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(57) Abrégée/Abstract:
A method for modeling a hydrocarbon reservoir. A representation of a simulation model is generated in a non-transitory, computer
readable medium. The simulation model Is used to generate computational tasks. The tasks are allocated among a plurality of
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(57) Abrege(suite)/Abstract(continued):

computational nodes. Each processing node of the plurality of computational nodes Includes core processors and a shared
memory accessible by the core processors. The reservoir simulation Is executed on the plurality of computational nodes. During the
reservolr simulation, If a first processing node In the plurality of computational nodes finishes executing its allocated tasks, a
migration reguest Is sent from the first processing node to another processing node In the plurality of computational nodes. The

migration request is configured to request migration of a movable task from the other processing node to the first processing node.
The movable task is migrated from the other processing node to the first processing node.
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(57) Abstract: A method for modeling a hydrocarbon reservoir. A rep-
resentation of a simulation model 1s generated in a non-transitory,
computer readable medium. The simulation model 1s used to generate
computational tasks. The tasks are allocated among a plurality of com-
putational nodes. Each processing node of the plurality of computa-
tional nodes includes core processors and a shared memory accessible
by the core processors. The reservoir simulation 1s executed on the
plurality of computational nodes. During the reservoir simulation, if a
first processing node in the plurality of computational nodes finishes
executing its allocated tasks, a migration request is sent from the first
processing node to another processing node in the plurality of compu-
tational nodes. The migration request 1s configured to request migra-
tion of a movable task from the other processing node to the first pro-
cessing node. The movable task 1s migrated from the other processing
node to the first processing node.
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METHOD AND SYSTEM FOR PARALLEL SIMULATION MODELS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Patent Application
61/359,669, filed June 29, 2010, entitled METHOD AND SYSTEM FOR PARALLEL
SIMULATION MODELS, the entirety of which 1s incorporated by reference herein.

KIELD

[0002] Exemplary embodiments of the present techniques relate to a method and system
for parallel simulation models that use message passing between shared-memory

computational nodes.
BACKGROUND

[0003] This section 1s intended to introduce various aspects of the art, which may be
assoclated with exemplary embodiments of the present techniques. This discussion 1s
believed to assist in providing a framework to facilitate a better understanding of particular
aspects of the present techniques. Accordingly, 1t should be understood that this section

should be read 1n this light, and not necessarily as admissions of prior art.

[0004] Numerical simulation 1s widely used in industrial fields as a method of simulating
a physical system by using a computer. In most cases, there 1s desire to model the transport
processes occurring 1n the physical system. What 1s being transported 1s typically mass,
energy, momentum, or some combination thereof. By using numerical simulation, 1t 1s
possible to model and observe a physical phenomenon and to determine design parameters,

without actual laboratory experiments and field tests.

[0005] Reservoir simulation 1s of great interest because i1t infers the behavior of a real
hydrocarbon-bearing reservoir from the performance of a model of that reservoir. The typical
objective of reservoir simulation 1s to understand the complex chemical, physical and fluid
flow processes occurring in the reservoir sufficiently well to predict future behavior of the
reservolr to maximize hydrocarbon recovery. Reservoir simulation often refers to the
hydrodynamics of flow within a reservoir, but in a larger sense reservoir simulation can also
refer to the total hydrocarbon system, which may include not only the reservoir, but also
injection and/or production wells, surface flow lines, and surface processing facilities.
Reservoir simulation calculations 1n such hydrocarbon systems are based on fluid flow

through the entire system being simulated. These calculations are performed with varying
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degrees of rigor, depending on the requirements of the particular simulation study and the

capabilities of the simulation software being used.

[0006] The principle of numerical sitmulation 18 to numerically solve equations describing
a physical phenomenon using a computer. Such equations are generally algebraic equations,
ordinary differential equations (ODE), and partial differential equations (PDE). As a means
for solving differential equations, ODE and/or PDE, numerically, there are known methods
such that the finite diffterence method, the finite volume method, the finite element method,
and the like. Regardless of which method 1s used, the physical system to be modeled 1s
divided 1nto cells, a set of which 1s called a grid or mesh, and the state variables that vary in
time and 1n space throughout the model are represented by sets of values for each cell. The
reservolr rock properties such as porosity and permeability are typically assumed to be
constant inside a cell. Other variables such as fluid pressure and phase saturation may be
defined at the boundaries between the cells or at specified points within the cell, sometimes
referred to as nodes. A link between two nodes 1s called a "connection." Fluid flow between
two cells 1s typically modeled as flow across a boundary between cells or along the

connection between the nodes.

[0007] A set of equations may be developed to express the fundamental principles of
conservation of mass, energy, and/or momentum within each cell and of movement of mass,
energy, and/or momentum between cells. The replacement of the state variables that vary in
space throughout a model by a finite number of variable values for ecach cell 1s called

1"

"discretization." For proper resolution of the modeled physical processes, often hundreds of
thousands and even millions of cells are required. That may lead to millions of equations to

be solved.

[0008] Most reservoir simulators use so-called structured grids im which the cells are
assumed to be three-dimensional rectangular shapes distorted to conform as well as possible
to geological features and flow patterns. Certain geological features and modeling situations
cannot be represented well by structured grids. For example, slanted wells, faults, or
fractures that can naturally occur in the reservoir models are almost impossible to model
using structured grids. These shortcomings can be overcome in part by using local
refinement, 1n which selected cells are subdivided into smaller cells, and non-neighbor
connections, which allow flow between cells that are physically adjacent to each other but are
not adjacent in the data structure. A more powerful solution to this problem 1s to exploit the

flexibility provided by layered unstructured grids. In a layered unstructured grid, a
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computational domain 1s split into geological layers. In each layer, an unstructured grid 1s
formed by a number of laterally-contiguous irregular-shaped grid cells. The cells forming
any layer have corresponding neighbors 1n the layers located above and below the cell. Such
a grid 1s often referred to as "2.5D gnid." However, layered unstructured grids may not be
sufficient to describe the variability of complex geologic structures present in real
hydrocarbon reservoirs such as branching wells, complex Y-faults, or pinch-outs that occur
when the geological layer disappears inside the reservoir. A fully unstructured three-
dimensional grid may provide the flexibility to sufficiently describe complex geological
structures. Unlike a layered unstructured grid, a fully unstructured grid 1s a three-

dimensional grid that 1s unstructured 1n all three directions.

[0009] Due to the large number of calculations, reservoirr simulation can require
substantial computing resources. Furthermore, a totally unstructured grid may require much
oreater computational resources compared to a structured grid or a layered unstructured grid.
To mmprove the speed of reservoir simulations, proposals have been made to subdivide a
stmulation model 1into smaller segments and to perform computations in parallel on a cluster
of multi-processor computing nodes. The principal attraction of parallel computing 1s the
ability to reduce the elapsed time of simulation, 1deally by a factor of N for an N-processor
computing system. Parallel computing falls short of the i1deal because of several factors,
including recursion 1n linear equation solution, the overhead associated with message passing
required for various computations, and load imbalances due to heterogeneities 1n the problem

physics and characterization of the hydrocarbon fluids.

[0010] Today, most computing systems used 1n high-performance parallel computing
feature a hierarchical hardware design that includes shared-memory nodes with several multi-
core processors. Such a system may be referred to as a hybrid, because 1t combines aspects
of a shared memory system with aspects of a distributed memory system. The most
commonly used parallelization scheme on hybrid systems uses message passing between the
computational nodes and OpenMP programming inside symmetric multiprocessor (SMP)
nodes due to the relative easiness of programming. Several academic research papers have
been published describing the benefits of such an approach. See, for example, G. Jost, et al.,

“Comparing the OpenMP, MPI and Hybrid Programming Paradigms on an SMP Cluster”,
NAS  Technical  Report  NAS-03-019  (November  2003), available  at

2010); S.W. Bova, et al., “Parallel Programming with Message Passing and Directives”,

23
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Computing 1n Science and Engineering, pp. 22-37 (September 2001); and R. Rabenseifner,
“Hybrid Parallel Programming on Parallel Platforms”, The Fifth European Workshop on

ewompl3/omptalics/Tuesdav/Session7/ _TOIp.pdf (accessed June 28, 2010). The

OpenMP, available at hitp://'www.compunity.org/events/

parallelization schemes described m the above references may provide substantial efficiency
1in cases of homogencous computational load, for example, when parallelizing loops 1nside
cach SMP node. However, in reservoir simulation applications 1t may be difficult to achieve
o00d speed-up using such an approach due to irregularity of computational loads between the
computational nodes and between cores inside the nodes. For application programs with
dynamically changing computation and data access behavior, a more flexible programming

model that achieves better efficiency may be desirable.

[0011] U.S. Patent 7,565,651 suggests a parallel task scheduling system 1in a multi-
threaded computing environment. The patent suggests using one communication thread, one
parallel task scheduler implemented 1n a separate thread, and a plurality of working threads.
The scheduler maintains a plurality of task queues, each task queue being dedicated to a
particular working thread. The scheduler feeds the task queues with tasks according to a
scheduling algorithm. While that scheme may provide much better load balancing of
irregular tasks then any one built with the use of OpenMP programming, it may be not
flexible enough for task-based parallelism required for reservoir simulation applications.
Having just one communication thread and a single task scheduler forces any worker thread
to wait 1ts turn to communicate with the scheduler and exchange data with the
communication thread. Also, having separate task queues for separate threads easily leads to

misbalance of the computational load between the working threads.

[0012] In reservoir simulation, several approaches to parallel computations have been
developed. The publication W. Liu, et al., “Parallel Reservoir Simulation on Shared and
Distributed Memory System”, SPE 64797 (2000), considers three-dimensional distorted
rectangular grids on which the reservoir simulation problem 1s solved 1n time using pure
Message Passing Interface (MPI) communications between the computational SMP nodes
and mside the SMP nodes. The paper reported reasonable speed-up on the systems with up to
8 CPUs and fast deterioration of the performance after that limit due to increased

communication cost.

[0013] Another approach described in U.S. Patent 7,526,418 considers three-dimensional

distorted rectangular grids on which the reservoir stmulation problem 1s solved in time. The

_4



10

15

20

25

30

CA 02801382 2012-12-03

WO 2012/003007 PCT/US2011/021139

2010EM181

method 1s claimed to work on a variety of computer platforms, such as shared-memory
computers, distributed memory computers, or personal computer clusters. The approach
heavily depends on the assumption of a structured rectangular grid. It splits a computational
domain along the x-axis (east-west axis) and distributes the split parts into separate
computational nodes using MPI parallelization to exchange the data between those nodes.
Inside the nodes, the approach implements OpenMP parallelization along the y-axis (north-
south axis). The method described 1n that patent cannot be applied to the reservoir sitmulation

models defined on 2.5D grids or unstructured grids.

[0014] The approach described 1in U.S. Patent Publication 2006/0235667 can be applied
to a structured grid, a 2.5D grid, or the combination of both as long as the resulting grid has
layered structure. The method 1s claimed to work on a variety of computer platforms, such as
shared-memory computers, distributed memory computers, or personal computer clusters.
The approach heavily depends on the assumption of layered structure of the underlying grid.
It splits the computational domain laterally into vertical columns and distributes the split
parts 1nto separate computational nodes using MPI parallelization to exchange the data
between those nodes. Inside the nodes, the approach can implement OpenMP parallelization.
The method described 1n that patent application cannot be applied to the reservoir simulation
models defined on general unstructured grids or use any other type of partitioning of the grid

cells between the computational nodes.

[0015] All of the reservoirr simulation approaches described above employ static
partitioning of computational load between computational nodes. However, the variability of
complex geologic structures present 1n real hydrocarbon reservoirs may require consideration
of unstructured grids i the presence of heterogeneities in the problem physics and
characterization of the hydrocarbon fluids. Daifferent parts of the simulation may require
different computational efforts with dynamically changing computation imbalance and data
access behavior. Accordingly, a flexible programming model that achieves better efficiency

in distributing the computational load of a reservoir simulation may be desirable.

SUMMARY

[0016] Exemplary embodiments of the present invention provide techniques for
distributing the workload of a stmulation model among processors 1n a computing cluster.

An exemplary embodiment provides a method for executing a reservoir simulation that

_5 -
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include generating a representation of a simulation model 1n a non-transitory, computer
readable medium. The method may also include generating a plurality of computational tasks
based, at least 1n part, on the stmulation model. The method may also include allocating the
computational tasks among a plurality of computational nodes, wherein each processing node
of the plurality of computational nodes includes a plurality of core processors and a shared
memory accessible by the plurality of core processors. The method may also include
executing the reservoir simulation on the plurality of computational nodes. The method may
also include, during the reservoir simulation, if a first processing node 1n the plurality of
computational nodes finishes executing its allocated computational tasks, sending a migration
request from the first processing node to another processing node in the plurality of
computational nodes. The migration request may be configured to request migration of a
movable task from the other processing node to the first processing node. The method may
also include migrating the movable task from the other processing node to the first processing

node.

[0017] In some embodiments, executing the reservoir simulation on the plurality of
computational nodes includes generating a master thread on each of the computational nodes,
the master thread generating one or more working threads configured to receive
computational tasks from a task collection stored in the shared memory in cach of the
computational nodes. Executing the reservoir simulation on the plurality of computational
nodes may also include the master thread generating a communication thread configured to
handle communications between the plurality of computational nodes. In some
embodiments, the method also includes i1dentifying computational tasks allocated to each
processing node as movable based, at least in part, on an added communications overhead of

the task migration and a benefit of increased processing node utilization.

[0018] In some embodiments, sending a migration request to another processing node
includes a master thread of the first processing node generating a communication task
corresponding to the task migration request and storing the communication task to a task
collection of the first processing node. Sending a migration request to another processing
node may also include a communication thread of the first processing node receiving the
communication task from the task collection and sending the corresponding task migration

request to the other processing node.

[0019] In some embodiments, sending a migration request to another processing node

also includes a master thread of the first processing node generating the task migration

_6 -
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request and sending the task migration request to the other processing node. In some
embodiments, the method also includes each of the computational nodes generating a task
collection and one or more working threads, wherein the working threads receive tasks from

the task collection and create new tasks to send to the task collection.

[0020] Another exemplary embodiment provides a system for modeling reservoir
properties that includes a storage medium comprising a representation of a reservoir model.
The system may also include a plurality of computational nodes operatively coupled by a
communications network, each processing node of the plurality of computational nodes
comprising a plurality of core processors and a shared memory accessible to the plurality of
core processors. The system may also include a machine readable medium comprising code
configured to assign computational tasks to the plurality of computational nodes for the
execution of a reservoir simulation based, at least in part, on the reservoirr model. A
processing node 1n the plurality of computational nodes can include code configured to
execute the computational tasks assigned to the processing node. The processing node can
also mclude code configured to send a migration request from the processing node to another
processing node in the plurality of computational nodes i1f the processing node finishes
executing 1ts allocated computational tasks. The migration request can be configured to
request migration of a movable task from the other processing node to the requesting
processing node. The processing node can also include code configured to receive the

movable task from the other processing node.

[0021] In some embodiments, a master thread of the processing node 1s configured to
ogenerate a task collection stored to the shared memory and a working thread configured to
receive tasks from the task collection and send tasks to the task collection. In some
embodiments, the processing node 1s configured to handle multi-threaded communications,
wherein the master thread and the working thread are configured to send data to other

computational nodes over the network.

[0022] In some embodiments, the master thread of the processing node 1s configured to
generate a communication thread configured to handle single-threaded communications
between the computational nodes. The working thread of the processing node may generate a
communication task that includes corresponding data to be transmitted to another processing
node and store the communication task to the task collection. The communication thread
may receive the communication task from the task collection and send the corresponding data

to the other processing node.
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[0023] In some embodiments, the processing node comprises code configured to
1dentifying computational tasks allocated to the processing node as movable based, at least 1n
part, on an added communications overhead of the task migration and a benefit of increased
processing node utilization. In some embodiments, the processing node 1s configured to send
a task migration request to other computational nodes 1n the plurality of computational nodes
if the processing node finishes executing 1t assigned computational tasks. The processing
node may also receive new tasks from the other computational nodes that respond positively

and add the new tasks to the task collection of the processing node.

[0024] In some embodiments, the master thread of the processing node 1s configured to
generate a communication task corresponding to a task migration request and store the
communication task to the task collection of the processing node. A communication thread
of the processing node may be configured to receive the communication task from the task
collection and send the corresponding task migration request to another processing node over
the network. In some embodiments, the master thread of the processing node 1s configured to
generating a task migration request 1f the processing node finishes executing its assigned

computational tasks and send the task migration request to the other processing node.

[0025] Another exemplary embodiment provides a non-transitory, computer readable
medium comprising code configured to direct a processor to generate one or more working
threads configured to perform a set of computational tasks corresponding to a reservoir
stmulation.  The non-transitory, computer readable medium may also include code
configured to direct the processor to generate a task collection configured to hold the set of
computational tasks, wherein the working threads are configured to recerve computational
tasks from the task collection and send new tasks to the task collection. The non-transitory,
computer readable medium may also include code configured to direct the processor to send a
migration request to another processing node 1f the working threads finish executing the
computational tasks in the task collection. The migration request may be configured to
request migration of a movable task from the other processing node. The non-transitory,
computer readable medium may also include code configured to direct the processor to
recerve a movable task from the other processing node and add the movable task to the task

collection.

[0026] In some embodiments, the non-transitory, computer readable medium includes
code configured to direct the processor to generate a communication thread configured to

handle communications with other computational nodes. In some embodiments, the non-

_8]
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transitory, computer readable medium includes code configured to direct the processor to
generate a communication task corresponding to the task migration request and store the
communication task to the task collection. The communication thread may be configured to
receive the communication task from the task collection and send the corresponding task

migration request to another processing node over a network.

[0027] In some embodiments, the communication thread may be configured to receive
the movable task from the other processing node, store the movable task to a shared memory,
and alert a master thread regarding the existence of the movable task. The master thread may
be configured to store the movable task to the task collection. In some embodiments, the
non-transitory, computer readable medium includes code configured to direct the processor to
identify computational tasks in the task collection as movable based, at least in part, on
heuristics that consider an added communications overhead of the task migration and a

benefit of increased processing node utilization.
DESCRIPTION OF THE DRAWINGS

[0028] The advantages of the present techniques are better understood by referring to the

following detailed description and the attached drawings, in which:

[0029] Fig. 1 1s a schematic view of a reservoir, in accordance with an exemplary

embodiment of the present techniques;

[0030] Fig. 2 18 a top view of a reservoir showing a planar projection of a computational
mesh over the reservorr, n accordance with an exemplary embodiment of the present

techniques;

[0031] Fig. 3 1s a process flow diagram of a workflow for modeling a reservoir, in

accordance with an exemplary embodiment of the present techniques;

[0032] Fig. 4 1s block diagram of an exemplary cluster computing system that may be

used 1 accordance with exemplary embodiments of the present techniques;

[0033] Fig. 5 1s a block diagram of an exemplary SMP node in accordance with

exemplary embodiments of the present techniques;

[0034] Fig. 6 1s an operational diagram of push-type, multi-threaded message passing, in

accordance with an exemplary embodiment of the present techniques.

[0035] Fig. 7 1s an operational diagram of push-type, single-threaded message passing, 1n

accordance with an exemplary embodiment of the present techniques;
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[0036] Fig. 8 1s an operational diagram of pull-type, multi-threaded message passing, in

accordance with an exemplary embodiment of the present techniques;

[0037] Fig. 9 1s an operational diagram of pull-type, single-threaded message passing, in

accordance with an exemplary embodiment of the present techniques;

[0038] Fig. 10 1s an operational diagram of multi-threaded task migration, 1n accordance

with an exemplary embodiment of the present techniques;

[0039] Fig. 11 1s an operational diagram of single-threaded task migration, in accordance

with an exemplary embodiment of the present techniques; and

[0040] Fig. 12 1s a process flow diagram of a summary of a method of executing a

reservolr simulation 1in accordance with an exemplary embodiment of the present techniques.
DETAILED DESCRIPTION

[0041] In the following detailed description section, the specific embodiments of the
present techniques are described 1n connection with preferred embodiments. However, to the
extent that the following description 1s specific to a particular embodiment or a particular use
of the present techniques, this 1s intended to be for exemplary purposes only and simply
provides a description of the exemplary embodiments. Accordingly, the present techniques
arc not limited to the specific embodiments described below, but rather, such techniques
include all alternatives, modifications, and equivalents falling within the true spirit and scope

of the appended claims.

[0042] At the outset, and for ease of reference, certain terms used 1n this application and
their meanings as used 1n this context are set forth. To the extent a term used herein 1s not
defined below, 1t should be given the broadest definition persons in the pertinent art have
orven that term as reflected 1n at least one printed publication or 1ssued patent. Further, the
present techniques are not limited by the usage of the terms shown below, as all equivalents,
synonyms, new developments, and terms or techniques that serve the same or a similar

purpose are considered to be within the scope of the present claims.

[0043] “Coarsening” refers to reducing the number of cells in simulation models by
making the cells larger, for example, representing a larger space 1n a reservoir. Coarsening 18
often used to lower the computational costs by decreasing the number of cells 1n a geologic

model prior to generating or running simulation models.
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[0044] “Computer-readable medium™ or “non-transitory, computer-readable medium” as
used herein refers to any tangible storage and/or transmission medium that participates in
providing instructions to a processor for execution. Such a medium may include, but 1s not
limited to, non-volatile media and volatile media. Non-volatile media includes, for example,
NVRAM, or magnetic or optical disks. Volatile media includes dynamic memory, such as
main memory. Common forms of computer-readable media include, for example, a floppy
disk, a flexible disk, a hard disk, an array of hard disks, a magnetic tape, or any other
magnetic medium, magneto-optical medium, a CD-ROM, a holographic medium, any other
optical medium, a RAM, a PROM, and EPROM, a FLASH-EPROM, a solid statc medium
like a memory card, any other memory chip or cartridge, or any other tangible medium from

which a computer can read data or instructions.

[0045] As used herein, “to display” or “displaying” includes a direct act that causes
displaying, as well as any indirect act that facilitates displaying. Indirect acts include
providing software to an end user, maintaining a website through which a user 1s enabled to
affect a display, hyperlinking to such a website, or cooperating or partnering with an entity
who performs such direct or indirect acts. Thus, a first party may operate alone or 1n
cooperation with a third party vendor to enable the reference signal to be generated on a
display device. The display device may include any device suitable for displaying the
reference 1mage, such as without limitation a CRT monitor, a LCD monitor, a plasma device,
a flat panel device, or printer. The display device may include a device which has been
calibrated through the use of any conventional software itended to be used 1n evaluating,
correcting, and/or improving display results (for example, a color monitor that has been
adjusted using monitor calibration software). Rather than (or in addition to) displaying the
reference 1mage on a display device, a method, consistent with the invention, may include
providing a reference image to a subject. "Providing a reference image" may include creating
or distributing the reference image to the subject by physical, telephonic, or electronic
delivery, providing access over a network to the reference, or creating or distributing
software to the subject configured to run on the subject's workstation or computer including
the reference 1image. In one example, the providing of the reference 1image could involve
cnabling the subject to obtain the reference 1mage in hard copy form via a printer. For
example, 1nformation, software, and/or instructions could be transmitted (for example,
clectronically or physically via a data storage device or hard copy) and/or otherwise made
available (for example, via a network) 1n order to facilitate the subject using a printer to print

a hard copy form of reference image. In such an example, the printer may be a printer which
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has been calibrated through the use of any conventional software intended to be used in
evaluating, correcting, and/or improving printing results (for example, a color printer that has

been adjusted using color correction software).

[0046] "Exemplary” 18 used exclusively herein to mean "serving as an example, instance,
or 1llustration." Any embodiment described herein as "exemplary” 1s not to be construed as

preferred or advantageous over other embodiments.

[0047] “Flow simulation™ 1s defined as a numerical method of simulating the transport of
mass (typically fluids, such as oi1l, water and gas), energy, and momentum through a physical
system using a computer. The physical system includes a three dimensional reservoir model,
fluid properties, the number and locations of wells. Flow simulations also require a strategy
(often called a well-management strategy) for controlling injection and production rates.
These strategies are typically used to maintain reservoir pressure by replacing produced fluids
with 1njected fluids (for example, water and/or gas). When a flow simulation correctly
recreates a past reservoir performance, 1t 18 said to be “history matched,” and a higher degree

of confidence 1s placed 1n 1ts ability to predict the future fluid behavior 1n the reservorr.

[0048] “Permeability” 1s the capacity of a rock to transmit fluids through the
interconnected pore spaces of the rock. Permeability may be measured using Darcy's Law: Q
= (k AP A)/ (n L), wherein Q = flow rate (cm3/s), AP = pressure drop (atm) across a cylinder
having a length L (cm) and a cross-sectional area A (cm2), u = fluid viscosity (cp), and k =
permeability (Darcy). The customary unit of measurement for permeability 1s the millidarcy.
The term ““relatively permeable” 1s defined, with respect to formations or portions thereof, as
an average permeability of 10 millidarcy or more (for example, 10 or 100 millidarcy). The
term “relatively low permeability™ 1s defined, with respect to formations or portions thereof,
as an average permeability of less than about 10 millidarcy. An impermeable layer generally

has a permeability of less than about 0.1 millidarcy.

[0049] “Pore volume™ or “porosity” 1s defined as the ratio of the volume of pore space to
the total bulk volume of the material expressed in percent. Porosity 1s a measure of the
reservolr rock's storage capacity for fluids. Porosity 1s preferably determined from cores,
sonic logs, density logs, neutron logs or resistivity logs. Total or absolute porosity includes
all the pore spaces, whereas effective porosity includes only the interconnected pores and

corresponds to the pore volume available for depletion.
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[0050] “Reservolr” or ‘“‘reservoir formations” are typically pay zones (for example,

hydrocarbon producing zones) that include sandstone, limestone, chalk, coal and some types
of shale. Pay zones can vary in thickness from less than one foot (0.3048 m) to hundreds of
feet (hundreds of m). The permeability of the reservoir formation provides the potential for

production.

[0051] “Reservoir properties” and “reservoir property values” are defined as quantities
representing physical attributes of rocks containing reservoir fluids. The term “reservoir
properties” as used 1n this application includes both measurable and descriptive attributes.
Examples of measurable reservoir property values include porosity, permeability, water
saturation, and fracture density. Examples of descriptive reservoir property values include
facies, lithology (for example, sandstone or carbonate), and environment-of-deposition
(EOD). Reservolr properties may be populated into a reservoir framework to gencrate a

reservoir model.

[0052] “Simulation model” refers to a specific mathematical representation of a real
hydrocarbon reservoir, which may be considered to be a particular type of geologic model.
Simulation models are used to conduct numerical experiments (reservoir simulations)
regarding future performance of the field with the goal of determining the most profitable
operating strategy. An enginecer managing a hydrocarbon reservoir may create many
different simulation models, possibly with varying degrees of complexity, in order to quantify

the past performance of the reservoir and predict 1ts future performance.

[0053] “Transmissibility” refers to the volumetric flow rate between two points at unit
viscosity for a given pressure-drop. Transmissibility 1s a useful measure of connectivity.
Transmissibility between any two compartments in a reservoir (fault blocks or geologic
zones), or between the well and the reservoir (or particular geologic zones), or between

injectors and producers, can all be useful for understanding connectivity in the reservorr.

[0054] “Well” or “wellbore” includes cased, cased and cemented, or open-hole wellbores,
and may be any type of well, including, but not limited to, a producing well, an experimental
well, an exploratory well, and the like. Wellbores may be vertical, horizontal, any angle
between vertical and horizontal, deviated or non-deviated, and combinations thereof, for
example a vertical well with a non-vertical component. Wellbores are typically drilled and
then completed by positioning a casing string within the wellbore. Conventionally, the
casing string 1s cemented to the well face by circulating cement into the annulus defined

between the outer surface of the casing string and the wellbore face. The casing string, once
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embedded 1 cement within the well, 1s then perforated to allow fluid communication
between the 1nside and outside of the tubulars across intervals of interest. The perforations
allow for the flow of treating chemicals (or substances) from the inside of the casing string
into the surrounding formations in order to stimulate the production or injection of fluids.
Later, the perforations are used to recerve the flow of hydrocarbons from the formations so
that they may be delivered through the casing string to the surtace, or to allow the continued

injection of fluids for reservoir management or disposal purposes.
Overview

[0055] Exemplary embodiments of the present techniques disclose methods and systems
for distributing reservoir simulation workflow among computing units, such as individual
computer systems, computing units in a computer cluster, and the like. A property of at least
onc¢ fluid 1in a fluid-containing physical system may be simulated using a multiplicity of
volumetric cells and a multiplicity of connections between cells. The computing system may
include clusters of symmetric multiprocessor (SMP) nodes coupled together via a
communications network, wherein each SMP node includes a shared memory that may be
accessed by one or more processors, or cores. Simulation algorithms executing on the SMP
nodes may be realized by sets of communicating thread groups. Within each SMP node, the
thread groups may communicate using the shared memory. Various message-passing
techniques may be used to transfer data between the SMP nodes through the network.
Furthermore, dynamic load balancing between the SMP nodes may be achieved by
transferring computational tasks between threads of different SMP nodes during the
stmulation. For example, if a thread finishes the tasks originally assigned to it, the thread

may request additional tasks from other SMP nodes.

[0056] Embodiments of the present inventions may be better understood with reference to
the following Figures. An overview of an exemplary reservoir simulation technique 18
described with reference to Figs. 1, 2, and 3. An exemplary computing system 1s described
with reference to Figs. 4 and 5. Exemplary message-passing techniques are described in
reference to Figs. 6, 7, 8, and 9. Exemplary task migration techniques are described 1n

reference to Figs. 10 and 11.

[0057] Fig. 1 1s a schematic view 100 of a reservoir 102, in accordance with an
exemplary embodiment of the present techniques. The reservoir 102, such as an o1l or natural
oas reservolr, can be a subsurface formation that may be accessed by drilling wells 104, 106,

and 108 from the surface 110 through layers of overburden 112. The reservoir 102 may have
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onc or more faults 114 dividing areas, for example regions 116 and 118, and which may
cither restrict or enhance the flow of hydrocarbons. The wells 104, 106, and 108 may be
deviated, such as being directionally drilled to follow the reservoir 102. Further, the wells
can be branched to increase the amount of hydrocarbon that may be drained from the
reservolr, as shown for wells 104 and 108. The wells 104, 106, and 108, can have numerous
arcas with perforations 120 (indicated as dots next to the wells) to allow hydrocarbons to

flow from the reservoir 102 into the wells 104, 106, and 108 for removal to the surtace.

[0058] A simulation model, or simulator, of the reservoir 102 1s likely to find that the
orcatest changes occur 1n the vicinity of the wells 104, 106, and 108, and other reservoir
features, such as the fault 114. Accordingly, 1t would be useful to keep areas in the vicinity
of each of these features 1n single computational subdomains. A partition between
computational subdomains that crosses a well 104, 106, and 108, fault 114, or other feature
may slow convergence of the simulation, increase computational loading by increasing
communication between computing units, or even prevent convergence, resulting in a failure

to find a solution.

[0059] Fig. 2 1s a top view of a reservoir showing a planar projection of a computational
mesh 200 over the reservorr, 1n accordance with an exemplary embodiment of the present
techniques. Although the computational mesh 200 1s shown as a two dimensional grid of
computational cells (or blocks) 202 to simplify the explanation of the problem, 1t should be
understood that the actual computational mesh 200 can be a three dimension matrix of
computational cells 202 that encompasses the reservoir. A computational cell 202 1s a single
two or three dimensional location within a simulation model that represents a physical
location 1n a reservoir. The computational cell 202 may have associated properties, such as
porosity or an o1l content, which 1s assumed to be a single value over the entire computational
cell 202 and 1s assigned to the center of the computational cell 202. Computational cells 202
may interact with adjacent computational cells 202, for example, by having flux properties
assigned to a shared border with the adjacent computational cells 202. For example, the flux

propertics may include heat or mass transfer values.

[0060] The computational mesh 200 can be coarsened i1n arcas that may have less
significant changes, for example, by combining computational cells 202 that are not in
proximity to a well or other reservoir feature. Similarly, the computational mesh 200 may

retain a fine mesh structure in the vicinity of wells or other reservoir features, such as a first
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well 204, a second well 206, a third well 208, a fault 210, or any other features that may

show larger changes than other areas.

[0061] The computational mesh 200 represents the stmulation model, and can be divided
among computing units to decrease the amount of time needed to provide a result for the

%

stmulation. This procedure may be termed “parallelization.” The parallelization of the
simulation model 1s realized by parallelizing the individual components at each time step. To
achieve efficient utilization of the parallel computing units the simulation model can be
distributed across the computing units so that the computational load i1s evenly balanced and
the amount of inter-unit communication 1s minimized. This division may be performed by
generating an initial partitioning of the simulation model, 1.e., assigning different
computational cells 202 1n the computational mesh 200 to different computing units (such as
described with respect to Fig. 4). Each computational cell 202 may require a different
approach to parallelization based on the numerical formulation, the actual mput data, the
computational task, and user supplied options. Furthermore, during the execution of the
stmulation, for example, during each time step, the computational load between the

computing units may be redistributed through task migration, as described below 1n relation

to Fi1gs. 10 and 11.

[0062] In the exemplary embodiment shown in Fig. 2, the computational mesh 200 1s
initially partitioned between four computing units, as indicated by the subdomains labeled I-
IV. Although four computing units are used in Fig. 2, any number of computing units may
be used 1 other embodiments, depending on the size of the simulation model and the number
of near well features. For example, a small simulation model may provide results in a
reasonable timeframe from a single computing device, while a large simulation may use 10,

100, 1000, or even more computing units for the parallelization.

[0063] Further, while the subdomains I-IV do not cross near well regions or significant
reservolr features, the subdomains are not limited to contiguous areas, but may include non-
contiguous areas, which may be useful for balancing the load between the computing units.
For example, as illustrated in Fig. 2, subdomain I may be divided into two regions. A first
region 212 encompasses the near well region for the first well 204, while a second region 214
encompasses a number of larger computational cells 202 that may have less significant

changes than the near well regions.

Workflow for Modeling a Reservoir
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[0064] In order to analyze a phenomenon changing in time, 1t 18 necessary to calculate
physical quantitiecs at discrete intervals of time called time steps, irrespective of the
continuously changing conditions as a function of time. Time-dependent modeling of the
transport processes therefore proceeds 1 a sequence of time steps. During a time step,
transport of various kinds occurs between cells. Through this transport, a cell can exchange

mass, momentum, or energy with a nearby cell.

[0065] The equations governing the behavior of each cell during a time step couple the
mass, momentum, and energy conservation principles to the transport equations. At every
time step the simulator must solve one or more large matrix equations, with the number of
unknowns depending on the type of time step computation method being used. Because
matrix equations are quite large, having at least one equation per cell, they are solved

iteratively except in the case of small models.

[0066] Various time step computations may be used for the reservoir simulation. In
exemplary embodiments, an implicit-pressure, explicit-saturation (IMPES) computations may
be used. In the IMPES computation, flows between neighboring cells are computed based on
pressures at their centers at the end of each time step. The pressures at the end of the IMPES
time step are interdependent and are determined simultaneously. This method 1s called
"implicit" because each pressure depends on other quantities that are known implicitly. The
basic procedure 1s to form a matrix equation that 1s implicit in pressures, solve this matrix
equation for the pressures, and then use these pressures in computing saturations explicitly
cell by cell. In this fashion, after the pressures have been advanced in time, the saturations
arc updated explicitly. After the saturations are calculated, updated physical properties such
as relative permeabilities and capillary pressures can be calculated and used explicitly at the
next time step. Similar treatment can be used for other possible solution variables such as

concentrations, component masses, temperature, or internal energy.

[0067] The fully implicit method treats both pressure and saturations implicitly. Flow
rates may be computed using phase pressures and saturations at the end of each time step.
The calculation of flow rates, pressures, and saturations involves the solution of nonlinear
equations using a suitable iterative technique. At each iteration, a matrix equation may be
constructed and solved, the unknowns of which (pressure and saturations) change over the
iteration. The matrix of this matrix equation 1s often called "Jacobian." As the pressures and
saturations are solved, the updating of these terms continues using new values of pressure and

saturation. The 1teration process terminates when predetermined convergence criteria are
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satisfied. Techniques for modeling a reservoir may be better understood with reference to

Fig. 3.

[0068] Fig. 3 1s a process flow diagram of a workflow 300 for modeling a reservoir, in
accordance with an exemplary embodiment of the present techniques. Although the
discretization (coarsening) and the level of implicitness (which state variables, such as
pressure or saturation, are treated implicitly or explicitly in the formulation) of the solution
process varies, simulation models may perform 1n a similar fashion as workflow 300. A
stmulation model can begin at block 302 by parsing user input data. The mput data may
include the problem formulation, a geologic model that 1s discretized into grid blocks with
physical properties defined at each grid block, including rock properties (such as permeability
or transmissibility) and fluid properties (such as density or viscosity). At block 304, a well
management routine computes the current state of surface facilities and wells from the
governing equations. At block 306 the values from the well management routine are used
along with the value of state variables at each computational cell to construct a Jacobian
matrix. The Jacobian matrix 1s the matrix (or array) of all first order partial derivatives (with
respect to the state variables) of a vector valued function. In reservoir simulation, the
Jacobian details the change of the governing partial differential equations with respect to the

state variables (pressure, saturation).

[0069] At block 308 the linear solver uses the Jacobian matrix to generate updates for
physical properties of interest, such as pressure and saturation, among others. At block 310
the calculated physical properties are compared to either previously calculated properties or
to measured properties, and at block 312 a determination 1s made as to whether a desired
accuracy has been reached. In an exemplary embodiment, the determination 1s made by
determining that the calculated properties have not significantly changed since the last
iteration (which may indicate convergence). For example, convergence may be indicated 1f
the currently calculated properties are within 0.01%, 0.1%, 1%, 10%, or more of the
previously calculated properties. In other embodiments, the determination may be
determining 1f the calculated properties are sufficiently close to measured properties, for
example, within 0.01%, 0.1%, 1%, 10%, or more. If the desired accuracy 1s not reached,

process flow returns to block 306 to perform another iteration of the linear solver.

[0070] If at block 312 the desired accuracy has been reached, process flow proceeds to
block 314, at which results are generated. The results may be stored 1n a data structure on a

non-transitory machine readable medium such as a database for later presentation, or the
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results may be immediately displayed or printed after generation. At block 316 the time 1s
incremented by a desired time step, for example, a day, a week, a month, a year, 5 years, 10
years or more, depending at least in part on the desired length of time for the simulation. At
block 318 the new time 1s compared to the length desired for the simulation. If the simulation
has reached the desired length of time, the simulation ends at block 320. If the time has not

reached the desired length, flow returns to block 304 to continue with the next increment.

[0071] In exemplary embodiments, the computational processes involved 1n the
stmulation may be parallelized to provide proper load balancing between computing units.
An 1nitial partitioning of the computational operations may be determined as a first
approximation regarding the proper load balance. During the simulation, tasks may be
migrated between computing units to improve the load balance. The parallelization of the
processes may be considered to fall into two main types: task based parallelization and grid
based parallelization. For task based parallelization, a calculation 1s divided into sub tasks
that are run independently in parallel. For example, in the well management task at block
304, a set of operations may be computed on each of a set of wells that can be performed
independently of one another. Therefore each computing unit may execute the operations

independently of the other computing units.

[0072] Grid based parallelization may be performed at a number of points in the
processes, such as i the Jacobian construction and/or the property calculations discussed
with respect to blocks 306 and 310. In the computational process of constructing the
Jacobian, rock and fluid properties with corresponding derivatives are calculated at each
computational cell. This type of parallelization 1s used for computations that do not depend
on the computational cells being adjacent or require global communication for the

computations.

[0073] Vapor-liquid equilibrium (VLE) fluid property computations may be considered
in an example of parallelization. If a stmulation model uses a black o1l fluid characterization
for VLE computations, the amount of computational work required for a flash calculation 1s
roughly proportional to the number of computational cells due to the linear nature of the
black o1l VLE computations. However, 1if a compositional fluid model 1s chosen, the amount
of computational work for the flash calculation within a single computational cell depends on
the cell’s position 1n the phase state space. Hence, the amount of computational work may

vary sharply from cell to cell.

_ 19 -



10

15

20

25

30

CA 02801382 2012-12-03

WO 2012/003007 PCT/US2011/021139

2010EM181
[0074] Grid based parallelization may also be used to divide the problems used by the

linear solver among computing units. The linear solver 1s an algorithm used to compute
updates to state properties (pressure, saturation, etc). A linear solver requires local
computations that are similar between subdomains, in other words, the computational cells
assoclated with each computing unit. However, linear solvers also require global
computations (which are not required for Jacobian construction) to compute updates to the

state variables of interest.

System Configuration

[0075] Fig. 4 1s block diagram of an exemplary cluster computing system 400 that may
be used 1n accordance with exemplary embodiments of the present techniques. The cluster
computing system 400 may have any suitable number of computational nodes, referred to
herein as “SMP nodes™ 402, cach of which may perform calculations for part of the
simulation model. For example, a small simulation model may be run on a single SMP node
402, while a large simulation model may be run on a cluster computing system 400 having
10, 100, 1000, or even more SMP nodes 402. Each SMP node 402 may have multiple
processors, or cores 404. Although the SMP nodes 402 shown 1n Fig. 4 have four cores 404,
one of ordinary skill in the art will recognize that the present techniques are not limited to this
configuration, as each SMP node 402 may have any suitable number of cores 404, for
example, 1, 2, 4, 8, or more. The cores 404 included in each of the SMP nodes 402 may be
coupled to a shared memory 406, which may include random access memory (RAM) and/or
read-only memory (ROM). The shared memory 406 may be configured for Uniform
Memory Access (UMA), Non-Uniform Memory Access (NUMA), and the like. The cores
404 may also use shared or separate caches. The shared memory 406 may be used to store
code, for example, used to direct the cores 404 to implement the methods described herein.
The shared memory 406 may be used to store computational results computed during the
reservolr simulation. Additionally, the particular organization of computational nodes,
including the number of cores, the memory access architecture 404, cache organization, and

the like, may differ from one SMP node 402 to another.

[0076] The cluster computing system 400 may also include a network 408, such as a high
speed network that includes one or more communications busses. The network 408 may be
used to communicate instructions and computational data between each of the SMP nodes
402 of the cluster computing system 400 during the reservoir simulation. For example, a

global parameter such as a maximum fluid pressure over the entire simulation model, which
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has been computed by one SMP node 402, may be communicated to the other SMP nodes
402. Additionally, boundary conditions and state variables such as flow rates, pressures, and
saturations computed by one SMP node 402, may be passed to another SMP node 402
corresponding to an adjacent cell of the reservoir sitmulation.  The SMP nodes 402 may also

migrate computational tasks from one SMP node 402 to another through the network 408.

[0077] The cluster computing system 400 may also include one or more client systems
410 communicatively coupled to the network 408, such as general-purpose computers,
workstations, and the like. Each of the client systems 410 may have non-transitory, computer
readable memory for the storage of operating code and programs, including random access
memory (RAM) and read only memory (ROM). The operating code and programs may
include the code used to implement all or portions of the reservoir sitmulation. The client
systems 410 can also have other non-transitory computer readable media such as storage
systems for storage of operating code, reservoir models, reservoir simulation results, visual
representations, and other information used for implementing the methods described herein.
The storage systems may include one or more hard drives, one or more optical drives, one or
more flash drives, any combinations of these units, or any other suitable storage device.
Further, each of the client systems 410 may also have multiple processor cores 404 and may

be configured to function as an SMP node 402 1n the cluster computing system 400.

[0078] The cluster computing system 400 may also include cluster storage 412. The
cluster storage 412 can have one or more non-transitory computer readable media devices
such as storage arrays 414 for the storage of data, reservoir simulation results, visual
representations, code, or other information, for example, concerning the implementation of
and results from the reservoir simulation. The storage arrays 414 may include any
combinations of hard drives, optical drives, flash drives, holographic storage arrays, or any

other suitable devices.

[0079] The present techniques are not limited to the architecture of the cluster computer
system 400 1illustrated 1in Fig. 4. For example, any suitable processor-based device may be
utilized for implementing all or a portion of embodiments of the present techniques, including
without limitation personal computers, laptop computers, computer workstations, GPUSs,
mobile devices, and multi-processor servers or workstations with (or without) shared
memory. Moreover, embodiments may be implemented on application specific integrated

circuits (ASICs) or very large scale integrated (VLSI) circuits. In fact, persons of ordinary
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skill 1n the art may utilize any number of suitable structures capable of executing logical

operations according to the embodiments.

[0080] Fig. 5 1s a block diagram of an exemplary SMP node 402 in accordance with
exemplary embodiments of the present techniques. Each SMP node 402 may gencrate a
number of threads of process execution 500, referred to herein as “threads.” When the
reservolr simulation application starts on an SMP node 402, at least one thread 500 1s created
at cach SMP node 402, which 1s referred to herein as the master thread (MT) 502. In
exemplary embodiments, the master thread 502 handles the parallelization of tasks allocated
to the SMP node 402 and generates other threads 500. For example, the master thread 502
may create a number of working threads (WT) 504 up to the number of the cores 404
available to the reservoir simulation application on the SMP node 402. In embodiments,
multiple threads can execute on a single core 404. The working threads 504 are organized
into a working thread group, one for each SMP node 402. Depending on the hardware
organization, capabilities of the communication software, or the need of the application, the
master thread 502 of each SMP node 402 may also create a separate communication thread
(CT) 506 that manages communications between the SMP node 402 and the other SMP
nodes 402 of the cluster computing system 400. However, in embodiments, the master thread
can choose to handle communication with other SMP nodes 402 by 1tself instead of creating
the communication thread 506 or even allow some working threads 504 to communicate
directly with other SMP nodes 402. All the threads 500 or some part of them, such as
working threads 504, can be bound to particular cores 404 (Fig. 4) 1f the hardware and the

underlying operating system are equipped with the possibility to bind threads 500 to the cores
404.

[0081] At any stage of the simulation process, the reservoir simulation application may
be structured into a set of interacting tasks or jobs. Each task consists of a sequence of
computations or commands captured in a function or procedure to be executed by a thread
500. Examples of such computations can be: computation of Jacobian eclements,
computation of the residual, vector-vector multiplication, and the like. The computations may
include the dynamic creation of new tasks which can later be executed by the same or
different thread 500. Collections of tasks are organized on each SMP node 402. The tasks
can be sent from one SMP node 402 to another SMP node 402 for proper load balancing of

the computational workflow.
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[0082] Each SMP node can also include a task collection 508 used to store and manage
the tasks created on the corresponding SMP node 402 or received from other SMP nodes 402
during the simulator execution. The task collection 508 may be stored to a shared memory
location, such as the shared memory 406 shown in Fig. 4. In exemplary embodiments, the
task collection 508 may be accessible to all threads 500 of the corresponding SMP node 402.
Any thread 500 can extract a task from the task collection 508 for execution or insert a new
task into the task collection 508. The number of task collections 508 created on an SMP node
402 can be flexible and may be determined by the needs of the computational algorithm. In
some embodiments, the SMP node 402 includes a single task collection 508, which 1s shared
by all of the threads 500. The communication of tasks between different threads 500 of an
SMP node 402 can be performed using shared address space of the process running on the
SMP node 402. A scheduling algorithm may be used to determine the sequence in which the

tasks from the task collection 508 should be executed.

[0083] In embodiments, thread management within the SMP nodes 402 may be handled
by any suitable thread management tool. For example, Windows Threads may be utilized for
an SMP node 402 on a Microsoft Windows-compatible operating system, such as XP, Vista,
or Windows 7. For an SMP node 402 on a computer with a UNIX or Linux operating
system, a Portable Operating System Interface (POSIX) thread library may be utilized. It will
be appreciated that embodiments of the present mmvention may incorporate any thread
management tool that provides a sufficient level of heterogeneity to successfully handle the
thread management techniques described herein, including thread management tools that may
be developed 1n the future such as any future version of the Open Multi-Processing

(OpenMP) application programming interface (version 3.x or above).

[0084] Communication between the SMP nodes 402 may be handled by any suitable
communications tool that can handle global communications between multiple SMP nodes
402 and local communications between any two SMP nodes 402. In exemplary
embodiments, the communications tool may include the Message Passing Interface (MPI)

library, including versions 1.4 and later.

[0085] The MPI standard defines several levels of threading support, some of which are
referred to as “MPI THREAD FUNNELED,” “MPI THREAD SERIALIZED,” and

“MPI THREAD MULTIPLE.” Under the MPI THREAD FUNNELED threading support
level, the MPI process may be multi-threaded, but only one thread, referred to herein as the

“main thread,” will make MPI calls. In embodiments that use the
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MPI THREAD FUNNELED thread support level, the main thread can be the

communication thread 506 and a separate master thread 502 may be created. At the start of
simulator execution, the main thread may create the master thread 506 and begin serving as
the communications thread 502. The master thread 502 creates the group of working threads
504. The SMP node 402 can then be used for single-threaded communication workflows, as
described below 1n relation to Figs. 7, 9, and 11. As used herein, the term “single-threaded
communication” refers to communications wherein only the communication thread 506 1s
used to handle communications between nodes 402, including peer-to-peer communication

and global communications.

[0086] Under the MPI THREAD SERIALIZED threading support level, the MPI
process may be multi-threaded and multiple threads 500 may make MPI calls one at a time.
In other words, MPI calls cannot be made concurrently from two distinct threads 500. In
embodiments that use the MPI THREAD SERIALIZED thread support level any thread
500 can be used to communicate with other SMP nodes 402. At the start of simulator
execution, the main thread becomes the master thread 502. The master thread can create the
communication thread 506 and the group of working threads 504. The SMP node 402 can

then be used for multi-threaded communication worktlows, as described below 1n relation to

Figs. 6, 8, and 10.

[0087] Under the MPI THREAD MULTIPLE threading support level, multiple threads
can make MPI calls concurrently. In embodiments that use the MPI THREAD MULTIPLE
thread support level, any thread 500 can be used to communicate with other SMP nodes 402.
At the start of simulator execution, the main thread becomes the master thread 502. The
master thread 502 creates the communication thread 506 and the group of working threads
504. The SMP node 402 can then be used for single-threaded and multi-threaded
communication workflows, as described below 1n relation to Figs. 6-10. As used herein, the
term “multi-threaded communication” refers to communications wherein multiple threads
500 from single SMP node 402 may be used to participate in the communications between

nodes 402, including peer-to-peer communication and global communications.

[0088] Depending on the computational workflow during the reservoir simulator
execution, communications between SMP nodes 402 can be global communications or peer-
to-peer communications. In exemplary embodiments, global communications are handled by
the communication threads, which can include all-to-all, all-to-one, or one-to-all

communication patterns. In all-to-one communications, all SMP nodes 402 send information

_94



10

15

20

25

30

CA 02801382 2012-12-03

WO 2012/003007 PCT/US2011/021139

2010EM181

to one SMP node 402. In one-to-all communications, one SMP node 402 sends information
to all of the SMP nodes 402. In all-to-all communications, each SMP node 402 sends
information to each of the other SMP nodes 402. Using proper synchronization schemes,
such as the locking mechanism of POSIX threads or Windows threads, the communication
threads 506 ensurc that data 1s available to be sent or the appropriate memory areca 1s
available to accept incoming data. The data may then be exchanged globally using an all-to-
all, all-to-one, or one-to-all communication pattern, for example, using the corresponding

MPI tfunctionality.

[0089] Peer-to-peer communications may include push or pull communication patterns.
In both types of communications, the sending thread 500 can be the communication thread
506, the master thread 502 1f 1t 1s different from the communication thread 506, or any
working thread 504 provided the hardware and the communication software allow for
multiple threads 500 from a single SMP node 402 to participate in the peer-to-peer
communications. If either the hardware or the communication software does not allow for
multiple threads 500 from a single SMP node 402 to simultancously communicate with other
SMP nodes 402, then all peer-to-peer communications on any SMP node 402 may be handled

by the communication threads 506.
Message Passing

[0090] Fig. 6 1s an operational diagram of push-type, multi-threaded message passing, in
accordance with an exemplary embodiment of the present techniques. In push-type message
passing, a thread 500 from one SMP node 402 sends data to another SMP node 402 without
having received a request for the data. On the recerving SMP node 402, the communication
thread 506 1s allowed to receive and process the data from sending SMP node 402. In Fig. 6,
the sending SMP node 402 is referred to by the item number 600, and the receiving SMP
node 402 1s referred to by the item number 602. As shown 1n Fig. 6, in push-type, multi-
threaded communications, one of the threads 500 of the sending node 600 sends data to the
communications thread 506 of the receiving node 602, as indicated by arrow 604. The
communication thread 506 of the receiving node 602 receives and processes the data.
Although Fig. 6 shows a working thread 504 as sending the data, in case of multi-threaded
communication, the sending thread 500 can also be the communication thread 506 or the

master thread 502.

[0091] Fig. 7 1s an operational diagram of push-type, single-threaded message passing, 1n

accordance with an exemplary embodiment of the present techniques. In Fig. 7, the sending
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SMP node 402 1s referred to by the item number 700, and the receiving SMP node 402 1s
referred to by the item number 702. As shown in Fig. 7, in single-threaded, push-type
communications, one of the threads 500 of the sending node 700 creates a communication
task for the communication thread 506 of the sending node 700. Although Fig. 7 shows one
of the working threads 504 as creating the communication task, the communication task may
also be created by the master thread 502. The thread 500 stores the communication task to
the task collection 508 of the sending node 700, as indicated by arrow 704. The
communication thread 506 of the sending node 700 receives the communication task from the
task collection 508 according to the scheduling strategy, as indicated by arrow 706. The
communication thread 506 of the sending node 700 then sends the data to the receiving node
702, as indicated by arrow 708. The communication thread 506 of the receiving node 702

recerves and processes the data.

[0092] Fig. 8 1s an operational diagram of pull-type, multi-threaded message passing, in
accordance with an exemplary embodiment of the present techniques. In pull-type
communication, an SMP node 402 can request data from another SMP node 402. The SMP
node 402 requesting data 1s referred to herein as a requesting node 800. The SMP node 402
from which data are being requested 1s referred to herein as a responding node 802. A
request for data may occur when a working thread 504 needs to access data located at another
SMP node 402. In multi-threaded, peer-to-peer communications, communications from the
requesting node 800 may be handled by the communication thread 506. On the responding
node 802, the communication thread 506 receives and processes the data requests, prepares

the data, 1f available, and sends the data to the requesting node 800.

[0093] As shown 1n Fig. 8, in multi-threaded pull-type communications, a thread 500 of
the requesting node 800 sends the data request to the requesting node 802, as shown by arrow
804. Although Fig. 8 shows one of the working threads 504 as sending the request, in multi-
threaded communications the requesting thread can also be the communication thread 506 or
the master thread 502. The requesting thread 500 also notifies the communication thread 506
of the requesting node 800 regarding the request, for example, by creating a communication
task for communication thread 506 to receive the data from the responding node 802. The
requesting thread 500 sends the communication task into the task collection 508, as shown by

arrow 806. The requesting thread 500 then 1nitiates a waiting mode, as shown by box 808.

[0094] The communication thread 506 of the responding node 802 recerves and processes

the request sent by the requesting node 800. For example, the communication thread 506 of
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the responding node 802 may prepare the requested data using the appropriate
synchronization mechanisms, such as the locking mechanism of POSIX threads or Windows
threads. The communication thread 506 of the responding node 802 then sends the requested
data to the requesting node 800, as indicated by arrow 810. The communication thread 506
of the requesting node 800 receives the communication task from the task collection 508,
according to the appropriate scheduling strategy, as indicated by the arrow 812. The
communication thread 506 of the requesting node 800 then receives the data sent from the

responding node 802.

[0095] After receiving the data, the communication thread 506 of the requesting node 800
processes the received data and notifies the requesting thread 504 about availability of the
data. The requesting thread 504 then receives the requested data from the communication
thread 506 of the requesting node 800, as indicated by arrow 814. The requesting thread 504

then proceeds with 1ts task.

[0096] Fig. 9 1s an operational diagram of pull-type, single-threaded message passing, in
accordance with an exemplary embodiment of the present techniques. Is shown 1n Fig. 9, the
requesting SMP node 402 1s indicated by the item number 900 and the responding node SMP
402 1s 1indicated by the item number 902. In pull-type single-threaded communications one
of the threads 500 of the requesting node 900 notifies the communications thread 506 of the
requesting node 900 regarding the request for data. For example, the thread 500 may create a
first communication task that directs the communication thread 506 of the requesting node
900 to send the data request to the responding node 902. The requesting thread 500 stores the
task to the task collection 508, as indicated by arrow 904. The requesting thread 500 also
creates a second communication task that directs the communication thread 506 of the
requesting node 900 to receive the requested data from the responding node 902. The
requesting thread 500 stores the second communication task to the task collection 508, as
indicated by arrow 906. The requesting thread 500 then 1nitiates a waiting mode, as indicated
by the box 908. Although Fig. 9 shows one of the working threads 504 as creating the

communication tasks, the communication tasks may also be created by the master thread 502.

[0097] The communication thread 506 of the requesting node 900 receives the first
communication task from the task collection 508 according to the scheduling strategy, as
shown by arrow 910. The communication thread 506 of the requesting node 900 then sends
the data request to the responding node 902, as shown by arrow 912. The communication

thread 506 of responding node 902 receives and processes the data request. For example, the
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communication thread 506 of the responding node 902 may prepare the requested data using
the appropriate synchronization mechanisms, such as the locking mechanism of POSIX
threads or Windows threads. The responding node 902 then sends the requested data to the
requesting node 900, as indicated by arrow 914. The communication thread 506 of the
responding node 900 receives the second communication task from the task collection 508
according to the scheduling strategy, as shown by arrow 916, and receives the requested data
from the responding node 902. The communication thread 506 of the requesting node 900
processes the recerved data and notifies the requesting thread 500 about the availability of the
requested data. The requesting thread 500 then receives the requested data, as indicated by
arrow 918. The requesting thread 500 then proceeds with its task.

Task Migration

[0098] The task collections 508 described herein may enable two levels of load
balancing. A first level of load balancing can occur between the threads of a single SMP
node 402, and a second level of load balancing can occur between different SMP nodes 402.
Within each SMP node 402, the load balancing can be achieved by a work-stealing algorithm.
According to a work-stealing algorithm, a thread 500 that has completed 1ts assigned tasks
can retrieve additional tasks from the task collection 508 that were previously assigned to
other threads 500. In some embodiments, load balancing between different SMP nodes 402
can be achieved using a task migration algorithm, embodiments of which are described

below.

[0099] During the reservoir stmulator execution, 1f all of the tasks from a task collection
508 of the SMP node 402 are processed by the working threads 504, the working threads 504
enter a dormant state. The main thread of the SMP node 402, for example, the master thread
502, may send a task migration request to other SMP nodes 402 1n the cluster computing
system 400. In some embodiments the master thread 502 can send the task migration request
to all of the SMP nodes 402 available to the reservoir simulator application. In some
embodiments, the master thread 502 can send the task migration request to one other SMP
node 402 or a subset of SMP nodes 402, depending on some heuristics. For example, a node
can send such request only to its logical neighbors, or to a subset of the nodes belonging to
the same computational region, which can be determined by the logic of the reservoir
stmulation. The SMP node 402 sending the task migration request 1s referred to herein as the
requesting node, and the SMP node 402 receiving the task migration request 1s referred

herein as the responding node.
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[0100] Each of the SMP nodes 402 can be configured to determine which, if any, of the
tasks 1n 1ts task collection 508 are available to be migrated to another SMP node 402. Tasks
that are available to be migrated may be 1dentified as “movable tasks,” and tasks that are not
available for migration may be i1dentified as “immovable tasks.” Heuristics may be used to
determine whether a particular task 1s movable, based on the added communications
overhead of the task migration and the benefit of the increased SMP node utilization. For
example, 1f the computational results of a particular task are to be used by the responding
node, the communications overhead of migrating the task and then sending the computational
results back to the responding node may exceed the benefit of the increased SMP node
utilization, in which case, the SMP node 402 may identify the task as immovable. The
heuristics used to determine whether a task 1s movable may take into account any factors that
may be useful for determining whether the overall speed of the reservoir simulation may be
improved by migrating the task. Such factors may include but are not limited to the speed of
the network 408, the processing speed of the SMP nodes 402, the size of the task, and

whether the results of the task are to be used by the node, among others.

[0101] Upon recerving a task migration request, cach of the responding nodes may send a
response back to the requesting node, indicating whether the responding node has a movable
task. If one of the responding nodes indicates that 1t has a movable task, the master node 502
of the requesting node receives the task data and sends the task to the task collection 508 of
the requesting node. In some embodiments, placing the new task in the task collection 508
can cause the working threads 504 to automatically awake. The task migration workflow
may vary depending on whether the multi-threaded or single-threaded communication 1s

used.

[0102] Fig. 10 1s an operational diagram of multi-threaded task migration, 1n accordance
with an exemplary embodiment of the present techniques. The exemplary workflow pattern
shown 1n Fig. 10 includes a requesting node 1000, a first responding node 1002 that does not
have any movable tasks, and a second responding node 1004 that does have movable tasks.
In multi-threaded communications, the master thread 502 of the requesting node 1000 may
send task migration requests to other SMP nodes 402 directly. As shown 1n Fig. 10, task
migration requests are sent to the first responding node 1002, as indicated by arrow 1006, and
the second responding node 1004, as indicated by arrow 1008. For the sake of clarity, only

two responding nodes are shown. However, 1t will be appreciated that the requesting node
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may send requests to more than two SMP nodes 402, up to the number of SMP nodes 402 1n

the cluster computing system 400 available to the reservoir simulation application.

[0103] The responding nodes 1002 and 1004 receive and process the task migration
requests. The first responding node 1002 sends a negative message to the requesting node
1000 1ndicating that the first responding node 1002 does not have movable tasks, as indicated
by arrow 1010. The second responding node 1004 sends a positive message to the requesting
node 1000 indicating that the second responding node 1004 does have a movable task, as

indicated by arrow 1012.

[0104] The communication thread 506 of the requesting node 1000 collects all responses
from the responding nodes 1002 and 1004 and prepares a task for receiving the movable task
from the second responding node 1004. In cases where multiple SMP nodes 402 respond
positively, the communication task may be configured to receive the movable tasks from all

of the SMP nodes 402 that responded positively.

[0105] The communication thread 506 of the second responding node 1004, which
responded positively, updates 1ts task collection 508, as indicated by arrow 1014. The
updating of the task collection 508 removes the movable task from the task collection 508.
The communication thread 506 of the second responding node 1004 also extracts the
movable task and corresponding data from the task collection, as indicated by arrow 1016.
The communication thread 506 of the second responding node 1004 then sends the extracted

task and corresponding data to the requesting node 1000, as indicated by arrow 1018.

[0106] The communication thread 506 of the requesting node 1000 executes the
communication task previously created for receiving the task and receives the movable task
from the second responding node 1004. The communication thread 506 of the requesting
node 1000 then stores the received tasks in the shared memory 406 (Fig. 4). The
communication thread 506 of the requesting node 1000 notifies the master thread 502 about
presence of the new task, as indicated by arrow 1020. The master thread 502 of the
requesting node 1000 receives notification from the communication thread 506 about the
presence of the new task, extracts it from shared memory 406, and stores 1t to the task
collection 508, as indicated by arrow 1022. After all responses are processed, the master
thread 502 wakes up the group of working threads 504. The new task 1s now ready to be
processed by one of the working threads 504.
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[0107] Fig. 11 1s an operational diagram of single-threaded task migration, in accordance
with an exemplary embodiment of the present techniques. The exemplary workflow pattern
shown 1n Fig. 11 includes a requesting node 1100, a first responding node 1102 that does not
have any movable tasks, and a second responding node 1104 that does have movable tasks.
In single-threaded communications, the communication thread 506 of the requesting node
1000 sends task migration requests to other SMP nodes 402. As shown in Fig. 11, the master
thread 502 of the requesting node 1100 creates a communication task for the communication
thread 506 of the requesting node 1100 and stores the new task to the task collection 508 as
indicated by arrow 1106. The communication thread 506 of the requesting node 1100
recerves the task from the task collection 508 according to the scheduling strategy, as

indicated by arrow 1108.

[0108] Pursuant to the received communication task, the communication thread 506 of
the requesting node 1100 sends requests to other nodes for movable tasks, which can be
transferred to the requesting node 1100 for execution. As shown in Fig. 11, task migration
requests are sent to the first responding node 1102, as indicated by arrow 1110, and the
second responding node 1104, as indicated by arrow 1112. For the sake of clarity, only two
responding nodes are shown. However, 1t will be appreciated that the requesting node may
send requests to more than two SMP nodes 402, up to the number of SMP nodes 402 1n the

cluster computing system 400 available to the reservoir stmulation application.

[0109] The responding nodes 1102 and 1104 receive and process the task migration
requests. The first responding node 1102 sends a negative message to the requesting node
1100 1ndicating that the first responding node 1102 does not have movable tasks, as indicated
by arrow 1114. The second responding node 1104 sends a positive message to the requesting
node 1100 indicating that the responding node 1104 does have a movable task, as indicated

by arrow 1116.

[0110] The communication thread 506 of the requesting node 1100 collects all responses
from the responding nodes 1102 and 1104 and prepares a task for receiving the movable task
from the second responding node 1104. In cases where multiple SMP nodes 402 respond
positively, the communication task may be configured to receive the movable tasks from all

of the SMP nodes 402 that responded positively.

[0111] The communication thread 506 of the second responding node 1104, which
responded positively, updates 1ts task collection 508, as indicated by arrow 1118. The

updating of the task collection 508 removes the movable task from the task collection 508.
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The communication thread 506 of the second responding node 1104 also extracts the
movable task and corresponding data from the task collection, as indicated by arrow 1120.
The communication thread 506 of the second responding node 1004 then sends the extracted

task and corresponding data to the requesting node 1000, as indicated by arrow 1120.

[0112] The communication thread 506 of the requesting node 1100 executes the
communication task previously created for receiving the task, and receives the movable task
from the second responding node 1104. The communication thread 506 of the requesting
node 1100 then stores the received tasks in the shared memory 406 (Fig. 4). The
communication thread 506 of the requesting node 1100 notifies the master thread 502 about
presence of the new task, as indicated by arrow 1122. The master thread 502 of the
requesting node 1100 receives notification from the communication thread 506 about the
presence of the new task, extracts it from shared memory 406, and stores 1t to the task
collection 508, as indicated by arrow 1124. After all responses are processed, the master
thread 502 of the requesting node 1100 wakes up the group of working threads 504. The new

task 18 now ready to be processed by one of the working threads 504.

[0113] Fig. 12 1s a process flow diagram of a summary of a method of executing a
reservolr simulation 1n accordance with an exemplary embodiment of the present techniques.
The method, referred to by the reference number 1200, begins at block 1202. At block 1202
a representation of a simulation model can be generated. The simulation model may be
stored to a non-transitory, computer-readable medium such as the cluster storage 412 shown
in Fig. 4. At block 1204 a set of computational tasks may be generated based on the
simulation model, as discussed 1n reference to Fig. 3. For example, some of the
computational tasks may relate to solving the matrix equation of a computational cell,
computing state variables, and the like. At block 1206 the computational tasks may be
allocated among a plurality of computational nodes, for example, the SMP nodes 402 shown
in Fig. 4. Each processing node may include a plurality of core processors and a shared
memory accessible by the plurality of core processors. At block 1208 the reservoir
simulation may be executed on the plurality of computational nodes. At block 1210 a
migration request may be sent from a first processing node to another processing node 1n the
plurality of computational nodes. The migration request may be sent during the execution of
the reservoir simulation 1f the first processing node finishes executing 1ts allocated
computational tasks. The migration request may be configured to request migration of a

movable task from other computational nodes to the first processing node to balance the
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computational load between the computational nodes. At block 1212, 1f the other processing
node responds positively, the movable task may be migrated from the other processing node

to the first processing node.

[0114] While the present techniques may be susceptible to various modifications and
alternative forms, the exemplary embodiments discussed above have been shown only by
way of example. However, 1t should again be understood that the present techniques are not
intended to be limited to the particular embodiments disclosed herein. Indeed, the present
techniques include all alternatives, modifications, and equivalents falling within the true spirit

and scope of the appended claims.
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CLAIMS

What 1s claimed 1s:

1. A method for executing a reservoir simulation, comprising:

5 generating a representation of a simulation model 1in a non-transitory, computer

readable medium;

generating a plurality of computational tasks based, at least in part, on the simulation

model;

allocating the computational tasks among a plurality of computational nodes, wherein
10 cach processing node of the plurality of computational nodes includes a
plurality of core processors and a shared memory accessible by the plurality of

COIe Processors;
executing the reservoir simulation on the plurality of computational nodes;

during the reservoir simulation, 1f a first processing node in the plurality of

15 computational nodes finishes executing 1ts allocated computational tasks,
sending a migration request from the first processing node to another

processing node 1n the plurality of computational nodes, the migration request

configured to request migration of a movable task from the other processing

node to the first processing node;

20 migrating the movable task from the other processing node to the first processing
node.
2. The method of claim 1, wherein executing the reservoir simulation on the

plurality of computational nodes comprises generating a master thread on each of the
25  computational nodes, the master thread generating one or more working threads configured to
receive computational tasks from a task collection stored 1n the shared memory 1n each of the

computational nodes.
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3. The method of claim 2, wherein executing the reservoir simulation on the

plurality of computational nodes comprises the master thread generating a communication

thread configured to handle communications between the plurality of computational nodes.

4, The method of claim 1, comprising 1dentifying computational tasks allocated
to each processing node as movable based, at least in part, on an added communications

overhead of the task migration and a benefit of increased processing node utilization.

3. The method of claim 1, wherein sending a migration request to another

processing node, comprises:

a master thread of the first processing node generating a communication task
corresponding to the task migration request and storing the communication task to a task

collection of the first processing node; and

a communication thread of the first processing node receiving the communication task
from the task collection and sending the corresponding task migration request to the other

processing node.

0. The method of claim 1, wherein sending a migration request to another
processing node comprises a master thread of the first processing node generating the task

migration request and sending the task migration request to the other processing node.

7. The method of claim 1, comprising each of the computational nodes
generating a task collection and one or more working threads, wherein the working threads

receive tasks from the task collection and create new tasks to send to the task collection.

3. A system for modeling reservoir properties, comprising:
a storage medium comprising a representation of a reservoir model;

a plurality of computational nodes operatively coupled by a communications network,

cach processing node of the plurality of computational nodes comprising a
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plurality of core processors and a shared memory accessible to the plurality of

COIC PIOCCSSOTS,

a machine readable medium comprising code configured to assign computational
tasks to the plurality of computational nodes for the execution of a reservoir

S simulation based, at least in part, on the reservoir model; and

wherein a processing node in the plurality of computational nodes comprises code

configured to:
execute the computational tasks assigned to the processing node;

if the processing node finishes executing its allocated computational tasks,
10 send a migration request from the processing node to another processing node 1n the
plurality of computational nodes, the migration request configured to request

migration of a movable task from the other processing node to the processing node;

and
recerve the movable task from the other processing node.
15
9. The system of claim 8, wherein a master thread of the processing node 1s
configured to generate a task collection stored to the shared memory and a working thread
configured to receive tasks from the task collection and send tasks to the task collection.
20 10. The system of claim 9, wherein the processing node 1s configured to handle

multi-threaded communications, wherein the master thread and the working thread are

configured to send data to other computational nodes over the network.

11.  The system of claim 9, wherein the master thread of the processing node 1s
25 configured to gencrate a communication thread configured to handle single-threaded

communications between the computational nodes, wherein:

the working thread of the processing node generates a communication task that
includes corresponding data to be transmitted to another processing node and

stores the communication task to the task collection; and
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the communication thread receives the communication task from the task collection

and sends the corresponding data to the other processing node.

12.  The system of claim &, wherein the processing node comprises code
5  configured to 1dentify computational tasks allocated to the processing node as movable based,
at least 1n part, on an added communications overhead of the task migration and a benefit of

increased processing node utilization.

13. The system of claim 8, wherein the processing node 1s configured to:

10 send a task migration request to other computational nodes in the plurality of
computational nodes i1f the processing node finishes executing its assigned

computational tasks;
receive new tasks from the other computational nodes that respond positively; and

add the new tasks to the task collection of the processing node.

15
14.  The system of claim 9, wherein:
the master thread of the processing node 1s configured to generate a communication
task corresponding to a task migration request and store the communication
task to the task collection of the processing node; and
20 a communication thread of the processing node 18 configured to receive the

communication task from the task collection and send the corresponding task

migration request to another processing node over the network.

15. The system of claim 9, wherein the master thread of the processing node 1s
25  configured to generating a task migration request if the processing node finishes executing its
assigned computational tasks and send the task migration request to the other processing

node.

16. A non-transitory, computer readable medium comprising code configured to

30  direct a processor to:
_37 -



10

15

20

25

30

CA 02801382 2012-12-03

WO 2012/003007 PCT/US2011/021139

2010EM181

generate one or more working threads configured to perform a set of computational

tasks corresponding to a reservoir stmulation;

generate a task collection configured to hold the set of computational tasks, wherein
the working threads are configured to receive computational tasks from the

task collection and send new tasks to the task collection;

if the working threads finish executing the computational tasks in the task collection,
send a migration request to another processing node, the migration request
configured to request migration of a movable task from the other processing

node; and

recerve a movable task from the other processing node and add the movable task to

the task collection.

17.  The non-transitory, computer readable medium of claim 16, comprising code
configured to direct the processor to generate a communication thread configured to handle

communications with other computational nodes.

18.  The non-transitory, computer readable medium of claim 17, comprising code

configured to:

generate a communication task corresponding to the task migration request and store

the communication task to the task collection;

wherein the communication thread 1s configured to receive the communication task
from the task collection and send the corresponding task migration request to

another processing node over a network.

19.  The non-transitory, computer readable medium of claim 17, wherein the
communication thread 1s configured to receive the movable task from the other processing
node, store the movable task to a shared memory, and alert a master thread regarding the
existence of the movable task; and the master thread 1s configured to store the movable task

to the task collection.

- 3R -
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20.  The non-transitory, computer readable medium of claim 16, comprising code

configured to 1dentify computational tasks 1n the task collection as movable based, at least 1n
part, on heuristics that consider an added communications overhead of the task migration and

a benefit of increased processing node utilization.
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