></td>
</tr>
<tr>
<td>Export: Sepsis Physician</td>
<td>01/07 Olivia S.</td>
<td></td>
</tr>
<tr>
<td>Summary of ICU Case Review...</td>
<td>01/06 Alexander T.</td>
<td></td>
</tr>
</tbody>
</table>

Events & Milestones

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepsis Compliance Quarterly Review Meeting</td>
<td>Jan 12</td>
</tr>
<tr>
<td>NOF 2011 Annual Conference and Membership Meeting</td>
<td>Feb 24</td>
</tr>
<tr>
<td>NOF Webinar: All Member Conference Call</td>
<td>Jan 19</td>
</tr>
<tr>
<td>All Quality Measure Reports Posted</td>
<td>Dec 31</td>
</tr>
<tr>
<td>Comments Due for Quality Measure List</td>
<td>Jan 31</td>
</tr>
<tr>
<td>New Sepsis Protocol Published in Production</td>
<td>Dec 22</td>
</tr>
<tr>
<td>Add New Event</td>
<td></td>
</tr>
<tr>
<td>Add New Milestone</td>
<td></td>
</tr>
</tbody>
</table>

Messages & Alerts

<table>
<thead>
<tr>
<th>Posted</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/10</td>
<td>Analysis Alert: High Sepsis Progression Rate in Unit...</td>
</tr>
<tr>
<td>02/15</td>
<td>Final Review of Sepsis Protocol Version 2011 DUE...</td>
</tr>
<tr>
<td>02/21</td>
<td>Sepsis Protocol Version 2011 Test Run Completed</td>
</tr>
<tr>
<td>01/15</td>
<td>ICU Case Review - 4th Quarter 2010 Completed</td>
</tr>
<tr>
<td>12/31</td>
<td>Registration for NOF's 2011 Annual Conference...</td>
</tr>
</tbody>
</table>

Create New Message
<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>PROTOCOL</th>
<th>TYPE</th>
<th>CALCULATION NOTES</th>
<th>LAST MODIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RESOLVED SEPSIS CASES</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>OUTCOME</td>
<td>COUNT</td>
<td>01/02</td>
</tr>
<tr>
<td>2</td>
<td>SEPSIS MORTALITY CASES</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>OUTCOME</td>
<td>COUNT</td>
<td>01/06</td>
</tr>
<tr>
<td>3</td>
<td>PROGRESSION FROM SEPSIS TO ADVANCED SEPSIS</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>OUTCOME</td>
<td>COUNT</td>
<td>01/25</td>
</tr>
<tr>
<td>4</td>
<td>RESOLVED SEVERE SEPSIS CASES</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>OUTCOME</td>
<td>COUNT</td>
<td>01/08</td>
</tr>
<tr>
<td>5</td>
<td>SEVERE SEPSIS MORTALITY CASES</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>OUTCOME</td>
<td>COUNT</td>
<td>01/08</td>
</tr>
<tr>
<td>6</td>
<td>PROGRESSION FROM SEVERE SEPSIS TO SEPTIC SHOCK</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>OUTCOME</td>
<td>COUNT</td>
<td>01/10</td>
</tr>
<tr>
<td>7</td>
<td>RESOLVED SEPTIC SHOCK CASES</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>OUTCOME</td>
<td>COUNT</td>
<td>01/18</td>
</tr>
<tr>
<td>8</td>
<td>SEPTIC SHOCK MORTALITY CASES</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>OUTCOME</td>
<td>COUNT</td>
<td>01/14</td>
</tr>
<tr>
<td>9</td>
<td>SEPSIS PROGRESSION RATE %</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>MEASURE</td>
<td>PERCENT</td>
<td>01/27</td>
</tr>
<tr>
<td>10</td>
<td>SEVERE SEPSIS PROGRESSION RATE %</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>MEASURE</td>
<td>PERCENT</td>
<td>01/26</td>
</tr>
<tr>
<td>11</td>
<td>SEPSIS PROGRESSION COMPLIANCE %</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>MEASURE</td>
<td>PERCENT</td>
<td>01/15</td>
</tr>
<tr>
<td>12</td>
<td>SEVERE SEPSIS PROGRESSION COMPLIANCE %</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>MEASURE</td>
<td>PERCENT</td>
<td>01/09</td>
</tr>
<tr>
<td>13</td>
<td>OVERALL COMPLIANCE %</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>MEASURE</td>
<td>PERCENT</td>
<td>01/09</td>
</tr>
<tr>
<td>14</td>
<td>SEPSIS COMPLIANCE %</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>MEASURE</td>
<td>PERCENT</td>
<td>01/06</td>
</tr>
<tr>
<td>15</td>
<td>SEVERE SEPSIS COMPLIANCE %</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>MEASURE</td>
<td>PERCENT</td>
<td>01/10</td>
</tr>
<tr>
<td>16</td>
<td>SEPTIC SHOCK COMPLIANCE %</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>MEASURE</td>
<td>PERCENT</td>
<td>01/13</td>
</tr>
<tr>
<td>17</td>
<td>MORTALITY COMPLIANCE %</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>MEASURE</td>
<td>PERCENT</td>
<td>01/12</td>
</tr>
<tr>
<td>18</td>
<td>RESOLVED COMPLIANCE %</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>MEASURE</td>
<td>PERCENT</td>
<td>01/21</td>
</tr>
<tr>
<td>19</td>
<td>COMPLIANCE RATE FOR MD ABX ORDER WIN 1 HR %</td>
<td>SEPSIS_COMPREHENSIVE</td>
<td>MEASURE</td>
<td>PERCENT</td>
<td>01/04</td>
</tr>
</tbody>
</table>
600

FIG. 6
SEPSIS POPULATIONS

<table>
<thead>
<tr>
<th>NAME</th>
<th>SEPSIS_ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>FULL SEPSIS POPULATION</td>
</tr>
<tr>
<td>NOTES</td>
<td>IF THE PATIENT HAS CONFIRMED OR SUSPECTED NEW INFECTION INDICATED BY ONE OF THE FOLLOWING SIGNS OR SYMPTOMS: NEW PAIN</td>
</tr>
</tbody>
</table>

ATTRIBUTE

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Relationship</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITALS: NEW PAIN</td>
<td>EQUAL TO</td>
<td>YES</td>
</tr>
<tr>
<td>LDA: DRAINED OUT</td>
<td>EQUAL TO</td>
<td>YES</td>
</tr>
<tr>
<td>LDA: DRAINAGE ISSUES</td>
<td>EQUAL TO</td>
<td>YES</td>
</tr>
<tr>
<td>REVIEW OF SYSTEMS: RESPIRATORY DISTRESS</td>
<td>EQUAL TO</td>
<td>YES</td>
</tr>
<tr>
<td>LAB RESULTS: URINE ANALYSIS</td>
<td>EQUAL TO</td>
<td>HAZY</td>
</tr>
<tr>
<td>MACROSCOPIC: URINE CLARITY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AND

2 OF THE FOLLOWING

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Relationship</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>VITALS: TEMPERATURE</td>
<td>GREATER THAN</td>
<td>38°C</td>
</tr>
<tr>
<td>VITALS: TEMPERATURE</td>
<td>LESS THAN</td>
<td>36°C</td>
</tr>
<tr>
<td>VITALS: PULSE</td>
<td>GREATER THAN</td>
<td>90</td>
</tr>
<tr>
<td>VITALS: RESPIRATORY RATE</td>
<td>GREATER THAN</td>
<td>20 BEATS/MIN</td>
</tr>
<tr>
<td>LAB RESULTS: PCO2 (A). ISTAT</td>
<td>GREATER THAN</td>
<td>32 mm/Hg</td>
</tr>
<tr>
<td>LAB RESULTS: AUTOMATED BLOOD COUNT - WBC</td>
<td>LESS THAN</td>
<td>4</td>
</tr>
<tr>
<td>LAB RESULTS: BAND NEUTROPHILS</td>
<td>GREATER THAN</td>
<td>10%</td>
</tr>
<tr>
<td>Attending Provider</td>
<td># of Cases</td>
<td># of Severe Sepsis Cases</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>DR. 0007</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>DR. 0009</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>DR. 0038</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DR. 0047</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DR. 0026</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DR. 0028</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DR. 0035</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DR. 0064</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DR. 0083</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DR. 0031</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DR. 0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DR. 0058</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>DR. 0043</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>DR. 0053</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>DR. 0057</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>DR. 0050</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>DR. 0005</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

FIG. 9
Parallel Threads in a Protocol

Events per Node by Thread

With each iteration, the thread with the earliest "time" (from last matched event) is advanced to its next node position.

FIG. 14
Simulate_Protocol_Function()
{
 if it is not mathematically possible to improve matching
 return;
 otherwise
 select thread with earliest timestamp
 switch (thread's current node type)
 START NODE: Advance thread to node linked from start node
 ACTIVITY NODE or DECISION NODE:
 update metrics for the node
 loop through each remaining event attached to the node
 if the event is within the time criteria for the event
 Set thread time to selected event's time
 advance thread to next node
 Simulate_Protocol_Function()
 if this thread has not exceed the consecutive skip limit
 for each link from this node
 advance thread to next node
 Simulate_Protocol_Function()
 RENDEVOUS AND CONTINUE:
 loop through each outgoing link from this node
 launch a new thread on the node the link leads to
 copy parent thread's timestamp to the new thread
 Simulate_Protocol_Function()
 STOP THIS THREAD:
 mark this thread thread as halted
 Simulate_Protocol_Function()
 STOP ALL THREADS EXCEPT THIS THREAD:
 stop all other threads except for this one
 loop through each outgoing link from this node
 launch a new thread on the node the link leads to
 copy parent thread's timestamp to the new thread
 Simulate_Protocol_Function()
 PROTOCOL STOP:
 check to see if accumulated pattern-matched path is the best and save it if it is

FIG. 17
1800

Store process map
1801

Retrieve and assign events to nodes
1802

Sort events according to event times
1803

Perform recursive matching
1804

Determine best fitting sequence
1805

Determine compliance with protocol based on best fitting sequence
1806

FIG. 18
1900

Encounter parallel paths 1901

current matched sequence plus remaining unmatched events cannot be the best fitting? 1902

YES

NO

Select thread 1903

Match event for node 1904

protocol stop is reached, and a determination is made that the sequence is not the best fitting sequence? 1905

YES

End

NO

FIG. 19