
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREAÏÏ (PCT)

PCT WORLD INTELLE،3TUAL PR0PERÏÏ ORGANIZATION
International Bureau

(51) International Patent Classification 6 :

G06F 19/00
(11) International Publication Number: wo 98/12657

Al - „
(43) International Publication Date: 26 March 1998 (26.03.98)

(21) International Application Number: PCT/US97/I6218

(22) International Filing Date: 16 September 1997 (16.09.97)

(81) Designated States: AU，CA٠ JP١ European patent (AT, BE，
CH٠ DE，DK, ES，FI٠ FR: GB，GR，IE，IT١ LU١ MC٠ NL١

PT, SE)·

(30) Priority Data:
08/710.404 17 September 1996 (17.09.96) US

(71) Apolicant: MARATHON TECHNOLOGIES CORPORA-
TION (US/US٦; 1300 Massachusetts Avenue, Boxboro,
MA 01719 (US).

(72) Inventors: BISSETT١ Thomas，D.; 78 Sunset Drive，Northbor-
ough, MA 01532 (US). FITZGERALD, Martin, 5 : .ل，لآ

Holbrook Street，Medway, MA 02053 (US). LEVEILLE,
Paul，A.; 12 Stratton Road, Grafton, M٨ 01519 (US). MC٠

COLLUMf James，Di； 27tsw¡ft¿oad٠ Whitinsville, MA
01588 (US). MUENCH, Erik; 677 Salem s^eet؛ Grove-
land, MA 01834 (US). TREMBLAY, Glenn，A.; 139 South
Street，Upton, MA 01568 (US).

(74) Agent: wALPERT Gary，A.; Fish & Richardson，PC., 225
Franklin Street, Boston； MA 02110-2804 (US)·

Pubshed
With international search report.
Bejore the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: FAULT RESILIENT/FAULT TOLERANT COMPUTING

(57) Abstract

Data transfer to computing elements (14a, 14b) is
synchronized in a computer system (1◦) that includes
the computing element and controllers (12) that provide
data from data sources to the computing elements. A
request for data from a computing element (14a，14b) is
intercepted and transmitted to^ the Controllers (12). At least
a first controller responds by transmitting requested data
to the computing ele^ient and by indicating how a second
controller will respond to the intercepted request.

10

Codes used to identify States party to the PCT 에 the front pages of pamphlets publishing international applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

AL Albania
AM Annenia
AT Austria
AU Australia
AZ Azertaijan
BA Bosnia and Herzegovina
BB Barbados
BE Belgium
BF Buikina Faso
BG Bulgaria
BJ Benin
BR Brazil
BY Belarus
CA Canada
CF Centra African Republic
CG Co go
CH Swiizeriand
Cl Côte d٠ï٧oire
CM Cameroon
CN China
cu Cuba
cz Czech Republic
DE Germany
DK Denmark
EE Estonia

KR
KZ
LCU

IK
LR

Spain LS Lesotho SI Slovenia
Finland LT Lithuania SK Slovakia
France w Luxembourg SN Senegal
Gabon LV Latvia sz Swaziland
Unitd Kingdom MC Monaco TO Chad
Georgia MD Republic of Moldova TC Togo
Ghana MG Madagascar TJ Tajikistan
Guinea MK The former Yugoslav TM Turkmenistan
Greece Republic of Macedonia TR Turkey
Hungary ML Mali TT Trinidad and Tobago
】reland MN Mongolia ÜA Ukraine
】srael MR Mauritania UG Uganda
Iceland MW Malawi US United States of America
Italy MX Mexico الل Uzbekistan
Japan NE Niger VN Viet Nam
Kenya NL Netherlands Yugoslavia
Kyrgyzstan NO Norway IW Zimbabwe
Democratic Peoples NZ New Zealand
Republic of Korea PL Poland
Republic of Korea PT Portugal
Kaukstan RO Romania
Saint Lucia m Russian Federation
Liechtenstein SD Sudan
Sri Lanka SE Sweden
Liberia SG Singapore

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

一1一

FAULT RESILIENTZFAULT TOLERANT COMPUTING

Background of the Invention

The invention relates to fault resident and fault

tolerant computing.

Fault resident computer systems can continue to

function in the presence of hardware failures. These

systems operate in either an availability mode or an

integrity mode, but not both. A system is "available"

when a hardware failure does not cause unacceptable

delays in user access. Accordingly, a system operating

in an availability mode is configured to remain online,

if possible, when faced with a hardware error. A system

has data integrity when a hardware failure causes no data

loss or corruption. Accordingly, a systero operating in

an integrity mode is configured to avoid data loss or

corruption, even if the system must go offline to do so.

Fault tolerant systems stress both availability

and integrity. A fault tolerant system remains available

and retains data integrity when faced with a single

hardware failure, and, under some circumstances, when

faced with multiple hardware failures.

Disaster tolerant systems go one step beyond fault

tolerant systems and require that loss of a computing

site due to a natural or man-made disaster will not

interrupt system availability or corrupt or lose data.

Typically, fault resilient/fault tolerant systeros

include several processors that may function as computing

elements or controllers, or may serve other roles. In

many instances, it is important to synchronize operation

of the processors or the transmission of data between the

processors·

Sinnmary of the Invention

In one aspect, generally, the invention features

synchronizing data transfer to a computing element in a

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

ا2_
computer system including the computing element and

controllers that provide data from data sources to the

computing element. A request for data made by the

computing element is intercepted and transmitted to the

controllers. Controllers respond to the request and at

least one controller responds by transmitting requested

data to the computing element and by indicating how

another controller will respond to the intercepted

request.

Embodiments of the invention may include one or

more of the following features· A controller may respond

to the intercepted request by indicating that the

controller has no data corresponding to the intercepted

request and by indicating that another controller will

respond to the intercepted request by transmitting data

to the computing element. Each response to the

intercepted request by a controller may include an

indication as to how each other controller will respond

to the intercepted request.

The computing element may compare the responses to

the intercepted request for consistency. When each

response includes an indication as to how each other

controller will respond to the intercepted request, the

comparison may include comparing the indications for

consistency. When responses of two or more controllers

include requested data, the comparison may include

comparing the data for consistency. The computing

element may notify the controllers of the outcome of the

comparison and that responses have been received from all

of the controllers.

A controller may be disabled when the responses

are not consistent. In addition, an error condition may

be generated if the computing element does not receive

responses from all of the controllers within a

predetermined time period.

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

-3 —

A data source may be associated with a controller,

and the controller may obtain the requested data from the

data source in response to the intercepted request·

A controller may maintain a record of a status of

another controller, and may use the record when

indicating how the other controller will respond to the

intercepted request. When a data source is associated

with the other controller, the record may include the

status of the data source. Each controller may maintain

records of statuses of all other controllers and may use

the records to indicate how the other controllers will

respond to the intercepted request. When each controller

is associated with a data source, each controller may

maintain records of statuses of data sources associated

with all other controllers.

When a status of a data source associated with a

controller changes, the controller may transmit to the

computing element an instruction to discard responses

from other controllers to the intercepted request. The

computing element may respond to the instruction by

discarding responses from other controllers to the

intercepted request and by transmitting to the

controllers a notification that the responses have been

discarded. A controller may respond to the notification

by updating a record of the status of the data source.

After updating the record, the controller may retransmit

the requested data to the computing element and indicate

how the other controller will respond to the intercepted

request.

When a data source is associated with each

controller, each controller may respond to the

intercepted request by determining whether an associated

data source is expected to process the request, and when

the associated data source is expected to process the

request, transmitting the request to the associated data

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

—4一

source, receiving results of the request from the

associated data source, and forwarding the results of the

request to the computing element. When the associated

data source is not expected to process the request, the

controller may respond by informing the computing eleroent

that no data will be provided in response to the request.

In another aspect, generally, the invention

features maintaining synchronization between computing

elements processing identical instruction streams in a

computer system including the computing elements and

controllers that provide data from data sources to the

computing elements, with the controllers operating

asynchronously to the computing element. Computing

elements processing identical instruction streams each

stop processing of the instruction stream at a coion

point in the instruction stream. Each computing element

then generates a freeze request message and transmits the

freeze request message to the controllers* A controller

receives a freeze request message from a computing

element, waits for a freeze request message from other

computing eleroents, and, upon receiving a freeze request

message from each computing element processing an

identical instruction stream, generates a freeze response

message and transmits the freeze response message to the

computing elements. Each computing element, upon

receiving a freeze response message from a controller,

waits for freeze response messages from other controllers

to which a freeze request message was transmitted, and,

upon receiving a freeze response message from each

controller, generates a freeze release message, transmits

the freeze release message to the controllers, and

resumes processing of the instruction stream.

Embodiments of the invention may include one or

more of the following features. The common point in the

instruction stream may correspond to an 1/0 operation.

WO 98/12657 PCTZÜS97/16218

10

15

20

25

30

—5 —

the occurrence of a predetermined number of instructions

without an 1/0 operation, or both.

A controller may include a time update in the

freeze response message, and a computing element, upon

receiving a freeze response message from each controller

to which a freeze request message was transmitted, may

update a system tiroe using the time update from a freeze

response message· The computing element may use the time
update from a freeze response message generated by a

particular controller.

Upon receiving a freeze response message from each

controller to which a freeze request message was

transmitted, a computing element may process data

received from a controller prior to receipt of freeze

response messages from the controllers.

In another aspect, generally, the invention

features handling faults in a computer system including

error reporting elements and error processing elements·

An error reporting element detects an error condition and

transmits information about the error condition as an

error message to error processing elements connected to

the error reporting element. At least one error

processing element retransmits the error message to other

error processing elements connected to the error

processing element.
In another aspect, generally, the invention

features handling faults in a computer system including

error reporting elements and error processing elements.

Error reporting element detect an error condition and

transmit information about the error condition as error

messages to error processing elements connected to the

error reporting elements. At least one error processing

element combines information from related error messages

from multiple error reporting elements and uses the

wo 98/12657 PCT/US97/16218

10

15

20

25

30

- ع —

combined information in identifying a source of the error

condition.

The error processing element may use a state table

to combine information from related error messages. The

error processing element may represent an error message

using an error identifier that identifies a particular

error, an error target that identifies a subcomponent

that caused the error represented by the error message,

and a reporting source that identifies an error reporting

element that generated the error message and a path over

which the error message was received. The error

processing element may determine whether error messages

are related by comparing a received error roessage against

states representing previously received error messages.

Other features and advantages will become apparent

from the following description, including the drawings,

and from the claims.

Brief Description of the Drawings

Fig. 1 is a block diagram of a partially fault

resilient system.

Fig. 2 is a block diagram of system software of

the system of Fig. 1.

Fig. 3 is a flowchart of a procedure used by an

IOP Monitor of the system software of Fig٠ 2.

Fig. 4 is a block diagram of an IPI module of the

system of Fig. 1.

Fig. 5 is a state transition table for the system

of Fig. 1.

Fig. 6 is a block diagram of a fault resilient

system.

Fig. 7 is a block diagram of a distributed fault

resilient system.

WO 98/12657 PCT/US97/16218

10

15

20

25

30

—٦ا

Fig. 8 is a block diagram of a fault tolerant

system.
Fig. 9 is flowchart of a fault diagnosis procedure

used by IOPs of the system of Fig. 8·

Fig٠ 10 is a block diagram of a disaster tolerant

system.
Fig. 11 is a block diagram of software components

of a computer system.

Figs. 12Α and 12Β are flow diagrams illustrating

information transferred between CEs and IOPs·

Fig. 13 is a flowchart of a flush procedure

implemented by the CE Transport.

Figs. 14Α and 14Β are block diagrams illustrating

physical and logical system configurations.

Fig. 15 is a flowchart of a flush procedure.

Figs. 16 and 16Β are tables of microcode state

transitions.

Fig. 17 is a block diagram of a system.

Fig. 18 is a flow chart of a procedure for error

processing.
Fig. Χ9Α is a syndrome source table.

Fig. 19Β is a state transition table corresponding

to the syndrome source table of Fig. 19Α·

Fig. 20 is a callout hierarchy diagram.

Figs. 21Α, 21Β and 22 are tables listing callout

elements.
Fig. 23 is a flowchart of a procedure for

identifying a faulty component.

Description of the Preferred Embodiments

Fig. 1 illustrates a fault resilient system 10

that includes an 1/0 processor ("IOP"》12 and two

computing elements ("CEs'·) 14a, 14b (collectively

referred to as CEs 14》. System 10 includes only a single

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

٠8٠

IOP 12 and therefore cannot recover from a failure in IOP

12٠ As such, system 10 is not entirely fault resilient.

IOP 12 includes two inter٠processor interconnect

(.'IPI«) modules 16a, 16b that are connected,

respectively, to corresponding IPI modules 18a, 18b of

CEs 14 by cables 20a, 20b. IOP 12 also includes a

processor 22, a memory system 24, two hard disk drives

26, 28, and a power supply 30· similarly, each CE 14

includes a processor 32, a memory system 34, and a power

supply 36. Separate power supplies 36 are used to ensure

fault resilience in the event of a power supply failure.

Processors 32a, 32b are «identical« to each other in

that, for every instruction, the number of cycles

required for processor 32a to perform an instruction is

identical to the number of cycles required for processor

32b to perfora the same instruction. In the illustrated

embodiment, system 10 has been implemented using standard

Intel 486 based motherboards for processors 22, 32 and

four megabytes of memory for each of memory systems 24,

34.

IOP 12 and CEs 14 of system 10 run unmodified

operating system and applications software, with hard

drive 26 being used as the boot disk for the IOP and hard

drive 28 being used as the boot disk for CEs 14. In

truly fault resilient or fault tolerant systems that

include at least two IOPs, each hard drive would also be

duplicated.

In the illustrated embodiment, the operating

system for IOP 12 and CEs 14 is DOS. However, other

operating systems can also be used. Moreover, IOP 12 can

run a different operating system from the one run by CEs

14. For* example, IOP 12 could run Unix while CEs 14 run

DOS. This approach is advantageous because it allows CEs

14 to access peripherals from operating systems that do

not support the peripherals. For example, if CEs 14 were

WO 98/12657 PCT/US97/16218

ل0

15

20

25

30

-٠9

running an operating system that did not support CD—ROM

drives, and IOP 12 were running one that did, CEs 14

could access the CD-ROM drive by issuing 1/0 requests

identical to those used to, for example, access a hard

drive. IOP 12 would then handle the translation of the

工/ο request to one suitable for accessing the CD-ROM

drive.

Fig. 2 provides an overview of specialized system

software 40 used by system 10 to control the booting and

synchronization of CEs 14, to disable local time in CEs

14, to redirect all 1/0 requests from CEs 14 to IOP 12

for execution, and to return the results of the 1/0

requests, if any, from IOP 12 to CEs 14.

System software 40 includes two sets of IPI BIOS

42 that are ROM٠based and are each located in the IPI

module 18 of a CE 14٠ IPI BIOS 42 are used in bootup and

synchronization activities. When a CE 14 is booted, IPI

BIOS 42 replaces the I/o interrupt addresses in the

system BIOS interrupt table with addresses that are

controlled by CE Drivers 44. The interrupt addresses

that are replaced include those corresponding to video

services, fixed disk services, serial co^unications

services, keyboard services, and time of day services.

CE Drivers 44 are stored on CE boot disk 28 and

are run by CEs 14٠ CE Drivers 44 intercept 1/0 requests

to the system BIOS and redirect them through IPI modules

18 to IOP 12 for execution. CE Drivers 44 also respond

to interrupt requests from IPI modules 18, disable the

system clock, and, based on information supplied by IOP

Monitor 48, control the time of day of CEs 14.

An IOP Driver 46 that is located on IOP boot disk

26 and is run by IOP 12 handles 1/0 requests from CEs 14

by redirecting them to an IOP Monitor 48 for processing.

Thereafter, IOP Driver 46 transmits the results of the

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

—10 —

requests from IOP Monitor 48 to CEs 14. IOP Driver 46

coiunicates with CE drivers 44 using a packet protocol.

IOP Monitor 48 is located on IOP boot disk 26 and

is run by IOP 12. IOP Monitor 48 controls system 10 and

performs the actual I/o requests to produce the results

that are transmitted by IOP Driver 46 to CEs 14.
System software 40 also includes console software

49 that runs on IOP 12 and permits user control of system

10. Using console software 49, a user can reset, boot,

or synchronize a CE 14. The user can also set one or

both of CEs 14 to automatically boot (autoboot》 and/or

automatically synchronize (autosync) after being reset or

upon startup* The ability to control each CE 14 is

useful both during normal operation and for test

purposes. Using console software 49, the user can also

place system 10 into either an integrity mode in which

IOP Monitor 48 shuts down both CEs 14 when faced with a

miscompare error, a first availability mode in which IOP

Monitor 48 disables CE 14a when faced with a miscompare

error, or a second availability mode in which IOP Monitor

48 disables CE 14b when faced with a miscompare error.

Finally, console software 49 allows the user to request

the status of system 10. In an alternative embodiment,

console software 49 is implemented using a separate

processor that coiunicates with IOP 12.

Each CE 14 runs a copy of the same application and

the same operating system as that run by the other CE 14.

Moreover, the contents of memory systems 34a and 34b are

the same, and the operating context of CEs 14 are the

same at each synchronization time. Thus, IOP Monitor 48

should receive identical sequences of 1/0 requests from

CEs 14٠

As shown in Fig. 3, IOP Monitor 48 processes and

monitors 1/0 requests according to a procedure 100.

Initially, IOP Monitor 48 waits for an 1/0 request from

WO 98/12657 PCT/US97/16218

_ 11 —

5

10

15

20

25

30

35

one of CEs 14 (step 102》٠ Upon receiving an 1/0 request

packet from, for example, CE 14b, IOP Monitor 48 waits

for either an 1/0 request from CE 14a or for the

expiration of a timeout period (step 104)· Because

system 10 uses the DOS operating system, which halts

execution of an application while an 1/0 request is being

processed, IOP Monitor 48 is guaranteed not to receive an

1/0 request from CE 14b while waiting (step 104) for the

工اο request from the CE I4a٠

Next, IOP Monitor 48 checks to determine whether

the timeout period has expired (step 106)• If not (that

is, if an 1/0 request packet from CE 14a has arrived),

IOP Monitor 48 compares the checksums of the packets

(step 108). If the checksums are equal, IOP Monitor 48

processes the 1/0 request (step 110)• After processing

the 1/0 request, IOP Monitor 48 issues a request to the

system BIOS of IOP 12 for the current time of day (step

112).

After receiving the time of day, IOP Monitor 48

assembles an IPI packet

the results, if any, of

sends the IPI packet to

transmission to CEs 14.

that includes the time of day and

the 1/0 request (step 114) and

IOP Driver 46 (step 116) for

When CEs 14 receive the IPI

packet, they use the transmitted time of day to update

their local clocks which, as already noted, are otherwise

disabled.
As required by DOS, execution in CEs 14 is

suspended until IOP Monitor 48 returns the results of the

1/0 request through IOP Driver 46. Before execution is

resumed, the times of day of both CEs 14 are updated to a

common value corresponding to the transmitted time of day

from the IPI packet. Accordingly, the CEs 14 are kept in

time synchronization. The transmitted time of day is

designated as the meta time. If a multitasking operating

system were employed, execution in CEs 14 would not be

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

—12 -

suspended while IOP Monitor 48 performed the 1/0 request.

Instead, processing in CEs 14 would be suspended only

until receipt of an acknowledgement indicating that IOP

Monitor 48 had begun processing the 1/0 request (step

110》. The acknowledgement would include the time of day

and would be used by CEs 14 to update the local clocks.

After sending the IPI packet to IOP Driver 46, IOP

Monitor 48 verifies that both CEs 14 are online (step

118), and, if so, waits for an 工/ο request from one of
the CEs 14 (step 102).

If the tiiaeout period has expired (step 106), IOP

Monitor 48 disables the CE 14 that failed to respond

(step 119) and processes the 工/ο request (step 110).

If there is a miscompare between the checksums of

the packets from CEs 14 (step 108), IOP Monitor 48 checks

to see if system 10 is operating in an availability mode

or an integrity mode (step 120). If system 10 is

operating in an availability mode, IOP Monitor 48

disables the approphate CE 14 based on the selected

availability mode (step 122), and processes the 1/0

request (steps 110-116). Thereafter, IOP Monitor 48

determines whether the disabled CE 14 has been repaired

and reactivated (step 118)٠ If not, IOP Monitor 48 waits

for an I/O request from the online CE 14 (step 124).

With one of the CEs 14 disabled, system 10 is no longer

fault resilient and IOP Monitor 48 i٠ediately processes

a received 1/0 request (step 110).

If system 10 is operating in an integrity mode

when a miscompare is detected, IOP Monitor 48 disables

both CEs 14 (step 126) and stops processing (step 128).

Referring again to Figs٠ 1 and 2, when the

application or the operating system of, for example, CE

14a makes a ηοη-Ι/Ο call to the system BIOS, the system

BIOS executes the request and returns the results to the

application without invoking system software 40.

WO98/Í2657 PCT/US97/16218

10

15

20

25

30

35

-13 —

However, if the application or the operating system makes

an 1/0 BIOS call, CE Driver 44a intercepts the 1/0

request. After intercepting the 1/0 request, CE Driver

44a packages the 1/0 request into an IPI packet and

transmits the IPI packet to IOP 12.

When IPI module 16a of IOP 12 detects transmission

of an IPI packet from CE 14a, IPI module 16a generates an

interrupt to IOP Driver 46٠ IOP Driver 46 then reads the

IPI packet.

As discussed above, IOP Monitor 48 responds to the

IPI packet from CE 14a according to procedure 100. As

also discussed, assuming that there are no hardware

faults, IOP Driver 46 eventually transmits an IPI packet

that contains the results of the 1/0 request and the time

of day to CEs 14.

IPI modules 18 of CEs 14 receive the IPI packet

from IOP 12. CE Drivers 44 unpack the IPI packet, update

the time of day of CEs 14, and return control of CEs 14

to the application or the operating system running on CEs

14,

If no 1/0 requests are issued within a given time

interval, the IPI module 18 of a CE 14 generates a

so-called quantum interrupt that invokes the CE Driver 44

of the CE 14. In response, the CE Driver 44 creates a

quantum interrupt IPI packet and transmits it to IOP 12.

IOP Monitor 48 treats the quantum interrupt IPI packet as

an IPI packet without an 1/0 request. Thus, IOP Monitor

48 detects the incoming quantum interrupt IPI packet

(step 102 of Fig. 3) and, if a matching quantum interrupt

IPI packet is received from the other CE 14 (steps 104,

106, and 108 of Fig. 3), issues a request to the system

BIOS of IOP 12 for the current time of day (step 112 of

Fig. 3) ٠ IOP Monitor 48 then packages the current time

of day into a quantum response IPI packet (step 114 of

Fig. 3) that IOP Driver 46 then sends to CEs 14 (step 116

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

-14 ا

Of Fig. 3》. CE Drivers 44 respond to the quantum

response IPI packet by updating the time of day and

returning control of CEs 14 to the application or the

operating system running on CEs 14٠

If IOP Monitor 48 does not receive a quantum

interrupt IPI package from the other CE 14 within a

predefined timeout period (step 106 of Fig. 3》,IOP

Monitor 48 responds by disabling the non—responding CE

14·

As shown in Fig. 1, IPI modules 16, 18 and cables

20 provide all of the hardware necessary to produce a

fault resilient system from the standard Intel 486 based

motherboards used to implement processors 22, 32. An IPI
module 16 and an IPI module 18, which are implemented

using identical boards, each perform similar functions.

As illustrated in Fig. 4, an IPI module 18

includes a control logic 50 that co^unicates I/o

requests and responses between the system bus of a

processor 32 of a CE 14 and a parallel interface 52 of

IPI module 18. Parallel interface 52, in turn,

coiunicates with the parallel interface of an IPI module

16 through a cable 20. Parallel interface 52 includes a

sixteen bit data output port 54, a sixteen bit data input

port 56, and a control port 58. Cable 20 is configured

so that data output port 54 is connected to the data

input port of the IPI module 16, data input port 56 is

connected to the data output port of the IPI module 16,

and control port 58 is connected to the control port of

the IPI module 16٠ Control port 58 implements a

handshaking protocol between IPI module 18 and the IPI

module 16.

Control logic 50 is also connected to an IPI BIOS

ROM 60. At startup, control logic 50 transfers IPI BIOS

42 (Fig. 2), the contents of IPI BIOS ROM 60, to

processor 32 through the system bus of processor 32٠

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

—15 —

A QI counter 62, also located on IPI module 18,

generates quantum interrupts as discussed above· QI

counter 62 includes a clock input 64 that is connected to

the system clock of processor 32 and a gate input 66 that

is connected to control logic 50. Gate input 66 is used

to activate and reset the counter value of QI counter 62.

When activated, QI counter 62 decrements the counter

value by one during each cycle of the system clock of

processor 32. When the counter value reaches zero, QI

counter 62 generates a quantum interrupt that, as

discussed above, activates CE Driver 44 (Fig· 2》.

CE Driver 44 deactivates QI counter 62 at the

beginning of each 1/0 transaction. CE Driver 44

deactivates QI counter 62 by requesting an 1/0 write at a

first address, known as the QI deactivation address.

Control logic 50 detects the 1/0 write request and

deactivates QI counter 62 through gate input 66. Because

this particular 1/0 write is for control purposes only,

control logic 50 does not pass the 1/0 write to parallel

interface 52. At the conclusion of each 1/0 transaction,

CE Driver 44 resets and activates QI counter 62 by

requesting an I/o write to a second address, known as the

QI activation address. Control logic 50 responds by

resetting and activating QI counter 62.

In an alternative approach, quantum interrupts are

generated through use of debugging or other features

available in processor 32. Some commonly available

processors include debugging or trap instructions that

trap errors by transferring control of the processor to a

designated program after the completion of a selected

ntimber of instructions following tile trap instruction.

In this approach, each time that CE Driver 44 returns

control of processor 32 to the application or operating

system, CE Driver 44 issues a trap instruction to

indicate that control of processor 32 should be given to

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

—16 —

CE Driver 44 upon completion of, for example, 300

instructions· After processor 32 completes the indicated

300 instructions, the trap instruction causes control of

processor 32 to be returned to CE Driver 44. In the

event that an I/o request activates CE Driver 44 prior to

completion of the indicated number of instructions, CE

Driver 44 issues an instruction that cancels the trap

instruction.

IPI Module 18 is also used in activating an

offline CE 14· As discussed below, before an offline CE

14 is activated, the contents of the memory system 34 of

the active CE 14 are copied into the memory system 34 of

the offline CE 14. To minimize the effects of this

copying on the active CE 14, the processor 32 of the

active CE 14 is permitted to continue processing and the

memory is copied only during cycles in which the system

bus of the processor 32 of the active CE 14 is not in

use.

To enable processor 32 to continue processing

while the memory is being copied, IPI module 18 accounts

for memory writes by the processor 32 to addresses that

have already been copied to the offline CE 14. To do so,

control logic 50 monitors the system bus and, when the

processor 32 writes to a memory address that has already

been copied, stores the address in a FIFO 68. When the

memory transfer is complete, or when FIFO 68 is full, the

contents of memory locations associated with the memory

addresses stored in FIFO 68 are copied to the offline CE

14 and FIFO 68 is emptied. In other approaches, FIFO 68

is modified to store both memory addresses and the

contents of memory locations associated with the

addresses, or to store the block addresses of memory

blocks to which memory addresses being written belong.

IPI module 18 also handles non-BIOS 1/0 requests.

In some computer systems, the BIOS is too slow to

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

—17 -

effectively perform 1/0 operations such as video display·

As a result, some less structured or less disciplined

operating systems, such as DOS or UNIX, allow

applications to circumvent the BIOS and make non٠BIOS 1/0

requests by directly reading from or writing to the

addresses associated with 1/0 devices. These noñBIOS

1/0 requests, which cannot be intercepted by changing the

system interrupt table, as is done in connection with,

for example, 1/0 disk reads and writes, are problematic

for a system in which synchronization requires tight

control of the 工/ο interface.

To remedy this problem, and to assure that even

non٠BIOS 1/0 requests can be isolated and managed by IOP

12, IPI module 18 includes virtual 1/0 devices that mimic

the hardware interfaces of physical 1/0 devices. These

virtual 1/0 devices include a virtual display 70 and a

virtual keyboard 72· As needed, other virtual 1/0

devices such as a virtual mouse or virtual serial and

parallel ports could also be used.

In practice, control logic 50 monitors the system

bus for read or write operations directed to addresses

associated with non٠BIOS 1/0 requests to system 1/0

devices. When control logic 50 detects such an

operation, control logic 50 stores the information

necessary to reconstruct the operation in the appropriate

virtual device. Thus, for example, when control logic 50

detects a write operation directed to an address

associated with the display, control logic 50 stores the

information necessary to reconstruct the operation in

virtual display 70. Each time that a BIOS 工/ο request or

a quantum interrupt occurs, CE Driver 44 scans the

virtual 1/0 devices and, if the virtual devices are not

empty, assembles the information stored in the virtual

devices into an IPI packet and transmits the IPI packet

to IOP 12٠ IOP 12 treats the packet like a BIOS 1/0

WO 98/12٥57 PCT/US97/16218

5

10

15

20

25

30

35

-18 —

request using procedure 100 discussed above. When

control logic 50 detects a read addressed to a virtual

I/O device, control logic 50 assembles the read request

into an IPI packet for handling by IOP 12. IOP 12 treats

the IPI packet like a standard BIOS I/o request.

Referring to Fig. 5, each CE 14 always operates in

one of eight states. Because there are only a limited

number of permissible state combinations f system 10

always operates in one of fourteen states. The major CE

operating states are OFFLINE, RTB (ready to boot),

BOOTING, ACTIVE, RTS (ready to sync), WAITING, M،SYNC,

(synchronizing as master》,and S،SYNC (synchronizing as

slave) ٠ IOP Monitor 48 changes the operating states of

CEs 14 based on the state of system 10 and user coiands

from console software 49. Through console software 49, a

user can reset a CE 14 at any time. Whenever the user

resets a CE 14, or a fault occurs in the CE 14, IOP

Monitor 48 changes the state of the CE 14 to OFFLINE.

At startup, system 10 is operating with both CEs
14 OFFLINE (state 150)٠ System 10 ^erates in the upper

states of Fig. 5 (states 152-162) when CE 14a becomes

operational before CE 14b and in the lower states (states

166-176) when CE 14b is the first to become operational.

If CEs 14 become operational simultaneously, the first

operational CE 14 to be recognized by IOP Monitor 48 is

treated as the first to become operational.

When a CE 14 indicates that it is ready to boot by

issuing a boot request, the state of the CE 14 changes to

RTB if the CE 14 is not set to autoboot or to BOOTING if

the CE 14 is set to autoboot. For* example, if CE 14a

issues a boot request when both CEs 14 are OFFLINE, and
CE 14a is not set to autoboot, then the state of CE 14a

changes to RTB (state 152). Thereafter, IOP Monitor 48

waits for the user, through console software 49, to boot

CE 14a. When the user boots CE 14a, the state of CE 14a

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

-19 -

changes to BOOTING (state 154). If the user resets CE

14a, the state of CE 14a changes to OFFLINE (state 150》.

If both CEs 14 are OFFLINE when CE 14a issues a

boot request, and CE 14a is set to autoboot, the state of

CE 14a changes to BOOTING (state 154》. If CE 14a boots

successfully, the state of CE 14a changes to ACTIVE

(state 156) .

When CE 14a is ACTIVE, and CE 14b issues a boot

request, or if CE 14b had issued a boot request while the

state of CE 14a was transitioning from OFFLINE to ACTIVE

(states 152—156), the state of CE 14b changes to RTS

(state 158) if CE 14b is set to autosync and otherwise to

WAITING (state 160). If the state of CE 14b changes to

RTS (state 158), IOP Monitor waits for the user to issue

a synchronize command to CE I4b・ When the user issues

such a command, the state of CE 14b changes to WAITING

(state 160).

Once CE 14b is WAITING, IOP Monitor 48 copies the

contents of memory system 34a of CE 14a into memory

system 34b of CE I4b٠ Once the memory transfer is

complete, IOP Monitor 48 waits for CE 14a to transmit a

quantum interrupt or 1/0 request IPI packet. Upon

receipt of such a packet, IOP Monitor 48 changes the

state of CE 14a to M_SYNC and the state of CE 14b to

S_SYNC (state 162), and synchronizes the CEs 14. This

synchronization includes responding to any memory changes

that occurred while IOP Monitor 48 was waiting for CE 14a

to transmit a quantum interrupt or 1/0 request IPI

packet. Upon completion of the synchronization, the

states of the CEs 14 both change to ACTIVE (state 164)

and system 10 is deemed to be fully operational.

In an alternative implementation, IOP Monitor 48

does not wait for memory transfer to complete before

changing the state of CE 14a to M٠SYNC and the state of

CE 14b to s SYNC (state 162). Instead, IOP Monitor 48

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

—20 —

makes this state change upon receipt of an IPI packet

from CE 14a and performs the memory transfer as part of

the synchronization process*

Similar state transitions occur when CE 14b is the

first CE 14 to issue a boot request· Thus, assuming that

CE 14b is not set to autoboot, CE 14b transitions from

OFFLINE (state 150) to RTC (state 166》 to BOOTING (state

168) to ACTIVE (state 170》. similarly, once CE 14b is

ACTIVE, and assuming that CE 14a is not set to autosync,

CE 14a transitions from OFFLINE (state 170) to RTS (state

172) to WAITING (state 174) to S_SYNC (state 176) to

ACTIVE (state 164).

In other embodiments of the invention, for

example, referring to Fig· 6, a fault resilient system

200 includes two IOPs 202 and two CEs 204. Each CE 204

is connected, through an IPI card 206 and a cable 208, to

an IPI card 210 of each IOP 202. IOPs 202 are

redundantly connected to each other through IPI cards 210

and cables 212. Because every component of system 200

has a redundant backup component, system 200 is entirely

fault resilient. In an alternative approach, cables 208

and 210 could be replaced by a pair of local area

networks to which each IOP 202 and CE 204 would be

connected. Indeed, local area networks can always be

substituted for cable connections.

System 200 is operating system and application

software independent in that it does not require

modifications of the operating system or the application

software to operate. Any single piece of hardware can be

upgraded or repaired in system 200 with no service

interruption. Therefore, by sequentially replacing each

piece of hardware and allowing system 200 to

resynchronize after each replacement, the hardware of

system 200 can be replaced in its entirety without

service interruption, similarly, software on system 200

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

-21 -

can be upgraded with minimal service interruption (that

is, during the software upgrade, the application will

become unavailable for an acceptable period of time such

as two seconds) . Also, disaster tolerance for purposes

of availability can be obtained by placing each 1ОР/СЕ

pair in a separate location and connecting the pairs

through a communications link.

Referring to Fig. 7, a distributed, high

performance, fault resilient system 220 includes two

systems 20٥, the IOPs 202 of which are connected to each

other, through IPI modules, by cables 222. System 220

uses distributed computing environment software to

achieve high performance by running separate portions of

an application on each system 200. System 220 is fault

tolerant and offers the ability to perform both hardware

and software upgrades without service interruption.

Referring to Fig٠ 8, a fault tolerant system 230

includes three IOPs (232, 234, and 236) and three CEs

(238, 240, and 242). Through IPI modules 244 and cables

246, each IOP is connected to an IPI module 244 of each

of the other IOPs. Through IPI modules 248 and cables

250, each CE is connected to an IPI module 244 of two of

the IOPs, with CE 238 being connected to IOPs 232 and

234, CE 240 being connected to IOPs 232 and 236, and CE

242 being connected to IOPs 234 and 236. Like system

200, system 230 allows for hardware upgrades without

service interruption and software upgrades wim only

minimal service interruption.

As can be seen from a comparison of Figs. 7 and 8,

the CEs and IOPs of systems 200 and 230 are identically

configured. As a result, upgrading a fault resilient

system 200 to a fault tolerant system 230 does not

reguire any replacement of existing hardware and entails

the simple procedure of adding an additional СЕ/1ОР pair,

connecting the cables, and making appropriate changes to

WO 98/12657 PCT/US97/16218

10

15

20

25

30

-22 -

the system software. This modularity is an important

feature of the paired modular redundant architecture of

the invention.

Because the components of system 230 are triply

redundant, system 230 is more capable of identifying the

source of a hardware fault than is system 10. Thus,

while system 10 simply disables one or both of CEs 14

when an error is detected, system 230 offers a higher

degree of fault diagnosis.

In one approach to fault diagnosis, as shown in

Fig. 9, each IOP (232, 234, 236) of system 230 performs

fault diagnosis according to a procedure 300. Initially,

each IOP (232, 234, 236) checks for major faults such as

power loss, broken cables, and nonfunctional CEs or IOPs

using well known techniques such as power sensing, cable

sensing, and protocol timeouts (step 302). When such a

fault is detected, each IOP disables the faulty device

or, if necessary, the entire system.

After checking for major faults, each IOP waits to

receive IPI packets (that is, quantum interrupts or 1/0

requests) from the two CEs to which the IOP is connected

(step 304). Thus, for example, IOP 232 waits to receive

IPI packets from CEs 238 and 240. After receiving IPI

packets from both connected CEs, each IOP transmits the

checksums ("CRCs11) of those IPI packets to the other two

IOPs and waits for receipt of CRCs from the other two

IOPs (step 306).

After receiving the CRCs from the other two IOPs,

each IOP may generate a three by three matrix in which

each column corresponds to a CE, each row corresponds to

an IOP, and each entry is the CRC received from the

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

-23 i

columns CE by the row's IOP (step 308》• Thus, for

example, IOP 232 generates the following matrix:

CE 238 CE 240 CE 242
ЮР 232 إ CRC^ CRC X
ЮР 234 CRC X CRC
ЮР 236 أ X CRC CRC

After generating the roatrix, ЮР 232 sums the entries in

each row and each column of the matrix. If the three row

sums are equal and the three column sums are equal (step

310), then there is no fault and IOP 232 checks again for

major faults (step 302) ٠

If either the three rows' sums or the three

columns' suns are unequal (step 310), then ЮР 232

compares the CRC entries in each of the columns of the

matrix. If the two CRC entries in each column match

(step 312), then IOP 232 diagnoses that a CE failure has

occurred and disables the CE corresponding to the column

for which the sum does not equal the sums of the other

columns (step 314).
If the CRC entries in one or more of the matrix

columns do not match (step 312), then ЮР 232 determines

how many of the columns include mismatched entries. If

the matrix includes only one column with mismatched

entries (step 315), then IOP 232 diagnoses that the path

between the ЮР corresponding to the matrix row sum that

is unequal to the other matrix row sums and the CE

corresponding to the column having mismatched entries has

failed and disables that path (step 316). For purposes

of the diagnosis, the path includes the IPI module 244 in

the ЮР, the IPI module 248 in the CE, and the cable 250.

If the matrix includes more than one column with

mismatched entries (step 314), then ЮР 232 confirms that

one matrix row sum is unequal to the other matrix row

sums, diagnoses an ЮР failure, and disables the IOP

corresponding to the matrix row sum that is unequal to

the other matrix row sums (step 318).

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

—24 -

If, after diagnosing and accounting for a CE
failure (step 314》, path failure (step 316), or IOP

failure (step 318), IOP 232 determines that system 300

still includes sufficient non٠faulty hardware to remain

operational, IOP 232 checks again for major faults (step

302)• Because system 230 is triply redundant, system 230

can continue to operate even after several components

have failed. For example, to remain operating in an

availability mode, system 230 only needs to have a single

functional CE, a single functional IOP, and a functional

path between the two.

Using procedure 300, each IOP (232, 234, 236) can

correctly diagnose any single failure in a fully

operational system 230 or in a system 230 in which one

element (that is, a CE, an IOP, or a path) has previously

been disabled· In a system 230 in which an element has

been disabled, each IOP accounts for CRCs that are not

received because of the disabled element by using values

that appear to be correct in comparison to actually
received CRCs.

Procedure 300 is not dependent on the particular

arrangement of interconnections between the CEs and IOPs.

To operate properly, procedure 300 only requires that the

output of each CE be directly monitored by at least two

IOPs. Thus, procedure 300 could be implemented in a

system using any interconnect mechanism and does not

require point to point connections between the CEs and

I0Ps٠ For example, the CEs and IOPs could be connected

to at least two local area networks. In an alternative

approach, instead of suning the CRC values in the rows

and columns of the matrix, these values can be compared

and those rows or columns in which the entries do not

match can be marked with a match/mismatch indicator.

A simplified version of procedure 300 can be

implemented for use in a system 200• In this procedure.

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

—25 —

each IOP 202 of system 200 generates a two by two matrix

in which each column corresponds to a CE 204 and each row

corresponds to a IOP 202:

CE 204 CE 204
IOP 202 إ CRC CRC
ΙΟΡ202 أ CRC CRC

After generating the matrix, each IOP 202 attaches a

mismatch indicator to each row or column in which the two

entres are mismatched.

If there are no mismatch indicators, then system

200 is operating correctly·

If neither row and both columns have mismatch

indicators, then an IOP 202 has faulted. Depending on

the operating mode of systero 200, an IOP 202 either

disables another IOP 202 or shuts down system 200. The

IOP 202 to be disabled is selected based on user supplied

parameters similar to the two availability modes used in

system 10.

If both rows and neither column have mismatch

indicators, then a CE 204 has faulted. In this case,

IOPs 202 respond by disabling a CE 204 if system 200 is

operating in an availability mode or, if system 200 is

operating in an integrity mode, shutting down system 200·
If both rows and one column have mismatch indicators,

then one of the paths between the IOPs 202 and the CE 204

corresponding to the mismatched column has failed.

Depending on the operating mode of system 200, IOPs 202

either disable the CE 204 having the failed path or shut

down system 200٠ If both rows and both column have

mismatch indicators, then multiple faults exist and IOPs

202 shut down system 200.

If one row and both columns have mismatch

indicators, then the IOP 202 corresponding to the

mismatched row has faulted. Depending on the operating

mode of system 200, the other IOP 202 either disables the

faulty IOP 202 or shuts down system 200. If one row and

WO 98/12657 PCT/US97/16218

10

15

20

25

30

—26 —

one column have mismatch indicators, then the path

between the IOP 202 corresponding to the mismatched row

and the CE 204 corresponding to the mismatched column has

failed· Depending on the operating mode of system 200,

IOPs 202 either account for the failed path in future

processing or shut down system 200.

Referring to Fig. 10, one embodiment of a disaster

tolerant system 260 includes two fault tolerant systems

230 located in remote locations and connected by

co٠unications link 262, such as Ethernet or fiber, and

operating in Tneta time lockstep with each other. To

obtain meta time lockstep, all IPI packets are

transmitted between fault tolerant systems 230. Like

system 220, system 260 allows for hardware and software

upgrades without service interruption.

As shown, the paired modular redundant

architecture of the invention allows for varying levels

of fault resilience and fault tolerance through use of

CEs that operate asynchronously in real time and are

controlled by IOPs to operate synchronously in meta time.

This architecture is simple and cost-effective, and can

be expanded or upgraded with minimal difficulty.

Fig. 11 depicts the components of the system

software architecture of an alternative embodiment of the

invention that includes multiple CEs and multiple IOPs.

Each CE 1100 includes a set of one or more Physical

Device Redirectors 1105, a CE Transport layer 1110, and

an IPI Driver 1115. The Physical Device Redirectors 1105

intercept 工/ο requests directed to peripheral devices,

package the requests, and send the requests to the CE

Transport 1110. The Physical Device Redirectors 1105

also receive responses to the requests from the CE

Transport 1110, unpackage the responses, and return the

responses to the operating system or applications

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

"1٦ I

software that initially made the 1/0 requests to the

peripheral devices.

The system software architecture depicted in Fig.

11 supports a multi-threaded processing environment. In

such an environment۶ each thread is a separate stream of

instructions that may be processed by the computing

element. When a Physical Device Redirector 1105

intercepts an 1/0 request by a particular thread,

processing of that thread stops until the Physical Device

Redirector 1105 returns the response to the request.

The CE Transport 1110 co^unicates 1/0 requests

between the CEs and the IOPs. The CE Transport also

keeps track of responses expected and received from the

IOPs on a per request basis. The CE Transport searches

for completed requests (i٠e., requests to which all IOPs

have responded) as IOP responses to redirected requests

are received and sends the resultant data to the Physical

Device Redirector 1105.

Each IOP 1150 includes an IPI driver 1155, a state

control program (SCP) 1160, a fault handler 1165, an IOP

Transport layer 1170, a Device Synchronization Layer

(DSL) 1175, and a set of one or more Physical Device

Providers 1180. The IPI Drivers 1115, 1155 of both the

CEs and the IOPs control the actual transmission and

reception of data along the interconnect paths 1185

between the CEs and the IOPs. The state control program

1160 initiates and responds to state transitions
involving the IOPs and the CEs. The fault handler 1165

responds to reports of detected faults by deconfiguring

appropriate hardware components. The IOP Transport 1170

transports data between the IPI Driver and the other

software components of the IOPs· The Device

Synchronization Layer 1175 is responsible for

synchronizing all redirected requests and responses

between IOP—based peripherals. This synchronization

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

٠ 28 I

includes the reprocessing and restructuring of the

requests and responses due to state transitions of the

IOPs, the CEs, or the peripheral devices. The Physical

Device Providers 1180 unpackage requests received from

the DSL 1175, process the requests, package responses,

and send the responses to the DSL 1175. Each IOP also
may include an ethernet driver 1190 or other mechanism

that permits direct coiunication between the IOPs.

As noted above, the architecture of the described

embodiments requires redirection of all 1/0 requests from

the CEs to one or more IOPs. Responses to these

redirected requests must be synchronized. Accordingly,

all IOPs responding to a redirected request must respond

to the request in a known way and must describe how all

other IOPs will respond. Moreover, an IOP must respond

to a redirected request even if the IOP does not have a

device capable of processing the request. These

requirements permit software running on the CEs to

compare the responses of the IOPs for consistency.

Figs. 12Α and 12Β provide an illustrative example

of appropriate IOP responses (Fig. 12Β) to reguests by a

CE (Fig. 12Α). As shown, each disk of a two-disk shadow

set is associated with a different IOP, with the disk

1200 associated with the first IOP 1205 functioning

normally and the disk 1210 associated with the second IOP

1215 being offline. A request froa the CE 1100 to the

shadow set for data is redirected to the IOPs, and both

IOPs respond. (The second IOP 1215 receives all reguests

directed to the shadow set even though its associated

disk 1210 is offline.》 Each IOP indicates that the first

IOP 1205 is responding with the expected data and that

the second IOP 1215 is responding with no data.

The CE Transport 1110 (Fig. 11》monitors the

responses provided by the IOPs. The CE Transport compares

the responses for consistency once all IOPs have

WO 98/12657 PCT/US97/16218

٠ 29 ٠

responded to a request. The responses must be consistent

in indicating which IOPs responded to the request with

actual data and which IOPs did not. Moreover, if more

to the appropriate

in the CE 1100 and

Thereafter, the CE

all IOPs have responded

than one IOP responds with data, then the data provided

by the IOPs must be consistent. If the responses pass

the consistency checks, then the CE Transport provides a

response containing actual data

Physical Device Redirector 1105

discards the no—data response.

Transport informs the IOPs that

to the request and further informs the IOPs of the

outcome of the comparison. If the responses do not pass

the consistency checks, then one of the IOPs is disabled

and, in effect, removed from the architecture.

The CE Transport 1110 implements the

request-response architecture employed by the system of

Fig. 11 using the procedure 1300 illustrated in Fig. 13.

The CE Transport first instructs the IPI Driver 1115 to

send a request from a Physical Device Redirector 1105 to

all IOPs 1150 (step 1305)• At the same time, the CE

Transport 1110 initializes a timer. If the timer has not

expired (step 1310) before all responses are received

(step 1315》, then the CE Transport compares the responses

to determine whether they are consistent (step 1320)・ エf

the responses are consistent and there are multiple

responses that include data (step 1325), then the CE

transport compares the data responses (step 1330). If

the data responses are consistent, or if there is only a

single data response, then the CE Transport sends the

data to the appropriate Physical Device Redirector 1105

(step 1335). Finally, the CE Transport instructs the IPI

driver to send a Response Complete message to all of the

IOPs (step 1340).

If the timer expires (step 1310) before all

responses are received, or if inconsistent responses are

5

10

15

20

25

30

35

WO 98/12657 PCT/US97^6218

10

15

20

25

30

35

٠ 30—

received (steps 1320, 1330), then the CE Transport

reports the occurrence of an error (step 1345) and

instructs the IPI driver to send a Response Complete

message to all of the IOPs (step 1340)٠

In the IOPs, the Device Synchronization Layer

(DSL) 1175 makes all IOP—based physical devices appear to

the CEs as logical or virtual devices· In addition, the

DSL combines device and state information from all IOPs

and uses this information to project a single logical IOP

to the Physical Device Redirectors of the CEs. Thus, a

system configured as illustrated in Fig. 14Α would appear

to the CE-based Physical Device Redirectors as having the

logical representation illustrated in Fig. 14Β٠

The DSL· 1175 represents devices logically so that

the CE—based redirectors have no knowledge of the

locations and characteristics of physical devices. For

example, a SCSI redirector would not know that Disk c：

(1400, 1405) and Disk D: (1410, 1415) are shadowed drives

and would simply treat them as though they were each a

single drive (1420, 1425)・ Also, an Ethernet redirector

would not know that multiple Ethernet controllers provide

a primary controller (1430) and a secondary controller

(1435) and instead would be aware only of a single

Ethernet controller (1440).

The DSL 1175 receives all redirected requests from

the IOP Transport 1170. The DSL then decides whether to

send a request to a Physical Device Provider 1180 or to

send a no—data response. A critical function of the DSL

is that it only sends a request to a device provider when

that provider is expected to process the request. For

example, if two IOPs control a shadow set of disks, with

the first IOP controlling an offline disk and the second

IOP controlling an active disk, the DSL of the first IOP

would not send a request to its disk, and would instead

respond with a no—data response. The DSL on the second

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

٠ 31-

IOP would send the request to its disk, and would

eventually respond with the data from its disk along with

an indication that the first IOP would be providing a

no—data response.

With every response, the DSL 1175 indicates how

every other IOP will respond. The DSL accomplishes this

by maintaining a record of the status of every other IOP

and associated device in an internal device state table.

The DSL 1175 also accounts for the effects of

state changes in the CEs, the IOPs or the peripheral

devices. For example, the DSL accounts for the situation

that arises when the state of a peripheral device changes

after an IOP indicates how the other IOPs will respond to

a request, but before the other IOPs actually respond to

the request. If the other IOPs were to respond after the

state change, their responses could differ from the

response expected by the first IOP. The DSL· solves this

problero by disabling all response transmissions from the

affected device and initiating a flush sequence that

causes the CE Transport to discard all previously

received, incomplete responses for the particular device.

(As previously noted, the CE Transport does not consider

a request to be complete until responses to the request

have been received from all IOPs.)

Upon receipt of a flush completion indication from

the CE Transport 1110, the DSL 1175 of each IOP 1150

updates its internal device state table and reenables

transmission of responses for the particular device.

Finally, the DSL reprocesses any incomplete responses

that were submitted to the CE Transport prior to the

flush.
As noted above, the CE Transport 1110 sends an

indication to the DSL 1175 of each IOP upon completion of

each response. As such, the DSL always knows which

responses are complete. This permits the DSL to keep

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

b 32 I

track of incomplete responses. When a device state

change occurs and an ensuing flush is issued, the DSL

can, upon receipt of the flush complete indication, reset

its internal knowledge of the device state and re٠issue

any affected incomplete requests. This functionality is

critical, for example, to the implementation of

standbyiprimary processing since the DSL· may have

responded to a particular request on behalf of a standby

device with a no-data response. If the primary device

failed and was unable to process the request, the DSL

would initiate the flush sequence and re-issue the

request. This time the standby device would be

considered the primary device (since the primary device

had failed) and would receive the request-

The internal state table of the DSL 1175 keeps

track of all flushes that can affect the 1/0 devices and

the IOPSf The DSL, through use of the state table,
permits multiple flushes to affect one or more devices,

and permits multiple state transitions to occur at a

single time. This permits seamless handling of multiple

related or unrelated component state changes.

The DSL 1175 also mandates that all device state

changes originate from the IOP 1150 that owns the device.

This permits the DSLs of different IOPs to have a

different simultaneous idea of the state of a device

without risk that inconsistency problems will occur at

the CE Transport 1110. This also permits the DSL to be

fully distributed since there is no need to freeze

reguest or response queues while a master software entity

determines whether a steady state operation has been

achieved.

In most circumstances, the Physical Device

Providers 1180 need not consider the state of a

peripheral device or an IOP because the DSL 1175 only

sends a request to a device provider when the device

WO 98/12657 PCT/US97/16218

10

15

20

25

30

i 33 -

provider is expected to process the request. similarly,

the DSL does not consider the 1/0 policy associated with

a particular device. For example, the DSL does not

consider whether a disk device has a shadowed or a

singleënded 1/0 policy. However, the DSL does use 1/0

policies to determine which providers on which IOPs will

receive a particular request to process. This permits

the DSL to arbitrarily treat any device as shadowed,

singledênded, virtual, or primary/standby even though

all combinations of 1/0 policies and device types do not

necessarily make sense.

The DSL 1175 handles all device state transitions,

including device failure, device activation, device

merge, and manual device enable/disable. In addition,

the DSL transparently handles all IOP state transitions,

including IOP joining, IOP activation, IOP removal, and

IOP graceful shutdown, as these transitions relate to

device states. The DSL also responds automatically to

requests that cannot be satisfied on behalf of the device

providers. The DSL provides a full featured application

program interface (API) set that is useable by

developers.

The DSL· 1175 provides automatic request timeout

support. In this regard, the DSL starts a recovery

process if a CE—originated request does not complete

within a specified period of time. During the recovery

process, the DSL determines which IOP 1150 has stalled

and notifies the fault handler.

The DSL 1175 can apply any 1/0 policy to any

physical device. For example, the DSL can configure a

hard disk as a singleênded device instead of a shadowed

device. similarly, the DSL can configure, for example, a

CD—ROM pl^er or a serial port as a standby/active device

instead of as a singleênded device.

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

一 34 —

As discussed above, the DSL 1175 initiates a flush

sequence in the CE Transport 1110 of one or more CEs 1100

in response to a state change in a peripheral device or

an IOP 1150. The flush sequence causes the CE Transport

to flush all outstanding activity in the messaging

pipeline of the corresponding CE with respect to

indicated devices or Physical Device Providers 1180 and

to provide notification of completed requests as a result

of the flushing.

The flush mechanism provides varying granularity

of request-response synchronization as required by the

DSL· Thus, a system٠wide flush can be implemented for

all devices (or Physical Device Providers), or a flush

can be implemented for a class of devices or a specific

device.

Upon completion of the flush sequence, the DSL· of

each IOP knows exactly which request—response pairs have

been processed and completed. The DSL uses this

knowledge to reissue, re-execute or re-transmit any

necessary request-response pairs to permit recovery from

the transition (or stimulus) within the system that

disrupted the steady state operation of one or more

devices. This allows the DSL to react to changes in the

system that affect steady state operation of the devices.

Once a flush sequence is initiated and completed, the DSL

can determine exactly which requests or responses roust be

reprocessed or redirected to other devices for

completion.
Each CE Transport 1110 maintains a database of

outstanding requests. The database includes a list of

all outstanding 1/0 requests in the system, each

identified by a unique identifier called a XRN (Transport

Reference Number) ٠ The flush sequence is carried out

according to the procedure 1500 illustrated in Fig. 15.

First, the DSL 1175 of each IOP 1150 initiates a flush

WO 98/12657 PCT/US97/16218

٠ 35-

sequence by sending a flush request to all of the CEs

5

10

15

20

25

30

35

all

the devices that

the flush
CE receives a

1100 (step 1505)٠ The DSL then suspends

request/response processing activity for

are involved in the flush semence until
sequence is completed (step 1510) . Each

flush request and waits for matching flush requests from

every IOP in the system (step 1515)・ The CE enters the

flush request into the database and tracks the flush

request in the same way that the CE tracks operating

system requests. When a flush request has been received

from all IOPs, the CE indicates that the first portion of

the flush sequence is completed. The completion of this

portion of the flush sequence signifies that all activity

that was in the IOP-to-CE message pipelines has been

flushed out and processed by the CEs.

Before acknowledging completion of the flush

sequence, the CE first sends acknowledgments to the IOPs

as to which outstanding requests have been completed

(step 1520)• In some cases, 1/0 requests may be

completed by flushing responses through the ΙΟΡ-tõCE

pipelines. The CE sends a SWTACK (Software Transaction

Acknowledgment) for each request that was completed and

removes the completed request from the database. Each

SWTACK contains the request's original XRN· The XRN

allows the IOPs to associate the SWTACK with the proper

completed request·

After sending a SWTACK for each completed request,

the CE sends a SWTACK for the flush sequence (step 1530).

Messages are delivered in order through the CE-to-ΙΟΡ

message pipelines (or are reordered to reflect their

transmission sequence)٠ Accordingly, the flush SWTACK

serves to flush the request completion notification

SWTACKs through the CE—to—IOP message pipelines. Thus,

when the DSL receives the SWTACK for the flush sequence

(step 1535), the DSL has already received and processed

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

٠ 36—

all SWTACKs for requests that were originally in the

message pipelines and have since completed (step 1525) ٠
Upon receiving the SWTACK for the flush sequence, the DSL

knows the state of all request/response activity in the

system· The DSL responds to this information by updating

the state of the system (step 1540)· Thereafter, the DSL

resumes request-response activity for affected devices

(step 1545), and resends any incomplete affected requests

(step 1550)· This re-synchronizes the devices against

the new state to achieve a steady state of operation for

the device or devices involved in the flush sequence.

Since each flush sequence is uniquely tagged with

its own XRN, more than one flush can be in progress at a

time. The flush processing software in the CE Transport

and the DSL abides by certain rules as to how outstanding

flush sequences are processed and in what order they are

acknowledged· This allows the DSL to preempt or override

previously-issued flush sequences due to subsequent or

secondary transitions that might occur within the system.

The system software implements a freeze protocol

to ensure that ΙΟΡ-tõCE co٠unications will not affect

meta time synchronization of the CEs. As previously

discussed, the IOPs operate asynchronously to the CEs and

to other IOPs due to the asynchrony inherent in I/o

devices. For this reason, communication between the CEs

and the IOPs needs to occur in a way that will not

disturb the meta time synchronization of the CEs.

CE-to—ΙΟΡ co٠unication is synchronous to the CE

instruction stream and will not affect CE lockstep as

long as sufficient buffering is provided. However,

10РЧ٠٠СЕ coiunication is by nature asynchronous to the

instruction stream of each CE. Accordingly, I٠P٠to٠CE

coiunication, if handled improperly, could affect each

CE differently and result in divergence of the CE

instruction streams. The freeze protocol serves to delay

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

- 37 -

processing of asynchronous data from the IOPs until the

data can be handled synchronously by all CEs. In

particular, the freeze protocol serves to delay

implementation of the procedure 1300 by the CE Transports

1110 until all of the CE Transports 1110 are ready to

implement the procedure 1300.

The freeze protocol provides four primary

features: synchronized processing of input data streams

from the asynchronous IOPs across the loosely

synchronized CEs; synchronized time updates to the CEs; a

deep-freeze mechanism that allows an IOP to synchronously

hold all CEs in a captive state for an extended period of

time; and fault detection/diagnosis with respect to the

coiunication paths between the CEs and the IOPs.

The freeze protocol provides CE synchronization

using a so-called freeze cycle. The CE Transport 1110 of

a CE may initiate a freeze cycle each time that it is

activated by a Physical Device Redirector 1105 to service

a redirected 1/0 operaton. However, to prevent the use

of excessive bandwidth in performing freeze cycles,

implementations of the software may initiate a freeze

cycle every time that a certain number of 1/0 requests

occurs or a certain number of instructions are processed

without an 1/0 request. For example, the CE Transport

1110 may implement a freeze cycle with every fifth 1/0

request or every ten thousand instructions.

The CE Transport 1110 initiates a freeze cycle by

transmitting a high-priority freeze request message to

all active IOPs and waiting for freeze response messages

from all active IOPs. since all of the CEs are

processing the same instruction stream, the CE transport

1110 of each active CE will transmit a freeze request

message to all active IOPs٠ Each IOP receives the freeze

request messages from the CEs. When an IOP has received

a freeze request message from all active CEs, this

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

—38 —

indicates that the CEs are at the same point in their

instruction streams (i.e·, in synchronization) and that

it is permissible for the CEs to process received data

using the procedure 1300• Accordingly, the IOP responds

by sending a freeze response roessage to all active CEs·

The CEs 1100 receive the freeze response messages

from the lOPs and place the messages in the normal-
priority message queues of the IPI Driver 1115 to provide

an inter٠CE synchronization point for the CE Transport

1110• Finally, after receiving freeze response messages

from all active IOPs, the CEs terminate the freeze cycle

by transmitting freeze release messages to the IOPs.

The CE Transport 1110 invokes the freeze cycle

through the IPI Driver 1115. The IPI Driver responds by

initiating the freeze cycle (i.e・, sending the freeze

request message) and returning control to the CE

Transport 1110• This permits the CE Transport 1110 to

continue processing in parallel with the IPI Driver's

handling of the freeze protocol messages. The CE

Transport performs whatever useful work it can, such as

transmitting normal priority messages, or draining and

processing messages from the receive queue of the CE

1100٠ The CE Transport does not return control to the

operating system until the CE Transport has encountered a

freeze response message in the normal-priority receive

queue corresponding to each active IOP.

The IPI Driver 1115 attempts to complete the

freeze cycle as quickly as possible. To this purpose,

the IPI Driver composes a priority message and sends the

message to all active IOPs 1150. The message carries no

data to the IOPs and merely serves as an indication that

the freeze cycle has started. The IPI Driver starts a

freeze response timeout counter after sending the

priority message to detect failure of any IOP to respond.

Typically, the length of this counter is on the order of

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

-39 -

twice the worst-case message transmit time· This

provides each IOP with sufficient time to complete

transmission of any normal priority message that it may

be transmitting upon receipt of the freeze request

message before the IOP transmits a freeze response

message. Typically, normal priority messages have a size

limit of, for example, 64 kilobytes, to ensure that the

worst—case message transmit time will have a reasonable

value.

The IPI Driver 1155 of each IOP 1150 places a

timestarap update in the freeze response message. This

timestamp corresponds to the number of clock ticks since

the last freeze response message transmitted by the IOP.

Thus, a CE 1100 may receive different timestamp updates

from different IOPs. Accordingly, the CEs designate one

IOP 1150 as a meta—time server to ensure that all CEs

will update their local time clock identically.

After receiving a freeze request message from all

active CEs, the IPI Driver 1155 of the IOP 1150 sends the

freeze response message as a microcode-formatted priority

message. Upon sending the message, the IOP initiates a

freeze release timeout counter to detect failure of a CE

to respond to the freeze response.

The IPI Driver 1115 of each CE is interrupted to

service the incoming freeze response message, and

responds by reformatting the message into a

normal-priority message and placing the message at the

bottom of the normal٠priority message queue. Placement

of the message in the message queue completes the

time-critical portion of the freeze cycle, since it

peraits the CE Transport 1110 to return control to the

operating system.

Once the CEZS IPI Driver 1115 has received and

processed the freeze response from the last active IOP,

the IPI Driver 1115 broadcasts a freeze release message

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

٠ 4٠-

to the active IOPs. This completes the freeze cycle for

the CE 1100• The IOP 1150 receives the release message

and cancels the freeze release timer upon receipt of a

release message from every active CE 1100.

As noted above, time updates are provided to the

operating system by including time increments in the

freeze response packet· The IOP IPI Drivers 1155

maintain the time increments using an internal 100 f^s
timer interrupt· Only one of the IOPs is designated as

the time provider, and the time increment from that IOP

is used by all of the CEs. The IOPZS IPI Driver 1155

transmits the delta time since the last freeze response

packet was transmitted as the time increment. The CE

Transport 1110 uses this value to update the time٠of٠day

clock of the operating system after a freeze response

packet has been processed for all receive queues.

A deep freeze protocol is a variation of the

normal freeze protocol and serves to suspend normal

activity between the CEs and the IOPs to allow major

system state transitions to occur. The deep freeze state

is invoked by the IOP software, which uses the IOP

Transport 1170 to coiand the IOP IPI Driver 1155 to

replace the next freeze response message with a deep

freeze response message. The format of the deep freeze

response message is identical to that of the normal

freeze response message with the exception that different

opcodes are used to designate the two types of messages.

The deep freeze response carries a meta٠time update like

a normal freeze response. In addition, the deep freeze

response causes the initiating IOP to disable its

transmitter without initiating a timeout counter.

The IOP۶S IPI Driver 1155 sends the deep freeze

response to all active CEs to inform them that a deep

freeze state is requested. The CEs respond by converting

the deep freeze response to a normal-priority response

WO 98/12657 PCTZUS97/lá218

10

15

20

25

30

35

—41 -

message and adding the message to the normal-priority

message queue۶ with an indication that the message is a

deep freeze response instead of a norraal freeze response·

The CEs continue to process normal freeze response

messages from the other IOPs in the normal manner.
After receiving a normal freeze response or a deep

freeze response from all active IOPs, the CEfs IPI Driver

1115 sends a deep freeze request message to the IOPs that

are not yet in the deep freeze state and restarts the

freeze response timer.

Receipt of a deep freeze request informs the IOPs

that another IOP has injected a deep freeze cycle into

the current freeze cycle. (Normally, the IOP IPIs would

have received a freeze release message·》 Each IOP

responds to the freeze request by cancelling the freeze

release timeout counter, turning off the iop/s

transmitter path, sending to all active CEs a deep freeze

response message with a meta-time update since the

previous freeze response, and restarting the freeze

release timeout counter.

The IPI Drivers 1155 of the CEs receive the deep

freeze responses and insert them into the appropriate

receive queues· Upon receipt of a deep freeze response

from each active IOP, the CE Transport 1110 cancels the

response timer and issues the normal freeze release

message to the IOPs.
The CE Transport 1110, in the mean time, has

encountered a combination of normal freeze response

messages and deep freeze response messages in the various

receive queues* Detection of a single deep freeze

response causes the CE transport to process beyond the

normal freeze response to the deep freeze response.

Hence, the CE IPI Driver 1115 must ensure that both the

freeze responses and the deep freeze responses make their

way into the receive queues in the proper order.

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

-42 —

Only priority messages can be exchanged between

components when the system is in the deep freeze state.

In addition, no new freeze cycles will be initiated by

the CE Transport while the system is in the deep freeze

state.

Once the major state transition requiring the deep

freeze cycle has completed, the deep freeze state is

terminated by initiating a deep freeze termination cycle

with the issuance of a deep freeze termination request.

The deep freeze termination cycle typically is originated

by the IOP Transport 1170 that invoked the deep freeze

cycle, but any IOP Transport 1170 can invoke a deep

freeze termination cycle with the same result.

The deep freeze termination request is a

register—level request to the IPI Driver 1155 that causes

the driver to broadcast a deep freeze termination

priority Message to all active CEs. The IPI Driver 1115

of each CE receives this message and echoes the message

to all active IOPs. Upon receiving the deep freeze

termination message, the IOPs activate their transmission

paths and exit the deep freeze state.

The freeze response timers and the freeze release

timers account for the occurrence of errors during the

freeze protocol. If a CE۶S freeze response tiffier

expires, the CE generates a high priority system error

(SYSERR) packet containing the CE，S freeze status virtual

register and sends it to all active IOPs. The IOPs

supplement the SYSERR packet with relevant state

information of their own and forward the SYSERR packet to

the Fault Handlers 1165.

If an IOPrs freeze release timer expires, the IOP

generates a local SYSERR packet containing only state

information from the detecting IOP and passes this SYSERR

packet to the Fault Handler 1165. The detecting IOP then

sends a similar SYSERR packet to all active CEs. The CEs

WO 98/12657 PCT/US97/16218

٠ 43 ٠

supplement the SYSERR packet with their own state

information and echo the SYSERR packet back to all active

I0Ps٠ The IOPs store additional state information in the

echoed SYSERR and forward the message to the Fault

Handler 1165.

After generating a SYSERR packer, the IPI Driver

1115, 1155 of the CE 1100 or the IOP 1150 waits for the

Fault Handler 1165 residing on the IOP 1150 to resolve

the error condition. The Fault Handler determines which

path is at fault and coiands the IOP IPI Driver 1155 to

disable the faulty path. After disabling the faulty

path, the IOP IPI Driver evaluates the state of the

freeze protocol and resumes normal processing once the

requirements for such processing are met.

The IOPs do not apply a timeout for the reception

from all active CEs. If one or more

freeze request message, or if a freeze

not received for some other reason,

eventually generate a freeze response

of freeze requests

CEs fail to send a

request message is

the other CEs will

timeout SYSERR packet.

The CE IPI Driver 1115 state transitions required

to service the freeze protocol, including the deep freeze

extension, are illustrated in Fig. 16Α. The IOP IPI

Driver 1155 state transitions required to service the

freeze protocol, including the deep freeze extension, are

illustrated in Fig. 16Β٠
The system implements a message based fault

notification and reporting environment using Fault

Handler 1165. From an error٠processing perspective, the

system can be viewed of as including error reporting

elements and error processing elements. The error

reporting elements are any components in the system that

detect error conditions or determine status conditions

and transmit the information to an error processing

element. The error processing elements, or fault

5

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

10

15

20

25

30

— 44 ٠

handlers, receive error information from the reporting
elements.

The collection of error messages that result from

a single fault are referred to as a fault event. A fault

handler uses the error messages associated with a fault

event to identify a particular system component that has

failed and caused the fault event. The identified

component is referred to as a callout. A fault handler

may also take or initiate action to resolve the fault and

restore normal, if degraded, system operation.

Error reporting elements may be either hardware or

software entities. The only requirement is that they

must be capable of transmitting error information to the

error processing elements or causing such information to

be transmitted.

An error reporting element that detects a system

error encapsulates the system error into a uniformly

formatted packet referred to as a SYSERR. The error

reporting element then sends the SYSERR (or causes the

SYSERR to be sent》 to all error processing elements that

have connectivity to the reporting element. The

architecture of the physical system is configured so that

any error condition causes generation of at least one

SYSERR packet. The physical system is also configured so

that, ideally, each error reporting element is connected

to every error processing element. This permits the lack

of an error indication when one was expected to be used

as diagnostic information.

A single SYSERR packet may not unambiguously

identify the source of a fault event in ®any instances.

When this situation arises, the fault handlers rely on

the diagnostic information provided by SYSERR packets

from multiple sources to unambiguously identify the

source of the fault.

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

— 45 ٠

To provide connectivity between the error

reporting elements and the fault handlers, some transport

components are capable of echoing SYSERRs generated by a

reporting element to other fault handlers in the system

that are directly connected to the transport components.

Thus, fault handlers that are not directly connected to a

reporting element can still obtain error information from

that element. For example, as shown in Fig. 17, a fault

handler 1700 on an IOP 1705 cannot directly receive a

SYSERR packet generated by an IOP 1710. To account for

this, the IPI adapter 1715 on the CE 1720 serves as a

SYSERR reflector and echoes a SYSERR produced by IOP 1710

to IOP 1700.

A fault handler 1165 may also be able to probe

other system components to obtain error information· In

addition, separate fault handlers may communicate with

each other to probe the viability of the system

components on which they reside, to test the

comunication paths between the system components, and,

assuming that the comunicaron paths are intact, to

ensure that each fault handler reaches the same diagnosis

in response to a fault event.

A fault handler 1165 groups encountered errors

into sets of co—related errors, referred to as syndromes.

Syndromes generally indicate a faulty component, or a

suspected list of faulty components, with more

specificity than individual errors in the syndrome are

able to provide.

Each fault handler uses a state table to parse the

incoming errors into specific syndromes. Each syndrome

represents a state in the table. If possible, the fault

handler uses an incoming error to transition the state

table to a new state*

The fault handler processes errors according to

the procedure 1800 illustrated in Fig. 18. Initially,

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

-46 -

the fault handler represents each error as a canonical

error by converting the error to a normal form that

uniquely identifies the error (step 1805). For example,

the fault handler might convert the error to a triplet

that includes an error identiMer that identifies a

particular error, an error target that identifies the

subcomponent about which the error is complaining, and a

reporting source that identifies the subcomponent that

reported the error and the path over which the error was

received.

The fault handler then processes the canonical

error. First, the fault handler compares the error

against states represented by previously established
syndromes (step 1810) to see if the error will transition

the state of a previously established syndrome (step

1815). If such a transition can be performed, then the

fault handler performs the transition (step 1820) and

concludes state processing for the error (step 1825). If

the error cannot transition any existing syndrome, the

fault handler creates a new syndrome at an INITIAL state

(step 1830) and determines whether the error can

transition the syndrome to a starting state of any

syndrome (step 1835). If so, the fault handler performs

the transition (step 1820) and concludes state processing

for the error (step 1825). If the error is not

anticipated by a starting state of a syndrome, the fault

handler converts the error to an unsyndronied error (step

1840) and concludes state processing for the error (step

1845)٠ An unsyndromed error is a catch٠all for errors

that are unanticipated, misreported, or incompletely

transmitted or received. For example, if canonical

errors are in the triplet forra described above, then a

canonical unsyndromed error might consist of an

identifier for "UNSYNDROMED", an error target

corresponding to the reporting source of the bogus error,

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

"4٦ I

and a reporting source of the component containing the

fault handler.

A set of potential callouts is associated with

each state in the state table. When a syndrome

transitions to a particular state, the set of callouts is

referred to as the callout list of the syndrome.

The state table is a tree٠structured list of

canonical errors. The tag on each node of the tree is an

identifier for a canonical error. Each node points to a

list of other errors, or to a list of callouts, or to

both.

The state table can be created from a source

document that consists of groups of errors (syndromes)٠
The syndrome text syntactically indicates whether one

error should occur before another in a syndrome· If no

such indication is prodded, then the errors are assumed

to be unordered. A list of callouts is associated with

each syndrome.

The state table is created by permutating each

syndrome's errors, converting each error to canonical

form, and mapping the syndrome into the table. The

terminal node of each permutation points to the callout

list for the syndrome. For example, suppose the source

table contains the syndromes with associated callouts

illustrated in Fig. 19Α, and the system topology is

assumed to be that of Fig. 17· The "Error" column of

Fig. 19Α identifies different errors reported to the

fault handler in a SYSERR message. In particular, a NAK

error indicates excessive retries on a transmit path, an

EDC error indicates a low٠level protocol failure on a

receive path, and on a NAK (echoed) error is a NAK error

transmitted by one component and echoed by another. The

"Path" column identifies the path on which an error was

detected, and the '.Received from" column identifies the

machine that reported the SYSERR (Ml indicates IOP 1705

WO 98/12657 PCT/ÜS97/16218

10

15

20

25

30

35

—48 —

(machine 1》and Μ2 indicates CE 1720 (machine 2))٠
Finally, the "Callouts« column provides a list of

possible failures in the system that could cause the

collection of errors listed in the i٠Error٠٠ column.

Using the source table of Fig· 19Α for syndrome #1

to be detected by the fault handler, a NAK error reported

against path Μ1-Μ2 by Ml, a NAK error reported against

path Ml—Μ2 by Ml echoed from Μ2, and an EDC error

reported against path Μ1-Μ2 by Μ2 must all occur. Then

the resulting callout is all of the entries in the

"Callout’' column for syndrome #1.

The state transition table resulting from the

above source would then appear as illustrated in Fig.

19Β, where the canonical fora error designations are in

the triplet fora: error(error٠path, received٠from)٠ The

above state transition table is really a tree structure.

The root is the "Initial state«, starting from the

initial state there are six ways of arriving at a

Syndrome #ل callout. There are three required error

messages to arrive at a syndrome #1 callout and they can

arrive in any possible order (3 factorial 6 آ possible

orderings). Syndrome #2 callouts require two errors in

any order (2 factorial = 2 possible orderings)· Thus a

NAK (Μ1—Μ2, Ml V. Μ2) and an EDC (Ml—Μ2, Μ2) arriving in

any order without the third error NAK (M1"+M2,M1) produces

a syndrome #2 callout. In this case, the existence of

the NAK (Ml—Μ2, Ml) uniquely identifies syndrome #1.

The state table is constructed by perautating sets

of errors and, therefore, can become very large· This is

particularly true if the syndromes comprising the table

are particularly complex or if there are a large number

of system components generating errors. The table size

may be reduced by logical to physical mapping. In a

system with redundant components, errors reported against

one component are indistinguishable (up to unit

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

-49 -

identification) from errors reported against the

redundant set that includes that component. Accordingly,

the table size can be reduced by identifying errors and

callouts in logical form so that the table is, in effect,

reflective of errors corresponding to only one component

of a redundant set· with this approach, a mapping of

physical to logical identifiers is maintained for each

syndrome as the syndrome is constructed· When a

canonical error is compared against the errors in a state

of a syndrome, the error roust be further transformed into

a logical canonical form relative to that syndrome· The

logical to physical mapping roay vary from syndrome to

syndrome.

The size of the state table may also be reduced by

subtree folding. Many parts of the lower structure of

the tree—structured state table are identical to other

parts. Identical subtrees can be collapsed into a single

copy, even if they originate from different syndromes·

Performing this optimization tends to mitigate the

explosive growth of the state table as syndrome

complexity increases: larger syndromes generate more

duplicate subtrees that can be eliminated by subtree

folding.

Each syndrome indicates zero, one, or more

potential faulty components, or callouts, in the system.

The fault handler produces a single diagnosis by

combining these indications into an event callout list·

Ideally, the callout list includes only a single element

that unambiguously identifies a system component or

function that failed and precipitated the error event.

The callout list may, however, contain more than one

element.

The final callout list is formed by taking the

intersection of the most٠likely callouts associated with

each syndrome. Some of the faults indicated by a

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

35

—50 —

syndrome are more likely than others. For example, a

transmission error may result from a transient

point٠to٠point error, a c٠i٠n transmitter or common

receiver fault, cable integrity problems, or incipient

power failure on one end. Incipient power failure could

explain almost any erroneous behavior. However, without

corroborating evidence, a transient fault is a more

likely explanation for a single transmission failure than

is an incipient power failure. In addition, some faults

identify components less specifically and can be presumed

to identify more specific components subsumed therein.

For example, the callout for one syndrome may specify an

interconnect failure between IOP 1705 and CE 1720. This

callout would include, for example, the IPI adapters 1715

at both ends of the interconnection as well as the

cabling 1725 between them. Another syndrome may indicate

a non-specific error on CE 1720 (that is, all hardware

and software components of CE 1720, including the IPI

adapter 1715 of CE 1720). The combination of the callout

lists of these syndromes clearly indicates that the IPI

adapter 1715 of CE 1720 is faulty.

Two callouts are combined by selecting a system

component that is common to the two callouts, but least

encompassing. For any two callouts, there is at least

one other callout that contains an intersection of the

system components covered by the first two. The product

of the combination of callouts is such a component that

covers the least part of the system. For example,

suppose that in the loosely-connected system shown in

Fig. 17 there is a callout against the interconnection of

IOP 1705 and CE 1720 and also against the interconnection

of IOP 1710 and CE 1720. These interconnections

intersect at the IPI adapter 1715 in CE 1720• They also

could be considered to intersect at CE 1720, in general.

However, the adapter is the callout chosen since this is

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

the least-encompassing component that can be identified

as the intersection of the faulty interconnections.

The approach described above for combining

callouts results in there being only one product callout

for each combination of two other callouts. Accordingly,

a «multiplication table" could be established for use by

the fault handler in quickly establishing a new callout

from any two others. The multiplication table is formed

by creating a callout hierarchy diagram such as is

illustrated in Fig· 20. Each box in the diagram

represents a callout,

defined as the lowest

between the two ٠ The

callout combined with

are returned instead of the lowest entry) .

example:

and the product of two callouts is

callout (in the hierarchy) common

exception to this rule is that a

itself is itself (i.e٠, all entres

Thus, for

CXUux * CXUvx = RX(CEx),
RX(CEx) * TX(CEx) ث IPI(CEx)/
RX(IOPu) * Capability(IOPu) = Power (IOPu), and
De^ice(iopu) * Capability(CEx) = Tupie Power,

while

CXUux * CXUux = CXUux.

NOTE؛ In the discussions that follow, the abbreviations
being used are؟
CNux-unidirectional inconnection between Machine u
and Machine X
CBux—bidirectional inconnection between Machine u
and Machine X

The multiplication table formed by this method can be

very large, especially in systems with large numbers of

redundant components. Fortunately, it is not necessary

to actually form the multiplication table. Rather, the

multiplication can be performed by following the same

rules for two callouts as would be required in computing

the table. All that is required is an instantiation of

WO 98/12657 PCT/US97/16218

10

15

20

25

30

35

—52 -

the directed graph comprising the callout hierarchy

diagram. Furthermore, redundant callouts in the system

may be eliminated by representing the callouts in logical

form· (However, the logical callouts must be mapped to

physical callouts when the multiplication is performed·)

The fault handler never combines callouts within a

list. Instead, the fault handler combines two callout

lists by "cross_multiplying" the lists to form a third

list, where the third list contains all unique

combinations of the original lists. For example,

cross٠multiplication of the list 1 and list 2 elements of

Fig. 21Α would result in the product elements illustrated

in Fig· 21Β. Eliminating duplicate callouts results in a

product list of Common Machine 1/2 Power Supply; Machine

1 Power; Machine 2 Power; Machine 1 Adapter; Machine 2
Adapter; and 1 ** 2 Bidirectional Interconnect.

Callout lists from independent sources can be

combined in this same manner. For example, suppose that

a fault handler 1700 exists on each of IOP 1705 and 1710

in the system shown in Fig. 17, If coiunication exists

between the two fault handlers, then the callout lists

from the two fault handlers can be combined into a

callout list for the entire system. This combined list

will have equal or greater specificity than the callout

list from each fault handler standing taken

independently.

After all syndrome callout lists are combined,

nonsensical callouts are removed from the list. This is

done by ranking each callout according to the scope of

compromise to system operation that it implies. The

final callout list 《i.e., the diagnosis) is formed by

selecting callouts of only the lowest rank (lower rank is

arbitrarily chosen to apply to callouts of lesser scope) ٠
For example, with the callout ranking illustrated in Fig.

22, the callout list of Fig. 2IB can be reduced to a

WO 98/12657 PCT/US97/16218

10

15

20

25

30

-53 -

single callout; Machine 1 ** Machine 2 Bidirectional

Interconnect.

The ranking procedure involves a probabilistic

assumption. When all else is equal, callouts of lower

rank are more probably the cause of a fault event than

are callouts of a higher rank. In the above example, it

is possible that an incipient power failure in the common

power supply between IOP 1700 (machine 1》and CE 1710

(machine 2) evoked the syndromes, but without

corroborating evidence (in the form of another syndrome,

or another error that would modify one of the existing

syndromes) it would be misleading to report this as a

callout.

Callouts represent the finest granularity of

diagnosis that the fault handler is capable of producing.

Generally, callouts are too specific to be of use to

service personnel* However, they can be mapped to Field

Replaceable Units (or FRUs) that represent the

subcomponents of the system that can be identified for

service or replacement. For instance, the fault handler

may be capable of identifying a common receive port on an

interconnect adapter. The FRU corresponding to this

callout would be the adapter card.

In sugary, a Fault Handler 1165 identifies a

faulty FRU according to the procedure 2300 illustrated in

Fig. 23. Starting with the callout list from a first

syndrome (step 2305), the Fault Handler 1165 maps the

logical callout to a physical list (step 2310) ٠ The

Fault Handler 1165 then identifies this physical list

with the designation CURRENT (step 2315).

If there are more syndromes to process (step

2320), the Fault Handler 1165 converts the logical

callout list for the new callout to physical callouts

(step 2325), cross-multiplies the list against CURRENT

wo 98/12657 PCT/US97/16218

—54 —

(Step 2330) and stores the resulting product as CURRENT
(step 2335) .

Once all syndromes have been processed (step

2320), the Fault Handler 1165 reduces CURRENT to the roost

5 specific callout or callouts (step 2340), maps the

callout or callouts to one or more FRUs (step 2345) and

concludes the procedure (step 2350)٠

Other embodiments are within the scope of the
following claims.

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

—55 -

What is claimed is:

1. À method of synchronizing data transfer to a

computing element in a computer system, the computer

system including the computing element and controllers

that provide data from data sources to the computing

element, said method comprising the steps of:

intercepting a request for data made by a

computing element;
transmitting the intercepted reguest to the

controllers; and

responding, through the controllers, to the

intercepted request, wherein at least a first controller

responds by transmitting requested data to the computing

element and by indicating how a second controller will

respond to the intercepted reguest.

2٠ The method of claim 1, further* comprising the

step of responding, through the second controller, to the

intercepted request by indicating that the second

controller has no data corresponding to the intercepted

request and by indicating that the first controller will

respond to the intercepted request by transmitting data

to the computing element.

3٠ The method of claim further comprising the

step of including, in each response to the intercepted

request by a controller, an indication as to how each

other controller will respond to the intercepted request.

4٠ The method of claim 1, further comprising the

step of comparing the responses to the intercepted

request for consistency.

5. The method of claim 4, further comprising the

step of including in each response an indication as to

WO 98/12657 PCT/US97/16218

10

15

20

25

—56 —

how each other controller will respond to the intercepted

request,

wherein the step of comparing comprises comparing

the indications for consistency.

6٠ The method of claim 5, wherein, when responses

of multiple controllers include requested data, the step

of comparing further comprises comparing the data for

consistency.

7٠ The method of claim 4, further comprising the

steps ofi

comparing, through the computing element, the

responses for consistency after the computing element has

received responses from all of the controllers, and

notifying the controllers, through the computing

element, of the outcome of the comparison and that

responses have been received from all of the controllers.

8. The method of claim 4, further comprising the

step of disabling one of the controllers when the

responses are not consistent.

9. The method of claim 1, further comprising the

step of generating an error condition if the computing

element does not receive responses from all of the

controllers within a predetermined time period.

10. The method of claim 1, wherein a data source

is associated with the first controller, the method

further comprising the step of obtaining, in response to

the intercepted request and through the first controller,

the requested data from the data source.

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

—57 —

11. The method of claim 1, further* comprising the

steps of:

maintaining, through the first controller, a

record of a status of the second controller, and

using the record when indicating how the second

controller will respond to the intercepted request.

12٠ The method of claim 11, wherein a data source

is associated with the second controller, and further

comprising the steps of:

maintaining, through the first controller, a

record of a status of the data source, and

using the record when indicating how the second

controller will respond to the intercepted request.

13. The method of claim 11, further comprising

maintaining, through each controller, records of statuses

of all other controllers and having controllers use the

records when indicating how the other controllers will

respond to the intercepted request.

14. The method of claim 13, further comprising:

associating each controller with a data source;

maintaining, through each controller, records of

statuses of data sources associated with all other

controllers; and

having controllers use the records when indicating

how the other controllers will respond to the intercepted

request.

15. The method of claim 12, further comprising,

when a status of the data source associated with the

second controller changes, transmitting, through the

second controller, an instruction to the computing

WO 98/12657 PCTZUS97/16218

٠ 58 -

element to discard responses to the intercepted request

from other controllers.

16.

responding.

instruction

controllers

The method of claim 15, further comprising

through the computing element, to the
5

10

15

20

25

30

by discarding responses from other

to the intercepted request and by

transmitting to the controllers a notification that the

responses have been discarded*

17. The method of claim 16, further comprising

responding, through the first controller, to the

notification by updating the record of the status of the

data source associated with the second controller.

18. The method of claim 17, further comprising,

after updating the record, retransmitting, through the

first controller, the requested data to the computing

element and indicating, through the first controller, how

the second controller will respond to the intercepted

request.

19٠ The method of claim 1, wherein a data source

is associated with each controller and each of the

controllers responds to the intercepted request by؛

determining whether an associated data source is

expected to process the request;

when the associated data source is expected to

process the request, transmitting the request to the

associated data source, receiving results of the request

from the associated data source, and forwarding the

results of the request to the computing element; and

when the associated data source is not expected to

process the request, informing the computing element that

no data will be provided in response to the request.

WO98Z12657 PCT/US97/16218

10

15

20

25

30

٠ 59—

20. A method of synchronizing data transfer to

computing elements in a computer system, the computer

system including the computing elements, data sources,

and controllers that provide data from the data sources

to the computing elements, said method comprising the

steps of:

intercepting a request for data made by a

computing element;

transmitting the intercepted request to the

controllers; and

responding to the intercepted request, through

each of the controllers, by:

determining whether an associated data source is

expected to process the request;

when the associated data source is expected to

process the request, transmitting the request to the

associated data source, receiving results of the request

from the associated data source, and forwarding the

results of the request to the computing element; and

when the associated data source is not expected to

process the request, informing the computing element that

no data will be provided in response to the request.

21. A method of maintaining synchronization

between computing elements processing identical

instruction streams in a computer system, the computer

system including the computing elements and controllers

that provide data from data sources to the computing

elements, wherein the controllers operate asynchronously

to the computing elements, said method comprising the

steps ofة
at computing elements processing identical

instruction streams, each computing element: stopping

processing of the instruction stream at a common point in

WO 98/12657 PCT/US97/16218

■٠ 60—

the instruction stream, generating a freeze request

message, and transmitting the freeze request message to
controllers;

at a controller: receiving a freeze request

message from a computing element, waiting for a freeze

request message from other computing elements, and, upon

receiving a freeze request message from each computing

element processing an identical instruction stream,

generating a freeze response message and transmitting the

freeze response message to the computing elements; and

at the computing elements processing identical

instruction streams, each computing element: upon

receiving a freeze response message from a controller.

freeze response messages from other

to which a freeze request message was

waiting for

controllers

transmitted, and, upon receiving a freeze response

message from each said controller, generating a freeze

release message, transmitting the freeze release message

to controllers, and resuming processing of the

instruction stream.

22٠ The method of claim 21, wherein the common

point in the instruction stream corresponds to an 1/0

operation*

23. The method of claim 21, wherein the co^on

point in the instruction stream corresponds to occurrence

of a predetermined number of instructions without an I/o

operation*

24. The method of claim 21, wherein the step of

generating a freeze response message comprises including

a time update in the freeze response message, the method

further comprising having a computing element, upon

receiving a freeze response message from each controller

10

15

20

25

30

WO 98/12657 PCT/US97^6218

5

10

15

20

25

30

- 61 —

to which a freeze request message was transmitted,

updating a system time using the time update from a

freeze response message.

25٠ The method of claim 24, wherein the step of

updating a system time comprises using the time update

from a freeze response message generated by a particular

controller.

26٠ The method of claim 21, further comprising

having a computing element, upon receiving a freeze

response message from each controller to which a freeze

request message was transmitted, processing data received

fron a controller prior to receipt of a freeze response

message.

27٠ A method of handling faults in a computer

system, the computer system including error reporting

elements and error processing elements, the method

comprising:

detecting, through an error reporting element, an

error condition and transmitting information about the

error condition as an error message to error processing

elements connected to the error reporting element, and

retransmitting the error message, through at least

one error processing element, to other error processing

elements connected to the at least one error processing

element.

28. A method of handling faults in a computer

system, the computer system including error reporting

elements and error processing elements, the method

comprising؛

detecting, through error reporting elements, an

error condition and transmitting information about the

WO 98/12657 PCT/US97^6218

5

10

15

20

25

30

- 62 —

error condition as error messages to error processing

elements connected to the error reporting elements, and

combining, through at least one error processing

element, information from related error messages from

multiple error reporting elements and using the combined

inforaation in identifying a source of the error

condition.

29· The method of claim 28, wherein the at least

one error processing element uses a state table to

combine information from related error messages.

30. The method of claim 29, wherein the at least

one error processing element represents an error message

using an error identifier that identifies a particular

error, an error target that identifies a subcomponent

that caused the error represented by the error message,

and a reporting source that identifies an error reporting

element that generated the error message and a path over

which the error message was received.

31. The method of claim 29, wherein the error

processing element determines whether error messages are

related by comparing a received error message against

states representing previously received error messages.

32. A computer system including:

a computing element,

data sources, and

controllers that provide data from the data

sources to the computing element, wherein:

the computing element is configured to intercept a
request for data made by software running on the

computing element and to transmit the intercepted request

to the controllers; and

WO98^26S7 PCT/US97/16218

5

10

15

20

25

—63 —

at least a first controller is configured to

respond to the intercepted request by transmitting

requested data to the computing element and by indicating

how a second controller will respond to the intercepted

request.

33. The system of claim 32, wherein the second

controller is configured to respond to the intercepted

request by indicating that the second controller has no

data corresponding to the intercepted request and by

indicating that the first controller will respond to the

intercepted request by transmitting data to the computing

element.

34. The system of claim 32, wherein each

controller is configured to include in response to the

intercepted request an indication as to how each other

controller will respond to the intercepted request.

35٠ The systea of claim 32۶ wherein the computing

element is configured to compare the responses to the

intercepted request for consistency.

36. The system of claim 35, wherein the computing

element is configured to compare the responses for

consistency after the computing element has received

responses from all of the controllers and to notify the

controllers of the outcome of the comparison and that

responses have been received from all of the controllers.

37٠ The system of claim 32, wherein the computing

element is configured to generate an error condition if

the computing element does not receive responses from all

of the controllers within a predetermined time period.

WO 98/12657 PCT/US97/16218

10

15

20

25

- 64 ٠
38. The system of claim 32, wherein؛

a first data source is associated with the first

controller, and

the first controller is configured to obtain the

data requested in the intercepted request from the first

data source.

39· The system of claim 32, wherein the first

controller is configured to maintain a record of a status

of the second controller and to use the record when

indicating how the second controller will respond to the

intercepted request.

40٠ The system of claim 39, wherein:

a first data source is associated with the second

controller, and

the first controller is configured to maintain a

record of a status of the first data source and to use

the record when indicating how the second controller will

respond to the intercepted request.

41. The system of claim 40, wherein the second

controller is configured to transmit an instruction to

the computing element to discard responses from other

controllers to the intercepted request when a status of

the first data source changes.

42. The system of claim 41, wherein the computing

element is configured to respond to the instruction by

discarding responses from other controllers to the

intercepted request and by transmitting to the

controllers a notification that the responses have been

discarded.

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

— 65 ٠

43. The system of claim 42, wherein the first

controller is configured to respond to the notification

by updating the record of the status of the first data

source.

44. The system of claim 43, wherein the first

controller is configured, after updating the record, to

retransmit the requested data to the computing element

and to indicate how the second controller will respond to

the intercepted request.

45. The system of claim 32, wherein:

a data source is associated with each controller,

and

each controller is configured to respond to the

intercepted request by:

determining whether an associated data source

is expected to process the request;

when the associated data source is expected

to process the request, transmitting the request to the

associated data source, receiving results of the request

from the associated data source, and forwarding the

results of the request to the computing element; and

when the associated data source is not

expected to process the request, inforaing the computing

element that no data will be provided in response to the

request.

46. A computer system including؛

a computing element,

data sources, and

controllers that provide data from the data

sources to the computing element, wherein:

the computing element is configured to intercept a

request for data made by software running on the

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

i 66 ٠

computing element and to transmit the intercepted request

to the controllers; and

each controller is configured to respond to the

intercepted request, by؛

determining whether an associated data source

is expected to process the request;

when the associated data source is ejected

to process the request, transmitting the request to the

associated data source, receiving results of the request

from the associated data source, and forwarding the

results of the request to the computing element; and

when the associated data source is not

expected to process the request, informing the computing

element that no data will be provided in response to the

request.

47. A computer system including؛

computing elements configured to process identical

instruction streams,

data sources, and

controllers configured to provide data from the

data sources to the computing elements and to operate

asynchronously to the computing elements, wherein:

each of the computing elements is further

configured to:

stop processing of the instruction stream at

a common point in the instruction stream,

generate a freeze request message, and

transmit the freeze request message to the

controllers;

a controller is further configured to:

receive a freeze request message from a

computing element,

wait for a freeze request message from other

computing elements, and.

WO 98/12657 PCT/US97/16218

5

10

15

20

25

30

٠ 67 I

upon receiving a freeze request message from

each computing element^ generate a freeze response

message and transmit the freeze response message to the

computing elements; and
each of the computing elements is further

configured to:

upon receiving a freeze response message from

a controller, to wait for freeze response messages from

other controllers to which a freeze request message was

transmitted, and,

upon receiving a freeze response message from

each said controller, to generate a freeze release

message, transmit the freeze release message to the

controllers, and resume processing of the instruction

stream.

48. A computer system including:

error reporting elements, and

error processing elements, wherein:

an error reporting element is configured to detect

an error condition and transmit information about the
error condition as an error message to error processing

elements connected to the error reporting element, and

at least one error processing element is

configured to retransmit the error message to other error

processing elements connected to the at least one error

processing element.

49. A computer system including:

error reporting elements, and

error processing elements, wherein؛

error reporting elements are configured to detect

an error condition and transmit information about the

error condition as error messages to error processing

elements connected to the error reporting elements, and

wo 98/12657 PCT/US97/16218

ا 68 —

at least one error processing element is

configured to combine information from related error

messages from multiple error reporting elements and use

the combined information in identifying a source of the

5 error condition.

wo 98/12657 PCT/US97/16218

1/23

FIG. 1
SUBSTITUTE SHEET (RULE 26)

wo 98/12657 PCT/US97/16218

2/23

٦
ا

٦

ك٢١ 4231 円 BIOS

44a CE
Driver ٦

46

IPI BIOS 42b

44ة

ا-

ا

49

ЮР

FIG٠2
SUBSnTUTE SHEET (RULE 26)

wo 98/12657 PCT/US97/16218

SUBSTITUTE SHEET (RULE 26》

wo 98/12657 PCT/US97/16218

4/23

SUBSTITUTE SHEET (RULE 26)

١
ν٥
9
8
/
1
2
6
5
7

164
Cl
 ة
صح

P
C
T
/
U
S
9
7
/
1
6
2
1
8

SC٠
S٥

TUTE SHEET (RULE 26)

wo 98/12657 PCT/US97/16218

6/23

FIG· 6

FIG· 7
SUBSTITUTE SHEET (RULE 26)

wo 98/12657 PCT/US97/16218

7/23

230

SUBSTITUTE SHEET (RULE 26》

wo 98/12657
PCTل٦ةل9٦ةاا€ا(

8/23

FIG.9
SUBSTITUTE SHEET (RULE 26)

wo 98/12657
PCT/US97/16218

9/23

26◦

FIG.10
SUBSTITUTE SHEET (RULE 26)

w
o
 98/12657

11001100

1110

_ノ11051105
CE

Physical Device Redireclors (SCSI Ethernet،
Keyboard/Mouse، Parallel، Serial Floppyl

CE

Physical Device Redirectors (ses!· Ethernet,
Keyboard/Mouse٠ Paralle·· Serial· Fbppy)

1110、 CE Transport CE Transport

1115
IPI Driver 1185

IPI Driver ノ1115

i11501150٦لح
IOPIOP

1180

1165

1170

1190

Phys cal Device Providers (SCSI■ Ethern؟l٠
Keyboard/Mousei Parallel) Serial. Floppy)

physical Device Providers (SCSI· Ethernet·
Keyboard/Mouse، Parallel· Sedal. Floppy)

1180

Device Synchronization Layer

ЮР Transar!Fault HandlerSCP

Bernet DriverIPt Driver

1175
1170

1155

IOP Iransport

IPI Driver

Device Synchronization Layer
ةة٢م"；；ذ٠；0；■ا"

Ethernet Driver

1165

1160

1190

P
C
T
/
U
S
9
7
/
1
6
2
1
8

FIG.11

١
ν٥
9
8
/
1
2
6
5
7

'1200 ١ 1205

、◦121 1215١

P
c٢/U
s
9
7
/
I
6
2
1
8

1200١ 、、1205

wo 98/12657 PCT/US97/16218

12/23

1345

SUBSTITUTE SHEET (RULE 26)

wo 98/12657
PCT/US97/16218

uo!١eJ
=Jß؛،uo◦

<

أم
.
ى،
1

SUBSTITUTE SHEET《RULE 2Β)

wo 98/12657 PCT/US97/16218

3

Z/

/

ه

ή

—

Uo!lejn6!lu

٠◦
 |
.ح

ي

60٦

SUBSTITUTE SHEET {RULE 26》

wo 98/12657 PCT/US97/16218

15/23

1500

1550

SUBSTITUTE SHEET (RULE 26)

wo 98/12657 PCT/US97/16218

991.3IJ

N
EW

 ST
AT

E

1 REL-
TM

O
ا

1 Re
· tim

eo
ut

 1
1 DR

el
 tim

eo
ut

 1
Po

rt s
ta

te
 ch

gl

 ؛
D

R
sp

 se
nt

ا ٢ A
no

th
er

 DR
ei

 1

1
Q

NS"dSHa
1 1 DR

eq
 rcv

d 1
1 Se

nd
 re

try

1

1 Rs
p s

en
t

1 An
ot

he
r R

el
 1

1 RSR.
SN

D
 ¡

1 Se
nd

 re
try

po ا
rt s

ta
te

 ch
gl

1 Re
v r

cv
d

1 An
ot

he
r R

eq

о

1 PI
R

es
et

1

1 Att
 Re

t rc
vd

 1
1 All

 DR
el

1

1 IPr
 Re

se
،. 아

1

C
U

R
R

EN
T

ST
AT

E ة

1 RE
L.

W
AI

T
1

1
aN

S"dSH
G

1 DR ا
EL

iW
AI

T 1

16/2٧

9
1

|ى
امل

N
EW

 ST
AT

E

RSP ا
-Τ

Μ
Ο

 1
1 Rs

p ti
m

eo
ut

 1
ج

Po
rt s

ta
te

 ch
gl

1 All
 rs

p rc
vd

 1
1 AH

 DR
sp

1

Se
nt

 re
try

1

DR ا
SP

—
W

AI
T 1

DR ا
eq

 se
nt

1

An
ot

he
r

1

1 Alt
 rs

p r
cv

d 1
1 Se

nd
 re

try

1

eieis
0ل

لل

1 Re
q s

en
t

1 An
ot

he
r R

sp

1 CE
X E

nt
ry

1

1 Se
nd

 re
try

Q

R
e،

 se
nt

1

IP
f R

es
et

1

C
U

R
R

EN
T

ST
AT

f

Ш
Q

1 RE
Q

,S
N

D

ا 1
Q

N
SO

aya
1

ج
1

SUBSTITUTE SHEET (RULE 26)

WO98/126S7 PCT/US97/16218

3
٩
غ

г/

г
、
、

/

|

٠

ى
1

٠

٠

٤

٢

٠
٠
ΝΓ

SUBSTITUTE SHEET (RULE 26)

wo 98/12657 PCT/US97/16218

18/23

SUBSTITUTE SHEET (RULE 26)

PCT/US97/16218wo 98/1Μ57

3

Z

9/

ω
-
D
O
-
r
a
ü
م
œ
e
O
J
P
U
X
S

s
^
O
I
I
B
◦

r
Q
e
o
J
P
c
^
g

ω
~
:
ο
:
α
ο

L
9
e
2
P
U
A
S

s١
n
o
l
l
e
◦٠

0

ل

ج
ع
خ
ه
ع

S
l
n
o
l
l
B
◦

٠®

ججآلج

>
ن

ω
3
ο
:
ω
ο

Γ
Φ
Ε
Ο
ι
υ
σ
χ
ω

«~:٥
:
rao

 ح
9

e
٠
j
p
u

>>s

;

 ة
·

ة
ج

，

_
1

ديج

٧
2

٠

 (
ح
2

Λ

Γ
Σ

·

ة
ح

٠
1

ج
ة

٧
2

٠

{
ة
ح
■٨

S

-

٠ق

امكس

س٧
<
2

ل٠

;
Σ

٠

ة
ك
م
ب
ق

<
2

*-

 ·

ة
ج

*
1

د
ى
ج

|
س

ω
-
:٥
--ω
ο

هلح

عهخال

ذ
»٠
 ج
٠

_

s

t

^

^

V

N

عت٠

2

|
乙2٠
一
里
〇٥
3

§

٠
ة
ح

_
1

د
ى
ج

3

ب

;
Σ

-

s

f

r

s

w

l

 ٠

.
>

1

2

٠s
f

r

:

w

٧٠<
z

§

٨
S

s

f

Γ
1
Ϊ
<
Ζ

٠

 (

ج
ح

・
乙
ニ
ー
旧٥

۵
3

f

(

ة
2
 _
ح
2

٠
-1

د
ى
ج

3

٠
٠
 ق
•
٨

T—ة
·
г
2

٠
-٠

—S
^
V
N

t

;
Σ
 ٠
s

t

r

s

٠
ï
<
z

f

9

«ا
هلا

—

حإا
-

ح
ا

<
6
1

٠

ل
ا
ى

C
äo

ut
s

Μ
1٠

Μ
2 In

te
rc

on
ne

ct
M

l In
te

rc
on

ne
ct

 Ad
ap

te
r

Tr
an

sm
ille

r
Μ

2 I
nt

er
co

nn
ec

t A
da

pt
er

 Re
ce

iv
er

 ب
ق

Sy
nd

ro
m

e

R
ec

ei
ve

d fr
om

ة ق ة ق Μ
1 {

vi
a Μ

2 e
ch

o)
Μ

2

 ء
¢0 اًاًآ

جذ ؤ ؤ

صح ٠ي
آاً
ii

О

ة
ï ï о
ZZUJه<< N

AK
 (e

ch
oe

d)
ED

C

社 ，— مح

SUBSTITUTE SHEET (RULE 26》

wo 98/12657 PCT/US97/16218

3

z

٠>/
о2

0
^

٠

ج

ى

SUBSTITUTE SHEET (RULE 26)

wo 98/12657 PCT/US97/16218

21/23

ωه—·لام
ت

M
ac

hi
ne

 2
Po

w
er

M
ac

hi
ne

 2
In

te
rc

on
ne

ct
 Ad

ap
te

r
M

ac
hi

ne
 2٠

M
ac

h؛
ne

 1 U
ni

di
re

ct
io

na
l In

te
rG

nx

٠٠٠œ
ت:

M
ac

hi
ne

 1 P
ow

er

M
ac

hi
ne

 1 I
nt

er
co

nn
ec

t A
da

pt
er

M
ac

hi
ne

 1 "
♦M

ac
hi

ne
 2

U
ni

di
re

ct
io

na
l In

te
rG

nx

Pr
od

uc
t

C
om

m
on

 M
ac

hi
ne

 1/
2 P

ow
er

 Su
pp

ly

C
om

m
on

 M
ac

hi
ne

 1/
2 P

ow
er

 Su
pp

ly
M

ac
hi

ne
 1

Po
w

er
C

om
m

on
 M

ac
hi

ne
 1/

2 P
ow

er
 Su

pp
ly

C
om

m
on

 M
ac

hi
ne

 1/2
 Po

w
er

 Su
pp

ly
M

ac
hi

ne
 1 A

da
pt

er
M

ac
hi

ne
 2

Po
w

er
M

ac
hi

ne
 2

Ad
ap

te
r

1٠
٠2

 Bi
de

re
ct

io
na

l In
te

rc
on

ne
ct

Li
st

 2
El

em
en

t
M

ac
hi

ne
 2

Po
w

er

M
ac

hi
ne

 2
Ad

ap
te

r

آ
CM M

ac
hi

ne
 2

Po
w

er

M
ac

hi
ne

 2
Ad

ap
te

r

آ

M
ac

hi
ne

 2
Po

w
er

1 M
ac

hi
ne

 2
Ad

ap
te

r

7

Li
st

 1 E
le

m
en

t
¡n

e 1
Po

w
er ة

О

—٢
ф
С in

e 1
Ad

ap
te

r
ne

 1 A
da

pt
er

M
ac

hi
ne

 1
Ad

ap
te

r
1 1

—
2 I

nt
er

co
nn

ec
t

1-*2
 In

te
rc

on
ne

ct
1*2

 In
te

rc
on

ne
ct

 ء
 coدآ
Í

iة ى ء
حا ء
Cüi

■5 coى ء
Í

SUBSTITUTE SHEET (RULE 26)

wo 98/12657 PCT/US97/16218

^

ق
|
ل

د
CD
œ

،Л ٢٣ 단 cn CO CM ٢٠ —٠
C

al
lo

ut
C

om
m

on
 m

ac
hi

ne
 1/

2 P
ow

er
 Su

pp
ly

M
ac

hi
ne

 1 P
ow

er
M

ac
hi

ne
 2

Po
w

er
M

ac
hi

ne
 1 A

da
pt

er
M

ac
hi

ne
 2

Ad
ap

te
r

M
ac

hi
ne

 !♦*M
ac

hi
ne

 2
Bi

di
re

ct
io

na
l In

te
rc

on
ne

ct
M

ac
hi

ne
 1 *M

ac
hi

ne
 2

U
ni

di
re

ci
io

na
l In

te
rc

on
ne

ct
M

ac
hi

ne
 1٠

M
ac

hi
ne

 1 U
ni

di
re

ct
io

na
l In

te
rc

on
ne

ct

SUBSTITUTE SHEET (RULE 26》

wo 98/12657 PCT/US97/16218

23/23

SUBSTITUTO SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT IntemilbiMd ippbion No.
PCT/US97/16218

CUSSIFICÂTION OF SUBJECT НАПЕК ع
IPC(6) :G06F19/W
US CL :364/131; 395/1S2.1

According to InlenMtitNMl Pltent аамШмйоа (IPC) or to both Mtinnii cluiifxÉi ·nd IPC_______________________

a FIELDS SEARCHED - __

Мшпмт donmtitinii Miiéed (٠ط٠سسض lyitem foUowed by ckuMettàoi »уяМв)

U.S. : 364/гЭМ^ 1Β4-187; 395/1&2.09> 1Ι2.1٠ MSM, ias.l٠ 20٠.71| Bll; 37V47.1٠6S.1

DocunminicirchdotberhminiiiHMndocuincntatiüntotheatentthatiuchdocumcntiireincliMiedintheßeldiiearched

Electronic diu buc consulted ٥ur»g the intcmitioail search (aune of diu boe and, where practicable, leirch termi uied)

APS, Kirch terms: intercept, request, lynchronize, coigroUen, error

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citlüon of docume■،! 1VÍÜI ¡ndicaiirw, **購 !ppropriite, of the relevam punge» Relevant to слит No.

X

Y

us 5，예8，٥21 A (MCLAUGHLIN et 11 (لا February 1992, col. 4,
line ¿2 to col. 5, iine 30

1-3,10_14, 32-34,
and 38-40

4-9 and 35-37

Y US 5,261,092 A (McLAUGHLIN el al) 09 November 1993, col.
ئ٠ء to col· 11，24 ¿سظ 2 ,10 . 4-9 and 35-37

A US 5,142,470 A (BRISTOW et al) 25 August 1992, see the entire
document.

1-26 and 32"47

A US 5,491,625 A (PiSNALL et al) 13 February 1996, see the
entire document.

1-26 Md 3247

Furth» docuiBfinti lie Ibted — thi cotíámütíoi ٠í Во» с·0 □ ，سس٠٠_أ・سس فه* _ه٠，・خ٠ ٠٠ ٠aàat Ь|،М1Ш٠٠ΜΜ1 ·· !■■рпшцй · !■iirtj ·· __ ٠мй ht ٠س ٠· فغد
4аи٠ ·ί ٠ب٠ ;·الب ب ·Ы■，“ ابب ■__·* Й٠٠ямйй1о٠٠1агмнм<Ь٠٠атйй٠٠Ьго٠г٠1٠«й٠а1٠
Мц ■brbi · ·，·_· ikiU - ··・t

йммаанЫг«(٠а 購· p__t ft_٠

T

■X·

٣■

йш ٠هد i· ·í······ سفج Л·· ه٠٠٣هم٠ابم1ب ■«!Mi! rf·・ _，سم - سم■■····■ Í__，Í٠_٠٠٠_k· ·í，_í • T ·・*・ ЙИ1，سس · ٠ йг ・_ ■ÉmÉül _« د ٠ ٠àà ٠ مسدفي ٠ν àin٠٦àiè ta! *■·· àaà ш 1ЙВЙ٠
lb ٠ Й «، ·Í·，ймм ٠· بد خ بدب МЫ ٠٠ааШ>)ا ·_，_·ί_ί

息—一 —-|ШЙ1 · ·й·د—* <»1٠٠ ٠· · د طد ■·О

т س-اس-ل٢£ب-سدسحطدط--[ل-اظل*طخا-ئ د--ئب
b ihMii ٠٠ ب٠

IDile of Ле Mtml сотрЬйоо of the btomtbnd ·cMcfc

06 NOVEMBER!

Dite ofالعسا of theيلهأهلأ Kirch report

Nur ب mi¡¡؟(«Йом oflbeiSA/US
Сммйймге،п ٠٠||٠ й٠п1Ьй*
¿·«，CT :
WàM^OC. 20331

FteabufeNtt. (TO)M5 32，O

IntomitÎMui ippiiciiion No.
PCT/US97/là21l

INTERNATIONAL SEARCH REPORT

¥omKtn&l،n№١٠QiÉÉt^M٠iiáÉB٠٠9 ١wx١٠

c (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category· CMitiofi of document, ١لس Íodíciü٠nt where appropnite, of the reicvint puMgct Rckvint to claim No.

X US 5,555,372 A (TETREAULT et al) 10 September 1996, col. 3，
lines 8٠43 and col. 8, lines 6٠42٠

27 and 48

X us 5,423，٥25 A (GOLDMAN et al > 06 June 1995, col. 4٠ line 61
to coi. 6, line 33.

28, 29, and 49

A US 5,448,722 A (LYNNE et al) 05 Sq)tember 1995, sec the mtire
document.

27-31，48, Mid 49

INTERNATIONAL SEARCH REPORT Intcmtional application No.
PCT/US97/1Ö18

C٠tiM٠٠i_ “ **· ・ 1 “ я„* Λ—ή) шйЬ diiiM 育·" Смый йин،|Цم，· ٠·，ОЬмг¥1٠йш ا*Be

for the foUowin، гемом: (in mpect of certain da■» under Articte 17(2Χسسس« ٠ report Ы not been سلعسهئ îb

.:Νο1 ۶سئ ٠· П
:nimdy AÉntyطه ١ LJ Ьссшме they retato to iub|ect matter not required to be aeuched by

2. П سفط؟ Νμ٠:
LI Ъеаилс they retato to putt of the intenMlionil ippUciüoi هله όο not ٠٥ац4у à fcbc prescribed requirements to such

助 extent that no meaningful intemitionil scareh can be carried 0اس speciAcaUy:

3. [ا سفط؟ N٠٠.:
Ьесше they ire dependent صه and *re Mt dnfted ж woofdiooc wih عله second lad thild scnlcnoes of Rule 6.어٠).

Во* II OliMnrilUis wiMN lakty ٠، tnvsalte b bdcii((c ٠٠٠٠rt·■ 9Í !،SB 2 9Í ٠Ιη٠ Λ—1)

This IntenutMMil Searching Authority found nwkipte Mvcatusi 00 ف نه سفسهمأ ٠سعل , U foUows:

Pleisc See Eitn Sheet.

قاً سب ،1 re٩шredιصditмm،scιreh foe* were timely piW by lhe ^٠iiittth٠àiten*àflilscireh report eovmiUseirchibk
daims.

2 ٠ ا I Al لس seireliabbe eliiins دس be searched ияйкмМ ٠№ft justifying 1■ idàitiniiil foe, this Authority did not invite piyment
of any idditinnil fee.

э. I I ÀÍ only ا*<١بك ٠٠٩سأ»٠اهابمم دب اط ۴بما٢جم ! Ihr |п4١٠п1٠г1Ь١г wlrmbti ٠٠اا٣جط٢جب>٠٠٠
only t¿o_e cilims forلصن fo·· не سا٠ qmibttjr ·!·_・ Nos.:

No required additional Mireh fees ٦ят timely piad by th ippttciat. Cciequeady, this Mternstioaal search report M
reatricled to the iiventKM first maationed ف ئ cbiflM； لأ د O0٠md by كسم Nos.:

4■□

□ *The «Шйом¡ Mlfch fee. wwe rmRiiird by the арйсмСж protest
□ No pnlMt innniybd the piynai of iddilicMui Mirch fees.

Riirà٠iPv٠٠s٠t

Fom PCI7ISA/21٠ (oaatinmlKn of fint sh^i>XJu!٢ 1992)1

INTERNATIONAL SEARCH REPORT Intenuüonil application No.
PCT/US97/16218

BOX H· OBSERVATIONS WHERE UNITY OF INMTION WAS LACKING
This ISA found тикф1е inventioni II follow*:

Thi* appiiciiMMk conilin■ the following vwmiam or gnMipi of invea^ni which агспоСю linked u to form · single
inventive cooccpt under PCT Rule 13.1. ¡A order for lU ئ١سغس to be icarched, the appropniicسغسا search
fociinuittxpiid.

Group I, ciaim(i)l٠26 ind 32-47, dnwn to · ”سس and ■٢٠cni for lynchronizin، (Uta tnnifer.
Group II，claim(i) 27-31, 48٠ lad 49, dnwn to a ■سس and iy«t№ for йик biiig nd error reporting.
The ¿»тепйом lilted Ы Groupe 1 ιηά II do пос rebte to · »ingle inventive concept tinder PCT Ruk 13.1 bc٥iiu٠> under
PCT Rule 13.2, theyصا the ume or comapoading special technical bturM for the folknving геми»:

The صه tnnifcr lyitem ·nd method of ٠πΝψ I il not limited to fiuk or error conditioni ·nd the fauk
handUng lyitem ٠س method of Group II سه IOC require the data traufer technique· of Group 1.

Fm PCT/1SA/21٠٠1 abeetMMy 1»2)*

