PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOG6F 19/00 Al

(11) International Publication Number:

(43) International Publication Datc:

WO 98/12657

26 March 1998 (26.03.98)

(21) International Application Number: PCT/US97/16218

(22) International Filing Date: 16 September 1997 (16.09.97)

(30) Priority Data:

08/710,404 17 September 1996 (17.09.96) US

(71) Applicant: MARATHON TECHNOLOGIES CORPORA-
TION [US/US); 1300 Massachusetts Avenue, Boxboro,
MA 01719 (US).

(72) Inventors: BISSETT, Thomas, D.; 78 Sunset Drive, Northbor-
ough, MA 01532 (US). FITZGERALD, Martin, J., V.; 5
Holbrook Street, Medway, MA 02053 (US). LEVEILLE,
Paul, A.; 12 Stratton Road, Grafton, MA 01519 (US). MC-
COLLUM, James, D.; 275 Swift Road, Whitinsville, MA
01588 (US). MUENCH, Erik; 677 Salem Street, Grove-
land, MA 01834 (US). TREMBLAY, Glenn, A.; 139 South
Street, Upton, MA 01568 (US).

(74) Agent: WALPERT, Gary, A., Fish & Richardson, P.C., 225
Franklin Street, Boston, MA 02110-2804 (US).

(81) Designated States: AU, CA, JP, European patent (AT, BE,
CH, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and 1o be republished in the event of the receipt of
amendments.

(54) Title: FAULT RESILIENT/FAULT TOLERANT COMPUTING

(57) Abstract

Data transfer to computing elements (14a, 14b) is
synchronized in a computer system (10) that includes
the computing elements and controllers (12) that provide

10

data from data sources to the computing elements. A
request for data from a computing element (14a, 14b) is
intercepted and transmitted to the controllers (12). At least put &
a first controller responds by transmitting requested data \\
to the computing element and by indicating how a second 36a 36b
controller will respond to the intercepted request. /—-D D-\\
34a 18a 34b
B | d | "l'*\
32 P 18b “TIP
CE 1 [| CE2 , |3
1437 \ 14b
20a 20b
Ba—TL| P | SrT~160
| |
" — 22
24
[~ 26
—t
30 ~ 28

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Ausltralia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d'lvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
Fl
FR

KR
KZ
LC
LI

LK

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

ltaly

Japan

Kenya
Kyrgyzstan
Democratic People's
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslay
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TS
™
TR
T
UA
UG
us
uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

5

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

FAU S T TO COMPUTING
Background of the Invention

The invention relates to fault resilient and fault
tolerant computing.

Fault resilient computer systems can continue to
function in the presence of hardware failures. These
systems operate in either an availability mode or an
integrity mode, but not both. A system is "available"
when a hardware failure does not cause unacceptable
delays in user access. Accordingly, a system operating
in an availability mode is configured to remain online,
if possible, when faced with a hardware error. A system
has data integrity when a hardware failure causes no data
loss or corruption. Accordingly, a system operating in
an integrity mode is configured to avoid data loss or
corruption, even if the system must go offline to do so.

Fault tolerant systems stress both availability
and integrity. A fault tolerant system remains available
and retains data integrity when faced with a single
hardware failure, and, under some circumstances, when
faced with multiple hardware failures.

Disaster tolerant systems go one step beyond fault
tolerant systems and require that loss of a computing
site due to a natural or man-made disaster will not
interrupt system availability or corrupt or lose data.

Typically, fault resilient/fault tolerant systems
include several processors that may function as computing
elements or controllers, or may serve other roles. 1In
many instances, it is important to synchronize operation
of the processors or the transmission of data between the

processors.

Summary of the Invention

In one aspect, generally, the invention features
synchronizing data transfer to a computing element in a

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

-2 -

computer system including the computing element and
controllers that provide data from data sources to the
computing element. A request for data made by the
computing element is intercepted and transmitted to the
controllers. Controllers respond to the request and at
least one controller responds by transmitting requested
data to the computing element and by indicating how
another controller will respond to the intercepted
request.

Embodiments of the invention may include one or
more of the following features. A controller may respond
to the intercepted request by indicating that the
controller has no data corresponding to the intercepted
request and by indicating that another controller will
respond to the intercepted request by transmitting data
to the computing element. Each response to the
intercepted request by a controller may include an
indication as to how each other controller will respond
to the intercepted request.

The computing element may compare the responses to
the intercepted request for consistency. When each
response includes an indication as to how each other
controller will respond to the intercepted request, the
comparison may include comparing the indications for
consistency. When responses of two or more controllers
include requested data, the comparison may include
comparing the data for consistency. The computing
element may notify the controllers of the outcome of the
comparison and that responses have been received from all
of the controllers.

A controller may be disabled when the responses
are not consistent. In addition, an error condition may
be generated if the computing element does not receive
responses from all of the controllers within a
predetermined time period.

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

-3 -

A data source may be associated with a controller,
and the controller may obtain the requested data from the
data source in response to the intercepted request.

A controller may maintain a record of a status of
another controller, and may use the record when
indicating how the other controller will respond to the
intercepted request. When a data source is associated
with the other controller, the record may include the
status of the data source. Each controller may maintain
records of statuses of all other controllers and may use
the records to indicate how the other controllers will
respond to the intercepted request. When each controller
is associated with a data source, each controller may
maintain records of statuses of data sources associated
with all other controllers.

When a status of a data source associated with a
controller changes, the controller may transmit to the
computing element an instruction to discard responses
from other controllers to the intercepted request. The
computing element may respond to the instruction by
discarding responses from other controllers to the
intercepted request and by transmitting to the
controllers a notification that the responses have been
discarded. A controller may respond to the notification
by updating a record of the status of the data source.
After updating the record, the controller may retransmit
the requested data to the computing element and indicate
how the other controller will respond to the intercepted
request.

When a data source is associated with each
controller, each controller may respond to the
intercepted request by determining whether an associated
data source is expected to process the request, and when
the associated data source is expected to process the
request, transmitting the request to the associated data

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 4 -

source, receiving results of the request from the
associated data source, and forwarding the results of the
request to the computing element. When the associated
data source is not expected to process the request, the
controller may respond by informing the computing element
that no data will be provided in response to the request.

In another aspect, generally, the invention
features maintaining synchronization between computing
elements processing identical instruction streams in a
computer system including the computing elements and
controllers that provide data from data sources to the
computing elements, with the controllers operating
asynchronously to the computing element. Computing
elements processing identical instruction streams each
stop processing of the instruction stream at a common
point in the instruction stream. Each computing element
then generates a freeze request message and transmits the
freeze request message to the controllers. A controller
receives a freeze request message from a computing
element, waits for a freeze request message from other
computing elements, and, upon receiving a freeze request
message from each computing element processing an
identical instruction stream, generates a freeze response
message and transmits the freeze response message to the
computing elements. Each computing element, upon
receiving a freeze response message from a controller,
waits for freeze response messages from other controllers
to which a freeze request message was transmitted, and,
upon receiving a freeze response message from each
controller, generates a freeze release message, transmits
the freeze release message to the controllers, and
resumes processing of the instruction stream.

Embodiments of the invention may include one or
more of the following features. The common point in the
instruction stream may correspond to an I/0 operation,

10

15

20

25

30

WO 98/12657 PCT/US97/16218

-5 =

the occurrence of a predetermined number of instructions
without an I/0 operation, or both.

A controller may include a time update in the
freeze response message, and a computing element, upon
receiving a freeze response message from each controller
to which a freeze request message was transmitted, may
update a system time using the time update from a freeze
response message. The computing element may use the time
update from a freeze response message generated by a
particular controller.

Upon receiving a freeze response message from each
controller to which a freeze request message was
transmitted, a computing element may process data
received from a controller prior to receipt of freeze
response messages from the controllers.

In another aspect, generally, the invention
features handling faults in a computer system including
error reporting elements and error processing elements.
An error reporting element detects an error condition and
transmits information about the error condition as an
error message to error processing elements connected to
the error reporting element. At least one error
processing element retransmits the error message to other
error processing elements connected to the error
processing element.

In another aspect, generally, the invention
features handling faults in a computer system including
error reporting elements and error processing elements.
Error reporting element detect an error condition and
transmit information about the error condition as error
messages to error processing elements connected to the
error reporting elements. At least one error processing
element combines information from related error messages
from multiple error reporting elements and uses the

10

15

20

25

30

WO 98/12657 PCT/US97/16218

-6 -

combined information in identifying a source of the error
condition.

The error processing element may use a state table
to combine information from related error messages. The
error processing element may represent an error message
using an error identifier that identifies a particular
error, an error target that identifies a subcomponent
that caused the error represented by the error message,
and a reporting source that identifies an error reporting
element that generated the error message and a path over
which the error message was received. The error
processing element may determine whether error messages
are related by comparing a received error message against
states representing previously received error messagés.

Other features and advantages will become apparent
from the following description, including the drawings,
and from the claims.

Brief Description of the Drawings

Fig. 1 is a block diagram of a partially fault
resilient system.

Fig. 2 is a block diagram of system software of
the system of Fig. 1.

Fig. 3 is a flowchart of a procedure used by an
IOP Monitor of the system software of Fig. 2.

Fig. 4 is a block diagram of an IPI module of the
system of Fig. 1.

Fig. 5 is a state transition table for the system
of Fig. 1.

Fig. 6 is a block diagram of a fault resilient
system.

Fig. 7 is a block diagram of a distributed fault
resilient system.

10

15

20

25

30

WO 98/12657 PCT/US97/16218

-7 -

Fig. 8 is a block diagram of a fault tolerant
system.

Fig. 9 is flowchart of a fault diagnosis procedure
used by IOPs of the system of Fig. 8.

Fig. 10 is a block diagram of a disaster tolerant
systenm.

Fig. 11 is a block diagram of software components
of a computer system.

Figs. 12A and 12B are flow diagrams illustrating
information transferred between CEs and IOPs.

Fig. 13 is a flowchart of a flush procedure
implemented by the CE Transport.

Figs. 14A and 14B are block diagrams illustrating
physical and logical system configurations.

Fig. 15 is a flowchart of a flush procedure.

Figs. 16 and 16B are tables of microcode state
transitions.

Fig. 17 is a block diagram of a system.

Fig. 18 is a flow chart of a procedure for error
processing.

Fig. 19A is a syndrome source table.

Fig. 19B is a state transition table corresponding
to the syndrome source table of Fig. 19A.

Fig. 20 is a callout hierarchy diagram.

Figs. 21A, 21B and 22 are tables listing callout
elements.

Fig. 23 is a flowchart of a procedure for

identifying a faulty component.

Description of the Preferred Embodiments

Fig. 1 illustrates a fault resilient system 10
that includes an I/0 processor ("IOP") 12 and two
computing elements ("CEs") 14a, 14b (collectively
referred to as CEs 14). System 10 includes only a single

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

-8 -

IOP 12 and therefore cannot recover from a failure in IOP
12. As such, system 10 is not entirely fault resilient.

IOP 12 includes two inter-processor interconnect
(YIPI") modules 16a, 16b that are connected,
respectively, to corresponding IPI modules 18a, 18b of
CEs 14 by cables 20a, 20b. IOP 12 also includes a
processor 22, a memory system 24, two hard disk drives
26, 28, and a power supply 30. Similarly, each CE 14
includes a processor 32, a memory system 34, and a power
supply 36. Separate power supplies 36 are used to ensure
fault resilience in the event of a power supply failure.
Processors 32a, 32b are "identical" to each other in
that, for every instruction, the number of cycles
required for processor 32a to perform an instruction is
identical to the number of cycles required for processor
32b to perform the same instruction. In the illustrated
embodiment, system 10 has been implemented using standard
Intel 486 based motherboards for processors 22, 32 and
four megabytes of memory for each of memory systems 24,
34.

IOP 12 and CEs 14 of system 10 run unmodified
operating system and applications software, with hard
drive 26 being used as the boot disk for the IOP and hard
drive 28 being used as the boot disk for CEs 14. 1In
truly fault resilient or fault tolerant systems that
include at least two IOPs, each hard drive would also be
duplicated.

In the illustrated embodiment, the operating
system for IOP 12 and CEs 14 is DOS. However, other
operating systems can also be used. Moreover, IOP 12 can
run a different operating system from the one run by CEs
14. For example, IOP 12 could run Unix while CEs 14 run
DOS. This approach is advantageous because it allows CEs
14 to access peripherals from operating systems that do
not support the peripherals. For example, if CEs 14 were

10

15

20

25

30

WO 98/12657 PCT/US97/16218

-9 -

running an operating system that did not support CD-ROM
drives, and IOP 12 were running one that did, CEs 14
could access the CD-ROM drive by issuing I/O requests
identical to those used to, for example, access a hard
drive. IOP 12 would then handle the translation of the
I1/0 request to one suitable for accessing the CD-ROM
drive.

Fig. 2 provides an overview of specialized system
software 40 used by system 10 to control the booting and
synchronization of CEs 14, to disable local time in CEs
14, to redirect all I/0 requests from CEs 14 to IOP 12
for execution, and to return the results of the I/0
requests, if any, from IOP 12 to CEs 14.

System software 40 includes two sets of IPI BIOS
42 that are ROM-based and are each located in the IPI
module 18 of a CE 14. IPI BIOS 42 are used in bootup and
synchronization activities. When a CE 14 is booted, IPI
BIOS 42 replaces the I/0 interrupt addresses in the
system BIOS interrupt table with addresses that are
controlled by CE Drivers 44. The interrupt addresses
that are replaced include those corresponding to video
services, fixed disk services, serial communications
services, keyboard services, and time of day services.

CE Drivers 44 are stored on CE boot disk 28 and
are run by CEs 14. CE Drivers 44 intercept I/O requests
to the system BIOS and redirect them through IPI modules
18 to IOP 12 for execution. CE Drivers 44 also respond
to interrupt requests from IPI modules 18, disable the
system clock, and, based on information supplied by IOP
Monitor 48, control the time of day of CEs 14.

An IOP Driver 46 that is located on IOP boot disk
26 and is run by IOP 12 handles I/O requests from CEs 14
by redirecting them to an IOP Monitor 48 for processing.
Thereafter, IOP Driver 46 transmits the results of the

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 10 -

requests from IOP Monitor 48 to CEs 14. IOP Driver 46
communicates with CE drivers 44 using a packet protocol.

IOP Monitor 48 is located on IOP boot disk 26 and
is run by IOP 12. IOP Monitor 48 controls system 10 and
performs the actual I/O requests to produce the results
that are transmitted by IOP Driver 46 to CEs 14.

System software 40 also includes console software
49 that runs on IOP 12 and permits user control of system
10. Using console software 49, a user can reset, boot,
or synchronize a CE 14. The user can also set one or
both of CEs 14 to automatically boot (autoboot) and/or
automatically synchronize (autosync) after being reset or
upon startup. The ability to control each CE 14 is
useful both during normal operation and for test
purposes. Using console software 49, the user can also
place system 10 into either an integrity mode in which
IOP Monitor 48 shuts down both CEs 14 when faced with a
miscompare error, a first availability mode in which IOP
Monitor 48 disables CE 14a when faced with a miscompare
error, or a second availability mode in which IOP Monitor
48 disables CE 14b when faced with a miscompare error.
Finally, console software 49 allows the user to request
the status of system 10. In an alternative embodiment,
console software 49 is implemented using a separate
processor that communicates with IOP 12.

Each CE 14 runs a copy of the same application and
the same operating system as that run by the other CE 14.
Moreover, the contents of memory systems 34a and 34b are
the same, and the operating context of CEs 14 are the
same at each synchronization time. Thus, IOP Monitor 48
should receive identical sequences of I/0 requests from
CEs 14.

As shown in Fig. 3, IOP Monitor 48 processes and
monitors I/0 requests according to a procedure 100.
Initially, IOP Monitor 48 waits for an I/0 request from

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 11 -

one of CEs 14 (step 102). Upon receiving an I/O request
packet from, for example, CE 14b, IOP Monitor 48 waits
for either an I/0 request from CE 14a or for the
expiration of a timeout period (step 104). Because
system 10 uses the DOS operating system, which halts
execution of an application while an I/O request is being
processed, IOP Monitor 48 is guaranteed not to receive an
I/0 request from CE 14b while waiting (step 104) for the
I/0 request from the CE 14a.

Next, IOP Monitor 48 checks to determine whether
the timeout period has expired (step 106). If not (that
is, if an I/0 request packet from CE 14a has arrived),
IOP Monitor 48 compares the checksums of the packets
(step 108). If the checksums are equal, IOP Monitor 48
processes the I/O request (step 110). After processing
the 1/0 request, IOP Monitor 48 issues a request to the
system BIOS of IOP 12 for the current time of day (step
112).

After receiving the time of day, IOP Monitor 48
assembles an IPI packet that includes the time of day and
the results, if any, of the I/O request (step 114) and
sends the IPI packet to IOP Driver 46 (step 116) for
transmission to CEs 14. When CEs 14 receive the IPI
packet, they use the transmitted time of day to update
their local clocks which, as already noted, are otherwise
disabled.

As required by DOS, execution in CEs 14 is
suspended until IOP Monitor 48 returns the results of the
I/0 request through IOP Driver 46. Before execution is
resumed, the times of day of both CEs 14 are updated to a
common value corresponding to the transmitted time of day
from the IPI packet. Accordingly, the CEs 14 are kept in
time synchronization. The transmitted time of day is
designated as the meta time. If a multitasking operating
system were employed, execution in CEs 14 would not be

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 12 -

suspended while IOP Monitor 48 performed the I/O request.
Instead, processing in CEs 14 would be suspended only
until receipt of an acknowledgement indicating that IOP
Monitor 48 had begun processing the I/0 request (step
110). The acknowledgement would include the time of day
and would be used by CEs 14 to update the local clocks.

After sending the IPI packet to IOP Driver 46, IOP
Monitor 48 verifies that both CEs 14 are online (step
118), and, if so, waits for an I/0 request from one of
the CEs 14 (step 102).

If the timeout period has expired (step 106), IOP
Monitor 48 disables the CE 14 that failed to respond
(step 119) and processes the I/O request (step 110).

If there is a miscompare between the checksums of
the packets from CEs 14 (step 108), IOP Monitor 48 checks
to see if system 10 is operating in an availability mode
or an integrity mode (step 120). If system 10 is
operating in an availability mode, IOP Monitor 48
disables the appropriate CE 14 based on the selected
availability mode (step 122), and processes the I/O
request (steps 110-116). Thereafter, IOP Monitor 48
determines whether the disabled CE 14 has been repaired
and reactivated (step 118). If not, IOP Monitor 48 waits
for an I/0 request from the online CE 14 (step 124).

With one of the CEs 14 disabled, system 10 is no longer
fault resilient and IOP Monitor 48 immediately processes
a received I/0 request (step 110).

If system 10 is operating in an integrity mode
when a miscompare is detected, IOP Monitor 48 disables
both CEs 14 (step 126) and stops processing (step 128).

Referring again to Figs. 1 and 2, when the
application or the operating system of, for example, CE
l4a makes a non-I/O call to the system BIOS, the system
BIOS executes the regquest and returns the results to the
application without invoking system software 40.

10

15

20

25

30

as

WO 98/12657 PCT/US97/16218

- 13 -

However, if the application or the operating system makes
an I/0 BIOS call, CE Driver 44a intercepts the I/O
request. After intercepting the I/0 request, CE Driver
44a packages the I/O request into an IPI packet and
transmits the IPI packet to IOP 12.

When IPI module 16a of IOP 12 detects transmission
of an IPI packet from CE 1l4a, IPI module 16a generates an
interrupt to IOP Driver 46. IOP Driver 46 then reads the
IPI packet.

As discussed above, IOP Monitor 48 responds to the
IPI packet from CE 14a according to procedure 100. As
also discussed, assuming that there are no hardware
faults, IOP Driver 46 eventually transmits an IPI packet
that contains the results of the I/0 request and the time
of day to CEs 14.

IPI modules 18 of CEs 14 receive the IPI packet
from IOP 12. CE Drivers 44 unpack the IPI packet, update
the time of day of CEs 14, and return control of CEs 14
to the application or the operating system running on CEs
14.

If no I/0 requests are issued within a given time
interval, the IPI module 18 of a CE 14 generates a
so-called guantum interrupt that invokes the CE Driver 44
of the CE 14. In response, the CE Driver 44 creates a
quantum interrupt IPI packet and transmits it to IOP 12.
IOP Monitor 48 treats the quantum interrupt IPI packet as
an IPI packet without an I/O0 request. Thus, IOP Monitor
48 detects the incoming quantum interrupt IPI packet
(step 102 of Fig. 3) and, if a matching quantum interrupt
IPI packet is received from the other CE 14 (steps 104,
106, and 108 of Fig. 3), issues a request to the system
BIOS of IOP 12 for the current time of day (step 112 of
Fig. 3). IOP Monitor 48 then packages the current time
of day into a quantum response IPI packet (step 114 of
Fig. 3) that IOP Driver 46 then sends to CEs 14 (step 116

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 14 -

of Fig. 3). CE Drivers 44 respond to the quantum
response IPI packet by updating the time of day and
returning control of CEs 14 to the application or the
operating system running on CEs 14.

If IOP Monitor 48 does not receive a quantum
interrupt IPI package from the other CE 14 within a
predefined timeout period (step 106 of Fig. 3), IOP
Monitor 48 responds by disabling the non-responding CE
14.

As shown in Fig. 1, IPI modules 16, 18 and cables
20 provide all of the hardware necessary to produce a
fault resilient system from the standard Intel 486 based
motherboards used to implement processors 22, 32. An IPI
module 16 and an IPI module 18, which are implemented
using identical boards, each perform similar functions.

As illustrated in Fig. 4, an IPI module 18
includes a control logic 50 that communicates I/0
requests and responses between the system bus of a
processor 32 of a CE 14 and a parallel interface 52 of
IPI module 18. Parallel interface 52, in turn,
communicates with the parallel interface of an IPI module
16 through a cable 20. Parallel interface 52 includes a
sixteen bit data output port 54, a sixteen bit data input
port 56, and a control port 58. Cable 20 is configured
so that data output port 54 is connected to the data
input port of the IPI module 16, data input port 56 is
connected to the data output port of the IPI module 16,
and control port 58 is connected to the control port of
the IPI module 16. Control port 58 implements a
handshaking protocol between IPI module 18 and the IPI
module 16.

Control logic 50 is also connected to an IPI BIOS
ROM 60. At startup, control logic 50 transfers IPI BIOS
42 (Fig. 2), the contents of IPI BIOS ROM 60, to
processor 32 through the system bus of processor 32.

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 15 -

A QI counter 62, also located on IPI module 18,
generates quantum interrupts as discussed above. QI
counter 62 includes a clock input 64 that is connected to
the system clock of processor 32 and a gate input 66 that
is connected to control logic 50. Gate input 66 is used
to activate and reset the counter value of QI counter 62.
When activated, QI counter 62 decrements the counter
value by one during each cycle of the system clock of
processor 32. When the counter value reaches zero, QI
counter 62 generates a quantum interrupt that, as
discussed above, activates CE Driver 44 (Fig. 2).

CE Driver 44 deactivates QI counter 62 at the
beginning of each I/0 transaction. CE Driver 44
deactivates QI counter 62 by requesting an I/O write at a
first address, known as the QI deactivation address.
control logic 50 detects the I/O write request and
deactivates QI counter 62 through gate input 66. Because
this particular I/O write is for control purposes only,
control logic 50 does not pass the I/O write to parallel
interface 52. At the conclusion of each I/O transaction,
CE Driver 44 resets and activates QI counter 62 by
requesting an I/0 write to a second address, known as the
QI activation address. Control logic 50 responds by
resetting and activating QI counter 62.

In an alternative approach, quantum interrupts are
generated through use of debugging or other features
available in processor 32. Some commonly available
processors include debugging or trap instructions that
trap errors by transferring control of the processor to a
designated program after the completion of a selected
number of instructions following the trap instruction.

In this approach, each time that CE Driver 44 returns
control of processor 32 to the application or operating
system, CE Driver 44 issues a trap instruction to
indicate that control of processor 32 should be given to

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 16 =-

CE Driver 44 upon completion of, for example, 300
instructions. After processor 32 completes the indicated
300 instructions, the trap instruction causes control of
processor 32 to be returned to CE Driver 44. 1In the
event that an I/O request activates CE Driver 44 prior to
completion of the indicated number of instructions, CE
Driver 44 issues an instruction that cancels the trap
instruction.

IPI Module 18 is also used in activating an
offline CE 14. As discussed below, before an offline CE
14 is activated, the contents of the memory system 34 of
the active CE 14 are copied into the memory system 34 of
the offline CE 14. To minimize the effects of this
copying on the active CE 14, the processor 32 of the
active CE 14 is permitted to continue processing and the
memory is copied only during cycles in which the system
bus of the processor 32 of the active CE 14 is not in
use.

To enable processor 32 to continue processing
while the memory is being copied, IPI module 18 accounts
for memory writes by the processor 32 to addresses that
have already been copied to the offline CE 14. To do so,
control logic 50 monitors the system bus and, when the
processor 32 writes to a memory address that has already
been copied, stores the address in a FIFO 68. When the
memory transfer is complete, or when FIFO 68 is full, the
contents of memory locations associated with the memory
addresses stored in FIFO 68 are copied to the offline CE
14 and FIFO 68 is emptied. 1In other approaches, FIFO 68
is modified to store both memory addresses and the
contents of memory locations associated with the
addresses, or to store the block addresses of memory
blocks to which memory addresses being written belong.

IPI module 18 also handles non-BIOS I/0 requests.
In some computer systems, the BIOS is too slow to

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

-17 -

effectively perform I/0 operations such as video display.
As a result, some less structured or less disciplined
operating systems, such as DOS or UNIX, allow
applications to circumvent the BIOS and make non-BIOS I/O
requests by directly reading from or writing to the
addresses associated with I/O devices. These non-BIOS
I/0 requests, which cannot be intercepted by changing the
system interrupt table, as is done in connection with,
for example, I/O disk reads and writes, are problematic
for a system in which synchronization requires tight
control of the I/O interface.

To remedy this problem, and to assure that even
non-BIOS I/0 requests can be isolated and managed by IOP
12, IPI module 18 includes virtual 1/0 devices that mimic
the hardware interfaces of physical I/0O devices. These
virtual I/0 devices include a virtual display 70 and a
virtual keyboard 72. As needed, other virtual I/O
devices such as a virtual mouse or virtual serial and
parallel ports could also be used.

In practice, control logic 50 monitors the system
bus for read or write operations directed to addresses
associated with non-BIOS I/0 requests to system I/O
devices. When control logic 50 detects such an
operation, control logic 50 stores the information
necessary to reconstruct the operation in the appropriate
virtual device. Thus, for example, when control logic 50
detects a write operation directed to an address
associated with the display, control logic 50 stores the
information necessary to reconstruct the operation in
virtual display 70. Each time that a BIOS I/O request or
a quantum interrupt occurs, CE Driver 44 scans the
virtual I/0 devices and, if the virtual devices are not
empty, assembles the information stored in the virtual
devices into an IPI packet and transmits the IPI packet
to IOP 12. 1IOP 12 treats the packet like a BIOS I/O

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 18 -

request using procedure 100 discussed above. When
control logic 50 detects a read addressed to a virtual
I/0 device, control logic 50 assembles the read request
into an IPI packet for handling by IOP 12. IOP 12 treats
the IPI packet like a standard BIOS I/0 request.

Referring to Fig. 5, each CE 14 always operates in
one of eight states. Because there are only a limited
number of permissible state combinations, system 10
always operates in one of fourteen states. The major CE
operating states are OFFLINE, RTB (ready to boot),
BOOTING, ACTIVE, RTS (ready to sync), WAITING, M _SYNC,
(synchronizing as master), and S _SYNC (synchronizing as
slave). IOP Monitor 48 changes the operating states of
CEs 14 based on the state of system 10 and user commands
from console software 49. Through console software 49, a
user can reset a CE 14 at any time. Whenever the user
resets a CE 14, or a fault occurs in the CE 14, IOP
Monitor 48 changes the state of the CE 14 to OFFLINE.

At startup, system 10 is operating with both CEs
14 OFFLINE (state 150). System 10 operates in the upper
states of Fig. 5 (states 152-162) when CE 14a becomes
operational before CE 14b and in the lower states (states
166-176) when CE 14b is the first to become operational.
If CEs 14 become operational simultaneously, the first
operational CE 14 to be recognized by IOP Monitor 48 is
treated as the first to become operational.

When a CE 14 indicates that it is ready to boot by
issuing a boot request, the state of the CE 14 changes to
RTB if the CE 14 is not set to autoboot or to BOOTING if
the CE 14 is set to autoboot. For example, if CE 14a
issues a boot request when both CEs 14 are OFFLINE, and
CE 14a is not set to autoboot, then the state of CE 14a
changes to RTB (state 152). Thereafter, IOP Monitor 48
waits for the user, through console software 49, to boot
CE 14a. When the user boots CE 14a, the state of CE 14a

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 19 -

changes to BOOTING (state 154). If the user resets CE
l4a, the state of CE 14a changes to OFFLINE (state 150).

If both CEs 14 are OFFLINE when CE 14a issues a
boot request, and CE 14a is set to autoboot, the state of
CE 1l4a changes to BOOTING (state 154). If CE 14a boots
successfully, the state of CE 14a changes to ACTIVE
(state 156).

When CE 14a is ACTIVE, and CE 14b issues a boot
request, or if CE 14b had issued a boot request while the
state of CE 14a was transitioning from OFFLINE to ACTIVE
(states 152-156), the state of CE 14b changes to RTS
(state 158) if CE 14b is set to autosync and otherwise to
WAITING (state 160). If the state of CE 14b changes to
RTS (state 158), IOP Monitor waits for the user to issue
a synchronize command to CE 14b. When the user issues
such a command, the state of CE 14b changes to WAITING
(state 160).

Once CE 14b is WAITING, IOP Monitor 48 copies the
contents of memory system 34a of CE 14a into memory
system 34b of CE 14b. Once the memory transfer is
complete, IOP Monitor 48 waits for CE 14a to transmit a
quantum interrupt or I/O request IPI packet. Upon
receipt of such a packet, IOP Monitor 48 changes the
state of CE 14a to M_SYNC and the state of CE 14b to
S_SYNC (state 162), and synchronizes the CEs 14. This
synchronization includes responding to any memory changes
that occurred while IOP Monitor 48 was waiting for CE 14a
to transmit a quantum interrupt or I/0 request IPI
packet. Upon completion of the synchronization, the
states of the CEs 14 both change to ACTIVE (state 164)
and system 10 is deemed to be fully operational.

In an alternative implementation, IOP Monitor 48
does not wait for memory transfer to complete before
changing the state of CE 14a to M_SYNC and the state of
CE 14b to S_SYNC (state 162). Instead, IOP Monitor 48

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 20 -

makes this state change upon receipt of an IPI packet
from CE 14a and performs the memory transfer as part of
the synchronization process.

Similar state transitions occur when CE 14b is the
first CE 14 to issue a boot request. Thus, assuming that
CE 14b is not set to autoboot, CE 14b transitions from
OFFLINE (state 150) to RTC (state 166) to BOOTING (state
168) to ACTIVE (state 170). Similarly, once CE 14b is
ACTIVE, and assuming that CE 14a is not set to autosync,
CE 14a transitions from OFFLINE (state 170) to RTS (state
172) to WAITING (state 174) to S_SYNC (state 176) to
ACTIVE (state 164).

In other embodiments of the invention, for
example, referring to Fig. 6, a fault resilient system
200 includes two IOPs 202 and two CEs 204. Each CE 204
is connected, through an IPI card 206 and a cable 208, to
an IPI card 210 of each IOP 202. IOPs 202 are
redundantly connected to each other through IPI cards 210
and cables 212. Because every component of system 200
has a redundant backup component, system 200 is entirely
fault resilient. In an alternative approach, cables 208
and 210 could be replaced by a pair of local area
networks to which each IOP 202 and CE 204 would be
connected. 1Indeed, local area networks can always be
substituted for cable connections.

System 200 is operating system and application
software independent in that it does not require
modifications of the operating system or the application
software to operate. Any single piece of hardware can be
upgraded or repaired in system 200 with no service
interruption. Therefore, by sequentially replacing each
piece of hardware and allowing system 200 to
resynchronize after each replacement, the hardware of
system 200 can be replaced in its entirety without
service interruption. Similarly, software on system 200

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 21 -

can be upgraded with minimal service interruption (that
is, during the software upgrade, the application will
become unavailable for an acceptable period of time such
as two seconds). Also, disaster tolerance for purposes
of availability can be obtained by placing each IOP/CE
pair in a separate location and connecting the pairs
through a communications link.

Referring to Fig. 7, a distributed, high
performance, fault resilient system 220 includes two
systems 200, the IOPs 202 of which are connected to each
other, through IPI modules, by cables 222. System 220
uses distributed computing environment software to
achieve high performance by running separate portions of
an application on each system 200. System 220 is fault
tolerant and offers the ability to perform both hardware
and software upgrades without service interruption.

Referring to Fig. 8, a fault tolerant system 230
includes three IOPs (232, 234, and 236) and three CEs
(238, 240, and 242). Through IPI modules 244 and cables
246, each IOP is connected to an IPI module 244 of each
of the other IOPs. Through IPI modules 248 and cables
250, each CE is connected to an IPI module 244 of two of
the IOPs, with CE 238 being connected to IOPs 232 and
234, CE 240 being connected to IOPs 232 and 236, and CE
242 being connected to IOPs 234 and 236. Like system
200, system 230 allows for hardware upgrades without
service interruption and software upgrades with only
minimal service interruption.

As can be seen from a comparison of Figs. 7 and 8,
the CEs and IOPs of systems 200 and 230 are identically
configured. As a result, upgrading a fault resilient
system 200 to a fault tolerant system 230 does not
require any replacement of existing hardware and entails
the simple procedure of adding an additional CE/IOP pair,
connecting the cables, and making appropriate changes to

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 22 -

the system software. This modularity is an important
feature of the paired modular redundant architecture of
the invention.

Because the components of system 230 are triply
redundant, system 230 is more capable of identifying the
source of a hardware fault than is system 10. Thus,
while system 10 simply disables one or both of CEs 14
when an error is detected, system 230 offers a higher
degree of fault diagnosis.

In one approach to fault diagnosis, as shown in
Fig. 9, each IOP (232, 234, 236) of system 230 performs
fault diagnosis according to a procedure 300. Initially,
each IOP (232, 234, 236) checks for major faults such as
power loss, broken cables, and nonfunctional CEs or IOPs
using well known techniques such as power sensing, cable
sensing, and protocol timeouts (step 302). When such a
fault is detected, each IOP disables the faulty device
or, if necessary, the entire system.

After checking for major faults, each IOP waits to
receive IPI packets (that is, quantum interrupts or I/0
requests) from the two CEs to which the IOP is connected
(step 304). Thus, for example, IOP 232 waits to receive
IPI packets from CEs 238 and 240. After receiving IPI
packets from both connected CEs, each IOP transmits the
checksums ("CRCs") of those IPI packets to the other two
IOPs and waits for receipt of CRCs from the other two
IOPs (step 306).

After receiving the CRCs from the other two IOPs,
each IOP may generate a three by three matrix in which
each column corresponds to a CE, each row corresponds to
an IOP, and each entry is the CRC received from the

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 23 -

column’s CE by the row’s IOP (step 308). Thus, for
example, IOP 232 generates the following matrix:

CE 238 CE 240 CE 242
I0P 232 | CRC CRC X
I0P 234 ! CRC X CRC
0P 236 ! X CRC CRC

After generating the matrix, IOP 232 sums the entries in
each row and each column of the matrix. If the three row
sums are equal and the three column sums are equal (step
310), then there is no fault and IOP 232 checks again for
major faults (step 302).

If either the three rows’ sums or the three
columns’ sums are unequal (step 310), then IOP 232
compares the CRC entries in each of the columns of the
matrix. If the two CRC entries in each column match
(step 312), then IOP 232 diagnoses that a CE failure has
occurred and disables the CE corresponding to the column
for which the sum does not equal the sums of the other
columns (step 314).

If the CRC entries in one or more of the matrix
columns do not match (step 312), then IOP 232 determines
how many of the columns include mismatched entries. If
the matrix includes only one column with mismatched
entries (step 315), then IOP 232 diagnoses that the path
between the IOP corresponding to the matrix row sum that
is unequal to the other matrix row sums and the CE
corresponding to the column having mismatched entries has
failed and disables that path (step 316). For purposes
of the diagnosis, the path includes the IPI module 244 in
the IOP, the IPI module 248 in the CE, and the cable 250.

If the matrix includes more than one column with
mismatched entries (step 314), then IOP 232 confirms that
one matrix row sum is unequal to the other matrix row
sums, diagnoses an IOP failure, and disables the IOP
corresponding to the matrix row sum that is unequal to
the other matrix row sums (step 318).

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 24 -

If, after diagnosing and accounting for a CE
failure (step 314), path failure (step 316), or IOP
failure (step 318), IOP 232 determines that system 300
still includes sufficient non-faulty hardware to remain
operational, IOP 232 checks again for major faults (step
302). Because system 230 is triply redundant, system 230
can continue to operate even after several components
have failed. For example, to remain operating in an
availability mode, system 230 only needs to have a single
functional CE, a single functional IOP, and a functional
path between the two.

Using procedure 300, each IOP (232, 234, 236) can
correctly diagnose any single failure in a fully
operational system 230 or in a system 230 in which one
element (that is, a CE, an IOP, or a path) has previously
been disabled. In a system 230 in which an element has
been disabled, each IOP accounts for CRCs that are not
received because of the disabled element by using values
that appear to be correct in comparison to actually
received CRCs.

Procedure 300 is not dependent on the particular
arrangement of interconnections between the CEs and IOPs.
To operate properly, procedure 300 only requires that the
output of each CE be directly monitored by at least two
IOPs. Thus, procedure 300 could be implemented in a
system using any interconnect mechanism and does not
require point to point connections between the CEs and
IOPs. For example, the CEs and IOPs could be connected
to at least two local area networks. In an alternative
approach, instead of summing the CRC values in the rows
and columns of the matrix, these values can be compared
and those rows or columns in which the entries do not
match can be marked with a match/mismatch indicator.

A simplified version of procedure 300 can be
implemented for use in a system 200. In this procedure,

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 25 -

each IOP 202 of system 200 generates a two by two matrix
in which each column corresponds to a CE 204 and each row
corresponds to a IOP 202:

CE 204 CE 204
IoP 202 | CRC CRC
IOP 202 | CRC CRC

After generating the matrix, each IOP 202 attaches a
mismatch indicator to each row or column in which the two
entries are mismatched.

If there are no mismatch indicators, then system
200 is operating correctly.

If neither row and both columns have mismatch
indicators, then an IOP 202 has faulted. Depending on
the operating mode of system 200, an IOP 202 either
disables another IOP 202 or shuts down system 200. The
IOP 202 to be disabled is selected based on user supplied
parameters similar to the two availability modes used in
system 10.

If both rows and neither column have mismatch
indicators, then a CE 204 has faulted. In this case,
IOPs 202 respond by disabling a CE 204 if system 200 is
operating in an availability mode or, if system 200 is
operating in an integrity mode, shutting down system 200.
If both rows and one column have mismatch indicators,
then one of the paths between the IOPs 202 and the CE 204
corresponding to the mismatched column has failed.
Depending on the operating mode of system 200, IOPs 202
either disable the CE 204 having the failed path or shut
down system 200. If both rows and both column have
mismatch indicators, then multiple faults exist and IOPs
202 shut down system 200.

If one row and both columns have mismatch
indicators, then the IOP 202 corresponding to the
mismatched row has faulted. Depending on the operating
mode of system 200, the other IOP 202 either disables the
faulty IOP 202 or shuts down system 200. If one row and

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 26 -

one column have mismatch indicators, then the path
between the IOP 202 corresponding to the mismatched row
and the CE 204 corresponding to the mismatched column has
failed. Depending on the operating mode of system 200,
IOPs 202 either account for the failed path in future
processing or shut down system 200.

Referring to Fig. 10, one embodiment of a disaster
tolerant system 260 includes two fault tolerant systems
230 located in remote locations and connected by
communications link 262, such as Ethernet or fiber, and
operating in meta time lockstep with each other. To
obtain meta time lockstep, all IPI packets are
transmitted between fault tolerant systems 230. Like
system 220, system 260 allows for hardware and software
upgrades without service interruption.

As shown, the paired modular redundant
architecture of the invention allows for varying levels
of fault resilience and fault tolerance through use of
CEs that operate asynchronously in real time and are
controlled by IOPs to operate synchronously in meta time.
This architecture is simple and cost-effective, and can
be expanded or upgraded with minimal difficulty.

Fig. 11 depicts the components of the system
software architecture of an alternative embodiment of the
invention that includes multiple CEs and multiple IOPs.
Each CE 1100 includes a set of one or more Physical
Device Redirectors 1105, a CE Transport layer 1110, and
an IPI Driver 1115. The Physical Device Redirectors 1105
intercept I/0 requests directed to peripheral devices,
package the requests, and send the requests to the CE
Transport 1110. The Physical Device Redirectors 1105
also receive responses to the requests from the CE
Transport 1110, unpackage the responses, and return the
responses to the operating system or applications

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 27 -

software that initially made the I/0 requests to the
peripheral devices.

The system software architecture depicted in Fig.
11 supports a multi-threaded processing environment. 1In
such an environment, each thread is a separate stream of
instructions that may be processed by the computing
element. When a Physical Device Redirector 1105
intercepts an I/0 request by a particular thread,
processing of that thread stops until the Physical Device
Redirector 1105 returns the response to the request.

The CE Transport 1110 communicates I/O requests
between the CEs and the IOPs. The CE Transport also
keeps track of responses expected and received from the
IOPs on a per request basis. The CE Transport searches
for completed requests (i.e., requests to which all IOPs
have responded) as IOP responses to redirected requests
are received and sends the resultant data to the Physiéal
Device Redirector 1105.

Each IOP 1150 includes an IPI driver 1155, a state
control program (SCP) 1160, a fault handler 1165, an IOP
Transport layer 1170, a Device Synchronization Layer
(DSL) 1175, and a set of one or more Physical Device
Providers 1180. The IPI Drivers 1115, 1155 of both the
CEs and the IOPs control the actual transmission and
reception of data along the interconnect paths 1185
between the CEs and the IOPs. The state control program
1160 initiates and responds to state transitions
involving the IOPs and the CEs. The fault handler 1165
responds to reports of detected faults by deconfiguring
appropriate hardware components. The IOP Transport 1170
transports data between the IPI Driver and the other
software components of the IOPs. The Device
Synchronization Layer 1175 is responsible for
synchronizing all redirected requests and responses
between IOP-based peripherals. This synchronization

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 28 -

includes the reprocessing and restructuring of the
requests and responses due to state transitions of the
IOPs, the CEs, or the peripheral devices. The Physical
Device Providers 1180 unpackage requests received from
the DSL 1175, process the requests, package responses,
and send the responses to the DSL 1175. Each IOP also
may include an ethernet driver 1190 or other mechanism
that permits direct communication between the IOPs.

As noted above, the architecture of the described
embodiments requires redirection of all I/0 requests from
the CEs to one or more IOPs. Responses to these
redirected requests must be synchronized. Accordingly,
all IOPs responding to a redirected request must respond
to the request in a known way and must describe how all
other IOPs will respond. Moreover, an IOP must respond
to a redirected regquest even if the IOP does not have a
device capable of processing the request. These
requirements permit software running on the CEs to
compare the responses of the IOPs for consistency.

Figs. 12A and 12B provide an illustrative example
of appropriate IOP responses (Fig. 12B) to requests by a
CE (Fig. 12A). As shown, each disk of a two-disk shadow
set is associated with a different IOP, with the disk
1200 associated with the first IOP 1205 functioning
normally and the disk 1210 associated with the second IOP
1215 being offline. A request from the CE 1100 to the
shadow set for data is redirected to the IOPs, and both
IOPs respond. (The second IOP 1215 receives all requests
directed to the shadow set even though its associated
disk 1210 is offline.) Each IOP indicates that the first
IOP 1205 is responding with the expected data and that
the second IOP 1215 is responding with no data.

The CE Transport 1110 (Fig. 11) monitors the
responses provided by the IOPs. The CE Transport compares
the responses for consistency once all IOPs have

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 29 -

responded to a request. The responses must be consistent
in indicating which IOPs responded to the request with
actual data and which IOPs did not. Moreover, if more
than one IOP responds with data, then the data provided
by the IOPs must be consistent. If the responses pass
the consistency checks, then the CE Transport provides a
response containing actual data to the appropriate
Physical Device Redirector 1105 in the CE 1100 and
discards the no-data response. Thereafter, the CE
Transport informs the IOPs that all IOPs have responded
to the request and further informs the IOPs of the
outcome of the comparison. If the responses do not pass
the consistency checks, then one of the IOPs is disabled
and, in effect, removed from the architecture.

The CE Transport 1110 implements the
request-response architecture employed by the system of
Fig. 11 using the procedure 1300 illustrated in Fig. 13.
The CE Transport first instructs the IPI Driver 1115 to
send a request from a Physical Device Redirector 1105 to
all IOPs 1150 (step 1305). At the same time, the CE
Transport 1110 initializes a timer. If the timer has not
expired (step 1310) before all responses are received
(step 1315), then the CE Transport compares the responses
to determine whether they are consistent (step 1320). If
the responses are consistent and there are multiple
responses that include data (step 1325), then the CE
transport compares the data responses (step 1330). If
the data responses are consistent, or if there is only a
single data response, then the CE Transport sends the
data to the appropriate Physical Device Redirector 1105
(step 1335). Finally, the CE Transport instructs the IPI
driver to send a Response Complete message to all of the
IOPs (step 1340).

If the timer expires (step 1310) before all
responses are received, or if inconsistent responses are

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 30 -

received (steps 1320, 1330), then the CE Transport
reports the occurrence of an error (step 1345) and
instructs the IPI driver to send a Response Complete
message to all of the IOPs (step 1340).

In the IOPs, the Device Synchronization Layer
(DSL) 1175 makes all IOP-based physical devices appear to
the CEs as logical or virtual devices. In addition, the
DSL combines device and state information from all IOPs
and uses this information to project a single logical IOP
to the Physical Device Redirectors of the CEs. Thus, a
system configured as illustrated in Fig. 14A would appear
to the CE-based Physical Device Redirectors as having the
logical representation illustrated in Fig. 14B.

The DSL 1175 represents devices logically so that
the CE-based redirectors have no knowledge of the
locations and characteristics of physical devices. For
example, a SCSI redirector would not know that Disk C:
(1400, 1405) and Disk D: (1410, 1415) are shadowed drives
and would simply treat them as though they were each a
single drive (1420, 1425). Also, an Ethernet redirector
would not know that multiple Ethernet controllers provide
a primary controller (1430) and a secondary controller
(1435) and instead would be aware only of a single
Ethernet controller (1440).

The DSL 1175 receives all redirected requests from
the IOP Transport 1170. The DSL then decides whether to
send a request to a Physical Device Provider 1180 or to
send a no-data response. A critical function of the DSL
is that it only sends a request to a device provider when
that provider is expected to process the request. For
example, if two IOPs control a shadow set of disks, with
the first IOP controlling an offline disk and the second
IOP controlling an active disk, the DSL of the first IOP
would not send a request to its disk, and would instead
respond with a no-data response. The DSL on the second

10

1s

20

25

30

35

WO 98/12657 PCT/US97/16218

- 31 -

IOP would send the request to its disk, and would
eventually respond with the data from its disk along with
an indication that the first IOP would be providing a
no-data response.

With every response, the DSL 1175 indicates how
every other IOP will respond. The DSL accomplishes this
by maintaining a record of the status of every other IOP
and associated device in an internal device state table.

The DSL 1175 also accounts for the effects of
state changes in the CEs, the IOPs or the peripheral
devices. For example, the DSL accounts for the situation
that arises when the state of a peripheral device changes
after an IOP indicates how the other IOPs will respond to
a request, but before the other IOPs actually respond to
the request. If the other IOPs were to respond after the
state change, their responses could differ from the
response expected by the first IOP. The DSL solves this
problem by disabling all response transmissions from the
affected device and initiating a flush sequence that
causes the CE Transport to discard all previously
received, incomplete responses for the particular device.
(As previously noted, the CE Transport does not consider
a request to be complete until responses to the request
have been received from all IOPs.)

Upon receipt of a flush completion indication from
the CE Transport 1110, the DSL 1175 of each IOP 1150
updates its internal device state table and reenables
transmission of responses for the particular device.
Finally, the DSL reprocesses any incomplete responses
that were submitted to the CE Transport prior to the
flush.

As noted above, the CE Transport 1110 sends an
indication to the DSL 1175 of each IOP upon completion of
each response. As such, the DSL always knows which
responses are complete. This permits the DSL to keep

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 32 -

track of incomplete responses. When a device state
change occurs and an ensuing flush is issued, the DSL
can, upon receipt of the flush complete indication, reset
its internal knowledge of the device state and re-issue
any affected incomplete requests. This functionality is
critical, for example, to the implementation of
standby-primary processing since the DSL may have
responded to a particular request on behalf of a standby
device with a no-data response. If the primary device
failed and was unable to process the request, the DSL
would initiate the flush sequence and re-issue the
request. This time the standby device would be
considered the primary device (since the primary device
had failed) and would receive the request.

The internal state table of the DSL 1175 keeps
track of all flushes that can affect the I/0 devices and
the IOPs. The DSL, through use of the state table,
permits multiple flushes to affect one or more devices,
and permits multiple state transitions to occur at a
single time. This permits seamless handling of multiple
related or unrelated component state changes.

The DSL 1175 also mandates that all device state
changes originate from the IOP 1150 that owns the device.
This permits the DSLs of different IOPs to have a
different simultaneous idea of the state of a device
without risk that inconsistency problems will occur at
the CE Transport 1110. This also permits the DSL to be
fully distributed since there is no need to freeze
request or response queues while a master software entity
determines whether a steady state operation has been
achieved.

In most circumstances, the Physical Device
Providers 1180 need not consider the state of a
peripheral device or an IOP because the DSL 1175 only
sends a request to a device provider when the device

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 33 -

provider is expected to process the request. Similarly,
the DSL does not consider the I/O policy associated with
a particular device. For example, the DSL does not
consider whether a disk device has a shadowed or a
single-ended I/O policy. However, the DSL does use I/0O
policies to determine which providers on which IOPs will
receive a particular request to process. This permits
the DSL to arbitrarily treat any device as shadowed,
singled-ended, virtual, or primary/standby even though
all combinations of I/0 policies and device types do not
necessarily make sense.

The DSL 1175 handles all device state transitions,
including device failure, device activation, device
merge, and manual device enable/disable. 1In addition,
the DSL transparently handles all IOP state transitions,
including IOP joining, IOP activation, IOP removal, and
IOP graceful shutdown, as these transitions relate to
device states. The DSL also responds automatically to
requests that cannot be satisfied on behalf of the device
providers. The DSL provides a full featured application
program interface (API) set that is useable by
developers.

The DSL 1175 provides automatic request timeout
support. In this regard, the DSL starts a recovery
process if a CE-originated request does not complete
within a specified period of time. During the recovery
process, the DSL determines which IOP 1150 has stalled
and notifies the fault handler.

The DSL 1175 can apply any I/0 policy to any
physical device. For example, the DSL can configure a
hard disk as a single-ended device instead of a shadowed
device. Similarly, the DSL can configure, for example, a
CD-ROM player or a serial port as a standby/active device
instead of as a single-ended device.

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 34 -

As discussed above, the DSL 1175 initiates a flush
sequence in the CE Transport 1110 of one or more CEs 1100
in response to a state change in a peripheral device or
an IOP 1150. The flush sequence causes the CE Transport
to flush all outstanding activity in the messaging
pipeline of the corresponding CE with respect to
indicated devices or Physical Device Providers 1180 and
to provide notification of completed requests as a result
of the flushing.

The flush mechanism provides varying granularity
of request-response synchronization as required by the
DSL. Thus, a system-wide flush can be implemented for
all devices (or Physical Device Providers), or a flush
can be implemented for a class of devices or a specific
device.

Upon completion of the flush sequence, the DSL of
each IOP knows exactly which request-response pairs have
been processed and completed. The DSL uses this
knowledge to reissue, re-execute or re-transmit any
necessary request-response pairs to permit recovery from
the transition (or stimulus) within the system that
disrupted the steady state operation of one or more
devices. This allows the DSL to react to changes in the
system that affect steady state operation of the devices.
Once a flush sequence is initiated and completed, the DSL
can determine exactly which requests or responses must be
reprocessed or redirected to other devices for
completion.

Each CE Transport 1110 maintains a database of
outstanding requests. The database includes a list of
all outstanding I/0 requests in the system, each
identified by a unique identifier called a XRN (Transport
Reference Number). The flush sequence is carried out
according to the procedure 1500 illustrated in Fig. 15.
First, the DSL 1175 of each IOP 1150 initiates a flush

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

35

sequence by sending a flush request to all of the CEs
1100 (step 1505). The DSL then suspends all
request/response processing activity for the devices that
are involved in the flush sequence until the flush
sequence is completed (step 1510). Each CE receives a
flush request and waits for matching flush requests from
every IOP in the system (step 1515). The CE enters the
flush request into the database and tracks the flush
request in the same way that the CE tracks operating
system requests. When a flush request has been received
from all IOPs, the CE indicates that the first portion of
the flush sequence is completed. The completion of this
portion of the flush sequence signifies that all activity
that was in the IOP-to-CE message pipelines has been
flushed out and processed by the CEs.

Before acknowledging completion of the flush
sequence, the CE first sends acknowledgments to the IOPs
as to which outstanding requests have been completed
(step 1520). In some cases, I/O requests may be
completed by flushing responses through the IOP-to-CE
pipelines. The CE sends a SWTACK (Software Transaction
Acknowledgment) for each request that was completed and
removes the completed request from the database. Each
SWTACK contains the request’s original XRN. The XRN
allows the IOPs to associate the SWTACK with the proper
completed request.

After sending a SWTACK for each completed request,
the CE sends a SWTACK for the flush sequence (step 1530).
Messages are delivered in order through the CE-to-IOP
message pipelines (or are reordered to reflect their
transmission sequence). Accordingly, the flush SWTACK
serves to flush the request completion notification
SWTACKs through the CE-to-IOP message pipelines. Thus,
when the DSL receives the SWTACK for the flush sequence
(step 1535), the DSL has already received and processed

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 36 -

all SWTACKs for requests that were originally in the
message pipelines and have since completed (step 1525).
Upon receiving the SWTACK for the flush sequence, the DSL
knows the state of all request/response activity in the
system. The DSL responds to this information by updating
the state of the system (step 1540). Thereafter, the DSL
resumes request-response activity for affected devices
(step 1545), and resends any incomplete affected requests
(step 1550). This re-synchronizes the devices against
the new state to achieve a steady state of operation for
the device or devices involved in the flush sequence.

Since each flush sequence is uniquely tagged with
its own XRN, more than one flush can be in progress at a
time. The flush processing software in the CE Transport
and the DSL abides by certain rules as to how outstanding
flush sequences are processed and in what order they are
acknowledged. This allows the DSL to preempt or override
previously-issued flush sequences due to subsequent or
secondary transitions that might occur within the systen.

The system software implements a freeze protocol
to ensure that IOP-to-CE communications will not affect
meta time synchronization of the CEs. As previously
discussed, the IOPs operate asynchronously to the CEs and
to other IOPs due to the asynchrony inherent in I/O
devices. For this reason, communication between the CEs
and the IOPs needs to occur in a way that will not
disturb the meta time synchronization of the CEs.
CE-to-IOP communication is synchronous to the CE
instruction stream and will not affect CE lockstep as
long as sufficient buffering is provided. However,
IOP-to-CE communication is by nature asynchronous to the
instruction stream of each CE. Accordingly, IOP-to-CE
communication, if handled improperly, could affect each
CE differently and result in divergence of the CE

instruction streams. The freeze protocol serves to delay

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 37 -

processing of asynchronous data from the IOPs until the
data can be handled synchronously by all CEs. 1In
particular, the freeze protocol serves to delay
implementation of the procedure 1300 by the CE Transports
1110 until all of the CE Transports 1110 are ready to
implement the procedure 1300.

The freeze protocol provides four primary
features: synchronized processing of input data streams
from the asynchronous IOPs across the loosely
synchronized CEs; synchronized time updates to the CEs; a
deep-freeze mechanism that allows an IOP to synchronously
hold all CEs in a captive state for an extended period of
time; and fault detection/diagnosis with respect to the
communication paths between the CEs and the IOPs.

The freeze protocol provides CE synchronization
using a so-called freeze cycle. The CE Transport 1110 of
a CE may initiate a freeze cycle each time that it is
activated by a Physical Device Redirector 1105 to service
a redirected I/0 operation. However, to prevent the use
of excessive bandwidth in performing freeze cycles,
implementations of the software may initiate a freeze
cycle every time that a certain number of I/O requests
occurs or a certain number of instructions are processed
without an I/O request. For example, the CE Transport
1110 may implement a freeze cycle with every fifth I/O
request or every ten thousand instructions.

The CE Transport 1110 initiates a freeze cycle by
transmitting a high-priority freeze request message to
all active IOPs and waiting for freeze response messages
from all active IOPs. Since all of the CEs are
processing the same instruction stream, the CE transport
1110 of each active CE will transmit a freeze request
message to all active IOPs. Each IOP receives the freeze
request messages from the CEs. When an IOP has received
a freeze request message from all active CEs, this

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 38 -

indicates that the CEs are at the same point in their
instruction streams (i.e., in synchronization) and that
it is permissible for the CEs to process received data
using the procedure 1300. Accordingly, the IOP responds
by sending a freeze response message to all active CEs.

The CEs 1100 receive the freeze response messages
from the IOPs and place the messages in the normal-
priority message queues of the IPI Driver 1115 to provide
an inter-CE synchronization point for the CE Transport
1110. Finally, after receiving freeze response messages
from all active IOPs, the CEs terminate the freeze cycle
by transmitting freeze release messages to the IOPs.

The CE Transport 1110 invokes the freeze cycle
through the IPI Driver 1115. The IPI Driver responds by
initiating the freeze cycle (i.e., sending the freeze
request message) and returning control to the CE
Transport 1110. This permits the CE Transport 1110 to
continue processing in parallel with the IPI Driver’s
handling of the freeze protocol messages. The CE
Transport performs whatever useful work it can, such as
transmitting normal priority messages, or draining and
processing messages from the receive queue of the CE
1100. The CE Transport does not return control to the
operating system until the CE Transport has encountered a
freeze response message in the normal-priority receive
queue corresponding to each active IOP.

The IPI Driver 1115 attempts to complete the
freeze cycle as quickly as possible. To this purpose,
the IPI Driver composes a priority message and sends the
message to all active IOPs 1150. The message carries no
data to the IOPs and merely serves as an indication that
the freeze cycle has started. The IPI Driver starts a
freeze response timeout counter after sending the
priority message to detect failure of any IOP to respond.
Typically, the length of this counter is on the order of

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 39 -

twice the worst-case message transmit time. This
provides each IOP with sufficient time to complete
transmission of any normal priority message that it may
be transmitting upon receipt of the freeze request
message before the IOP transmits a freeze response
message. Typically, normal priority messages have a size
limit of, for example, 64 kilobytes, to ensure that the
worst-case message transmit time will have a reasonable
value.

The IPI Driver 1155 of each IOP 1150 places a
timestamp update in the freeze response message. This
timestamp corresponds to the number of clock ticks since
the last freeze response message transmitted by the IOP.
Thus, a CE 1100 may receive different timestamp updates
from different IOPs. Accordingly, the CEs designate one
IOP 1150 as a meta-time server to ensure that all CEs
will update their local time clock identically.

After receiving a freeze request message from all
active CEs, the IPI Driver 1155 of the IOP 1150 sends the
freeze response message as a microcode-formatted priority
message. Upon sending the message, the IOP initiates a
freeze release timeout counter to detect failure of a CE
to respond to the freeze response.

The IPI Driver 1115 of each CE is interrupted to
service the incoming freeze response message, and
responds by reformatting the message into a
normal-priority message and placing the message at the
bottom of the normal-priority message queue. Placement
of the message in the message queue completes the
time-critical portion of the freeze cycle, since it
permits the CE Transport 1110 to return control to the
operating system.

Once the CE’s IPI Driver 1115 has received and
processed the freeze response from the last active IOP,
the IPI Driver 1115 broadcasts a freeze release message

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 40 -

to the active IOPs. This completes the freeze cycle for
the CE 1100. The IOP 1150 receives the release message
and cancels the freeze release timer upon receipt of a
release message from every active CE 1100.

As noted above, time updates are provided to the
operating system by including time increments in the
freeze response packet. The IOP IPI Drivers 1155
maintain the time increments using an internal 100 us
timer interrupt. Only one of the IOPs is designated as
the time provider, and the time increment from that IOP
is used by all of the CEs. The IOP’s IPI Driver 1155
transmits the delta time since the last freeze response
packet was transmitted as the time increment. The CE
Transport 1110 uses this value to update the time-of-day
clock of the operating system after a freeze response
packet has been processed for all receive queues.

A deep freeze protocol is a variation of the
normal freeze protocol and serves to suspend normal
activity between the CEs and the IOPs to allow major
system state transitions to occur. The deep freeze state
is invoked by the IOP software, which uses the IOP
Transport 1170 to command the IOP IPI Driver 1155 to
replace the next freeze response message with a deep
freeze response message. The format of the deep freeze
response message is identical to that of the normal
freeze response message with the exception that different
opcodes are used to designate the two types of messages.
The deep freeze response carries a meta-time update like
a normal freeze response. In addition, the deep freeze
response causes the initiating IOP to disable its
transmitter without initiating a timeout counter.

The IOP’s IPI Driver 1155 sends the deep freeze
response to all active CEs to inform them that a deep
freeze state is requested. The CEs respond by converting
the deep freeze response to a normal-priority response

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 41 -

message and adding the message to the normal-priority
message queue, with an indication that the message is a
deep freeze response instead of a normal freeze response.
The CEs continue to process normal freeze response
messages from the other IOPs in the normal manner.

After receiving a normal freeze response or a deep
freeze response from all active IOPs, the CE’s IPI Driver
1115 sends a deep freeze request message to the IOPs that
are not yet in the deep freeze state and restarts the
freeze response timer.

Receipt of a deep freeze request informs the IOPs
that another IOP has injected a deep freeze cycle into
the current freeze cycle. (Normally, the IOP IPIs would
have received a freeze release message.) Each IOP
responds to the freeze request by cancelling the freeze
release timeout counter, turning off the IOP’s
transmitter path, sending to all active CEs a deep freeze
response message with a meta-time update since the
previous freeze response, and restarting the freeze
release timeout counter.

The IPI Drivers 1155 of the CEs receive the deep
freeze responses and insert them into the appropriate
receive queues. Upon receipt of a deep freeze response
from each active IOP, the CE Transport 1110 cancels the
response timer and issues the normal freeze release
message to the IOPs.

The CE Transport 1110, in the mean time, has
encountered a combination of normal freeze response
messages and deep freeze response messages in the various
receive queues. Detection of a single deep freeze
response causes the CE transport to process beyond the
normal freeze response to the deep freeze response.
Hence, the CE IPI Driver 1115 must ensure that both the
freeze responses and the deep freeze responses make their
way into the receive queues in the proper order.

5

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 42 -

Only priority messages can be exchanged between
components when the system is in the deep freeze state.

In addition, no new freeze cycles will be initiated by

the CE Transport while the system is in the deep freeze

state.

Once the major state transition requiring the deep

freeze cycle has completed, the deep freeze state

is

terminated by initiating a deep freeze termination cycle

with the issuance of a deep freeze termination request.

The deep freeze termination cycle typically is originated
by the IOP Transport 1170 that invoked the deep freeze
cycle, but any IOP Transport 1170 can invoke a deep

freeze termination cycle with the same result.
The deep freeze termination request is a

register-level request to the IPI Driver 1155 that causes

the driver to broadcast a deep freeze termination

priority message to all active CEs. The IPI Driver 1115

of each CE receives this message and echoes the message

to all active IOPs. Upon receiving the deep freeze

termination message, the IOPs activate their transmission

paths and exit the deep freeze state.

The freeze response timers and the freeze release

timers account for the occurrence of errors during the

freeze protocol. If a CE’s freeze response timer

expires, the CE generates a high priority system error

(SYSERR) packet containing the CE’s freeze status virtual
register and sends it to all active IOPs. The IOPs

supplement the SYSERR packet with relevant state

information of their own and forward the SYSERR packet to

the Fault Handlers 1165.

If an IOP’s freeze release timer expires, the IOP

generates a local SYSERR packet containing only state

information from the detecting IOP and passes this SYSERR
packet to the Fault Handler 1165. The detecting IOP then

sends a similar SYSERR packet to all active CEs.

The CEs

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 43 -

supplement the SYSERR packet with their own state
information and echo the SYSERR packet back to all active
IOPs. The IOPs store additional state information in the
echoed SYSERR and forward the message to the Fault
Handler 1165.

After generating a SYSERR packer, the IPI Driver
1115, 1155 of the CE 1100 or the IOP 1150 waits for the
Fault Handler 1165 residing on the IOP 1150 to resolve
the error condition. The Fault Handler determines which
path is at fault and commands the IOP IPI Driver 1155 to
disable the faulty path. After disabling the faulty
path, the IOP IPI Driver evaluates the state of the
freeze protocol and resumes normal processing once the
requirements for such processing are met.

The IOPs do not apply a timeout for the reception
of freeze requests from all active CEs. If one or more
CEs fail to send a freeze request message, or if a freeze
request message is not received for some other reason,
the other CEs will eventually generate a freeze response
timeout SYSERR packet.

The CE IPI Driver 1115 state transitions required
to service the freeze protocol, including the deep freeze
extension, are illustrated in Fig. 16A. The IOP IPI
Driver 1155 state transitions required to service the
freeze protocol, including the deep freeze extension, are
illustrated in Fig. 16B.

The system implements a message based fault
notification and reporting environment using Fault
Handler 1165. From an error-processing perspective, the
system can be viewed of as including error reporting
elements and error processing elements. The error
reporting elements are any components in the system that
detect error conditions or determine status conditions
and transmit the information to an error processing
element. The error processing elements, or fault

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 44 -

handlers, receive error information from the reporting
elements.

The collection of error messages that result from
a single fault are referred to as a fault event. A fault
handler uses the error messages associated with a fault
event to identify a particular system component that has
failed and caused the fault event. The identified
component is referred to as a callout. A fault handler
may also take or initiate action to resolve the fault and
restore normal, if degraded, system operation.

Error reporting elements may be either hardware or
software entities. The only requirement is that they
must be capable of transmitting error information to the
error processing elements or causing such information to
be transmitted.

An error reporting element that detects a system
error encapsulates the system error into a uniformly
formatted packet referred to as a SYSERR. The error
reporting element then sends the SYSERR (or causes the
SYSERR to be sent) to all error processing elements that
have connectivity to the reporting element. The
architecture of the physical system is configured so that
any error condition causes generation of at least one
SYSERR packet. The physical system is also configured so
that, ideally, each error reporting element is connected
to every error processing element. This permits the lack
of an error indication when one was expected to be used
as diagnostic information.

A single SYSERR packet may not unambiguously
identify the source of a fault event in many instances.
When this situation arises, the fault handlers rely on
the diagnostic information provided by SYSERR packets
from multiple sources to unambiguously identify the
source of the fault.

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 45 -

To provide connectivity between the error
reporting elements and the fault handlers, some transport
components are capable of echoing SYSERRs generated by a
reporting element to other fault handlers in the system
that are directly connected to the transport components.
Thus, fault handlers that are not directly connected to a
reporting element can still obtain error information from
that element. For example, as shown in Fig. 17, a fault
handler 1700 on an IOP 1705 cannot directly receive a
SYSERR packet generated by an IOP 1710. To account for
this, the IPI adapter 1715 on the CE 1720 serves as a
SYSERR reflector and echoes a SYSERR produced by IOP 1710
to IOP 1700.

A fault handler 1165 may also be able to probe
other system components to obtain error information. 1In
addition, separate fault handlers may communicate with
each other to probe the viability of the system
components on which they reside, to test the
communication paths between the system components, and,
assuming that the communication paths are intact, to
ensure that each fault handler reaches the same diagnosis
in response to a fault event.

A fault handler 1165 groups encountered errors
into sets of co-related errors, referred to as syndromes.
Syndromes generally indicate a faulty component, or a
suspected list of faulty components, with more
specificity than individual errors in the syndrome are
able to provide.

Each fault handler uses a state table to parse the
incoming errors into specific syndromes. Each syndrome
represents a state in the table. If possible, the fault
handler uses an incoming error to transition the state
table to a new state.

The fault handler processes errors according to
the procedure 1800 illustrated in Fig. 18. Initially,

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 46 -

the fault handler represents each error as a canonical
error by converting the error to a normal form that
uniquely identifies the error (step 1805). For example,
the fault handler might convert the error to a triplet
that includes an error identifier that identifies a
particular error, an error target that identifies the
subcomponent about which the error is complaining, and a
reporting source that identifies the subcomponent that
reported the error and the path over which the error was
received.

The fault handler then processes the canonical
error. First, the fault handler compares the error
against states represented by previously established
syndromes (step 1810) to see if the error will transition
the state of a previously established syndrome (step
1815). If such a transition can be performed, then the
fault handler performs the transition (step 1820) and
concludes state processing for the error (step 1825). If
the error cannot transition any existing syndrome, the
fault handler creates a new syndrome at an INITIAL state
(step 1830) and determines whether the error can
transition the syndrome to a starting state of any
syndrome (step 1835). If so, the fault handler performs
the transition (step 1820) and concludes state processing
for the error (step 1825). If the error is not
anticipated by a starting state of a syndrome, the fault
handler converts the error to an unsyndromed error (step
1840) and concludes state processing for the error (step
1845). An unsyndromed error is a catch-all for errors
that are unanticipated, misreported, or incompletely
transmitted or received. For example, if canonical
errors are in the triplet form described above, then a
canonical unsyndromed error might consist of an
identifier for "UNSYNDROMED", an error target
corresponding to the reporting source of the bogus error,

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 47 -

and a reporting source of the component containing the
fault handler.

A set of potential callouts is associated with
each state in the state table. When a syndrome
transitions to a particular state, the set of callouts is
referred to as the callout list of the syndrome.

The state table is a tree-structured list of
canonical errors. The tag on each node of the tree is an
identifier for a canonical error. Each node points to a
list of other errors, or to a list of callouts, or to
both.

The state table can be created from a source
document that consists of groups of errors (syndromes).
The syndrome text syntactically indicates whether one
error should occur before another in a syndrome. If no
such indication is provided, then the errors are assumed
to be unordered. A list of callouts is associated with
each syndrome.

The state table is created by permutating each
syndrome’s errors, converting each error to canonical
form, and mapping the syndrome into the table. The
terminal node of each permutation points to the callout
list for the syndrome. For example, suppose the source
table contains the syndromes with associated callouts
illustrated in Fig. 19A, and the system topology is
assumed to be that of Fig. 17. The "Error" column of
Fig. 19A identifies different errors reported to the
fault handler in a SYSERR message. In particular, a NAK
error indicates excessive retries on a transmit path, an
EDC error indicates a low-level protocol failure on a
receive path, and on a NAK (echoed) error is a NAK error
transmitted by one component and echoed by another. The
"Path” column identifies the path on which an error was
detected, and the "Received from"” column identifies the
machine that reported the SYSERR (M1 indicates IOP 1705

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 48 -

(machine 1) and M2 indicates CE 1720 (machine 2)).
Finally, the "Callouts" column provides a list of
possible failures in the system that could cause the
collection of errors listed in the "Error" column.

Using the source table of Fig. 19A for syndrome #1
to be detected by the fault handler, a NAK error reported
against path M1-M2 by M1, a NAK error reported against
path M1-M2 by M1 echoed from M2, and an EDC error
reported against path Mi1-M2 by M2 must all occur. Then
the resulting callout is all of the entries in the
"Callout" column for syndrome #1.

The state transition table resulting from the
above source would then appear as illustrated in Fig.
19B, where the canonical form error designations are in
the triplet form: error(error_path, received from). The
above state transition table is really a tree structure.
The root is the "Initial state". Starting from the
initial state there are six ways of arriving at a
Syndrome #1 callout. There are three required error
messages to arrive at a syndrome #1 callout and they can
arrive in any possible order (3 factorial = 6 possible
orderings). Syndrome #2 callouts require two errors in
any order (2 factorial = 2 possible orderings). Thus a
NAK (M1-+M2, M1 v. M2) and an EDC (M1-M2, M2) arriving in
any order without the third error NAK (M1-M2,M1) produces
a syndrome #2 callout. In this case, the existence of
the NAK (M1-M2, M1l) uniquely identifies syndrome #1.

The state table is constructed by permutating sets
of errors and, therefore, can become very large. This is
particularly true if the syndromes comprising the table
are particularly complex or if there are a large number
of system components generating errors. The table size
may be reduced by logical to physical mapping. In a
system with redundant components, errors reported against
one component are indistinguishable (up to unit

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 49 -

identification) from errors reported against the
redundant set that includes that component. Accordingly,
the table size can be reduced by identifying errors and
callouts in logical form so that the table is, in effect,
reflective of errors corresponding to only one component
of a redundant set. With this approach, a mapping of
physical to logical identifiers is maintained for each
syndrome as the syndrome is constructed. When a
canonical error is compared against the errors in a state
of a syndrome, the error must be further transformed into
a logical canonical form relative to that syndrome. The
logical to physical mapping may vary from syndrome to
syndrome.

The size of the state table may also be reduced by
subtree folding. Many parts of the lower structure of
the tree-structured state table are identical to other
parts. Identical subtrees can be collapsed into a single
copy, even if they originate from different syndromes.
Performing this optimization tends to mitigate the
explosive growth of the state table as syndrome
complexity increases: larger syndromes generate more
duplicate subtrees that can be eliminated by subtree
folding.

Each syndrome indicates zero, one, or more
potential faulty components, or callouts, in the system.
The fault handler produces a single diagnosis by
combining these indications into an event callout list.
Ideally, the callout list includes only a single element
that unambiguously identifies a system component or
function that failed and precipitated the error event.
The callout list may, however, contain more than one
element.

The final callout 1list is formed by taking the
intersection of the most-likely callouts associated with
each syndrome. Some of the faults indicated by a

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 50 -

syndrome are more likely than others. For example, a
transmission error may result from a transient
point-to-point error, a common transmitter or common
receiver fault, cable integrity problems, or incipient
power failure on one end. Incipient power failure could
explain almost any erroneous behavior. However, without
corroborating evidence, a transient fault is a more
likely explanation for a single transmission failure than
is an incipient power failure. In addition, some faults
identify components less specifically and can be presumed
to identify more specific components subsumed therein.
For example, the callout for one syndrome may specify an
interconnect failure between IOP 1705 and CE 1720. This
callout would include, for example, the IPI adapters 1715
at both ends of the interconnection as well as the
cabling 1725 between them. Another syndrome may indicate
a non-specific error on CE 1720 (that is, all hardware
and software components of CE 1720, including the IPI
adapter 1715 of CE 1720). The combination of the callout
lists of these syndromes clearly indicates that the IPI
adapter 1715 of CE 1720 is faulty.

Two callouts are combined by selecting a system
component that is common to the two callouts, but least
encompassing. For any two callouts, there is at least
one other callout that contains an intersection of the
system components covered by the first two. The product
of the combination of callouts is such a component that
covers the least part of the system. For example,
suppose that in the loosely-connected system shown in
Fig. 17 there is a callout against the interconnection of
IOP 1705 and CE 1720 and also against the interconnection
of IOP 1710 and CE 1720. These interconnections
intersect at the IPI adapter 1715 in CE 1720. They also
could be considered to intersect at CE 1720, in general.
However, the adapter is the callout chosen since this is

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 51 -

the least-encompassing component that can be identified
as the intersection of the faulty interconnections.

The approach described above for combining
callouts results in there being only one product callout
for each combination of two other callouts. Accordingly,
a "multiplication table" could be established for use by
the fault handler in quickly establishing a new callout
from any two others. The multiplication table is formed
by creating a callout hierarchy diagram such as is
illustrated in Fig. 20. Each box in the diagram
represents a callout, and the product of two callouts is
defined as the lowest callout (in the hierarchy) common
between the two. The exception to this rule is that a
callout combined with itself is itself (i.e., all entries
are returned instead of the lowest entry). Thus, for

example:

CXUux * CXUvx = RX(CEx),
RX(CEx) * TX(CEx) = IPI(CEx),
RX(IOPu) * Capability(IOPu) = Power (IOPu), and

Device (IOPu) * Capability(CEx) = Tuple Power,
while
CXUux * CXUux = CXUux.
NOTE: In the discussions that follow, the abbreviations
being used are:
CNux-unidirectional inconnection between Machine u

and Machine x
CBux-bidirectional inconnection between Machine u
and Machine x

The multiplication table formed by this method can be
very large, especially in systems with large numbers of
redundant components. Fortunately, it is not necessary
to actually form the multiplication table. Rather, the
multiplication can be performed by following the same
rules for two callouts as would be required in computing
the table. All that is required is an instantiation of

10

15

20

25

30

35

WO 98/12657 PCT/US97/16218

- 52 -

the directed graph comprising the callout hierarchy
diagram. Furthermore, redundant callouts in the system
may be eliminated by representing the callouts in logical
form. (However, the logical callouts must be mapped to
physical callouts when the multiplication is performed.)

The fault handler never combines callouts within a
list. Instead, the fault handler combines two callout
lists by "cross-multiplying" the lists to form a third
list, where the third list contains all unique
combinations of the original lists. For example,
cross-multiplication of the list 1 and list 2 elements of
Fig. 21A would result in the product elements illustrated
in Fig. 21B. Eliminating duplicate callouts results in a
product list of Common Machine 1/2 Power Supply; Machine
1 Power; Machine 2 Power; Machine 1 Adapter; Machine 2
Adapter; and 1 « 2 Bidirectional Interconnect.

Callout lists from independent sources can be
combined in this same manner. For example, suppose that
a fault handler 1700 exists on each of IOP 1705 and 1710
in the system shown in Fig. 17. If communication exists
between the two fault handlers, then the callout lists
from the two fault handlers can be combined into a
callout list for the entire system. This combined list
will have equal or greater specificity than the callout
list from each fault handler standing taken
independently.

After all syndrome callout lists are combined,
nonsensical callouts are removed from the list. This is
done by ranking each callout according to the scope of
compromise to system operation that it implies. The
final callout list (i.e., the diagnosis) is formed by
selecting callouts of only the lowest rank (lower rank is
arbitrarily chosen to apply to callouts of lesser scope).
For example, with the callout ranking illustrated in Fig.
22, the callout list of Fig. 21B can be reduced to a

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 53 -

single callout: Machine 1 « Machine 2 Bidirectional
Interconnect.

The ranking procedure involves a probabilistic
assumption. When all else is equal, callouts of lower
rank are more probably the cause of a fault event than
are callouts of a higher rank. 1In the above example, it
is possible that an incipient power failure in the common
power supply between IOP 1700 (machine 1) and CE 1710
(machine 2) evoked the syndromes, but without
corroborating evidence (in the form of another syndrome,
or another error that would modify one of the existing
syndromes) it would be misleading to report this as a
callout.

Callouts represent the finest granularity of
diagnosis that the fault handler is capable of producing.
Generally, callouts are too specific to be of use to
service personnel. However, they can be mapped to Field
Replaceable Units (or FRUs) that represent the
subcomponents of the system that can be identified for
service or replacement. For instance, the fault handler
may be capable of identifying a common receive port on an
interconnect adapter. The FRU corresponding to this
callout would be the adapter card.

In summary, a Fault Handler 1165 identifies a
faulty FRU according to the procedure 2300 illustrated in
Fig. 23. Starting with the callout list from a first
syndrome (step 2305), the Fault Handler 1165 maps the
logical callout to a physical list (step 2310). The
Fault Handler 1165 then identifies this physical 1list
with the designation CURRENT (step 2315).

If there are more syndromes to process (step
2320), the Fault Handler 1165 converts the logical
callout list for the new callout to physical callouts
(step 2325), cross~multiplies the list against CURRENT

WO 98/12657 PCT/US97/16218

- 54 -
(step 2330) and stores the resulting product as CURRENT

(step 2335).
Once all syndromes have been processed (step
2320), the Fault Handler 1165 reduces CURRENT to the most
s specific callout or callouts (step 2340), maps the
callout or callouts to one or more FRUs (step 2345) and
concludes the procedure (step 2350).
other embodiments are within the scope of the

following claims.

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 5§ -

What is claimed is:

1. A method of synchronizing data transfer to a
computing element in a computer system, the computer
system including the computing element and controllers
that provide data from data sources to the computing
element, said method comprising the steps of:

intercepting a request for data made by a
computing element;

transmitting the intercepted request to the
controllers; and

responding, through the controllers, to the
intercepted request, wherein at least a first controller
responds by transmitting requested data to the computing
element and by indicating how a second controller will
respond to the intercepted request.

2. The method of claim 1, further comprising the
step of responding, through the second controller, to the
intercepted request by indicating that the second
controller has no data corresponding to the intercepted
request and by indicating that the first controller will
respond to the intercepted request by transmitting data
to the computing element.

3. The method of claim 1, further comprising the
step of including, in each response to the intercepted
request by a controller, an indication as to how each
other controller will respond to the intercepted request.

4. The method of claim 1, further comprising the
step of comparing the responses to the intercepted
request for consistency.

5. The method of claim 4, further comprising the
step of including in each response an indication as to

10

15

20

25

WO 98/12657 PCT/US97/16218

- 56 -

how each other controller will respond to the intercepted
request,

wherein the step of comparing comprises comparing
the indications for consistency.

6. The method of claim 5, wherein, when responses
of multiple controllers include requested data, the step
of comparing further comprises comparing the data for
consistency.

7. The method of claim 4, further comprising the
steps of:

comparing, through the computing element, the
responses for consistency after the computing element has
received responses from all of the controllers, and

notifying the controllers, through the computing
element, of the outcome of the comparison and that
responses have been received from all of the controllers.

8. The method of claim 4, further comprising the
step of disabling one of the controllers when the
responses are not consistent.

9. The method of claim 1, further comprising the
step of generating an error condition if the computing
element does not receive responses from all of the
controllers within a predetermined time period.

10. The method of claim 1, wherein a data source
is associated with the first controller, the method
further comprising the step of obtaining, in response to
the intercepted request and through the first controller,
the requested data from the data source.

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 57 =

11. The method of claim 1, further comprising the
steps of:

maintaining, through the first controller, a
record of a status of the second controller, and

using the record when indicating how the second
controller will respond to the intercepted request.

12. The method of claim 11, wherein a data source
is associated with the second controller, and further
comprising the steps of:

maintaining, through the first controller, a
record of a status of the data source, and

using the record when indicating how the second
controller will respond to the intercepted request.

13. The method of claim 11, further comprising
maintaining, through each controller, records of statuses
of all other controllers and having controllers use the
records when indicating how the other controllers will
respond to the intercepted request.

14. The method of claim 13, further comprising:

associating each controller with a data source;

maintaining, through each controller, records of
statuses of data sources associated with all other
controllers; and

having controllers use the records when indicating
how the other controllers will respond to the intercepted
request.

15. The method of claim 12, further comprising,
when a status of the data source associated with the
second controller changes, transmitting, through the
second controller, an instruction to the computing

10

15

20

25

30

WO 98/12657

PCT/US97/16218

- 58 -

element to discard responses to the intercepted request
from other controllers.

16. The method of claim 15, further comprising
responding, through the computing element, to the
instruction by discarding responses from other
controllers to the intercepted request and by
transmitting to the controllers a notification that the
responses have been discarded.

17. The method of claim 16, further comprising
responding, through the first controller, to the
notification by updating the record of the status of the
data source associated with the second controller.

18. The method of claim 17, further comprising,
after updating the record, retransmitting, through the
first controller, the requested data to the computing
element and indicating, through the first controller, how
the second controller will respond to the intercepted
request.

19. The method of claim 1, wherein a data source
is associated with each controller and each of the
controllers responds to the intercepted request by:

determining whether an associated data source is
expected to process the request;

when the associated data source is expected to
process the request, transmitting the request to the
associated data source, receiving results of the request
from the associated data source, and forwarding the
results of the request to the computing element; and

when the associated data source is not expected to
process the request, informing the computing element that
no data will be provided in response to the request.

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 59 -

20. A method of synchronizing data transfer to
computing elements in a computer system, the computer
system including the computing elements, data sources,
and controllers that provide data from the data sources
to the computing elements, said method comprising the
steps of:

intercepting a request for data made by a
computing element;

transmitting the intercepted request to the
controllers; and

responding to the intercepted request, through
each of the controllers, by:

determining whether an associated data source is
expected to process the request;

when the associated data source is expected to
process the request, transmitting the request to the
associated data source, receiving results of the request
from the associated data source, and forwarding the
results of the request to the computing element; and

when the associated data source is not expected to
process the request, informing the computing element that
no data will be provided in response to the request.

21. A method of maintaining synchronization
between computing elements processing identical
instruction streams in a computer system, the computer
system including the computing elements and controllers
that provide data from data sources to the computing
elements, wherein the controllers operate asynchronously
to the computing elements, said method comprising the
steps of:

at computing elements processing identical
instruction streams, each computing element: stopping
processing of the instruction stream at a common point in

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 60 -

the instruction stream, generating a freeze request
message, and transmitting the freeze request message to
controllers;

at a controller: receiving a freeze request
message from a computing element, waiting for a freeze
request message from other computing elements, and, upon
receiving a freeze request message from each computing
element processing an identical instruction stream,
generating a freeze response message and transmitting the
freeze response message to the computing elements; and

at the computing elements processing identical
instruction streams, each computing element: upon
receiving a freeze response message from a controller,
waiting for freeze response messages from other
controllers to which a freeze request message was
transmitted, and, upon receiving a freeze response
message from each said controller, generating a freeze
release message, transmitting the freeze release message
to controllers, and resuming processing of the
instruction stream.

22. The method of claim 21, wherein the common
point in the instruction stream corresponds to an I/0
operation.

23. The method of claim 21, wherein the common
point in the instruction stream corresponds to occurrence
of a predetermined number of instructions without an I/O
operation.

24. The method of claim 21, wherein the step of
generating a freeze response message comprises including
a time update in the freeze response message, the method
further comprising having a computing element, upon
receiving a freeze response message from each controller

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 61 -

to which a freeze request message was transmitted,
updating a system time using the time update from a
freeze response message.

25. The method of claim 24, wherein the step of
updating a system time comprises using the time update
from a freeze response message generated by a particular
controller.

26. The method of claim 21, further comprising
having a computing element, upon receiving a freeze
response message from each controller to which a freeze
request message was transmitted, processing data received
from a controller prior to receipt of a freeze response

messadge.

27. A method of handling faults in a computer
system, the computer system including error reporting
elements and error processing elements, the method
comprising:

detecting, through an error reporting element, an
error condition and transmitting information about the
error condition as an error message to error processing
elements connected to the error reporting element, and

retransmitting the error message, through at least
one error processing element, to other error processing
elements connected to the at least one error processing
element.

28. A method of handling faults in a computer
system, the computer system including error reporting
elements and error processing elements, the method
comprising:

detecting, through error reporting elements, an
error condition and transmitting information about the

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 62 -

error condition as error messages to error processing
elements connected to the error reporting elements, and

combining, through at least one error processing
element, information from related error messages from
multiple error reporting elements and using the combined
information in identifying a source of the error
condition.

29. The method of claim 28, wherein the at least
one error processing element uses a state table to
combine information from related error messages.

30. The method of claim 29, wherein the at least
one error processing element represents an error message
using an error identifier that identifies a particular
error, an error target that identifies a subcomponent
that caused the error represented by the error message,
and a reporting source that identifies an error reporting
element that generated the error message and a path over
which the error message was received.

31. The method of claim 29, wherein the error
processing element determines whether error messages are
related by comparing a received error message against
states representing previously received error messages.

32. A computer system including:

a computing element,

data sources, and

controllers that provide data from the data
sources to the computing element, wherein:

the computing element is configured to intercept a
request for data made by software running on the
computing element and to transmit the intercepted request
to the controllers; and

10

15

20

25

WO 98/12657 PCT/US97/16218

- 63 -

at least a first controller is configured to
respond to the intercepted request by transmitting
requested data to the computing element and by indicating
how a second controller will respond to the intercepted
request.

33. The system of claim 32, wherein the second
controller is configured to respond to the intercepted
request by indicating that the second controller has no
data corresponding to the intercepted request and by
indicating that the first controller will respond to the
intercepted request by transmitting data to the computing

element.

34. The system of claim 32, wherein each
controller is configured to include in response to the
intercepted request an indication as to how each other
controller will respond to the intercepted request.

35. The system of claim 32, wherein the computing
element is configured to compare the responses to the
intercepted request for consistency.

36. The system of claim 35, wherein the computing
element is configured to compare the responses for
consistency after the computing element has received
responses from all of the controllers and to notify the
controllers of the outcome of the comparison and that
responses have been received from all of the controllers.

37. The system of claim 32, wherein the computing
element is configured to generate an error condition if
the computing element does not receive responses from all
of the controllers within a predetermined time period.

10

15

20

25

WO 98/12657 PCT/US97/16218

- 64 -

38. The system of claim 32, wherein:

a first data source is associated with the first
controller, and

the first controller is configured to obtain the
data requested in the intercepted request from the first
data source.

39. The system of claim 32, wherein the first
controller is configured to maintain a record of a status
of the second controller and to use the record when
indicating how the second controller will respond to the
intercepted request.

40. The system of claim 39, wherein:

a first data source is associated with the second
controller, and

the first controller is configured to maintain a
record of a status of the first data source and to use
the record when indicating how the second controller will
respond to the intercepted request.

41. The system of claim 40, wherein the second
controller is configured to transmit an instruction to
the computing element to discard responses from other
controllers to the intercepted request when a status of
the first data source changes.

42. The system of claim 41, wherein the computing
element is configured to respond to the instruction by
discarding responses from other controllers to the
intercepted request and by transmitting to the
controllers a notification that the responses have been
discarded.

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 65 -

43. The system of claim 42, wherein the first
controller is configured to respond to the notification
by updating the record of the status of the first data

source.

44. The system of claim 43, wherein the first
controller is configured, after updating the record, to
retransmit the requested data to the computing element
and to indicate how the second controller will respond to
the intercepted request.

45. The system of claim 32, wherein:
a data source is associated with each controller,
and
each controller is configured to respond to the
intercepted request by:
determining whether an associated data source
is expected to process the request;
when the associated data source is expected
to process the request, transmitting the request to the
associated data source, receiving results of the request
from the associated data source, and forwarding the
results of the request to the computing element; and
when the associated data source is not
expected to process the request, informing the computing
element that no data will be provided in response to the
request.

46. A computer system including:

a computing element,

data sources, and

controllers that provide data from the data
sources to the computing element, wherein:

the computing element is configured to intercept a
request for data made by software running on the

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 66 -

computing element and to transmit the intercepted request
to the controllers; and
each controller is configured to respond to the

intercepted request, by:

determining whether an associated data source
is expected to process the request;

when the associated data source is expected
to process the request, transmitting the request to the
associated data source, receiving results of the request
from the associated data source, and forwarding the
results of the request to the computing element; and

when the associated data source is not
expected to process the request, informing the computing
element that no data will be provided in response to the
request.

47. A computer system including:
computing elements configured to process identical
instruction streams,
data sources, and
controllers configured to provide data from the
data sources to the computing elements and to operate
asynchronously to the computing elements, wherein:
each of the computing elements is further
configured to:
stop processing of the instruction stream at
a common point in the instruction stream,
generate a freeze request message, and
transmit the freeze request message to the
controllers;
a controller is further configured to:
receive a freeze request message from a
computing element,
wait for a freeze request message from other
computing elements, and,

10

15

20

25

30

WO 98/12657 PCT/US97/16218

- 67 -

upon receiving a freeze request message from
each computing element, generate a freeze response
message and transmit the freeze response message to the
computing elements; and

each of the computing elements is further

configured to:

upon receiving a freeze response message from
a controller, to wait for freeze response messages from
other controllers to which a freeze request message was
transmitted, and,

upon receiving a freeze response message from
each said controller, to generate a freeze release
message, transmit the freeze release message to the
controllers, and resume processing of the instruction

stream.

48. A computer system including:

error reporting elements, and

error processing elements, wherein:

an error reporting element is configured to detect
an error condition and transmit information about the
error condition as an error message to error processing
elements connected to the error reporting element, and

at least one error processing element is
configured to retransmit the error message to other error
processing elements connected to the at least one error

processing element.

49. A computer system including:

error reporting elements, and

error processing elements, wherein:

error reporting elements are configured to detect
an error condition and transmit information about the
error condition as error messages to error processing
elements connected to the error reporting elements, and

WO 98/12657 PCT/US97/16218

- 68 -

at least one error processing element is
configured to combine information from related error
messages from multiple error reporting elements and use
the combined information in identifying a source of the
error condition.

WO 98/12657 PCT/US97/16218

1123
10
363 r—r 36b
A 'ﬁN\
343 /183 34b
T | 4 | 1
32a/ P 18b P B
. CE 1 | | CE 2 , |32
148/ \140
20a 20b
— | l
163 P IOP = 16b
| l
N — 22
24"\“\ —_——
~ 26
30— 8
)
(l

SUBSTITUTE SHEET (RULE 26)

PCT/US97/16218

WO 98/12657

2123

la— CONsole

IOP
Monitor
IOP

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 98/12657

'

3123

Wait for 1/0 Reaquest

—102

7

Wait for {/0 Request

From Other CE or

Expiration of Timeout

Period.

—104

Timeout
£ xpired?

Checksums
Equal?

100

PCT/US97/16218

19
A

Process INO Request

—110

124\

l

Get Time of Day

112

'

Assemple Packet

—114

'

Send Packet to
IOP Driver

— 116

Both
CEs
Active?

Wait for NO

Reaquest from Active CE

'

Availability
Mode?

Disab:s
Timeou: CE&

Disaole One CE

1227

d

SUBSTITUTE SHEET (RULE 26)

Disaoie
Both CEs

1267
19g-(_Done)

FIG. 3

WO 98/12657

PCT/US97/16218
4123
18
1P
4 BIOS I~
N rom | 60
™~
DATA 1O 52 t
QuT -7 jParallel To
ATA 16 Interface 16 @———1 = System
N 74;‘;3 7 Control I~ Bus
56 Logic 50
CONTROL~—tat - | System
58// 1 Clock
} 64
66,y
T
A~ FIFO] a
o8 Counter \62
| Virtual | | Ql
70” Display Interrupt
— Virtual
-
72 Keyboard

FIG. 4

SUBSTITUTE SHEET (RULE 26)

(92 37nY) 133HS 31n111SANS

154

Booling Aclive - Aclive Aclive

Olffine Oflline R1S Wailing

156 158 160
RTB
‘llll!’ "QEHE"
164

152 162

Olfhine ' Y Aclive
Ollline F Active
166 176
Oftline
RT8
Offline Oflline RIS Wailing
Booting Active - Aclive Aclive

FIG. 5 ./ i

150

T el
—
._’

170 172

LS9TI/86 OM

£C1S

8IT91/L6SN/LDd

WO 98/12657 PCT/US97/16218

o0 oo on U
IOP] /:] I0P
" t
202 2 20 Soo
FIG. 6
204 ,;220
204
200
.
200
o
No02” y
222
220 — Nog2”
FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 98/12657 PCT/US97/16218

1123

230

238

CE

248

250 |
244 —_ I0P

234 246 ¥
* J

o \244/:110PU‘\

:/ N [

244

N/
]

248

FIG. 8

242

SUBSTITUTE SHEET (RULE 26)

WO 98/12657 PCT/US97/16218

| 8/23

Check for/Response
g

to Major Faults 302 300

! J

Wait for IP] Packets
from Connected CEs

'

Transmit/Receive IPI oy
CRCs to/from Other I0Ps 306

'

Generate Matrix/ |
Sum Rows and Columns | ~ 308

—

304

All
Sums Equal?

All Column
Entries Match?

i, 314

CE Failure - Disable CE
from Unequal Column

—

Y
316
/4
Path Failure - Disable
IOP Failure - Disable Path Between Unequal
IOP from Unequal Row Row & Miscatched Column

! ! '

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 98/12657 PCT/US97/16218

9/23

260

/0

-
)

C

O

))

\Q/ 262
/262_ K

NV

F1G.10

SUBSTITUTE SHEET (RULE 26)

(92 37nY) 133HS 31niisans

1100
(

CE

Physica! Device Redireclors {SCSI, Ethernel,
Keyboard/Mouse, Parallel, Serial, Floppy)

1105

1110
1115

- 1150

£¢/01

10P

Physica!l Device Providers (SCSI. Ethernel,

Keyboard/Mouse, Parallel, Serial, Floppy)

1100
)
CE
1105
SN~—]

Physical Device Radiraclors (SCS!, Ethernet,

Keyboard/Mouse, Parallel, Serial, Floppy)
1"0\— CE Transporl CE Transporl
ms | T

~—1 IPI Driver IPI Driver
1185
150 N
IOP

1807 | Physical Device Providers {SCSI, Ethernet,

Keyboard/Mouse, Parallel, Serial, Floppy)
1165\ Device Synchronization Layer —— 1175 —
1160 — SCpP [Faull Handler I IOP Transport ——*/1170 p

--------------------------------- 1160
1190/ Ethernet Driver] IPl Driver _———\ /

1155

1180

165
—M170

1190

FIG. 11

LS9T1/86 OM

. 81T91/L6SNV/1LDd

(92 37nY) 133HS 31n1usans

110

0

CE

FIG.12A

4

CE

FIG.12B

1200
A

Online

Disk

1210\3

Otfline

Disk

1200
A

€C/U

Online

1210

1205

A\

K/////" lﬁﬂBﬁigj [Eﬂhzigj [1$;:236 — 10P1

1215\\

N R Ry M
1205\l

100 / Rosponss Response Response [+ 0P
1215\\

\

Rh;%p%?\tsae H':Zp%?\lsae ﬂ%%p%it:e] I0P2

Disk

A

Offline
Disk

LS9T1/86 OM

8TT91/L6SN/LDd

WO 98/12657 PCT/US97/16218

12123

Reauest to All IOPs; Set Timer ™~
1305 1300

Timer
Expired?

All Responses
Recewed?

All Responses
Consistent?

Multiple Data
Responses

1330
Data
Responses
N Consistent

y
Report Error DATA TO PDR I~

13457 ~ " RG.13

Response Complete
Message to All IOPs

.
1340

SUBSTITUTE SHEET (RULE 26)

PCT/US97/16218

WO 98/12657

uofjeinBiuoy jedshyd V¥i'DId

GlLvl Govl GEvl
B))
g ¥sia 0 %810 mww_cmochwm aniqQ ade
d0l
™M
Sy
™
30

LbL 00¥L 0 v
M) e
ul
@ 1513 0 %s1q y aew_% WOHAD
dol
30

SUBSTITUTE SHEET (RULE 26)

PCT/US97/16218

WO 98/12657

14/23

uonesnBruo) (821607 m:u—._r‘v_n_

Gevl
)

oVl
Ocvly

ovvl

)

‘g 1sid

0 A1sid

aAtiqQ ade]

EIENE

WOHAO

S[0]

30

SUBSTITUTE SHEET (RULE 26)

WO 98/12657 PCT/US97/16218

15/23

1500

\r\ CE

1515

DSL

Flush Request to CEs — — — Flush Requests From

1505 All 10Ps? N
Y
Suspend Request\Response
7| Activity for Alfected Devices
1510
1520
Y 4
ldentify Compieted Requests
Process F:‘:;esg;):s:SComplete - — - by Sending Response
1525 9 Complete Messages to All IOPs
1 Process Flush SWTACK j=— — — - Send SWTACK for Flush Sequence
1535

|

Update System State

1540

y

Resume Request\Response
Activity for Affected Devices

| 545 FIG. 15

Resend Incomplete Requests ™~

1550

SUBSTITUTE SHEET (RULE 26)

PCT/US97/16218

WO 98/12657

a91”

Ol

Byo ejejs 1104 Byo ejels 110d 10 '}|6say |d| OW1 13y
1nosw} 1eyg | 18yQ J1eyjouy 18HQ IV L E]
jues dsyqg A1es puag AONS dSHQa
|noawt) |8y paas bayg |8y 1ayjouy PADJ |18Y IV 1lvm™ 134
juas dsy A1j81 puag ONS dSH
pads bey v | bay ieyjouy LIVM 03H
PAJJ ABY 16S9Y | 3101
OWL™ 134 1IVM™ 1340 QNS dSHA 1IVM™ 134 NS dSH 1IVM~ 034 3101
3IvIS
J1ViS M3N IN3HHND
™
N .
© VIl Dl
6yo ejejs jiod ajejs 104 18S8Y IdI OWL dSH
ISTETRTER Jues jay aNS 134
dsyqg dsya v J9Yjouy 1IVM "dSHQ
juas bayq k181 pues (NS 0340
jnoswi) dsy PA2) dS1 |lY pAdl ds) qly | dsy Jeyjouy 1ivm "dSH
Juas bay A1)31 puag (GNS 034
Anu3 x39 3101
OW1 dSH ONS 134 1IVM™dSH0 ANS 0340 1IVM " dSH ONS 034 310
31VIS
J1VIS M3N IN3HHUNO

SUBSTITUTE SHEET (RULE 26)

PCT/US97/16218

WO 98/12657

17123

JajpueH }iney

£l Ol

HH3SAS
J30HO43

Je|pueH jne4

001

GOZl

SUBSTITUTE SHEET (RULE 26)

WO 98/12657

PCT/US97/16218
18/23
1800 Start /
N /
1805
s

Convert Error to Normal
(Canonical) Form

1810

Canonical
Error Transition This
State ?

Any More
Syndromes?

1815 1830

[

Create New Syndrome at
INITIAL State

v

Perform Transition

1820 /

/ Done / Set Syndrome State to
UNSYNDROMED

1825

/ Done /L\
FIG 18 Error Processing 1845

SUBSTITUTE SHEET (RULE 26)

1835

Canonical
Error Transition This
State?

PCT/US97/16218

WO 98/12657

19/23

dol "Dl4

SIN0|IBD g 8WOIPUAS -

SIN0||eD | 8WOIPUAS = (LN "IN =-LIN)IVYN = (SN A LIN "2~ LIN)YYN ==
SINojieD | BWOIPUAS == (Z A LIN 'TW=-LIN)MYN = (LN "= LIN)YYN - (CN 'ZN=-LN)JAd3
S]N0JIRD) Z SWOIPUAS =
Sinoj|e) | dWOIPUAS =~ (LW 2= LIN)MVN == (2N ‘2N~ LN)DQ3
S)N0JjeD | BWOIPUAS =~ (CN 'ZTN=-LN)JQ3 = (LN "CA==LIN)YMYN == (2N A LIN "S- LN)XVN
S|nojie] | SWOIPUAS =~ (ZN A LIN ‘TN~ LINIIVN = (2N "ZW=LIN)DQT -
S|N0jIBY | 8WOIPUAS ~ (ZN 'ZTWN=-LN)DA3 = (CA A LIN 'ZWN=LINIVN = (LN TN =-LWIVN
ojels _m:_u_
Vol Dld
¢ cN=LN aa3
108UU02IBJU ZN=—LIN| (0Ydd ZW BIA) LN | ZW-=LIW| (Peoyde) XyN | ¢
JOAI1803Y Ja)depy 108uu0213Ul 2N 2N
19 jlwsuel) (CN| CN=IL oa3
Jja1depy |d8uu0dIdu| LN AQ peoyds) IN| CW=-LW | (P8OoYd8) HVN
108UU02I8IUl 2= LIN IN]| CN=ILIN AYN | L
sjnojen wol) peAisdsy yjed J0113 #
8WOIpuUAg

SUBSTITUTE SHEET (RULE 26)

PCT/US97/16218

WO 98/12657

20/23

0¢ Dld

[anxo][annxa] [Mnxo || nxnxo| [Annxo | xnnxo |

[xnnxo || nxnxo |

[axnxa |[mxnxa] | xanxo || xanxo |

N

>:mxo _ mo_éc_ XY X1
K)jqede) Idl
. 1emog
| Ndol 1
| U |

xngxo

eiqe)d Idi

e(qe) ejdny _

1amod 8jdng

SUBSTITUTE SHEET (RULE 26)

PCT/US97/16218

WO 98/12657

21123

dic

Dld

128UU0218}JU| |BUOI}D3IBPIE C =1 108UU0IBIU| | -2 108UU02IB| 2=

19)depy ¢ aulyoenw Jejdepy Z eulyoepw 108UU0IBJU| 2 -1

18M0g 2 aulyden 1amM0d g auyoen 198UU02IBJU| 2=

jaydepy | aulyoepy 108UU0IBY| | = ¢ ja)depy | auiyoenw

A1ddng 19M04 Z/1 8ulydepy uowwo 18)depy ¢ eulyoen 19)depy | suiyden

Aiddng 19m04 2/l 8ulydey uowwo) 1amod ¢ auiyoew 19)depy | aulyoep

JAMOg | 8uiyoen]08UUOIBM| | = ¢ 18M0d | BuIyIepw

Alddng 18m0d Z/1 9duiydeyw uowwoy Jejdepy ¢ aulyoen 18M0d | BuIydIen

Ajddng 18m04 ¢/1 8ulydeyy uowwoy 1aM0d ¢ euiydepw JaMod | auiyoen
10Npoid juewsi3 ¢ 1S juswall | 18

VIC

Ol4

XUD)I8JU| |RUOND8IIPIUN | BUIYOBN =g BUIYIBW

XU 18JU| |BUOI}D8IIPIUN & SUIYIBWN-=—| BUIYIBW

18)depy 108uUU02I8)U| ¢ aulydenw

1e)ydepy 108UU02IBJU| | BUIYIBW

18M04 g 8uiyoen

JaMOd | autyIew

cis]

L s

SUBSTITUTE SHEET (RULE 26)

PCT/US97/16218

WO 98/12657

22123

¢¢ ‘Old

1 128UU0218)U| |BUOIIDBJIPIUN | BUIYIBN =| BUIYIBW
1 108UU02I8)U} [BUOIIJBJIPIUN 2 SUIYIBW =—| BuUIYIeW
VA 108UU02IB)U} [BUOIIDBIIPIY Z BUIYIBN =—=| BUIYIEeN
£ j8)depy ¢ 8ulydenw
£ 19)depy | aulyden
v JaM0d 2 8uIlyoep
v Jamod | aulyaew
G Aiddng 18m0d ¢2/1 8ulydoew uowwo9
jyuey 1nojjed

SUBSTITUTE SHEET (RULE 26)

WO 98/12657 PCT/US97/16218

23123

Start With Callout 2300
List From 1st Syndrome /

‘ 2305

Map Logical Callout
List to Physical List [\

2310
'

Copy Physical Caliout
List to CURRENT [

2340

Reduce CURRENT List to
Most-specific Callout(s)

Any More
Syndromes?

2325 T
Convert Syndrome Logical Map Callout(s) to Field
Callout List to Physical Callouts Replaceable Units

1 2330 2345/ l 2350
((

"Cross-multiply”

List Against CURRENT / Done /
¢ 2335

Copy Product to CURRENT FIG 23

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US97/16218

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOG6F 19/00
US CL :364/131; 395/182.1
According (0 International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation scarched (classification system followed by classification symbols)
U.S. : 364/131-136, 184-187; 395/182.09, 182.1, 185.08, 18S.1, 200.78, 881; 371/47.1,68.1

Documentation searched other than minimum documentation o the extent that such documents are included in the fields searched

Electronic data base consuited during the intemational scarch (name of data base and, where practicable, search terms used)
APS, scarch terms: intercept, request, synchronize, controllers, error

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5,088,021 A (McCLAUGHLIN et al) 11 February 1992, col. 4, 1-3, 10-14, 32-34,
--- line 62 to col. 5, line 30 and 3840
Y ———— e
4-9 and 35-37
Y US 5,261,092 A (McLAUGHLIN et al) 09 November 1993, col. | 4-9 and 35-37
10, line 26 to col. 11, line 24.
A US 5,142,470 A (BRISTOW et al) 25 August 1992, see the entire| 1-26 and 32-47
document.
A US 5,491,625 A (PRESSNALL et al) 13 February 1996, see the| 1-26 and 32-47

entire document.

[X] Pusther doouments are lised in the costinuation of Box C. [] Soe pasont family sanex.

° Spesial geries of cited d he o later & published after the i 3 ;ﬁhucm
. L, . date snd net in conflist with the applisstion eited o undersmand
°A° dosument doliming the gensrel stats of the ast whish is net csnsidered Py . . h
® bo of partmaiar red the prinsipis or thecry underlying the isweation
b - . . . L) of P of CSY 3 : the slsimed i . b
b o earlier dosument published an or afiar the international filing dute idered povel or ot be idered 0 imvoive mn iventive stop
i desument whish may throw doubls en pricrity elaim(s) or whish is when the dosument is taken aleme
cited t0 establish the publication date of snether citstion or other
spesial ressen (o8 spesified) « Y mammum-mmh
- X "vh-hd.--
‘o* desument sefesving 0 am orel disslomwe, wee, enhibition or other “M--moﬁ.—i“-‘ oush
=eam being sbvisus 1o & persen sirilled in the art
4 o desument published prior ¢s the internationsl filing date but Jater thea ¢ .
tes priovity dete elmimed a dosumant member of the same patent family

Date of the actual compiction of the international search Mofnh.ofﬁcm
06 NOVEMBER 1997

qu.nwofums Am& 4)
Weskimgies, D.C. 20231 F. RUGA

Form PCT/ISA/210 (second sheet)(July 1992)»

INTERNATIONAL SEARCH REPORT Intornational application No.

PCT/US97/16218

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category® Citation of document, with indication, where appropriaie, of the relevant passages Relevant 1o claim No.
X US 5,555,372 A (TETREAULT et al) 10 September 1996, col. 3, 27 and 48
lines 8-43 and col. 8, lines 6-42.
X US 5,423,025 A (GOLDMAN et al) 06 June 1995, col. 4, line 61 |28, 29, and 49
to col. 6, line 33.
A US 5,448,722 A (LYNNE et al) 05 September 1995, see the entire 27-31, 48, and 49
document.

Form PCT/ISA/210 (continuation of seoead shoct)(July 1992)«

INTERNATIONAL SEARCH REPORT International spplication No.
PCT/US97/16218

Box 1 Observations where cortaia ciaims wore found unsearchable (Continuation of jtom 1 of first sheot)

This intemational report has not been established in respoct of cerain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the intemational application that do not comply with the prescribed requirements to such
an extent that no meaningful interational scarch can be carried out, specifically:

3. Claims Nos.:
E] because they are dependent claims and are not drafied in accordance with the second aad third sentences of Rule 6.4(a).

Box II Observatiens where uaity of iaventicn is lacking (Continuation of lom 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Pleasc Sec Extra Sheet.

1. m As all required additionai scarch fecs wore timely paid by the applicant, this inlormational scarch report covers all scarchable

of any sdditional fee.

oaly those claims for which foes were paid, specifically claims Nos.:

restricted to the invention first mostioned in the claims; it is covered by claime Nos.:

Remark ea Presest D The additional search fees were accompanied by the applicant's protest.
D No protest accompanicd the paymeont of additional scarch fecs.

2. E] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment

3. D As only some of the required additional search fecs were timely paid by the applicant, this international search report covers

4. D No required additional search foos were timely paid by the applicant. Coasequently, this international scarch report is

Form PCT/ISA/210 (coatinuation of first sheet(1))(July 1992)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US97/16218

BOX I1. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING
This ISA found multiple inventions as follows:

This applicatioa contains the following inventions or groups of inventions which are not so linked as to form a single
inventive concept under PCT Rule 13.1. In order for all inveations to be searched, the appropriate additional search
foes must be paid.

Group I, claim(s)1-26 and 32-47, drawn 10 a method and system for synchronizing data transfer.
Group 11, claim(s) 27-31, 48, and 49, drawn t0 a method and system for fault handling and error reporting.
The inventions listed as Groups | and 11 do not relate to a single inventive concept under PCT Rule 13.1 because, under
PCT Rule 13.2, they lack the same or corresponding special techaical features for the following reasons:

The data transfer system and method of Group I is not limited 1o faukt or error conditions and the fauk
handling system and method of Group 1l does not require the data transfer techniques of Group 1.

Form PCT/ISA/210 (cutra sheet)(July 1992)w

