

US005424410A

United States Patent [19]

Payne et al.

[11] Patent Number: 5,424,410

[45] Date of Patent: Jun. 13, 1995

[54] **BACILLUS THURINGIENSIS ISOLATES FOR CONTROLLING ACARIDES**

[75] Inventors: Jewel M. Payne, San Diego, Calif.; Raymond J. C. Cannon; Angela L. Bagley, both of Kent, Great Britain

[73] Assignee: Mycogen Corporation, San Diego, Calif.

[21] Appl. No.: 147,188

[22] Filed: Nov. 3, 1993

Related U.S. Application Data

[60] Division of Ser. No. 867,280, Apr. 30, 1992, Pat. No. 5,262,158, which is a continuation-in-part of Ser. No. 693,210, Apr. 30, 1991, abandoned, and Ser. No. 768,141, Sep. 30, 1991, Pat. No. 5,211,946, which is a continuation-in-part of Ser. No. 759,248, Sep. 13, 1991, abandoned.

[51] Int. Cl.⁶ A01N 63/00; A61K 37/00; C12N 15/00; C07H 19/00

[52] U.S. Cl. 536/23.71; 424/93.4; 424/93.46; 424/93.461; 435/172.3; 435/242; 435/252.3; 435/252.5; 435/252.8; 435/320.1; 435/832; 536/22.1; 536/23.1; 536/23.2; 536/23.7

[58] Field of Search 424/93 D, 93 L, 93 K; 435/172.3, 242, 252.3, 252.5, 252.8, 320.1, 832; 536/22.1, 23.1, 23.2, 23.7, 23.71

[56] **References Cited****U.S. PATENT DOCUMENTS**

4,695,455 9/1987 Barnes et al. 424/93
4,771,131 9/1988 Herrnstadt et al. 536/27
4,849,217 7/1989 Soares et al. 424/93

OTHER PUBLICATIONS

Couch, Terry L. (1980) "Mosquito Pathogenicity of

Bacillus thuringiensis var. *israelensis*" *Developments in Industrial Microbiology* 22:61-67.

Beegle, Clayton C. (1978) "Use of Entomogenous Bacteria in Agroecosystems" *Developments in Industrial Microbiology* 20:97-104.

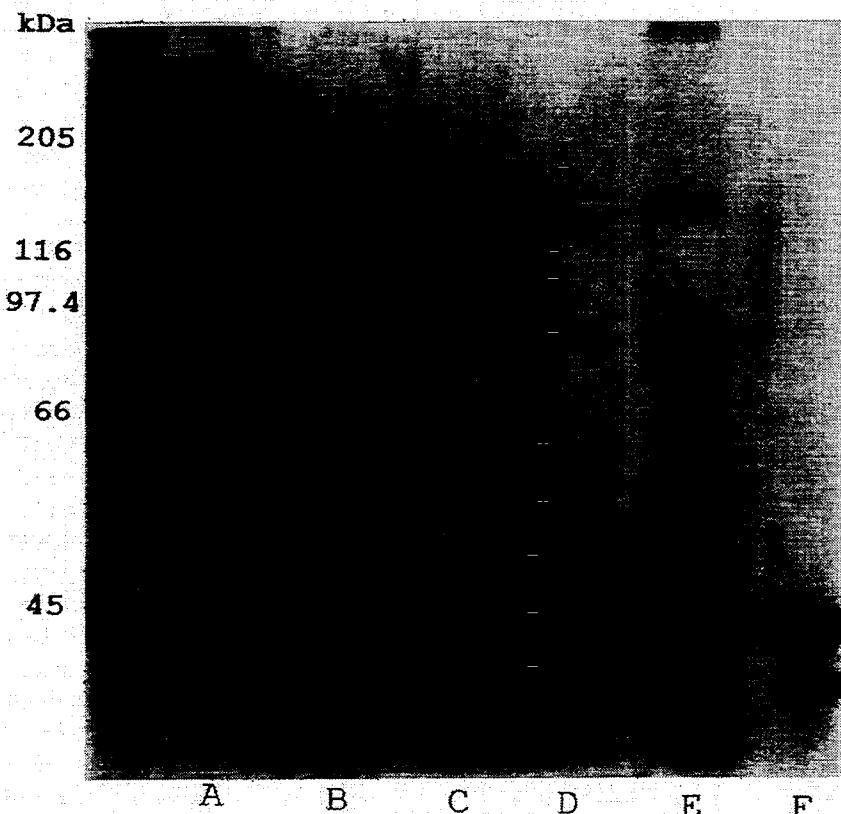
Royalty, Reen N. et al. (1990) "Effects of Thuriensin on *Tetranychus urticae* (Acari: Tetranychidae) Mortality, Fecundity, and Feeding" *J. Econ. Entomol.* 83:792-798.

Neal, John W. et al. (1987) "Activity of the Thermostable Beta-Exotoxin of *Bacillus thuringiensis* Berliner on *Tetranychus urticae* and *T. Cinnabarinus*" *J. Agric. Entomol.* 4:33-40.

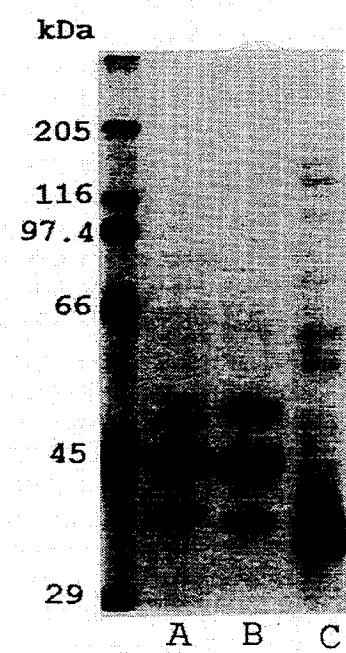
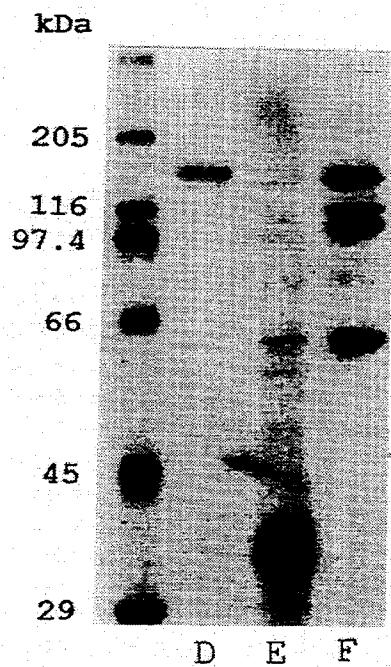
Vluyen, P. et al. (1978) "Activite D'une Preparation Commerciale de *Bacillus thuringiensis* sur L'Acarien Tisserand Commun *Tetranychus urticae* Koch. (Acari: Tetranychidae)" *Mededelingen* 43:471-479.

Primary Examiner—Robert A. Wax

Assistant Examiner—Hyosuk Kim


Attorney, Agent, or Firm—Saliwanchik & Saliwanchik

[57]



ABSTRACT

Disclosed and claimed are *Bacillus thuringiensis* isolates designated B.t. PS50C, B.t. PS86A1, B.t. PS69D1, B.t. PS72L1, B.t. PS75J1, B.t. PS83E5, B.t. PS45B1, B.t. PS24J, B.t. PS94R3, B.t. PS17, B.t. PS62B1 and B.t. PS74G1 which are active against acaride pests. Thus, these isolates, or mutants thereof, can be used to control such pests. Further, genes encoding novel δ -endotoxins can be removed from these isolates and transferred to other host microbes, or plants. Expression of the δ -endotoxins in microbe hosts results in the control of acaride pests, whereas transformed plants become resistant to acaride pests.

2 Claims, 2 Drawing Sheets

Figure 1

- A. *B.t.* PS50C
- B. *B.t.* PS86A1
- C. *B.t.* PS69D1
- D. *B.t.* PS72L1
- E. *B.t.* PS75J1
- F. *B.t.* PS83E5

Figure 2A**Figure 2B**A. *B.t.* PS24JB. *B.t.* PS94R3C. *B.t.* PS45B1D. *B.t.* PS17E. *B.t.* PS62B1F. *B.t.* PS74C1

BACILLUS THURINGIENSIS ISOLATES FOR CONTROLLING ACARIDES

CROSS-REFERENCE TO A RELATED APPLICATION

This is a division, of application Ser. No. 07/867,280 filed Apr. 30, 1992, now U.S. Pat. No. 5,262,158, which is a continuation-in-part of application Ser. No. 07/693,210, filed on Apr. 30, 1991 now abandoned. This is also a continuation-in-part of application Ser. No. 07/768,141, filed on Sep. 30, 1991 now U.S. Pat. No. 5,211,946, which is a continuation-in-part of application Ser. No. 07/759,248, filed on Sep. 13, 1991, now abandoned.

BACKGROUND OF THE INVENTION

The spore-forming microorganism *Bacillus thuringiensis* (B.t.) produces the best-known insect toxin. The toxin is a protein, designated as δ -endotoxin. It is synthesized by the B.t. sporulating cell. The toxin, upon being ingested in its crystalline form by susceptible insect larvae, is transformed into biologically active moieties by the insect gut juice proteases. The primary target is insect cells of the gut epithelium, which are rapidly destroyed. Experience has shown that the activity of the B.t. toxin is so high that only nanogram amounts are required to kill susceptible insects.

The reported activity spectrum of B.t. covers insect species within the order Lepidoptera, which is a major insect problem in agriculture and forestry. The activity spectrum also includes the insect order Diptera, wherein reside mosquitoes and blackflies. See Couch, T. L., (1980) "Mosquito Pathogenicity of *Bacillus thuringiensis* var. *israelensis*," Developments in Industrial Microbiology, 22:61-67; Beegle, C. C., (1978) "Use of Entomogeneous Bacteria in Agroecosystems," Developments in Industrial Microbiology, 20:97-104.

U.S. Pat. No. 4,771,131 discloses a toxin gene isolated from a strain of *Bacillus thuringiensis*. This gene encodes a toxin which is active against beetles of the order Coleoptera.

There have been published reports concerning the use of *Bacillus thuringiensis* preparations for the control of mites. These publications are as follow:

Royalty, R. N., HaH, F. R. and Taylor, R. A. J. 1990. Effects of *thuringiensin* on *Tetranychus urticae* (Acari: Tetranychidae) mortality, fecundity, and feeding. J. Econ. Entomol. 83:792-798.

Neal, J. W., Lindquist, R. K., Gott, K. M. and Casey, M. L. 1987. Activity of the thermostable beta-exotoxin of *Bacillus thuringiensis* Berliner on *Tetranychus urticae* and *Tetranychus cinnabarinus*. J. Agric. Entomol. 4:33-40.

Vluyen, P., Impe, G. and Van Semaille, R. 1978. Effect of a commercial preparation of *Bacillus thuringiensis* on the spider mite *Tetranychus urticae* Koch. (Acari: Tetranychidae). Mededelingen 43:471-479.

In the above published studies, the active ingredient in the B.t. preparations was beta-exotoxin (also called *thuringiensin*).

U.S. Pat. No. 4,695,455 concerns methods and compositions for preparing and using biological pesticides,

where the pesticides are encapsulated in non-proliferating cells.

U.S. Pat. No. 4,849,217 concerns B.t. isolates active against the alfalfa weevil.

BRIEF SUMMARY OF THE INVENTION

The subject invention concerns *Bacillus thuringiensis* isolates and toxins which have acaricidal properties. Unlike published reports of the use of B.t. β -exotoxins to control mites, the subject invention isolates express δ -endotoxins which control mites. The use of δ -endotoxins is highly advantageous in view of the known general toxicity of δ -exotoxins to humans and animals.

More specifically, the subject invention concerns *Bacillus thuringiensis* isolates designated B.t. PS50C, B.t. PS86A1, B.t. PS69D1, B.t. PS72L1, B.t. PS75J1, B.t. PS83E5, B.t. PS45B1, B.t. PS24J, B.t. PS94R3, B.t. PS17, B.t. PS62B1 and B.t. PS74G1.

The B.t. isolates of the subject invention are toxic to the Two Spotted Spider Mite, *Tetranychus urticae*. Thus, these isolates can be used to control this mite. Further, the δ -endotoxins from these B.t. isolates can be isolated by standard procedures, e.g. ion exchange, and formulated by standard procedures to control the Two Spotted Spider Mite. These B.t. isolates can also be used against non-phytophagous mites such as acarid pests of livestock, fowl and stored products. Still further, the gene(s) from the B.t. isolates of the invention which encode the acaricidal toxin can be cloned from the isolates and then used to transform other hosts, e.g., prokaryotic, eukaryotic or plants, which transformed host can be used to control mites, or, in the case of transgenic plants, be resistant to mites.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1, 2A and 2B are photographs of 12% SDS polyacrylamide gels showing alkali-soluble proteins of the isolates of the invention.

BRIEF DESCRIPTION OF THE SEQUENCES

SEQ ID NO. 1 discloses the DNA of 17a.

SEQ ID NO. 2 discloses the amino acid sequence of the toxin encoded by 17a.

SEQ ID NO. 3 discloses the DNA of 17b.

SEQ ID NO. 4 discloses the amino acid sequence of the toxin encoded by 17b.

SEQ ID NO. 5 is the nucleotide sequence of gene 33F2.

SEQ ID NO. 6 is the nucleotide sequence of a gene from 52A1.

SEQ ID NO. 7 is the amino acid sequence of the protein expressed by the gene from 52A1.

SEQ ID NO. 8 is the nucleotide sequence of a gene from 69D1.

SEQ ID NO. 9 is the amino acid sequence of the protein expressed by the gene from 69D1.

SEQ ID NO. 10 is the DNA coding for the amino acid sequence of SEQ ID NO. 13.

SEQ ID NO. 11 is the amino acid sequence of a probe which can be used according to the subject invention.

SEQ ID NO. 12 is the N-terminal amino acid sequence of 17a.

SEQ ID NO. 13 is the N-terminal amino acid sequence of 17b.

SEQ ID NO. 14 is the N-terminal amino acid sequence of 52A1.

SEQ ID NO. 15 is the N-terminal amino acid sequence of 69D1.

SEQ ID NO. 16 is a synthetic oligonucleotide derived from 17.

SEQ ID NO. 17 is an oligonucleotide probe designed from the N-terminal amino acid sequence of 52A1.

SEQ ID NO. 18 is the synthetic oligonucleotide probe designated as 69D1D.

SEQ ID NO. 19 is the forward oligonucleotide primer from 63B.

SEQ ID NO. 20 is the reverse complement primer to SEQ ID NO. 29, used according to the subject invention.

SEQ ID NO. 21 is the DNA coding for the primer of SEQ ID NO. 31.

SEQ ID NO. 22 is a forward primer according to the subject invention.

SEQ ID NO. 23 is a probe according to the subject invention.

SEQ ID NO. 24 is a probe according to the subject invention.

SEQ ID NO. 25 is a probe according to the subject invention.

SEQ ID NO. 26 is a forward primer according to the subject invention.

SEQ ID NO. 27 is the nucleotide sequence of a gene from PS50C.

SEQ ID NO. 28 is the amino acid sequence of the protein expressed by the gene from PS50C.

SEQ ID NO. 29 is the nucleotide sequence of a gene from PS86A1.

SEQ ID NO. 30 is the amino acid sequence of the protein expressed by the gene from PS86A1.

DETAILED DISCLOSURE OF THE INVENTION

The subject invention concerns B.t. δ -endotoxins having acaricidal activity. In addition to having acaricidal activity, the toxins of the subject invention may have one or more of the following characteristics:

1. A high degree of amino acid homology with specific toxins disclosed herein.
2. A DNA sequence encoding the toxin which hybridizes with probes or genes disclosed herein.
3. A nucleotide sequence which can be amplified using primers disclosed herein.
4. Immunoreactivity to an antibody raised to a specific toxin disclosed herein.

Acaride-active toxins according to the subject invention are specifically exemplified herein by the toxins encoded by the genes designated 17a, 17b, and 69D1. Since these toxins are merely exemplary of the toxins presented herein, it should be readily apparent that the subject invention further comprises toxins from the other disclosed isolates as well as equivalent toxins (and nucleotide sequences coding for equivalent toxins) having the same or similar biological activity of the specific toxins disclosed or claimed herein. These equivalent toxins will have amino acid homology with the toxins disclosed and claimed herein. This amino acid homol-

ogy will typically be greater than 50%, preferably be greater than 75%, and most preferably be greater than 90%. The amino acid homology will be highest in certain critical regions of the toxin which account for biological activity or are involved in the determination of three-dimensional configuration which ultimately is responsible for the biological activity. In this regard, certain amino acid substitutions are acceptable and can be expected if these substitutions are in regions which are not critical to activity or are conservative amino acid substitutions which do not affect the three-dimensional configuration of the molecule. For example, amino acids may be placed in the following classes: non-polar, uncharged polar, basic, and acidic. Conservative substitutions whereby an amino acid of one class is replaced with another amino acid of the same type fall within the scope of the subject invention so long as the substitution does not materially alter the biological activity of the compound. Table 1 provides a listing of examples of amino acids belonging to each class.

TABLE 1

Class of Amino Acid	Examples of Amino Acids
Nonpolar	Ala, Val, Leu, Ile, Pro, Met, Phe, Trp
Uncharged Polar	Gly, Ser, Thr, Cys, Tyr, Asn, Gln
Acidic	Asp, Glu
Basic	Lys, Arg, His

In some instances, non-conservative substitutions can also be made. The critical factor is that these substitutions must not significantly detract from the biological activity of the toxin. The information presented in the generic formulae of the subject invention provides clear guidance to the person skilled in this art in making various amino acid substitutions.

The B.t. isolates of the invention have the following characteristics:

Strain	Crystal Type	Approx. Mol. Wt. of Proteins (kDa) B.
<i>B. thuringiensis</i> PS50C	Sphere	135 doublet
<i>B. thuringiensis</i> PS86A1	Multiple	45, 58
<i>B. thuringiensis</i> PS69D1	Elongated	34, 48, 145
<i>B. thuringiensis</i> PS72L1	Long rectangle	42, 50
<i>B. thuringiensis</i> PS75J1	Amorphic	63, 74, 78, 84
<i>B. thuringiensis</i> PS83E5	Multiple	37, 42
<i>B. thuringiensis</i> PS24J	Long	51, 48, 43
<i>B. thuringiensis</i> PS94R3	Long	50, 43, 42
<i>B. thuringiensis</i> PS45B1	Multiple	150, 135, 35
<i>B. thuringiensis</i> PS17	Long	155, 145, 128
<i>B. thuringiensis</i> PS62B1	Attached multiple	35
<i>B. thuringiensis</i> PS74G1	Amorphic	148, 112, 104, 61

Additionally, the isolates have the following common characteristics:

Colony morphology—large colony, dull surface, typical B.t.

Vegetative cell morphology—typical B.t.

The toxins of the subject invention can be accurately characterized in terms of the shape and location of crystal toxin inclusions. Specifically, acaride-active inclusions typically remain attached to the spore after cell lysis. These inclusions are not inside the exosporium, as in previous descriptions of attached inclusions,

but are held within the spore by another mechanism. Inclusions of the acaride-active isolates are typically amorphous, generally long and/or multiple. These inclusions are distinguishable from the larger round/ amorphous inclusions that remain attached to the spore. No B.t. strains that fit this description have been found to have activity against the conventional targets—Lepidoptera, Diptera, or Colorado Potato Beetle. We have found a very high correlation between this crystal structure and acaride activity.

The genes and toxins according to the subject invention include not only the full length sequences disclosed herein but also fragments of these sequences, or fusion proteins, which retain the characteristic acaricidal activity of the sequences specifically exemplified herein.

It should be apparent to a person skilled in this art that genes coding for acaride-active toxins can be identified and obtained through several means. The specific genes may be obtained from a culture depository as described below. These genes, or portions thereof, may be constructed synthetically, for example, by use of a gene machine. Variations of these genes may be readily constructed using standard techniques for making point mutations. Also, fragments of these genes can be made using commercially available exonucleases or endonucleases according to standard procedures. For example, enzymes such as Ba131 or site-directed mutagenesis can be used to systematically cut off nucleotides from the ends of these genes. Also, genes which code for active fragments may be obtained using a variety of other restriction enzymes. Proteases may be used to directly obtain active fragments of these toxins.

Equivalent toxins and/or genes encoding these equivalent toxins can also be located from B.t. isolates and/or DNA libraries using the teachings provided herein. There are a number of methods for obtaining the acaride-active toxins of the instant invention which occur in nature. For example, antibodies to the acaride-active toxins disclosed and claimed herein can be used to identify and isolate other toxins from a mixture of proteins. Specifically, antibodies may be raised to the acaride-active toxins using procedures which are well known in the art. These antibodies can then be used to specifically identify equivalent toxins with the characteristic acaricidal activity by immunoprecipitation, enzyme linked immunoassay (ELISA), or Western blotting. Antibodies to the toxins disclosed herein, or to equivalent toxins, or fragments of these toxins, can readily be prepared using standard procedures in this art. The genes coding for these toxins can then be obtained from the microorganism.

A further method for identifying the toxins and genes of the subject invention is through the use of oligonucleotide probes. These probes are nucleotide sequences having a detectable label. As is well known in the art, if the probe molecule and nucleic acid sample hybridize by forming a strong bond between the two molecules, it can be reasonably assumed that the probe and sample are essentially identical. The probe's detectable label provides a means for determining in a known manner whether hybridization has occurred. Such a probe anal-

ysis provides a rapid method for identifying nematicidal endotoxin genes of the subject invention.

The nucleotide segments which are used as probes according to the invention can be synthesized by use of DNA synthesizers using standard procedures. In the use of the nucleotide segments as probes, the particular probe is labeled with any suitable label known to those skilled in the art, including radioactive and non-radioactive labels. Typical radioactive labels include ³²P, ¹²⁵I, ³⁵S, or the like. A probe labeled with a radioactive isotope can be constructed from a nucleotide sequence complementary to the DNA sample by a conventional nick translation reaction, using a DNase and DNA polymerase. The probe and sample can then be combined in a hybridization buffer solution and held at an appropriate temperature until annealing occurs. Thereafter, the membrane is washed free of extraneous materials, leaving the sample and bound probe molecules typically detected and quantified by autoradiography and/or liquid scintillation counting.

Non-radioactive labels include, for example, ligands such as biotin or thyroxine, as well as enzymes such as hydrolases or peroxidases, or the various chemiluminescers such as luciferin, or fluorescent compounds like fluorescein and its derivatives. The probe may also be labeled at both ends with different types of labels for ease of separation, as, for example, by using an isotopic label at the end mentioned above and a biotin label at the other end.

Duplex formation and stability depend on substantial complementarity between the two strands of a hybrid, and, as noted above, a certain degree of mismatch can be tolerated. Therefore, the probes of the subject invention include mutations (both single and multiple), deletions, insertions of the described sequences, and combinations thereof, wherein said mutations, insertions and deletions permit formation of stable hybrids with the target polynucleotide of interest. Mutations, insertions, and deletions can be produced in a given polynucleotide sequence in many ways, and these methods are known to an ordinarily skilled artisan. Other methods may become known in the future.

The known methods include, but are not limited to:

- (1) synthesizing chemically or otherwise an artificial sequence which is a mutation, insertion or deletion of the known sequence;
- (2) using a probe of the present invention to obtain via hybridization a new sequence or a mutation, insertion or deletion of the probe sequence; and
- (3) mutating, inserting or deleting a test sequence in vitro or in vivo.

It is important to note that the mutational, insertional, and deletional variants generated from a given probe may be more or less efficient than the original probe. Notwithstanding such differences in efficiency, these variants are within the scope of the present invention.

Thus, mutational, insertional, and deletional variants of the disclosed test sequences can be readily prepared by methods which are well known to those skilled in the art. These variants can be used in the same manner as the instant probes so long as the variants have substantial sequence homology with the probes. As used

herein, substantial sequence homology refers to homology which is sufficient to enable the variant to function in the same capacity as the original probe. Preferably, this homology is greater than 50%; more preferably, this homology is greater than 75%; and most preferably, this homology is greater than 90%. The degree of homology needed for the variant to function in its intended capacity will depend upon the intended use of the sequence. It is well within the skill of a person trained in this art to make mutational, insertional, and deletional mutations which are designed to improve the function of the sequence or otherwise provide a methodological advantage.

Specific nucleotide probes useful, according to the subject invention, in the rapid identification of acaride-active genes can be prepared utilizing the sequence information provided herein.

The potential variations in the probes listed is due, in part, to the redundancy of the genetic code. Because of the redundancy of the genetic code, i.e., more than one coding nucleotide triplet (codon) can be used for most of the amino acids used to make proteins. Therefore different nucleotide sequences can code for a particular amino acid. Thus, the amino acid sequences of the B.t. toxins and peptides can be prepared by equivalent nucleotide sequences encoding the same amino acid sequence of the protein or peptide. Accordingly, the subject invention includes such equivalent nucleotide sequences. Also, inverse or complement sequences are an aspect of the subject invention and can be readily used by a person skilled in this art. In addition it has been shown that proteins of identified structure and function may be constructed by changing the amino acid sequence if such changes do not alter the protein secondary structure (Kaiser, E. T. and Kezdy, F. J. [1984] Science 223:249-255). Thus, the subject invention includes mutants of the amino acid sequence depicted herein which do not alter the protein secondary structure, or if the structure is altered, the biological activity is substantially retained. Further, the invention also includes mutants of organisms hosting all or part of a toxin encoding a gene of the invention. Such microbial mutants can be made by techniques well known to persons skilled in the art. For example, UV irradiation can be used to prepare mutants of host organisms. Likewise, such mutants may include asporogenous host cells which also can be prepared by procedures well known in the art.

The B.t. isolates of the invention, and mutants thereof, can be cultured using standard known media and fermentation techniques. Upon completion of the fermentation cycle, the bacteria can be harvested by first separating the B.t. spores and crystals from the fermentation broth by means well known in the art. The recovered B.t. spores and crystals can be formulated into a wettable powder, a liquid concentrate, granules or other formulations by the addition of surfactants, dispersants, inert carriers and other components to facilitate handling and application for particular target pests. The formulation and application procedures are all well known in the art and are used with commercial strains.

The novel B.t. isolates, and mutants thereof, can be used to control target pests.

The cultures of the subject invention were deposited in the Agricultural Research Service Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Ill., 61604 USA.

	10	Culture	Accession No.	Deposit Date
		<i>B.t.</i> PS50C	NRRL B-18746	January 9, 1991
		<i>B.t.</i> PS86A1	NRRL B-18400	August 16, 1988
		<i>B.t.</i> PS69D1	NRRL B-18247	July 28, 1987
		<i>B.t.</i> PS72L1	NRRL B-18780	March 7, 1991
15		<i>B.t.</i> PS75J1	NRRL B-18781	March 7, 1991
		<i>B.t.</i> PS83E5	NRRL B-18782	March 7, 1991
		<i>B.t.</i> PS45B1	NRRL B-18396	August 16, 1988
		<i>B.t.</i> PS24J	NRRL B-18881	August 30, 1991
		<i>B.t.</i> PS94R3	NRRL B-18882	August 30, 1991
		<i>B.t.</i> PS17	NRRL B-18243	July 28, 1987
20		<i>B.t.</i> PS62B1	NRRL B-18398	August 16, 1988
		<i>B.t.</i> PS74G1	NRRL B-18397	August 16, 1988
		<i>E. coli</i> NM522(pNfTC 2321)	NRRL B-18770	February 14, 1991
		<i>E. coli</i> NM522(pMYC 2317)	NRRL B-18816	April 24, 1991
		<i>E. coli</i> NM522(pNfTC 1627)	NRRL B-18651	May 11, 1990
		<i>E. coli</i> NM522(pMYC 1628)	NRRL B-18652	May 11, 1990
25		<i>E. coli</i> NM522(pMYC 1638)	NRRL B-18751	January 11, 1991
		<i>E. coli</i> NM522(pMYC 1638)	NRRL B-18769	February 14, 1991

The subject cultures have been deposited under conditions that assure that access to the cultures will be available during the pendency of this patent application to one determined by the Commissioner of Patents and Trademarks to be entitled thereto under 37 CFR 1.14 and 35 U.S.C. 122. These deposits are available as required by foreign patent laws in countries wherein counterparts of the subject application, or its progeny, are filed. However, it should be understood that the availability of a deposit does not constitute a license to practice the subject invention in derogation of patent rights granted by governmental action.

Further, the subject culture deposits will be stored and made available to the public in accord with the provisions of the Budapest Treaty for the Deposit of Microorganisms, i.e., they will be stored with all the care necessary to keep them viable and uncontaminated for a period of at least five years after the most recent request for the furnishing of a sample of a deposit, and in any case, for a period of at least thirty (30) years after the date of deposit or for the enforceable life of any patent which may issue disclosing a culture. The depositor acknowledges the duty to replace a deposit should the depository be unable to furnish a sample when requested, due to the condition of a deposit. All restrictions on the availability to the public of the subject culture deposits will be irrevocably removed upon the granting of a patent disclosing them.

Upon applying an acaricidal-effective amount of a microbe, or toxin, as disclosed herein, in a suitable acaricidal formulation to the environment of the target pest, there is obtained effective control of these pests. An acaricidal-effective amount can vary from about 1 to about 12 l/ha, depending upon the nature and quantity of the pests to be controlled, the time of year, temperature, humidity, and other known factors which may affect a bioinsecticide. It is well within the skill of those

trained in this art to determine the quantity of bioinsecticide to apply in order to obtain effective control of target pests.

The intracellular δ -endotoxin protein can be combined with other insecticidal proteins (including those obtained from sources other than *Bacillus thuringiensis*) to increase the spectrum of activity to give complete control of target pests.

The B.t. cells may be formulated in a variety of ways. They may be employed as wettable powders, granules or dusts, by mixing with various inert materials, such as inorganic minerals (phylosilicates, carbonates, sulfates, phosphates, and the like) or botanical materials (powdered corncobs, rice hulls, walnut shells, and the like). The formulations may include spreader-sticker adjuvants, stabilizing agents, other pesticidal additives, or surfactants. Liquid formulations may be aqueous-based or non-aqueous and employed as foams, gels, suspensions, emulsifiable concentrates, or the like. The ingredients may include rheological agents, surfactants, emulsifiers, dispersants, or polymers.

The pesticidal concentration will vary widely depending upon the nature of the particular formulation, particularly whether it is a concentrate or to be used directly. The pesticide will be present in at least 1% by weight and may be 100% by weight. The dry formulations will have from about 1-95% by weight of the pesticide while the liquid formulations will generally be from about 1-60% by weight of the solids in the liquid phase. The formulations will generally have from about 10² to about 10⁴ cells/mg. These formulations will be administered at about 50 mg (liquid or dry) to 1 kg or more per hectare.

The formulations can be applied to the environment of the target pest(s), e.g., plants, livestock, fowl, soil or water, by spraying, dusting, sprinkling, or the like.

The toxin genes harbored by the novel isolates of the subject invention can be introduced into a wide variety of microbial hosts. Expression of the toxin gene results, directly or indirectly, in the intracellular production and maintenance of the pesticide. With suitable hosts, e.g., *Pseudomonas*, the microbes can be applied to the situs of mites where they will proliferate and be ingested by the mites. The result is a control of the mites. Alternatively, the microbe hosting the toxin gene can be treated under conditions that prolong the activity of the toxin produced in the cell. The treated cell then can be applied to the environment of the target pest. The resulting product retains the toxicity of the B.t. toxin.

Where the B.t. toxin gene is introduced via a suitable vector into a microbial host, and said host is applied to the environment in a living state, it is essential that certain host microbes be used. Microorganism hosts are selected which are known to occupy the "phytosphere" (phyloplane, phyllosphere, rhizosphere, and/or rhizoplane) of one or more crops of interest. These microorganisms are selected so as to be capable of successfully competing in the particular environment (crop and other insect habitats) with the wild-type microorganisms, provide for stable maintenance and expression of the gene expressing the polypeptide pesticide, and, de-

sirably, provide for improved protection of the pesticide from environmental degradation and inactivation.

A large number of microorganisms are known to inhabit the phylloplane (the surface of the plant leaves) and/or the rhizosphere (the soil surrounding plant roots). These microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms, such as bacteria, e.g., genera *Bacillus*, *Pseudomonas*, *Erwinia*, *Serratia*, *Klebsiella*, *Xanthomonas*, *Streptomyces*, *Rhizobium*, *Rhodopseudomonas*, *Methylophilus*, *Agrobacterium*, *Acetobacter*, *Lactobacillus*, *Arthrobacter*, *Azotobacter*, *Leuconostoc*, *Alcaligenes* and *Clostridium*; fungi, particularly yeast, e.g., genera *Saccharomyces*, *Cryptococcus*, *Kluyveromyces*, *Sporobolomyces*, *Rhodotorula*, and *Aureobasidium*; microalgae, e.g., families *Cyanophyceae*, *Prochlorophyceae*, *Rhodophyceae*, *Dinophyceae*, *Chrysophyceae*, *Prymnesiophyceae*, *Xanthophyceae*, *Raphidophyceae*, *Bacillariophyceae*, *Eustigmatophyceae*, *Cryptophyceae*, *Euglenophyceae*, *Prasinophyceae*, and *Chlorophyceae*. Of particular interest are such phytosphere bacterial species as *Pseudomonas syringae*, *Pseudomonas fluorescens*, *Serratia marcescens*, *Acetobacter xylinum*, *Agrobacterium tumefaciens*, *Rhodopseudomonas sphaeroides*, *Xanthomonas campestris*, *Rhizobium melioli*, *Alcaligenes entrophus*, and *Azotobacter vinlandii*; and phytosphere yeast species such as *Rhodotorula rubra*, *R. glutinis*, *R. marina*, *R. aurantiaca*, *Cryptococcus albidus*, *C. diffuens*, *C. laurentii*, *Saccharomyces rosei*, *S. pretoriensis*, *S. cerevisiae*, *Sporobolomyces roseus*, *S. odorus*, *Kluyveromyces veronae*, and *Aureobasidium pollulans*. Of particular interest are the pigmented microorganisms.

A wide variety of ways are available for introducing a B.t. gene expressing a toxin into the microorganism host under conditions which allow for stable maintenance and expression of the gene. One can provide for DNA constructs which include the transcriptional and translational regulatory signals for expression of the toxin gene, the toxin gene under their regulatory control and a DNA sequence homologous with a sequence in the host organism, whereby integration will occur, and/or a replication system which is functional in the host, whereby integration or stable maintenance will occur.

The transcriptional initiation signals will include a promoter and a transcriptional initiation start site. In some instances, it may be desirable to provide for regulatory expression of the toxin, where expression of the toxin will only occur after release into the environment. This can be achieved with operators or a region binding to an activator or enhancers, which are capable of induction upon a change in the physical or chemical environment of the microorganisms. For example, a temperature sensitive regulatory region may be employed, where the organisms may be grown up in the laboratory without expression of a toxin, but upon release into the environment, expression would begin. Other techniques may employ a specific nutrient medium in the laboratory, which inhibits the expression of the toxin, where the nutrient medium in the environment would allow

for expression of the toxin. For translational initiation, a ribosomal binding site and an initiation codon will be present.

Various manipulations may be employed for enhancing the expression of the messenger RNA, particularly by using an active promoter, as well as by employing sequences, which enhance the stability of the messenger RNA. The transcriptional and translational termination region will involve stop codon(s), a terminator region, and optionally, a polyadenylation signal. A hydrophobic "leader" sequence may be employed at the amino terminus of the translated polypeptide sequence in order to promote secretion of the protein across the inner membrane.

In the direction of transcription, namely in the 5' to 3' direction of the coding or sense sequence, the construct will involve the transcriptional regulatory region, if any, and the promoter, where the regulatory region may be either 5' or 3' of the promoter, the ribosomal binding site, the initiation codon, the structural gene having an open reading frame in phase with the initiation codon, the stop codon(s), the polyadenylation signal sequence, if any, and the terminator region. This sequence as a double strand may be used by itself for transformation of a microorganism host, but will usually be included with a DNA sequence involving a marker, where the second DNA sequence may be joined to the toxin expression construct during introduction of the DNA into the host.

By a marker is intended a structural gene which provides for selection of those hosts which have been modified or transformed. The marker will normally provide for selective advantage, for example, providing for biocide resistance, e.g., resistance to antibiotics or heavy metals; complementation, so as to provide prototrophy to an auxotrophic host, or the like. Preferably, complementation is employed, so that the modified host may not only be selected, but may also be competitive in the field. One or more markers may be employed in the development of the constructs, as well as for modifying the host. The organisms may be further modified by providing for a competitive advantage against other wild-type microorganisms in the field. For example, genes expressing metal chelating agents, e.g., siderophores, may be introduced into the host along with the structural gene expressing the toxin. In this manner, the enhanced expression of a siderophore may provide for a competitive advantage for the toxin-producing host, so that it may effectively compete with the wild-type microorganisms and stably occupy a niche in the environment.

Where no functional replication system is present, the construct will also include a sequence of at least 50 basepairs (bp), preferably at least about 100 bp, and usually not more than about 5000 bp of a sequence homologous with a sequence in the host. In this way, the probability of legitimate recombination is enhanced, so that the gene will be integrated into the host and stably maintained by the host. Desirably, the toxin gene will be in close proximity to the gene providing for complementation as well as the gene providing for the competitive advantage. Therefore, in the event that a

toxin gene is lost, the resulting organism will be likely to also lose the complementing gene and/or the gene providing for the competitive advantage, so that it will be unable to compete in the environment with the gene retaining the intact construct.

A large number of transcriptional regulatory regions are available from a wide variety of microorganism hosts, such as bacteria, bacteriophage, cyanobacteria, algae, fungi, and the like. Various transcriptional regulatory regions include the regions associated with the trp gene, lac gene, gal gene, the lambda left and right promoters, the tac promoter, the naturally-occurring promoters associated with the toxin gene, where functional in the host. See for example, U.S. Pat. Nos. 4,332,898, 4,342,832 and 4,356,270. The termination region may be the termination region normally associated with the transcriptional initiation region or a different transcriptional initiation region, so long as the two regions are compatible and functional in the host.

Where stable episomal maintenance or integration is desired, a plasmid will be employed which has a replication system which is functional in the host. The replication system may be derived from the chromosome, an episomal element normally present in the host or a different host, or a replication system from a virus which is stable in the host. A large number of plasmids are available, such as pBR322, pACYC184, RSF1010, pRO1614, and the like. See for example, Olson et al., (1982) J. Bacteriol. 150:6069, and Bagdasarian et al., (1981) Gene 16:237, and U.S. Pat. Nos. 4,356,270, 4,362,817, and 4,371,625.

The B.t. gene can be introduced between the transcriptional and translational initiation region and the transcriptional and translational termination region, so as to be under the regulatory control of the initiation region. This construct will be included in a plasmid, which will include at least one replication system, but may include more than one, where one replication system is employed for cloning during the development of the plasmid and the second replication system is necessary for functioning in the ultimate host. In addition, one or more markers may be present, which have been described previously. Where integration is desired, the plasmid will desirably include a sequence homologous with the host genome.

The transformants can be isolated in accordance with conventional ways, usually employing a selection technique, which allows for selection of the desired organism as against unmodified organisms or transferring organisms, when present. The transformants then can be tested for pesticidal activity.

Suitable host cells, where the pesticide-containing cells will be treated to prolong the activity of the toxin in the cell when the then treated cell is applied to the environment of target pest(s), may include either prokaryotes or eukaryotes, normally being limited to those cells which do not produce substances toxic to higher organisms, such as mammals. However, organisms which produce substances toxic to higher organisms could be used, where the toxin is unstable or the level of application sufficiently low as to avoid any possibility of

toxicity to a mammalian host. As hosts, of particular interest will be the prokaryotes and the lower eukaryotes, such as fungi, as disclosed previously.

Characteristics of particular interest in selecting a host cell for purposes of production include ease of introducing the B.t. gene into the host, availability of expression systems, efficiency of expression, stability of the pesticide in the host, and the presence of auxiliary genetic capabilities. Characteristics of interest for use as a pesticide microcapsule include protective qualities for the pesticide, such as thick cell walls, pigmentation, and intracellular packaging or formation of inclusion bodies; survival in aqueous environments; lack of mammalian toxicity; attractiveness to pests for ingestion; ease of killing and fixing without damage to the toxin; and the like. Other considerations include ease of formulation and handling, economics, storage stability, and the like.

The cell will usually be intact and be substantially in the proliferative form when treated, rather than in a spore form, although in some instances spores may be employed.

Treatment of the microbial cell, e.g., a microbe containing the B.t. toxin gene, can be by chemical or physical means, or by a combination of chemical and/or physical means, so long as the technique does not deleteriously affect the properties of the toxin, nor diminish the cellular capability in protecting the toxin. Examples of chemical reagents are halogenating agents, particularly halogens of atomic no. 17-80. More particularly, iodine can be used under mild conditions and for sufficient time to achieve the desired results. Other suitable techniques include treatment with aldehydes, such as formaldehyde and glutaraldehyde; anti-infectives, such as zephiran chloride and cetylpyridinium chloride; alcohols, such as isopropyl and ethanol; various histologic fixatives, such as Lugol iodine, Bouin's fixative, and Helly's fixative (See: Humason, Gretchen L., *Animal Tissue Techniques*, W. H. Freeman and Company, 1967); or a combination of physical (heat) and chemical agents that preserve and prolong the activity of the toxin produced in the cell when the cell is administered to the host animal. Examples of physical means are short wavelength radiation such as gamma-radiation and X-radiation, freezing, UV irradiation, lyophilization, and the like.

The cells generally will have enhanced structural stability which will enhance resistance to environmental conditions. Where the pesticide is in a proform, the method of inactivation should be selected so as not to inhibit processing of the proform to the mature form of the pesticide by the target pest pathogen. For example, formaldehyde will crosslink proteins and could inhibit processing of the proform of a polypeptide pesticide. The method of inactivation or killing retains at least a substantial portion of the bio-availability or bioactivity of the toxin.

The cellular host containing the B.t. insecticidal gene may be grown in any convenient nutrient medium, where the DNA construct provides a selective advantage, providing for a selective medium so that substantially all or all of the cells retain the B.t. gene. These cells may then be harvested in accordance with conven-

tional ways. Alternatively, the cells can be treated prior to harvesting.

The B.t. cells of the invention can be cultured using standard art media and fermentation techniques. Upon completion of the fermentation cycle the bacteria can be harvested by first separating the B.t. spores and crystals from the fermentation broth by means well known in the art. The recovered B.t. spores and crystals can be formulated into a wettable powder, liquid concentrate, granules or other formulations by the addition of surfactants, dispersants, inert carriers, and other components to facilitate handling and application for particular target pests. These formulations and application procedures are all well known in the art.

Formulated bait granules containing an attractant and spores and crystals of the B.t. isolates, or recombinant microbes comprising the gene(s) obtainable from the B.t. isolates disclosed herein, can be applied to the soil or in the vicinity of stored products. Formulated product can also be applied as a seed-coating or root treatment or total plant treatment at later stages of the crop cycle.

Mutants of the novel isolates of the invention can be made by procedures well known in the art. For example, an asporogenous mutant can be obtained through ethylmethane sulfonate (EMS) mutagenesis of a novel isolate. The mutants can be made using ultraviolet light and nitrosoguanidine by procedures well known in the art.

A smaller percentage of the asporogenous mutants will remain intact and not lyse for extended fermentation periods; these strains are designated lysis minus (-). Lysis minus strains can be identified by screening asporogenous mutants in shake flask media and selecting those routants that are still intact and contain toxin crystals at the end of the fermentation. Lysis minus strains are suitable for a cell fixation process that will yield a protected, encapsulated toxin protein.

To prepare a phage resistant variant of said asporogenous mutant, an aliquot of the phage lysate is spread onto nutrient agar and allowed to dry. An aliquot of the phage sensitive bacterial strain is then plated directly over the dried lysate and allowed to dry. The plates are incubated at 30° C. The plates are incubated for 2 days and, at that time, numerous colonies could be seen growing on the agar. Some of these colonies are picked and subcultured onto nutrient agar plates. These apparent resistant cultures are tested for resistance by cross streaking with the phage lysate. A line of the phage lysate is streaked on the plate and allowed to dry. The presumptive resistant cultures are then streaked across the phage line. Resistant bacterial cultures show no lysis anywhere in the streak across the phage line after overnight incubation at 30° C. The resistance to phage is then reconfirmed by plating a lawn of the resistant culture onto a nutrient agar plate. The sensitive strain is also plated in the same manner to serve as the positive control. After drying, a drop of the phage lysate is plated in the center of the plate and allowed to dry. Resistant cultures showed no lysis in the area where the

phage lysate has been placed after incubation at 30° C. for 24 hours.

Following are examples which illustrate procedures, including the best mode, for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

EXAMPLE 1

Culturing of the B.t. Isolates

A subculture of the B.t. isolates, or mutants thereof, can be used to inoculate the following medium, a peptone, glucose, salts medium.

Bacto Peptone	7.5 g/l
Glucose	1.0 g/l
KH ₂ PO ₄	3.4 g/l
K ₂ HPO ₄	4.35 g/l
Salt Solution	5.0 ml/l
CaCl ₂ Solution	5.0 ml/l
pH 7.2	
<u>Salts Solution (100 ml)</u>	
MgSO ₄ ·7H ₂ O	2.46 g
MnSO ₄ ·H ₂ O	0.04 g
ZnSO ₄ ·7H ₂ O	0.28 g
FeSO ₄ ·7H ₂ O	0.40 g
CaCl ₂ Solution (100 ml)	3.66 g
CaCl ₂ ·2H ₂ O	

The salts solution and CaCl₂ solution are filter-sterilized and added to the autoclaved and cooked broth at the time of inoculation. Flasks are incubated at 30° C. on a rotary shaker at 200 rpm for 64 hr.

The above procedure can be readily scaled up to large fermentors by procedures well known in the art.

The B.t. spores and/or crystals, obtained in the above fermentation, can be isolated by procedures well known in the art. A frequently-used procedure is to subject the harvested fermentation broth to separation techniques, e.g., centrifugation.

EXAMPLE 2

Purification of Protein and Amino Acid Sequencing

The B.t. isolates PS17, PS52A1 and PS69D1 were cultured as described in Example 1. The parasporal inclusion bodies were partially purified by sodium bromide (28-38%) isopycnic gradient centrifugation (Pfannenstiel, M. A., E. J. Ross, V. C. Kramer, and K. W. Nickerson [1984] FEMS Microbiol. Lett. 21:39). The proteins were bound to PVDF membranes (Millipore, Bedford, Mass.) by western blotting techniques (Towbin, H., T. Staehelin, and K. Gordon [1979] Proc. Natl. Acad. Sci. USA 76:4350) and the N-terminal amino acid sequences were determined by the standard Edman reaction with an automated gas-phase sequenator (Hunkapiller, M. W., R. M. Hewick, W. L. Dreyer, and L. E. Hood [1983] Meth. Enzymol. 91:399). The sequences obtained were:

PS17a: A I L N E L Y P S V P Y N V (SEQ ID NO. 12)

PS17b: A I L N E L Y P S V P Y N V (SEQ ID NO. 13)

PS52A1: M I I D S K T T L P R H S L I N T (SEQ ID NO. 14)

PS69D1: M I L G N G K T L P K H I R L A H I F A T Q N S (SEQ ID NO. 15)

EXAMPLE 3

5 Cloning of Novel Toxin Genes and Transformation into *Escherichia coli*

Total cellular DNA was prepared by growing the cells B.t. PS17 to a low optical density (OD₆₀₀=1.0) and recovering the cells by centrifugation. The cells were protoplasted in TES buffer (30 mM Tris-Cl, 10 mM EDTA, 50 mM NaCl, pH = 8.0) containing 20 % sucrose and 50 mg/ml lysozyme. The protoplasts were lysed by addition of SDS to a final concentration of 4%.

10 The cellular material was precipitated overnight at 4° C. in 100 mM (final concentration) neutral potassium chloride. The supernate was extracted twice with phenol/chloroform (1:1). The DNA was precipitated with ethanol and purified by isopycnic banding on a cesium chloride-ethidium bromide gradient.

15 Total cellular DNA from PS17 was digested with EcoRI and separated by electrophoresis on a 0.8% (w/v) Agarose-TAE (50 mM Tris-HCl, 20 mM

20 NaOAc, 2.5 mM EDTA, pH=8.0) buffered gel. A Southern blot of the gel was hybridized with a [³²p]-radiolabeled oligonucleotide probe derived from the N-terminal amino acid sequence of purified 130 kDa protein from PS17. The sequence of the oligonucleotide synthesized is (GCAATITFAAATGAATrATATCC) (SEQ ID NO. 16). Results showed that the hybridizing EcoRI fragments of PS17 are 5.0 kb, 4.5 kb, 2.7 kb and 1.8 kb in size, presumptively identifying at least four new acaride-active toxin genes, PS17d, PS17b, PS17a and PS17e, respectively.

30 35 The above procedure can be readily scaled up to large fermentors by procedures well known in the art.

The B.t. spores and/or crystals, obtained in the above fermentation, can be isolated by procedures well known in the art. A frequently-used procedure is to subject the harvested fermentation broth to separation techniques, e.g., centrifugation.

40 45 A library was constructed from PS17 total cellular DNA partially digested with Sau3A and size fractionated by electrophoresis. The 9 to 23 kb region of the gel was excised and the DNA was electroeluted and then concentrated using an Elutip™ ion exchange column (Schleicher and Schuel, Keene N.H.). The isolated Sau3A fragments were ligated into LambdaGEM-

50 55 11™ (PROMEGA). The packaged phage were plated on KW25 1 *E. coli* cells (PROMEGA) at a high titer and screened using the above radiolabeled synthetic oligonucleotide as a nucleic acid hybridization probe. Hybridizing plaques were purified and rescreened at a lower plaque density. Single isolated purified plaques that hybridized with the probe were used to infect KW251 *E. coli* cells in liquid culture for preparation of phage for DNA isolation. DNA was isolated by standard procedures.

60 65 Recovered recombinant phage DNA was digested with EcoRI and separated by electrophoresis on a 0.8% agarose-TAE gel. The gel was Southern blotted and hybridized with the oligonucleotide probe to characterize the toxin genes isolated from the lambda library. Two patterns were present, clones containing the 4.5 kb (PS17b) or the 2.7 kb (PS17a) EcoRI fragments. Preparative amounts of phage DNA were digested with Sall (to release the inserted DNA from lambda arms) and separated by electrophoresis on a 0.6% agarose-TAE gel. The large fragments, electroeluted and concentrated as described above, were ligated to Sall-digested

and dephosphorylated pBClac, an *E. coli*/B.t. shuttle vector comprised of replication origins from pBC16 and pUC19. The ligation mix was introduced by transformation into NM522 competent *E. coli* cells and plated on LB agar containing ampicillin, isopropyl-(Beta)-D-thiogalactoside(IPTG) and S-Bromo-4-Chloro-3-indolyl-(Beta)-D-galactoside (XGAL). White colonies, with putative insertions in the (Beta)galactosidase gene of pBClac, were subjected to standard rapid plasmid purification procedures to isolate the desired plasmids. The selected plasmid containing the 2.7 kb EcoRI fragment was named pMYC1627 and the plasmid containing the 4.5 kb EcoRI fragment was called pMYC1628.

The toxin genes were sequenced by the standard Sanger dideoxy chain termination method using the synthetic oligonucleotide probe, disclosed above, and by "walking" with primers made to the sequence of the new toxin genes.

The PS17 toxin genes were subcloned into the shuttle vector pHT3101 (Lereclus, D. et al. [1989] FEMS Microbiol. Lett. 60:211-218) using standard methods for expression in B.t. Briefly, Sall fragments containing the 17a and 17b toxin genes were isolated from pMYC1629 and pMYC1627, respectively, by preparative agarose gel electrophoresis, electroelution, and concentrated, as described above. These concentrated fragments were ligated into Sall-cleaved and dephosphorylated pHT3101. The ligation mixtures were used separately to transform frozen, competent *E. coli* NM522. Plasmids from each respective recombinant *E. coli* strain were prepared by alkaline lysis and analyzed by agarose gel electrophoresis. The resulting subclones, pMYC2311 and pMYC2309, harbored the 17a and 17b toxin genes, respectively. These plasmids were transformed into the acrystalliferous B.t. strain, HD-1 cryB (Aronson, A., Purdue University, West Lafayette, Ind.), by standard electroporation techniques (Instruction Manual, Biorad, Richmond, Calif.).

Recombinant B.t. strains HD-1 cryB [pMYC2311] and [pMYC2309] were grown to sporulation and the proteins purified by NaBr gradient centrifugation as described above for the wild-type B.t. proteins.

EXAMPLE 4

Molecular Cloning of Gene Encoding a Novel Toxin From *Bacillus thuringiensis* strain PS52A1

Total cellular DNA was prepared from *Bacillus thuringiensis* PS52A1 (B.t. PS52A1) as disclosed in Example 3.

RFLP analyses were performed by standard hybridization of Southern blots of PS52A1 DNA with a ³²P-labeled oligonucleotide probe designed from the N-terminal amino acid sequence disclosed in Example 2. The sequence of this probe is:

5' ATG ATT ATT GAT TCT AAA ACA ACA TTA CCA AGA CAT TCA/T
TTA ATA/T AAT ACA/T ATA/T AA 3' (SEQ ID NO. 17)

This probe was designated 52A1-C. Hybridizing bands included an approximately 3.6 kbp HindIII fragment and an approximately 8.6 kbp EcoRV fragment. A gene library was constructed from PS52A1 DNA partially digested with Sau3A. Partial restriction digests were fractionated by agarose gel electrophoresis. DNA fragments 6.6 to 23 kbp in size were excised from the gel, electroeluted from the gel slice, and recovered by ethanol precipitation after purification on an Elutip-D ion exchange column. The Sau3A inserts were ligated into BarnHI-digested LambdaGem-11 (Promega). Recombinant phage were packaged and plated on *E. coli* KW251 cells (Promega). Plaques were screened by hybridization with the radiolabeled 52A1-C oligonucleotide probe disclosed above. Hybridizing phage were plaque-purified and used to infect liquid cultures of *E. coli* KW251 cells for isolation of phage DNA by standard procedures (Maniatis et al.). For subcloning, preparative amounts of DNA were digested with EcoRI and Sall, and electrophoresed on an agarose gel. The approximately 3.1 kbp band containing the toxin gene was excised from the gel, electroeluted from the gel slice, and purified by ion exchange chromatography as above. The purified DNA insert was ligated into EcoRI + Sall-digested pHTBlueII (an *E. coli*/B. thuringiensis shuttle vector comprised of pBluescript S/K [Stratagene] and the replication origin from a resident B.t. plasmid [D. Lereclus et al. 1989. FEMS Microbiology Letters 60:211-218]). The ligation mix was used to transform frozen, competent *E. coli* NM522 cells (ATCC 47000). Transformants were plated on LB agar containing ampicillin, isopropyl-(Beta)-D-thiogalactoside (IPTG), and 5-Bromo-4-Chloro-3-indolyl-(Beta)-D-galactoside (XGAL). Plasmids were purified from putative recombinants by alkaline lysis (Maniatis et al.) and analyzed by electrophoresis of EcoRI and Sall digests on agarose gels. The desired plasmid construct, pMYC2321 contains a toxin gene that is novel compared to the maps of other toxin genes encoding acaricidal proteins.

Plasmid pMYC2321 was introduced into an acrystalliferous (Cry-) B.t. host by electroporation. Expression of an approximately 55-60 kDa crystal protein was verified by SDS-PAGE analysis.

EXAMPLE 5

Molecular Cloning of Gene Encoding a Novel Toxin From *Bacillus Thuringiensis* strain PS69D1

Total cellular DNA was prepared from PS69D1 (B.t. PS69D1) as disclosed in Example 3. RFLP analyses were performed by standard hybridization of Southern blots of PS69D1 DNA with a ³²P-labeled oligonucleotide probe designated as 69D1D. The sequence of the 69D1-D probe was:

5' AAA CAT ATT AGA TTA GCA CAT ATT TTT GCA ACA
CAA AA 3' (SEQ ID NO. 18)

Hybridizing bands included an approximately 2.0 kbp HindIII fragment.

A gene library was constructed from PS69D1 DNA partially digested with Sau3A. Partial restriction digests were fractionated by agarose gel electrophoresis. DNA fragments 6.6 to 23 kbp in size were excised from the gel, electroeluted from the gel slice, and recovered by ethanol precipitation after purification on an Elutip-D ion exchange column. The Sau3A inserts were ligated 10 into BamHI-digested LambdaGem-11 (Promega, Madison, Wis.). Recombinant phage were packaged and plated on *E. coli* KW251 cells (Promega, Madison, Wis.). Plaques were screened by hybridization with the radiolabeled 69D1-D oligonucleotide probe. Hybridizing phage were plaque-purified and used to infect liquid cultures of *E. coli* KW251 cells for isolation of phage DNA by standard procedures (Maniatis et al. [1982] 15 *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor, N.Y.). For subcloning, preparative amounts of DNA were digested with HindIII and electrophoresed on an agarose gel. The approximately, 2.0 kbp band containing the toxin gene was excised from the gel, 20 electroeluted from the gel slice, and purified by ion exchange chromatography as above. The purified DNA insert was ligated into HindIII-digested pHTBluII (and *E. coli*/B.t. shuttle vector comprised of pBluescript S/K (Stratagene, San Diego, Calif.) and the replication origin from a resident B.t. plasmid (D. Lereclus et al [1989] 25 *FEMS Microbiol. Lett.* 60:211-218). The ligation mix was used to transform frozen, competent *E. coli* NM522 cells (ATCC 47000). Transformants were plated on LB 30 agar containing 5-bromo-4-chloro-3-indolyl-(Beta)-D-galactoside (XGAL). Plasmids were purified from putative recombinants by alkaline lysis (Maniatis et al., supra) and analyzed by electrophoresis of HindIII digests 35 on agarose gels. The desired plasmid construct, pMYC2317, contains a toxin gene that is novel compared to the maps of other toxin genes encoding insecticidal proteins.

EXAMPLE 6

Activity of B.t. Isolates Against Mites

B. thuringiensis isolates of the invention were tested as spray-dried powders of fermentation broths which were concentrated by centrifugation. Pellets, which consist of water and biomass (spores, crystalline delta-endotoxins, cellular debris and growth media) were mixed with a standard carrier, preservative and surfactant. Powders, which consisted of 25% biomass, were made using a Yamato spray drier. (Sold by Yamato Scientific Co., Ltd. Tokoyo, Japan)

All broths were tested for the presence of beta-exotoxin by a larval house fly bioassay (Campbell, D. P., Dieball, D. E. and Brackett, J. M., 1987, Rapid HPLC assay for the β -exotoxin of *Bacillus thuringiensis*. *J. Agric. Food Chem.* 35:156-158). Only isolates which tested free of β -exotoxin were used in the assays against mites.

B. thuringiensis isolates were tested using an artificial feeding assay. Spray-dried powders were prepared for testing by mixing 25mg of powder in 5 ml of a 10%

sucrose solution. This mixture was then sonicated for 8 min to produce a suspension.

Two ml of suspension was placed in a reservoir consisting of a metal ring with a Parafilm TM film bottom. A petri dish containing approximately 30 female Two-spotted spider mites (*Tetranychus urticae*) was placed on the underside of the film. Mites were allowed to feed on the sucrose solution for 24 hrs and then transferred to 2 cm French bean leaf discs (20 mites per disc). Mortality was determined after 7 days (Table 2). Each assay was done in triplicate.

TABLE 2

Toxicity of *Bacillus thuringiensis* isolates to the two spotted spider mite, *Tetranychus urticae*.
Mortality was determined after 7 days of treatment.

Isolate	Percent Mortality
<i>B.t.</i> PS50C	63
<i>B.t.</i> PS86A1	85
<i>B.t.</i> PS69D1	77
<i>B.t.</i> PS72L1	85
<i>B.t.</i> PS75J1	85
<i>B.t.</i> PS83E5	70
<i>B.t.</i> PS45B1	82
<i>B.t.</i> PS24J	90
<i>B.t.</i> PS94R3	97
<i>B.t.</i> PS17	>90
<i>B.t.</i> PS62B1	>90
<i>B.t.</i> PS74G1	>90
Control	10

EXAMPLE 7

Cloning of Novel Acaride-Active Genes Using Generic Oligonucleotide Primers

The acaricidal gene of a new acaricidal B.t. isolate 40 can be obtained from DNA of the strain by performing the standard polymerase chain reaction using the oligonucleotides of SEQ ID NO. 21 or SEQ ID NO. 20 as reverse primers and SEQ ID NO. 10, SEQ ID NO. 11, 45 SEQ ID NO. 16, Probe B of SEQ ID NO. 5 (AAT GAA GTAZF TAT CCA/T GTAAfF AAT), or SEQ ID NO. 19 as forward primers. The expected PCR fragments would be approximately 330 to 600 bp (with either reverse primer and SEQ ID NO. 10), 1000 to 50 1400 bp (with either reverse primer and SEQ ID NO. 11), and 1800 to 2100 bp (with either reverse primer and any of the three N-terminal primers, SEQ ID NO. 5 55 (Probe B), SEQ ID NO. 16, and SEQ ID NO. 19). Alternatively, a complement from the primer family described by SEQ ID NO. 10 can be used as reverse primer with SEQ ID NO. 11, SEQ ID NO. 16, SEQ ID NO. 5 (Probe B), or SEQ ID NO. 19 as forward primers. The expected PCR fragments would be approximately 650 to 1000 bp with SEQ ID NO. 11, and 1400 to 60 1800 bp (for the three N-terminal primers, SEQ ID NO. 5 (Probe B), SEQ ID NO. 16, and SEQ ID NO. 19). Amplified DNA fragments of the indicated sizes 65 can be radiolabeled and used as probes to clone the entire gene.

EXAMPLE 8

Further Cloning of Novel Acaride-Active Genes Using Generic Oligonucleotide Primers

A gene coding for a acaricidal toxin of an acaricidal B.t. isolate can also be obtained from DNA of the strain by performing the standard polymerase chain reaction using oligonucleotides derived from the PS52A1 and PS69D1 gene sequences as follows:

1. Forward primer "TGATTTT(T or A)(C or A)T-CAATTATAT(A or G)A(G or T)GTTYAT" (SEQ ID NO. 22) can be used with primers complementary to probe "AAGAGTTA(C or T)TA(A or G)A(G or A)AAAGTA" (SEQ ID NO. 23), probe "TTAGGAC-CATr(A or G)(C or T)T(T or A)GGATT-GTYGT(A or T)TATGAAAT" (SEQ ID NO. 24), and probe "GA(C or T)AGAGATGT(A or T)AAAAT(C or T)(T or A)TAGGAATG" (SEQ ID NO. 25) to produce amplified fragments of approximately 440, 540, and 650 bp, respectively.

2. Forward primer "TT(A or C)TTAAA(A or T)C(A or T)GCTAATGATATT" (SEQ ID NO. 26) can be used with primers complementary to SEQ ID NO. 23, SEQ ID NO. 24, and SEQ ID NO. 25 to produce amplified fragments of approximately 360, 460, and 570 bp, respectively.

3. Forward primer SEQ ID NO. 23 can be used with primers complementary to SEQ ID NO. 24 and SEQ ID NO. 25 to produce amplified fragments of approximately 100 and 215 bp, respectively.

Amplified DNA fragments of the indicated sizes can be radiolabeled and used as probes to clone the entire gene.

EXAMPLE 9

Insertion of Toxin Genes Into Plants

One aspect of the subject invention is the transformation of plants with genes coding for a acaricidal toxin. The transformed plants are resistant to attack by acarides.

Genes coding for acaricidal toxins, as disclosed herein, can be inserted into plant cells using a variety of techniques which are well known in the art. For example, a large number of cloning vectors comprising a replication system in *E. coli* and a marker that permits selection of the transformed cells are available for preparation for the insertion of foreign genes into higher plants. The vectors comprise, for example, pBR322, pUC series, M13mp series, pACYC184, etc. Accordingly, the sequence coding for the B.t. toxin can be inserted into the vector at a suitable restriction site. The resulting plasmid is used for transformation into *E. coli*. The *E. coli* cells are cultivated in a suitable nutrient medium, then harvested and lysed. The plasmid is recovered. Sequence analysis, restriction analysis, electrophoresis, and other biochemical-molecular biological methods are generally carried out as methods of analysis. After each manipulation, the DNA sequence used can be cleaved and joined to the next DNA sequence. Each plasmid sequence can be cloned in the same or other plasmids. Depending on the method of inserting desired genes into the plant, other DNA sequences may

be necessary. If, for example, the Ti or Ri plasmid is used for the transformation of the plant cell, then at least the right border, but often the right and the left border of the Ti or Ri plasmid T-DNA, has to be joined as the flanking region of the genes to be inserted.

The use of T-DNA for the transformation of plant cells has been intensively researched and sufficiently described in EP 120 516; Hoekema (1985) In: The Binary Plant Vector System, Offset-durkkerij Kanters B.V., Alblasterdam, Chapter 5; Fraley et al., Crit. Rev. Plant Sci. 4:1-46; and An et al. (1985) EMBO J. 4:277-287.

Once the inserted DNA has been integrated in the genome, it is relatively stable there and, as a rule, does not come out again. It normally contains a selection marker that confers on the transformed plant cells resistance to a biocide or an antibiotic, such as kanamycin, G 418, bleomycin, hygromycin, or chloramphenicol, inter alia. The individually employed marker should accordingly permit the selection of transformed cells rather than cells that do not contain the inserted DNA.

A large number of techniques are available for inserting DNA into a plant host cell. Those techniques include transformation with T-DNA using *Agrobacterium tumefaciens* or *Agrobacterium rhizogenes* as transformation agent, fusion, injection, or electroporation as well as other possible methods. If agrobacteria are used for the transformation, the DNA to be inserted has to be cloned into special plasmids, namely either into an intermediate vector or into a binary vector. The intermediate vectors can be integrated into the Ti or Ri plasmid by homologous recombination owing to sequences that are homologous to sequences in the T-DNA. The Ti or Ri plasmid also comprises the vir region necessary for the transfer of the T-DNA. Intermediate vectors cannot

replicate themselves in agrobacteria. The intermediate vector can be transferred into *Agrobacterium tumefaciens* by means of a helper plasmid (conjugation). Binary vectors can replicate themselves both in *E. coli* and in agrobacteria. They comprise a selection marker gene and a linker or polylinker which are framed by the right and left T-DNA border regions. They can be transformed directly into agrobacteria (Holsters et al. [1978] Mol. Gen. Genet. 163:181-187). The agrobacterium used as host cell is to comprise a plasmid carrying a vir region. The vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be contained. The bacterium so transformed is used for the transformation of plant cells. Plant explants can advantageously be cultivated with *Agrobacterium tumefaciens* or *Agrobacterium rhizogenes* for the transfer of the DNA into the plant cell. Whole plants can then be regenerated from the infected plant material (for example, pieces of leaf, segments of stalk, roots, but also protoplasts or suspension-cultivated cells) in a suitable medium, which may contain antibiotics or biocides for selection. The plants so obtained can then be tested for the presence of the inserted DNA. No special demands are made of the plasmids in the case of injection and electroporation. It is possible to use ordinary plasmids, such as, for example, pUC derivatives.

The transformed cells grow inside the plants in the usual manner. They can form germ cells and transmit the transformed trait(s) to progeny plants. Such plants can be grown in the normal manner and crossed with plants that have the same transformed hereditary factors or other hereditary factors. The resulting hybrid individuals have the corresponding phenotypic properties.

EXAMPLE 10

Cloning of *Bacillus thuringiensis* Genes Into Baculoviruses

The genes coding for the insecticidal toxins, as disclosed herein, can be cloned into baculoviruses such as *Autographa californica* nuclear polyhedrosis virus (AcNPV). Plasmids can be constructed that contain the AcNPV genome cloned into a commercial cloning vector such as pUC8. The AcNPV genome is modified so that the coding region of the polyhedrin gene is

removed and a unique cloning site for a passenger gene is placed directly behind the polyhedrin promoter. Examples of such vectors are pGP-B6874, described by Penhock et al. (Pennock, G. D., Shoemaker, C. and Miller, L. K. [1984] Mol. Cell. Biol. 4:399-406), and pAC380, described by Smith et al. (Smith, G. E., Summers, M. D. and Fraser, M. J. [1983] Mol. Cell. Biol. 3:2156-2165). The genes coding for the protein toxins of 5 the invention can be modified with BamHI linkers at appropriate regions both upstream and downstream from the coding region and inserted into the passenger site of one of the AcNPV vectors.

10 It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i i i) NUMBER OF SEQUENCES: 30

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4155 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

(i i i) HYPOTHETICAL: NO

(i v) ANTI-SENSE: NO

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: *Bacillus thuringiensis*
- (B) STRAIN: PS17
- (C) INDIVIDUAL ISOLATE: PS17a

(v i i) IMMEDIATE SOURCE:

- (B) CLONE: *E. coli* NM522(pMYC 1627) NRRL B-18651

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATGGCAATT TAAATGAATT ATATCCATCT GTACCTTATA ATGTATTGGC GTATA CGCCA	6 0
CCCTCTTTT TACCTGATGC GGGTACACAA GCTACACCTG CTGACTTAAC AGCTTATGAA	1 2 0
CAATTGTTGA AAAATTAGA AAAAGGGATA AATGCTGGAA CTTATTGAA AGCAATAGCT	1 8 0
GATGTA CTTA AAGGTATTT TATAGATGAT ACAATAAATT ATCAAACATA TGTAAATATT	2 4 0
GGTTTAAGTT TAATTACATT AGCTGTACCG GAAATTGGTA TTTTACACC TTTCATCGGT	3 0 0
TTGTTTTTG CTGCATTGAA TAAACATGAT GCTCCACCTC CTCCTAATGC AAAAGATATA	3 6 0
TTTGAGGCTA TGAAACCAGC GATTCAAGAG ATGATTGATA GAACTTTAAC TGCGGATGAG	4 2 0
CAAACATTT TAAATGGGA AATAAGTGGT TTACAAAATT TAGCAGCAAG ATACCAGTCT	4 8 0
ACAATGGATG ATATTCAAAG CCATGGAGGA TTTAATAAGG TAGATTCTGG ATTAATTAAA	5 4 0
AAGTTTACAG ATGAGGTA CACTTTAAAT AGTTTTATA CAGATCGTT ACCTGTATTT	6 0 0
ATTACAGATA ATACAGCGGA TCGAACTTTG TTAGGTCTTC CTTATTATGC TATACTTGCG	6 6 0
AGCATGCATC TTATGTTATT AAGAGATATC ATTACTAAGG GTCCGACATG GGATTCTAAA	7 2 0
ATTAATTCA CACCAAGATGC AATTGATTCC TTTAAACCG ATATTAAAAA TAATATAAAG	7 8 0

-continued

CTTTACTCTA	AAACTATT	TGACGTATT	CAGAAGGGAC	TTGCTTCATA	CGGAACGCC	840
TCTGATTTAG	AGTCCTTG	AAAAAAACAA	AAATATATTG	AAATTATGAC	AACACATTGT	900
TTAGATTTG	CAAGATTGTT	TCCTACTTT	GATCCAGATC	TTTATCCAAC	AGGATCAGGT	960
GATATAAGTT	TACAAAAAAC	ACGTAGAATT	CTTCTCCTT	TTATCCCTAT	ACGTACTGCA	1020
GATGGGGTAA	CATTAAATAA	TACTTCAATT	GATACTCAA	ATTGGCCTAA	TTATGAAAAT	1080
GGGAATGGCG	CGTTTCCAAA	CCCAAAAGAA	AGAATATTAA	AACAATTCAA	ACTGTATCCT	1140
AGTTGGAGAG	CGGGACAGTA	CGGTGGGCTT	TTACAACCTT	ATTTATGGC	AATAGAAGTC	1200
CAAGATTCTG	TAGAGACTCG	TTTGATGGG	CAGCTTCCAG	CTGTAGATCC	ACAGGCAGGG	1260
CCTAATTATG	TTTCCATAGA	TTCTCTAAT	CCAATCATA	AAATAAATAT	GGATACTTGG	1320
AAAACACCAC	CACAAGGTGC	GAGTGGTGG	AATACAAATT	TAATGAGAGG	AAGTGTAA	1380
GGGTTAAGTT	TTTTACAACG	AGATGGTACG	AGACTTAGTG	CTGGTATGGG	TGGTGGTTTT	1440
GCTGATACAA	TATATAGTCT	CCCTGCAACT	CATTATCTT	CTTATCTCTA	TGGAACCTC	1500
TATCAAACCTT	CTGATAACTA	TTCTGGTCAC	GTTGGTGCAT	TGGTAGGTGT	GAGTACGCC	1560
CAAGAGGCTA	CTCTTCCTAA	TATTATAGGT	CAACCAGATG	AACAGGGAAA	TGTATCTACA	1620
ATGGGATTTC	CGTTTGAAAAA	AGCTTCTTAT	GGAGGTACAG	TTGTTAAAGA	ATGGTTAAAT	1680
GGTGCAGATG	CGATGAAGCT	TTCTCCTGGG	CAATCTATAG	GTATTCTAT	TACAAATGTA	1740
ACAAGTGGAG	AATATCAAAT	TCGTTGTCGT	TATGCAAGTA	ATGATAATAC	TAACGTTTC	1800
TTTAATGTAG	ATACTGGTGG	AGCAAATCCA	ATTTTCCAAC	AGATAAACTT	TGCATCTACT	1860
GTAGATAATA	ATACGGGAGT	ACAAGGAGCA	AATGGTGTCT	ATGTAGTCAA	ATCTATTGCT	1920
ACAACGTATA	ATTCTTTAC	AGAAATTCC	GCGAAGACGA	TTAATGTTCA	TTAACCAAC	1980
CAAGGTTCTT	CTGATGTCTT	TTTAGACCGT	ATTGAATT	TACCTTTTC	TCTACCTCTT	2040
ATATATCATG	GAAGTTATAA	TACTTCATCA	GGTGCAGATG	ATGTTTTATG	GTCTTCTTCA	2100
AATATGAATT	ACTACGATAT	AATAGTAAAT	GGTCAGGCC	ATAGTAGTAG	TATCGCTAGT	2160
TCTATGCATT	TGCTTAATAA	AGGAAAAGTG	ATAAAACAA	TTGATATTCC	AGGGCATTG	2220
GAAACCTTCT	TTGCTACGTT	CCCAGTTCCA	GAAGGATT	ATGAAGTTAG	AATTCTTGCT	2280
GGCCTCCAG	AAGTTAGTGG	AAATATTACC	GTACAATCTA	ATAATCCGCC	TCAACCTAGT	2340
AATAATGGTG	GTGGTGATGG	TGGTGGTAAT	GGTGGTGGTG	ATGGTGGTCA	ATACAATT	2400
TCTTTAAGCG	GATCTGATCA	TACGACTATT	TATCATGGAA	AACTTGAAAC	TGGGATTCT	2460
GTACAAGGTA	ATTATACCTA	TACAGGTACT	CCCGTATTAA	TACTGAATGC	TTACAGAAAT	2520
AATACTGTAG	TATCAAGCAT	TCCAGTATAT	TCTCCTTTG	ATATAACTAT	ACAGACAGAA	2580
GCTGATAGCC	TTGAGCTTGA	ACTACAACCT	AGATATGGTT	TTGCCACAGT	GAATGGTACT	2640
GCAACAGTAA	AAAGTCCTAA	TGTAATTAC	GATAGATCAT	TTAAACTCCC	AATAGACTTA	2700
CAAAATATCA	CAACACAAGT	AAATGCATTA	TTCGCATCTG	GAACACAAAA	TATGCTTGCT	2760
CATAATGTAA	GTGATCATGA	TATTAAGAA	GTTGTATTAA	AAGTGGATGC	CTTATCAGAT	2820
GAAGTATTTG	GAGATGAGAA	GAAGGCTTTA	CGTAAATTGG	TGAATCAAGC	AAAACGTTG	2880
AGTAGAGCAA	GAAATCTTCT	GATAGGTGGG	AGTTTGAAA	ATTGGGATGC	ATGGTATAHA	2940
GGAAAGAAATG	TAGTAACGT	ATCTGATCAT	GAACATT	AGAGTGTCA	TGTATT	3000
CCACCAACAG	GATTGTC	ATCTTATATT	TTCCAAAAG	TGGAGGAATC	TAAATTAAAA	3060
CCAAATACAC	GTTATATTGT	TTCTGGATT	ATCGCACATG	GAAAAGACCT	AGAAATTGTT	3120
GTTCACGTT	ATGGGCAAGA	AGTCAAAAG	GTCGTGCAAG	TTCTTATGG	AGAAGCATTC	3180
CCGTTAACAT	CAAATGGACC	AGTTGTTGT	CCCCCACGTT	CTACAAGTAA	TGGAACCTTA	3240

-continued

GGAGATCCAC ATTTCTTAG TTACAGTATC GATGTAGGTG CACTAGATTT ACAAGCAAAC	3300
CCTGGTATTG AATTTGGTCT TCGTATTGTA AATCCAACCTG GAATGGCACG CGTAAGCAAT	3360
TTGGAAATTG GTGAAGATCG TCCATTAGCA GCAAATGAAA TACGACAAGT ACAACGTGTC	3420
GCAAGAAATT GGAGAACCGA GTATGAGAAA GAACGTGCGG AAGTAACAAG TTTAATTCAA	3480
CCTGTTATCA ATCGAATCAA CGGATTGTAT GAAAATGGAA ATTGGAACGG TTCTATTCGT	3540
TCAGATATTT CGTATCAGAA TATAGACGCG ATTGTATTAC CAACGTTACC AAAGTTACGC	3600
CATTGGTTA TGTCAGATAG ATTCAGTGAA CAAGGAGATA TAATGGCTAA ATTCCAAGGT	3660
GCATTAATC GTGCGTATGC ACAACTGGAA CAAAGTACGC TTCTGCATAA TGGTCATTT	3720
ACAAAAGATG CAGCTAATTG GACAATAGAA GGCGATGCAC ATCAGATAAC ACTAGAAGAT	3780
GGTAGACGTG TATTGCGACT TCCAGATTGG TCTTCGAGTG TATCTCAAAT GATTGA&ATC	3840
GAGAATTAAATTA ATCCAGATAA AGAATACAAC TTAGTATTCC ATGGGCAAGG AGAAGGAACG	3900
GTTACGTTGG AGCATGGAGA AGAAACAAAA TATATAGAAA CGCATAACACA TCATTTGCG	3960
AATTTACAA CTTCTCAACG TCAAGGACTC ACGTTTGAAT CAAATAAAGT GACAGTGACC	4020
ATTTCTTCAG AAGATGGAGA ATTCTTAGTG GATAATATTG CGCTTGTGGA AGCTCCTCTT	4080
CCTACAGATG ACCAAAATTG TGAGGGAAAT ACGGCTTCCA GTACGAATAG CGATACAAGT	4140
ATGAACAAACA ATCAA	4155

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1385 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: BACILLUS THURINGIENSIS
- (C) INDIVIDUAL ISOLATE: PS17

(vi i) IMMEDIATE SOURCE:

- (B) CLONE: E. coli NM522(pMYC 1627) NRRL B-18651

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ala Ile Leu Asn Glu Leu Tyr Pro Ser Val Pro Tyr Asn Val Leu	
1 5 10 15	
Ala Tyr Thr Pro Pro Ser Phe Leu Pro Asp Ala Gly Thr Gln Ala Thr	
20 25 30	
Pro Ala Asp Leu Thr Ala Tyr Glu Gln Leu Leu Lys Asn Leu Glu Lys	
35 40 45	
Gly Ile Asn Ala Gly Thr Tyr Ser Lys Ala Ile Ala Asp Val Leu Lys	
50 55 60	
Gly Ile Phe Ile Asp Asp Thr Ile Asn Tyr Gln Thr Tyr Val Asn Ile	
65 70 75 80	
Gly Leu Ser Leu Ile Thr Leu Ala Val Pro Glu Ile Gly Ile Phe Thr	
85 90 95	
Pro Phe Ile Gly Leu Phe Phe Ala Ala Leu Asn Lys His Asp Ala Pro	
100 105 110	
Pro Pro Pro Asn Ala Lys Asp Ile Phe Glu Ala Met Lys Pro Ala Ile	
115 120 125	
Gln Glu Met Ile Asp Arg Thr Leu Thr Ala Asp Glu Gln Thr Phe Leu	
130 135 140	

-continued

Asn Gly Glu Ile Ser Gly Leu Gln Asn Leu Ala Ala Arg Tyr Gln Ser
 145 150 155 160
 Thr Met Asp Asp Ile Gln Ser His Gly Gly Phe Asn Lys Val Asp Ser
 165 170 175
 Gly Leu Ile Lys Lys Phe Thr Asp Glu Val Leu Ser Leu Asn Ser Phe
 180 185 190
 Tyr Thr Asp Arg Leu Pro Val Phe Ile Thr Asp Asn Thr Ala Asp Arg
 195 200 205
 Thr Leu Leu Gly Leu Pro Tyr Tyr Ala Ile Leu Ala Ser Met His Leu
 210 215 220
 Met Leu Leu Arg Asp Ile Ile Thr Lys Gly Pro Thr Trp Asp Ser Lys
 225 230 235 240
 Ile Asn Phe Thr Pro Asp Ala Ile Asp Ser Phe Lys Thr Asp Ile Lys
 245 250 255
 Asn Asn Ile Lys Leu Tyr Ser Lys Thr Ile Tyr Asp Val Phe Gln Lys
 260 265 270
 Gly Leu Ala Ser Tyr Gly Thr Pro Ser Asp Leu Glu Ser Phe Ala Lys
 275 280 285
 Lys Gln Lys Tyr Ile Glu Ile Met Thr Thr His Cys Leu Asp Phe Ala
 290 295 300
 Arg Leu Phe Pro Thr Phe Asp Pro Asp Leu Tyr Pro Thr Gly Ser Gln
 305 310 315 320
 Asp Ile Ser Leu Gln Lys Thr Arg Arg Ile Leu Ser Pro Phe Ile Pro
 325 330 335
 Ile Arg Thr Ala Asp Gly Leu Thr Leu Asn Asn Thr Ser Ile Asp Thr
 340 345 350
 Ser Asn Trp Pro Asn Tyr Glu Asn Gly Asn Gly Ala Phe Pro Asn Pro
 355 360 365
 Lys Glu Arg Ile Leu Lys Gln Phe Lys Leu Tyr Pro Ser Trp Arg Ala
 370 375 380
 Gly Gln Tyr Gly Gly Leu Leu Gln Pro Tyr Leu Trp Ala Ile Glu Val
 385 390 395 400
 Gln Asp Ser Val Glu Thr Arg Leu Tyr Gly Gln Leu Pro Ala Val Asp
 405 410 415
 Pro Gln Ala Gly Pro Asn Tyr Val Ser Ile Asp Ser Ser Asn Pro Ile
 420 425 430
 Ile Gln Ile Asn Met Asp Thr Trp Lys Thr Pro Pro Gln Gly Ala Ser
 435 440 445
 Gly Trp Asn Thr Asn Leu Met Arg Gly Ser Val Ser Gly Leu Ser Phe
 450 455 460
 Leu Gln Arg Asp Gly Thr Arg Leu Ser Ala Gly Met Gly Gly Phe
 465 470 475 480
 Ala Asp Thr Ile Tyr Ser Leu Pro Ala Thr His Tyr Leu Ser Tyr Leu
 485 490 495
 Tyr Gly Thr Pro Tyr Gln Thr Ser Asp Asn Tyr Ser Gly His Val Gly
 500 505 510
 Ala Leu Val Gly Val Ser Thr Pro Gln Glu Ala Thr Leu Pro Asn Ile
 515 520 525
 Ile Gln Pro Asp Glu Gln Gly Asn Val Ser Thr Met Gly Phe Pro
 530 535 540
 Phe Glu Lys Ala Ser Tyr Gly Gly Thr Val Val Lys Glu Trp Leu Asn
 545 550 555 560
 Gly Ala Asn Ala Met Lys Leu Ser Pro Gly Gln Ser Ile Gly Ile Pro
 565 570 575

-continued

Ile Thr Asn Val Thr Ser Gly Glu Tyr Gln Ile Arg Cys Arg Tyr Ala
580 585 590

Ser Asn Asp Asn Thr Asn Val Phe Phe Asn Val Asp Thr Gly Gly Ala
595 600 605

Asn Pro Ile Phe Gln Gln Ile Asn Phe Ala Ser Thr Val Asp Asn Asn
610 615 620

Thr Gly Val Gln Gly Ala Asn Gly Val Tyr Val Val Lys Ser Ile Ala
625 630 635 640

Thr Thr Asp Asn Ser Phe Thr Glu Ile Pro Ala Lys Thr Ile Asn Val
645 650 655

His Leu Thr Asn Gln Gly Ser Ser Asp Val Phe Leu Asp Arg Ile Glu
660 665 670

Phe Ile Pro Phe Ser Leu Pro Leu Ile Tyr His Gly Ser Tyr Asn Thr
675 680 685

Ser Ser Gly Ala Asp Asp Val Leu Trp Ser Ser Ser Asn Met Asn Tyr
690 695 700

Tyr Asp Ile Ile Val Asn Gly Gln Ala Asn Ser Ser Ser Ile Ala Ser
705 710 715 720

Ser Met His Leu Leu Asn Lys Gly Lys Val Ile Lys Thr Ile Asp Ile
725 730 735

Pro Gly His Ser Glu Thr Phe Phe Ala Thr Phe Pro Val Pro Glu Gly
740 745 750

Phe Asn Glu Val Arg Ile Leu Ala Gly Leu Pro Glu Val Ser Gly Arg
755 760 765

Ile Thr Val Gln Ser Asn Asn Pro Pro Gln Pro Ser Asn Asn Gly Gly
770 775 780

Gly Asp Gly Gly Asn Gly Gly Asp Gly Gln Tyr Asn Phe
785 790 795 800

Ser Leu Ser Gly Ser Asp His Thr Thr Ile Tyr His Gly Lys Leu Glu
805 810 815

Thr Gly Ile His Val Gln Gly Asn Tyr Thr Tyr Thr Gly Thr Pro Val
820 825 830

Leu Ile Leu Asn Ala Tyr Arg Asn Asn Thr Val Val Ser Ser Ile Pro
835 840 845

Val Tyr Ser Pro Phe Asp Ile Thr Ile Gln Thr Glu Ala Asp Ser Leu
850 855 860

Glu Leu Glu Leu Gln Pro Arg Tyr Gly Phe Ala Thr Val Asn Gly Thr
865 870 875 880

Ala Thr Val Lys Ser Pro Asn Val Asn Tyr Asp Arg Ser Phe Lys Leu
885 890 895

Pro Ile Asp Leu Gln Asn Ile Thr Thr Gln Val Asn Ala Leu Phe Ala
900 905 910

Ser Gly Thr Gln Asn Met Leu Ala His Asn Val Ser Asp His Asp Ile
915 920 925

Glu Glu Val Val Leu Lys Val Asp Ala Leu Ser Asp Glu Val Phe Gly
930 935 940

Asp Glu Lys Lys Ala Leu Arg Lys Leu Val Asn Gln Ala Lys Arg Leu
945 950 955 960

Ser Arg Ala Arg Asn Leu Leu Ile Gly Gly Ser Phe Glu Asn Trp Asp
965 970 975

Ala Trp Tyr Lys Gly Arg Asn Val Val Thr Val Ser Asp His Glu Leu
980 985 990

Phe Lys Ser Asp His Val Leu Leu Pro Pro Gly Leu Ser Pro Ser
995 1000 1005

Tyr Ile Phe Gln Lys Val Glu Glu Ser Lys Leu Lys Pro Asn Thr Arg

-continued

1010	1015	1020
Tyr Ile Val Ser Gly Phe Ile Ala His Gly Lys Asp Leu Glu Ile Val		
1025	1030	1935
1040		
Val Ser Arg Tyr Gly Gln Glu Val Gln Lys Val Val Gln Val Pro Tyr		
1045	1050	1055
Gly Glu Ala Phe Pro Leu Thr Ser Asn Gly Pro Val Cys Cys Pro Pro		
1060	1065	1070
Arg Ser Thr Ser Asn Gly Thr Leu Gly Asp Pro His Phe Phe Ser Tyr		
1075	1080	1085
Ser Ile Asp Val Gly Ala Leu Asp Leu Gln Ala Asn Pro Gly Ile Glu		
1090	1095	1100
Phe Gly Leu Arg Ile Val Asn Pro Thr Gly Met Ala Arg Val Ser Asn		
1105	1110	1115
1120		
Leu Glu Ile Arg Glu Asp Arg Pro Leu Ala Ala Asn Glu Ile Arg Gln		
1125	1130	1135
Val Gln Arg Val Ala Arg Asn Trp Arg Thr Glu Tyr Glu Lys Glu Arg		
1140	1145	1150
Ala Glu Val Thr Ser Leu Ile Gln Pro Val Ile Asn Arg Ile Asn Gly		
1155	1160	1165
Leu Tyr Glu Asn Gly Asn Trp Asn Gly Ser Ile Arg Ser Asp Ile Ser		
1170	1175	1180
Tyr Gln Asn Ile Asp Ala Ile Val Leu Pro Thr Leu Pro Lys Leu Arg		
1185	1190	1195
1290		
His Trp Phe Met Ser Asp Arg Phe Ser Glu Gln Gly Asp Ile Met Ala		
1205	1210	1215
Lys Phe Gln Gly Ala Leu Asn Arg Ala Tyr Ala Gln Leu Glu Gln Ser		
1220	1225	1230
Thr Leu Leu His Asn Gly His Phe Thr Lys Asp Ala Ala Asn Trp Thr		
1235	1240	1245
Ile Glu Gly Asp Ala His Gln Ile Thr Leu Glu Asp gly Arg Arg Val		
1250	1255	1260
Leu Arg Leu Pro Asp Trp Ser Ser Ser Val Ser Gln Met Ile Glu Ile		
1265	1270	1275
1280		
Glu Asn Phe Asn Pro Asp Lys Glu Tyr Asn Leu Val Phe His Gly Gln		
1285	1290	1295
Gly Glu Gly Thr Val Thr Leu Glu His Gly Glu Glu Thr Lys Tyr Ile		
1300	1305	1310
Glu Thr His Thr His His Phe Ala Asn Phe Thr Thr Ser Gln Arg Gln		
1315	1320	1325
Gly Leu Thr Phe Glu Ser Asn Lys Val Thr Val Thr Ile Ser Ser Glu		
1330	1335	1340
Asp Gly Glu Phe Leu Val Asp Asn Ile Ala Leu Val Glu Ala Pro Leu		
1345	1350	1355
1360		
Pro Thr Asp Asp Gln Asn Ser Glu Gly Asn Thr Ala Ser Ser Thr Asn		
1365	1370	1375
Ser Asp Thr Ser Met Asn Asn Asn Gln		
1380	1385	

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3867 base ams
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

-continued

(i i i) HYPOTHETICAL: NO

(i v) ANTI-SENSE: NO

(v i) ORIGINAL SOURCE:

(A) ORGANISM: *Bacillus thuringiensis*
(B) STRAIN: PS17
(C) INDIVIDUAL ISOLATE: PS17b

(v i i) IMMEDIATE SOURCE:

(B) CLONE: *E. coli* NM522(pMYC 1628) NRRL B-18652

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGGCAATTT	TAAATGAATT	ATATCCATCT	GTACCTTATA	ATGTATTGGC	GTATACGCCA	6 0
CCCTCTTTTT	TACCTGATGC	GGGTACACAA	GCTACACCTG	CTGACTTAAC	AGCTTATGAA	12 0
CAATTGTTGA	AAAATTTAGA	AAAAGGGATA	AATGCTGGAA	CTTATTGAA	AGCAATAGCT	18 0
GATGTACTTA	AAGGTATTTT	TATAGATGAT	ACAATAAATT	ATCAAACATA	TGTAATATT	24 0
GGTTTAAGTT	TAATTACATT	AGCTGTACCG	GAAATTGGTA	TTTTTACACC	TTTCATCGGT	30 0
TTGTTTTTGT	CTGCATTGAA	TAAACATGAT	GCTCCACCTC	CTCCTAATGC	AAAAGATATA	36 0
TTTGAGGCTA	TGAAACCCAGC	GATTCAAGAG	ATGATTGATA	GAACCTTAAC	TGCGGATGAG	42 0
CAAACATTTT	TAAATGGGGA	AATAAGTGGT	TTACAAAATT	TAGCAGCAAG	ATACCAGTCT	48 0
ACAATGGATG	ATATTCAAAG	CCATGGAGGA	TTTAATAAGG	TAGATTCTGG	ATTAATTAAA	54 0
AAGTTTACAG	ATGAGGTA	ACTTTAAAT	AGTTTTATA	CAGATCGTT	ACCTGTATTT	60 0
ATTACAGATA	ATACAGCGGA	TCGAACCTTG	TTAGGTCTTC	CTTATTATGC	TATACTTGCG	66 0
AGCATGCATC	TTATGTTATT	AAGAGATATC	ATTACTAAGG	GTCCGACATG	GGATTCTAAA	72 0
ATTAATTTCA	CACCAGATGC	AATTGATTCC	TTTAAAACCG	ATATTAAAAA	TAATATAAAG	78 0
CTTTACTCTA	AAACTATT	TGACGTATTT	CAGAAGGGAC	TTGCTTCATA	CGGAACGCC	84 0
TCTGATTTAG	AGTCCTTGC	AAAAAAACAA	AAATATATTG	AAATTATGAC	AACACATTGT	90 0
TTAGATTTG	CAAGATTGTT	TCCTACTTT	GATCCAGATC	TTTATCCAAC	AGGATCAGGT	96 0
GATATAAGTT	TACAAAAAAC	ACGTAGAATT	CTTCTCCTT	TTATCCCTAT	ACGTACTGCA	102 0
GATGGGTTAA	CATTAAATAA	TACTTCATT	GATACTCAA	ATTGGCCTAA	TTATGAAAAT	108 0
GGGAATGGCG	CGTTTCCAAA	CCAAAAGAA	AGAATATTAA	AACAATTCAA	ACTGTATCCT	114 0
AGTTGGAGAG	CGGCACAGTA	CGGTGGGCTT	TTACAACCTT	ATTATGGGC	AATAGAAGTC	120 0
CAAGATTCTG	TAGAGACTCG	TTTGTATGGG	CAGCTTCCAG	CTGTAGATCC	ACAGGCAGGG	126 0
CCTAATTATG	TTTCCATAGA	TTCTCTAAT	CCAATCATAAC	AAATAATAT	GGATACTTGG	132 0
AAAACACCAC	CACAAGGTGC	GAGTGGGTGG	AATACAAATT	TAATGAGAGG	AAAGTGTAAAGC	138 0
GGGTTAAGTT	TTTACAACG	AGATGGTACG	AGACTTAGTG	CTGGTATGGG	TGGTGGTTTT	144 0
GCTGATACAA	TATATAGTCT	CCCTGCAACT	CATTATCTT	CTTATCTCTA	TGGAACCTCCT	150 0
TATCAAACCTT	CTGATAACTA	TTCTGGTCAC	GTTGGTGCAT	TGGTAGGTGT	GAGTACGCC	156 0
CAAGAGGCTA	CTCTTCCCAA	TATTATAGGT	CAACCAGATG	AACAGGGAAA	TGTATCTACA	162 0
ATGGGATTTC	CGTTTGAAA	AGCTTCTTAT	GGAGGTACAG	TTGTTAAAGA	ATGGTTAAAT	168 0
GGTGCAGATG	CGATGAAGCT	TTCTCCTGGG	CAATCTATAG	GTATTCCAT	TACAAATGTA	174 0
ACAAGTGGAG	AATATCAAAT	TCGTTGTCGT	TATGCAAGTA	ATGATAATAC	TAACGTTTTC	180 0
TTTAATGTAG	ATACTGGTGG	AGCAAATCCA	ATTTTCAAAC	AGATAAACTT	TGCATCTACT	186 0
GTAGATAATA	ATACGGGAGT	ACAAGGAGCA	AATGGTGTCT	ATGTAGTCAA	ATCTATTGCT	192 0
ACAACGTATA	ATTCTTTAC	AGTAAAATT	CCTGCGAAGA	CGATTAATGT	TCATTTAAC	198 0
AACCAAGGTT	CTTCTGATGT	CTTTTAGAT	CGTATTGAGT	TTGTTCCAAT	TCTAGAATCA	204 0

-continued

AATACTGTAA CTATATTCAA CAATTCAAT ACTACAGGTT CAGCAAATCT TATACCAGCA	2100
ATAGCTCCTC TTTGGAGTAC TAGTCAGAT AAAGCCCTTA CAGGTTCTAT GTCAATAACA	2160
GGTCGAACTA CCCCTAACAG TGATGATGCT TTGCTTCGAT TTTTAAAC TAATTATGAT	2220
ACACAAACCA TTCCTATTCC GGGTCCGGA AAAGATTTA CAAATACTCT AGAAATACAA	2280
GACATAGTTT CTATTGATAT TTTTGTGGA TCTGGTCTAC ATGGATCCGA TGGATCTATA	2340
AAATTAGATT TTACCAATAA TAATAGTGGT AGTGGTGGCT CTCCAAAGAG TTTCACCGAG	2400
CAAAATGATT TAGAGAATAT CACAACACAA GTGAATGCTC TATTACATC TAATACACAA	2460
GATGCACTTG CAACAGATGT GAGTGATCAT GATATTGAAG AAGTGGTCT AAAAGTAGAT	2520
GCATTATCTG ATGAAGTGTG TGGAAAAGAG AAAAAAACAT TGCGTAAATT TGAAATCAA	2580
GCGAAGCGCT TAAGCAAGGC GCGTAATCTC CTGGTAGGAG GCAATTGTA TAACTTGGAT	2640
GCTTGGTATA GAGGAAGAAA TGTAGTAAAC GTATCTAAC ACGAACGTGTT GAAGAGTGAT	2700
CATGTATTAT TACCACCAACC AGGATTGTCT CCATCTTATA TTTTCCAAAA AGTGGAGGAA	2760
TCTAAATTAA AACGAAATAC ACGTTATACG GTTCTGGAT TTATTGCGCA TGCAACAGAT	2820
TTAGAAATTG TGGTTTCTCG TTATGGCAA GAAATAAAGA AAGTGGTGCA AGTTCTTAT	2880
GGAGAAGCAT TCCCATTAAAC ATCAAGTGGC CCAGTTGTT GTATCCCACA TTCTACAAGT	2940
AATGGAACCT TAGGCAATCC ACATTCTTT AGTTACAGTA TTGATGTAGG TGCATTAGAT	3000
GTAGACACAA ACCCTGGTAT TGAATTGCGT CTTCGTATTG TAAATCCAAC TGGAAATGGCA	3060
CGCGTAAGCA ATTTGGAAAT TCGTGAAGAT CGTCCATTAG CAGCAAATGA AATACGACAA	3120
GTACAACGTG TCGCAAGAAA TTGGAGAAC GAGTATGAGA AAGAACGTGC GGAAGTAACA	3180
AGTTTAATTCAACCTGTTAT CAATCGAAC TAAATGGATTGT ATGACAATGG AAATTGGAAC	3240
GGTTCTATTG GTTCAGATAT TTCTGATCAG AATATAGACG CGATTGTATT ACCAACGTTA	3300
CCAAAGTTAC GCCATTGGTT TATGTCAGAT AGATTTAGTG AACAAAGGAGA TATCATGGCT	3360
AAATTCCAAG GTGCATTAAC TCGTGCAT GCACAACTGG AACAAAATAC GCTTCTGCAT	3420
AATGGTCATT TTACAAAAGA TGCAGCCAAT TGGACGGTAG AAGGCATGCA ACATCAGGTA	3480
GTATTAGAAG ATGGTAAACG TGTATTACGA TTGCCAGATT GGTCTTCGAG TGTGTCTCAA	3540
ACGATTGAAA TCGAGAATT TGATCCAGAT AAAGAATATC AATTAGTATT TCATGGCAA	3600
GGAGAAGGAA CGGTTACGTT GGAGCATGGA GAAGAAACAA AATATATAGA AACGCATACA	3660
CATCATTTG CGAATTTCAC AACTTCTCAA CGTCAAGGAC TCACGTTGTA ATCAAATAAA	3720
GTGACAGTGA CCATTCTTC AGAAGATGGA GAATTCTTAG TGGATAATAT TCGCCTTGTG	3780
GAAGCTCCTC TTCCTACAGA TGACAAAAT TCTGAGGGAA ATACGGCTTC CAGTACGAAT	3840
AGCGATACAA GTATGAACAA CAATCAA	3867

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1289 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(i i i) HYPOTHETICAL: YES

(i v) ANTI-SENSE: NO

(v i) ORIGINAL SOURCE:

(A) ORGANISM: BACILLUS THURINGIENSIS

(C) INDIVIDUAL ISOLATE: PS17

(v i i) IMMEDIATE SOURCE:

(B) CLONE: E. coli NM522(pMYC 1628) NRRL B-18652

-continued

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ala Ile Leu Asn Glu Leu Tyr Pro Ser Val Pro Tyr Asn Val Leu
 1 5 10 15

Ala Tyr Thr Pro Pro Ser Phe Leu Pro Asp Ala Gly Thr Gln Ala Thr
 20 25 30

Pro Ala Asp Leu Thr Ala Tyr Glu Gln Leu Leu Lys Asn Leu Glu Lys
 35 40 45

Gly Ile Asn Ala Gly Thr Tyr Ser Lys Ala Ile Ala Asp Val Leu Lys
 50 55 60

Gly Ile Phe Ile Asp Asp Thr Ile Asn Tyr Gln Thr Tyr Val Asn Ile
 65 70 75 80

Gly Leu Ser Leu Ile Thr Leu Ala Val Pro Glu Ile Gly Ile Phe Thr
 85 90 95

Pro Phe Ile Gly Leu Phe Phe Ala Ala Leu Asn Lys His Asp Ala Pro
 100 105 110

Pro Pro Pro Asn Ala Lys Asp Ile Phe Glu Ala Met Lys Pro Ala Ile
 115 120 115

Gln Glu Met Ile Asp Arg Thr Leu Thr Ala Asp Glu Gln Thr Phe Leu
 130 135 140

Asn Gly Glu Ile Ser Gly Leu Gln Asn Leu Ala Ala Arg Tyr Gln Ser
 145 150 155 160

Thr Met Asp Asp Ile Gln Ser His Gly Gly Phe Asn Lys Val Arg Ser
 165 170 175

Gly Leu Ile Lys Lys Phe Thr Asp Glu Val Leu Ser Leu Asn Ser Phe
 180 185 190

Tyr Thr Asp Arg Leu Pro Val Phe Ile Thr Asp Asn Thr Ala Asp Arg
 195 200 205

Thr Leu Leu Gly Leu Pro Tyr Tyr Ala Ile Leu Ala Ser Met His Leu
 210 215 220

Met Leu Leu Arg Asp Ile Ile Thr Lys Gly Pro Thr Trp Asp Ser Lys
 225 230 235 240

Ile Asn Phe Thr Pro Asp Ala Ile Asp Ser Phe Lys Thr Asp Ile Lys
 245 250 255

Asn Asn Ile Lys Leu Tyr Ser Lys Thr Ile Tyr Asp Val Phe Gln Lys
 260 265 270

Gly Leu Ala Ser Tyr Gly Thr Pro Ser Asp Leu Glu Ser Phe Ala Lys
 275 280 285

Lys Gln Lys Tyr Ile Glu Ile Met Thr Thr His Cys Leu Asp Phe Ala
 290 295 300

Arg Leu Phe Pro Thr Phe Asp Pro Asp Leu Tyr Pro Thr Gly Ser Gly
 305 310 315 320

Asp Ile Ser Leu Gln Lys Thr Arg Arg Ile Leu Ser Pro Phe Ile Pro
 325 330 335

Ile Arg Thr Ala Asp Gly Leu Thr Leu Asn Asn Thr Ser Ile Asp Thr
 340 345 350

Ser Asn Trp Pro Asn Tyr Glu Asn Gly Asn Gly Ala Phe Pro Asn Pro
 355 360 365

Lys Glu Arg Ile Leu Lys Gln Phe Lys Leu Tyr Pro Ser Trp Arg Ala
 370 375 380

Ala Gln Tyr Gly Gly Leu Leu Gln Pro Tyr Leu Trp Ala Ile Glu Val
 385 390 395 400

Gln Asp Ser Val Glu Thr Arg Leu Tyr Gly Gln Leu Pro Ala Val Asp
 405 410 415

Pro Gln Ala Gly Pro Asn Tyr Val Ser Ile Asp Ser Ser Asn Pro Ile

-continued

429

425

430

Ile	Gin	Ile	Asn	Met	Asp	Thr	Trp	Lys	Thr	Pro	Pro	Gln	Gly	Ala	Ser
435							440					445			
Gly	Trp	Asn	Thr	Asn	Leu	Met	Arg	Gly	Ser	Val	Ser	Gly	Leu	Ser	Phe
450							455					460			
Leu	Gln	Arg	Asp	Gly	Thr	Arg	Leu	Ser	Ala	Gly	Met	Gly	Gly	Phe	
465							470				475				480
Ala	Asp	Thr	Ile	Tyr	Ser	Leu	Pro	Ala	Thr	His	Tyr	Leu	Ser	Tyr	Leu
							485				490				495
Tyr	Gly	Thr	Pro	Tyr	Gln	Thr	Ser	Asp	Asn	Tyr	Ser	Gly	His	Val	Gly
							500				505				510
Ala	Leu	Val	Gly	Val	Ser	Thr	Pro	Gln	Gl	Ala	Thr	Leu	Pro	Asn	Ile
							515				520				525
Ile	Gly	Gln	Pro	Asp	Glu	Gln	Gly	Asn	Val	Ser	Thr	Met	Gly	Phe	Pro
							533				535				540
Phe	Glu	Lys	Ala	Ser	Tyr	Gly	Gly	Thr	Val	Val	Lys	Glu	Trp	Leu	Asn
							545				550				560
Gly	Ala	Asn	Ala	Met	Lys	Leu	Ser	Pro	Gly	Gln	Ser	Ile	Gly	Ile	Pro
							565				570				575
Ile	Thr	Asn	Val	Thr	Ser	Gly	Glu	Tyr	Gln	Ile	Arg	Cys	Arg	Tyr	Ala
							580				585				590
Ser	Asn	Asp	Asn	Thr	Asn	Val	Phe	Phe	Asn	Val	Asp	Thr	Gly	Gly	Ala
							595				600				605
Asn	Pro	Ile	Phe	Gln	Gln	Ile	Asn	Phe	Ala	Ser	Thr	Val	Asp	Asn	Asn
							610				615				620
Thr	Gly	Val	Gln	Gly	Ala	Asn	Gly	Val	Tyr	Val	Val	Lys	Ser	Ile	Ala
							625				630				640
Thr	Thr	Asp	Asn	Ser	Phe	Thr	Val	Lys	Ile	Pro	Ala	Lys	Thr	Ile	Asn
							645				650				655
Val	His	Leu	Thr	Asn	Gln	Gly	Ser	Ser	Asp	Val	Phe	Leu	Asp	Arg	Ile
							660				665				670
Glu	Phe	Val	Pro	Ile	Leu	Glu	Ser	Asn	Thr	Val	Thr	Ile	Phe	Asn	Asn
							675				680				685
Ser	Tyr	Thr	Thr	Gly	Ser	Ala	Asn	Leu	Ile	Pro	Ala	Ile	Ala	Pro	Leu
							690				695				700
Trp	Ser	Thr	Ser	Ser	Asp	Lys	Ala	Leu	Thr	Gly	Ser	Met	Ser	Ile	Thr
							705				710				720
Gly	Arg	Thr	Thr	Pro	Asn	Ser	Asp	Asp	Ala	Leu	Leu	Arg	Phe	Phe	Lys
							725				730				735
Thr	Asn	Tyr	Asp	Thr	Gln	Thr	Ile	Pro	Ile	Pro	Gly	Ser	Gly	Lys	Asp
							740				745				750
Phe	Thr	Asn	Thr	Leu	Glu	Ile	Gln	Asp	Ile	Val	Ser	Ile	Asp	Ile	Phe
							755				760				765
Val	Gly	Ser	Gly	Leu	His	Gly	Ser	Asp	Gly	Ser	Ile	Lys	Leu	Asp	Phe
							770				775				780
Thr	Asn	Asn	Asn	Ser	Gly	Ser	Gly	Gly	Ser	Pro	Lys	Ser	Phe	Thr	Glu
							785				790				800
Gln	Asn	Asp	Leu	Glu	Asn	Ile	Thr	Thr	Gln	Val	Asn	Ala	Leu	Phe	Thr
							805				810				815
Ser	Asn	Thr	Gln	Asp	Ala	Leu	Ala	Thr	Asp	Val	Ser	Asp	His	Asp	Ile
							820				825				830
Glu	Glu	Val	Val	Leu	Lys	Val	Asp	Ala	Leu	Ser	Asp	Glu	Val	Phe	Gly
							835				840				845
Lys	Glu	Lys	Lys	Thr	Leu	Arg	Lys	Phe	Val	Asn	Gln	Ala	Lys	Arg	Leu
							850				855				860

-continued

Ser Lys Ala Arg Asn Leu Leu Val Gly Gly Asn Phe Asp Asn Leu Asp
 865 870 875 880
 Ala Trp Tyr Arg Gly Arg Asn Val Val Asn Val Ser Asn His Glu Leu
 885 890 895
 Leu Lys Ser Asp His Val Leu Leu Pro Pro Pro Gly Leu Ser Pro Ser
 900 905 910
 Tyr Ile Phe Gln Lys Val Glu Glu Ser Lys Leu Lys Arg Asn Thr Arg
 915 920 925
 Tyr Thr Val Ser Gly Phe Ile Ala His Ala Thr Asp Leu Glu Ile Val
 930 935 940
 Val Ser Arg Tyr Gly Gln Glu Ile Lys Lys Val Val Gln Val Pro Tyr
 945 950 955 960
 Gly Glu Ala Phe Pro Leu Thr Ser Ser Gly Pro Val Cys Cys Ile Pro
 965 979 975
 His Ser Thr Ser Asn Gly Thr Leu Gly Asn Pro His Phe Phe Ser Tyr
 980 985 990
 Ser Ile Asp Val Gly Ala Leu Asp Val Asp Thr Asn Pro Gly Ile Glu
 995 1000 1005
 Phe Gly Leu Arg Ile Val Asn Pro Thr Gly Met Ala Arg Val Ser Asn
 1010 1015 1020
 Leu Glu Ile Arg Glu Asp Arg Pro Leu Ala Ala Asn Glu Ile Arg Gln
 1025 1030 1035 1040
 Val Gln Arg Val Ala Arg Asn Trp Arg Thr Glu Tyr Glu Lys Glu Arg
 1045 1050 1055
 Ala Glu Val Thr Ser Leu Ile Gln Pro Val Ile Asn Arg Ile Asn Gly
 1060 1065 1070
 Leu Tyr Asp Asn Gly Asn Trp Asn Gly Ser Ile Arg Ser Asp Ile Ser
 1085 1080 1085
 Tyr Gln Asn Ile Asp Ala Ile Val Leu Pro Thr Leu Pro Lys Leu Arg
 1090 1095 1100
 His Trp Phe Met Ser Asp Arg Phe Ser Glu Gln Gly Asp Ile Met Ala
 1105 1110 1115 1120
 Lys Phe Gln Gly Ala Leu Asn Arg Ala Tyr Ala Gln Leu Glu Gln Asn
 1125 1130 1135
 Thr Leu Leu His Asn Gly His Phe Thr Lys Asp Ala Ala Asn Trp Thr
 1140 1145 1150
 Val Glu Gly Asp Ala His Gln Val Val Leu Glu Asp Gly Lys Arg Val
 1155 1160 1165
 Leu Arg Leu Pro Asp Trp Ser Ser Ser Val Ser Gln Thr Ile Glu Ile
 1150 1175 1180
 Glu Asn Phe Asp Pro Asp Lys Glu Tyr Gln Leu Val Phe His Gly Gln
 1185 1190 1195 1200
 Gly Glu Gly Thr Val Thr Leu Glu His Gly Glu Glu Thr Lys Tyr Ile
 1205 1210 1215
 Glu Thr His Thr His Phe Ala Asn Phe Thr Thr Ser Gln Arg Gln
 1220 1225 1230
 Gly Leu Thr Phe Glu Ser Asn Lys Val Thr Val Thr Ile Ser Ser Glu
 1235 1240 1245
 Asp Gly Glu Phe Leu Val Asp Asn Ile Ala Leu Val Glu Ala Pro Leu
 1250 1255 1260
 Pro Thr Asp Asp Gln Asn Ser Glu Gly Asn Thr Ala Ser Ser Thr Asn
 1265 1270 1275 1280
 Ser Asp Thr Ser Met Asn Asn Asn Gln
 1285

-continued

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3771 base airs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

(i i i) HYPOTHETICAL: NO

(i v) ANTI-SENSE: NO

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: *Bacillus thuringiensis*
- (C) INDIVIDUAL ISOLATE: 33f2

(v i i) IMMEDIATE SOURCE:

- (B) CLONE: *E. coli* NMS22(pMYC 2316) B-18785

(i x) FEATURE:

- (A) NAME/KEY: misc feature
- (B) LOCATION: 4.24
- (D) OTHER INFORMATION: /function="oligonucleotide
hybridization probe"
/ product="GCA/T ACA/T TTA AAT GAA GTA/T TAT"
/ standard name="probe a"
/ note="Probe A"

(i x) FEATURE:

- (A) NAME/KEY: misc feature
- (B) LOCATION: 13.33
- (D) OTHER INFORMATION: /function="oligonucleotide
hybridization probe"
/ product="AAT GAA GTA/T TAT CCA/T GTA/T AAT"
/ standard name="Probe B"
/ label=probe-b
/ note="probe b"

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATGGCTACAC TTAATGAAGT ATATCCTGTG AATTATAATG TATTATCTTC TGATGCTTT	6 0
CAACAATTAG ATACAAACAGG TTTTAAAGT AAATATGATG AAATGATAAA AGCATTGAA	1 2 0
AAAAAAATGGA AAAAAGGGGC AAAAGGAAAA GACCTTTAG ATGTTGCATG GACTTATATA	1 8 0
ACTACAGGAG AAATTGACCC TTTAAATGTA ATTAAAGGTG TTTTATCTGT ATTAACCTTA	2 4 0
ATTCCTGAAG TTGGTACTGT GGCCCTCTGCA GCAAGTACTA TTGTAAGTTT TATTTGGCCT	3 0 0
AAAATATTTG GAGATAAACCC AAATGAAAAA AATATATTTG AAGAGCTCAA GCCTCAAATT	3 6 0
GAAGCATTAA TTCAACAAGA TATAACAAAC TATCAAGATG CAATTAATCA AAAAAAATTT	4 2 0
GACAGTCTTC AGAAAACAAT TAATCTATAT ACAGTAGCTA TAGATAACAA TGATTACGTA	4 8 0
ACAGCAAAAA CGCAACTCGA AAATCTAAAT TCTATACCTA CCTCAGATAT CTCCATATTT	5 4 0
ATTCCAGAAG GATATGAAAC TGGAGGTTA CCTTATTATG CTATGGTTGC TAATGCTCAT	6 0 0
ATATTATTGT TAAGAGACGC TATAGTTAAT GCAGAGAAAT TAGGCTTTAG TGATAAAGAA	6 6 0
GTAGACACAC ATAAAAAATA TATCAAAATG ACAATACACA ATCATACTGA AGCAGTAATA	7 2 0
AAAGCATTCT TAAATGGACT TGACAAATT AAGAGTTTAG ATGAAATAG CTATAATAAA	7 8 0
AAAGCAAATT ATATTAAAGG TATGACAGAA ATGGTTCTTG ATCTAGTTGC TCTATGGCCA	8 4 0
ACTTCGATC CAGATCATTA TCAAAAAGAA GTAGAAATTG AATTACAAG AACTATTCT	9 0 0
TCTCCAATTT ACCAACCTGT ACCTAAAAAC ATGCAAAATA CCTCTAGCTC TATTGTACCT	9 6 0
AGCGATCTAT TTCACTATCA AGGAGATCTT GTAAAATTAG AATTTTCTAC AAGAACGGAC	1 0 2 0
AACGATGGTC TTGCAAAAT TTTTACTGGT ATTGAAACA CATTCTACAA ATGCCCTAAT	1 0 8 0
ACTCATGAAA CATAACCATGT AGATTTAGT TATAATACCC AATCTAGTGG TAATATTCA	1 1 4 0
AGAGGCTCTT CAAATCCGAT TCCAATTGAT CTTAATAATC CCATTATTTC AACTTGTATT	1 2 0 0

-continued

AGAAATTCA	TTTATAAGGC	AATAGCGGGA	TCTTCTGTT	TAGTTAATT	TAAAGATGGC	1 2 6 0
ACTCAAGGGT	ATGCATTGC	CCAAGCACCA	ACAGGAGGTG	CCTGGGACCA	TTCTTTATT	1 3 2 0
GAATCTGATG	GTGCCCCAGA	AGGGCATAAA	TTAAACTATA	TTTATACTTC	TCCAGGTGAT	1 3 8 0
ACATTAAGAG	ATTTCATCAA	TGTATATACT	CTTATAAGTA	CTCCAACAT	AAATGAACTA	1 4 4 0
TCAACAGAAA	AAATCAAAGG	CTTTCCTGCG	GAAAAAGGAT	ATATCAAAAA	TCAAGGGATC	1 5 0 0
ATGAAATATT	ACGGTAAACC	AGAATATATT	AATGGAGCTC	AACCAGTTAA	TCTGGAAAAC	1 5 6 0
CAGCAAACAT	TAATATTCGA	ATTCATGCT	TCAAAAACAG	CTCAATATAC	CATTCGTATA	1 6 2 0
CGTTATGCCA	GTACCCAAGG	AACAAAAGGT	TATTTCGTT	AGATAATCA	GGAACTGCAA	1 6 8 0
ACGCTTAATA	TACCTACTTC	ACACAACGGT	TATGTAACCG	GTAATATTGG	TGAAAATTAT	1 7 4 0
GATTTATATA	CAATAGGTTC	ATATACAATT	ACAGAAGGTA	ACCATACTCT	TCAAATCCAA	1 8 0 0
CATAATGATA	AAAATGGAAT	GGTTTAGAT	CGTATTGAAT	TTGTTCTAA	AGATTCACTT	1 8 6 0
CAAGATTCAC	CTCAAGATTC	ACCTCCAGAA	GTTCACGAAT	CAACAATTAT	TTTGATAAAA	1 9 2 0
TCATCTCCAA	CTATATGGTC	TTCTAACAAA	CACTCATATA	GCCATATACA	TTTAGAAGGA	1 9 8 0
TCATATACAA	GTCAGGGAAG	TTATCCACAC	AATTTATTAA	TTAATTATT	TCATCCTACA	2 0 4 0
GACCTTAACA	GAAATCATAC	TATTATGTT	AAACATGGT	ATATGAATGT	TGATTATGGA	2 1 0 0
AAAGATTCTG	TAGCCGATGG	GTAAATT	AAATAAAATAA	CTGCTACGAT	ACCAAGTGAT	2 1 6 0
GCTTGGTATA	GCGGTACTAT	TACTTCTATG	CACTTATTAA	ATGATAATAA	TTTAAACACA	2 2 2 0
ATAACTCCTA	AATTGAACT	TTCTAATGAA	TTAGAAAACA	TCACAACTCA	AGTAAATGCT	2 2 8 0
TTATTGCGAT	CTAGTGCACA	AGATACTCTC	GCAAGTAATG	TAAGTGATTA	CTGGATTGAA	2 3 4 0
CAGGTCGTTA	TGAAAGTCGA	TGCCTTATCA	GATGAAGTAT	TTGGAAAAGA	GAAAAAAGCA	2 4 0 0
TTACGTAAAT	TGGTAAATCA	AGCAAAACGT	CTCAGTAAAA	TACGAAATCT	TCTCATAGGT	2 4 6 0
GGTAATT	ACAATTAGT	CGCTTGGTAT	ATGGGAAAAG	ATGTAGTAA	AGAATCGGAT	2 5 2 0
CATGAATTAT	TTAAAAGTGA	TCATGTCTTA	CTACCTCCCC	CAACATTCCA	TCCTTCTTAT	2 5 8 0
ATTTTCCAAA	AGGTGGAAGA	ATCAAAACTA	AAACCAAATA	CACGTTATAC	TATTCTGGT	2 6 4 0
TTTATCGCAC	ATGGGAGAAGA	TGTAGAGCTT	GTTGCTCTC	GTTATGGCA	AGAAATACAA	2 7 0 0
AAAGTGTGTC	AAGTGCATA	TGAAGAAGCA	CTTCCTCTTA	CATCTGAATC	TAATTCTAGT	2 7 6 0
TGTTGTGTT	CAAATTAAA	TATAATGAA	ACACTAGCTG	ATCCACATTT	CTTTAGTTAT	2 8 2 0
AGCATCGATG	TTGGTTCTCT	GGAAATGGAA	GCGAATCCG	GTATTGAATT	TGGTCTCCGT	2 8 8 0
ATTGTCAAAC	CAACAGGTAT	GGCACGTGTA	AGTAATTAG	AAATTGAGA	AGACCGTCCA	2 9 4 0
TTAACAGCAA	AAGAAATTG	TCAAGTACAA	CGTGCAGCAA	GAGATTGGAA	ACAAAACAT	3 0 0 0
GAACAAGAAC	GAACAGAGAT	CACAGCTATA	ATTCAACCTG	TTCTTAATCA	AATTAATGCG	3 0 6 0
TTATACGAAA	ATGAAGATTG	GAATGGTTCT	ATTGTTCAA	ATGTTCTCTA	TCATGATCTA	3 1 2 0
GAGCAAATT	TGCTTCTAC	TTTATTAAAA	ACTGAGGAAA	TAAATTGTAA	TTATGATCAT	3 1 8 0
CCAGCTTTT	TATTAAGT	ATATCATTGG	TTATGACAG	ATCGTATAGG	AGAACATGGT	3 2 4 0
ACTATTTAG	CACGTTCCA	AGAACATTA	GATCGTGCAT	ATACACAATT	AGAAAGTCGT	3 3 0 0
AATCTCTGC	ATAACGGTCA	TTTACAAC	GATACAGCGA	ATTGGACAAT	AGAAGGAGAT	3 3 6 0
GCCCACATCA	CAATCTTAGA	AGATGGTAGA	CGTGTGTTAC	GTTTACCA	AGAACATGGT	3 4 2 0
AATGCAACTC	AAACAATTGA	AATTGAAGAT	TTGACTTAG	ATCAAGAATA	CCAATTGCTC	3 4 8 0
ATTCATGCAA	AAGGAAAAGG	TTCCATTACT	TTACAACATG	GAGAAGAAAA	CGAATATGTG	3 5 4 0
GAAACACATA	CTCATCATAC	AAATGATTTT	ATAACATCCC	AAAATATTCC	TTTCACCTTT	3 6 0 0
AAAGGAAATC	AAATTGAAGT	CCATATTACT	TCAGAAGATG	GAGAGTTTT	AATCGATCAC	3 6 6 0

-continued

ATTACAGTAA TAGAAGTTTC TAAAACAGAC ACAAAATACAA ATATTATTGA AAATTACACCA	3 7 2 0
ATCAATACAA GTATGAATAG TAATGTAAGA GTAGATATAC CAAGAAGTCT C	3 7 7 1

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1425 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

(i i i) HYPOTHETICAL: NO

(i v) ANTI-SENSE: NO

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: BACILLUS THURINGIENSIS
- (C) INDIVIDUAL ISOLATE: PS52A1

(v i i) IMMEDIATE SOURCE:

- (B) CLONE: E. coli NH522(pMYC 2321) B-18770

(i x) FEATURE:

- (A) NAME/KEY: mat peptide
- (B) LOCATION: 1..1425
- (D) OTHER INFORMATION: /product="OPEN READING FRAME OF MATURE PROTEIN"

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:6:

ATGATTATTG ATAGTAAAAC GACTTTACCT AGACATTACAC TTATTCTAC AATTAAATTA	6 0
AATTCTAATA AGAAAATATGG TCCTGGTGAT ATGACTAATG GAAATCAATT TATTATTTC	1 2 0
AAACAAGAAT GGGCTACGAT TGGAGCATAT ATTCAAGACTG GATTAGGTTT ACCAGTAAAT	1 8 0
GAACAACAAT TAAGAACACA TGTAAATTG AGTCAGGATA TATCAATACC TAGTGATTT	2 4 0
TCTCAATTAT ATGATGTTA TTGTTCTGAT AAAACTTCAG CAGAATGGTG GAATAAAAAT	3 0 0
TTATATCCTT TAATTATTAA ATCTGCTAAT GATATTGCTT CATATGGTTT TAAAGTTGCT	3 6 0
GGTGATCCTT CTATTAAGAA AGATGGATAT TTTAAAAAAAT TGCAAGATGA ATTAGATAAT	4 2 0
ATTGTTGATA ATAATTCCGA TGATGATGCA ATAGCTAAAG CTATTAAGA TTTAAAGCG	4 8 0
CGATGTGGTA TTTAATTAA AGAAGCTAAA CAATATGAAG AAGCTGCAA AAATATTGTA	5 4 0
ACATCTTAG ATCAATTGTT ACATGGTGAT CAGAAAAAAAT TAGAAGGTGT TATCAATATT	6 0 0
CAAAAACGTT TAAAAGAAGT TCAAACAGCT CTTAATCAAG CCCATGGGGA AAGTAGTC	6 6 0
GCTCATAAAG AGTTATTAGA AAAAGTAAA AATTAAAAAA CAACATTAGA AAGGACTATT	7 2 0
AAAGCTGAAC AAGATTTAGA GAAAAAAAGTA GAATATAGTT TTCTATTAGG ACCATTGTTA	7 8 0
GGATTGTTG TTTATGAAAT TCTGAAAAT ACTGCTGTT AGCATATAAA AAATCAAATT	8 4 0
GATGAGATAA AGAAAACAATT AGATTCGCT CAGCATGATT TGGATAGAGA TGTTAAAATT	9 0 0
ATAGGAATGT TAAATAGTAT TAATACAGAT ATTGATAATT TATATAGTCA AGGACAAGAA	9 6 0
GCAATTAAAG TTTCCAAAAA GTTACAAGGT ATTTGGGCTA CTATTGGAGC TCAAATAGAA	1 0 2 0
AATCTTAGAA CAACGTCGTT ACAAGAAGTT CAAGATTCTG ATGATGCTGA TGAGATACAA	1 0 8 0
ATTGAACCTG AGGACGCTTC TGATGCTTGG TTAGTTGTGG CTCAAGAAGC TCGTGATTT	1 1 4 0
ACACTAAATG CTTATTCAAC TAATAGTAGA CAAAATTAC CGATTAATGT TATATCAGAT	1 2 0 0
TCATGTAATT GTTCAACAAAC AAATATGACA TCAAATCAAT ACAGTAATCC AACAAACAAAT	1 2 6 0
ATGACATCAA ATCAATATAT GATTTCACAT GAATATACAA GTTACCAAA TAATTTATG	1 3 2 0
TTATCAAGAA ATAGTAATT AGAATATAAA TGTCTGAAA ATAATTTAT GATATATTGG	1 3 8 0
TATAATAATT CGGATTGGTA TAATAATTG GATTGGTATA ATAAT	1 4 2 5

-continued

(2) INFORMATION FOR SEQ ID NO:7 (PS52A1):

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 475 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(i i i) HYPOTHETICAL: YES

(i v) ANTI-SENSE: NO

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: BACILLUS THURINGIENSIS
- (C) INDIVIDUAL ISOLATE: PS52A1

(v i i) IMMEDIATE SOURCE:

- (B) CLONE: E. coli NM522(pMYC 2321) B-18770

(i x) FEATURE:

- (A) NAME/KEY: Protein
- (B) LOCATION: 1..475

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met	Ile	Ile	Asp	Ser	Lys	Thr	Thr	Leu	Pro	Arg	His	Ser	Leu	Ile	His	
1				5				10							15	
Thr	Ile	Lys	Leu	Asn	Ser	Asn	Lys	Lys	Tyr	Gly	Pro	Gly	Asp	Met	Thr	
		20					25						30			
Asn	Gly	Asn	Gln	Phe	Ile	Ile	Ser	Lys	Gln	Glu	Trp	Ala	Thr	Ile	Gly	
		35					40					45				
Ala	Tyr	Ile	Gln	Thr	Gly	Leu	Gly	Leu	Pro	Val	Asn	Glu	Gln	Gln	Leu	
		50				55					60					
Arg	Thr	His	Val	Asn	Leu	Ser	Gln	Asp	Ile	Ser	Ile	Pro	Ser	Asp	Phe	
		65				70					75					
Ser	Gln	Leu	Tyr	Asp	Val	Tyr	Cys	Ser	Asp	Lys	Thr	Ser	Ala	Glu	Trp	
			85					90					95			
Trp	Asn	Lys	Asn	Leu	Tyr	Pro	Leu	Ile	Ile	Lys	Ser	Ala	Asn	Asp	Ile	
			100				105						110			
Ala	Ser	Tyr	Gly	Phe	Lys	Val	Ala	Gly	Asp	Pro	Ser	Ile	Lys	Lys	Asp	
		115					120					125				
Gly	Tyr	Phe	Lys	Lys	Leu	Gln	Asp	Glu	Leu	Asp	Asn	Ile	Val	Asp	Asn	
		130				135					140					
Asn	Ser	Asp	Asp	Asp	Ala	Ile	Ala	Lys	Ala	Ile	Lys	Asp	Phe	Lys	Ala	
		145				150					155				160	
Arg	Cys	Gly	Ile	Leu	Ile	Lys	Glu	Ala	Lys	Gln	Tyr	Glu	Glu	Ala	Ala	
			165					170					175			
Lys	Asn	Ile	Val	Thr	Ser	Leu	Asp	Gln	Phe	Leu	His	Gly	Asp	Gln	Lys	
		180					185					190				
Lys	Leu	Glu	Gly	Val	Ile	Asn	Ile	Gln	Lys	Arg	Leu	Lys	Glu	Val	Gln	
		195					200					205				
Thr	Ala	Leu	Asn	Gln	Ala	His	Gly	Glu	Ser	Ser	Pro	Ala	His	Lys	Glu	
		210				215					220					
Leu	Leu	Glu	Lys	Val	Lys	Asn	Leu	Lys	Thr	Thr	Leu	Glu	Arg	Thr	Ile	
		225			210				235					240		
Lys	Ala	Glu	Gln	Asp	Leu	Glu	Lys	Lys	Val	Glu	Tyr	Ser	Phe	Leu	Leu	
			245					250					255			
Gly	Pro	Leu	Leu	Gly	Phe	Val	Val	Tyr	Glu	Ile	Leu	Glu	Asn	Thr	Ala	
		260				265		265					270			
Val	Gln	His	Ile	Lys	Asn	Gln	Ile	Asp	Glu	Ile	Lys	Lys	Gln	Leu	Asp	
		275					280					285				
Ser	Ala	Gln	His	Asp	Leu	Asp	Arg	Asp	Val	Lys	Ile	Ile	Gly	Met	Leu	

-continued

2 9 0	2 9 5	3 0 0
Asn Ser Ile Asn Thr Asp Ile Asp Asn Leu Tyr Ser Gln Gly Gln Glu		
305 310 315 320		
Ala Ile Lys Val Phe Gln Lys Leu Gln Gly Ile Trp Ala Thr Ile Gly		
325 330 335		
Ala Gln Ile Glu Asn Leu Arg Thr Thr Ser Leu Gln Glu Val Gln Asp		
340 345 350		
Ser Asp Asp Ala Asp Glu Ile Gln Ile Glu Leu Glu Asp Ala Ser Asp		
355 360 365		
Ala Trp Leu Val Val Ala Gln Glu Ala Arg Asp Phe Thr Leu Asn Ala		
370 375 380		
Tyr Ser Thr Asn Ser Arg Gln Asn Leu Pro Ile Asn Val Ile Ser Asp		
375 390 395 400		
Ser Cys Asn Cys Ser Thr Thr Asn Met Thr Ser Asn Gln Tyr Ser Asn		
405 410 415		
Pro Thr Thr Asn Met Thr Ser Asn Gln Tyr Met Ile Ser His Glu Tyr		
420 425 430		
Thr Ser Leu Pro Asn Asn Phe Met Leu Ser Arg Asn Ser Asn Leu Glu		
435 440 445		
Tyr Lys Cys Pro Glu Asn Asn Phe Met Ile Tyr Trp Tyr Asn Asn Ser		
450 455 460		
Asp Trp Tyr Asn Asn Ser Asp Trp Tyr Asn Asn		
465 470 475		

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1185 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: BACILLUS THURINGIENSIS
- (C) INDIVIDUAL ISOLATE: PS69D1

(v i i) IMMEDIATE SOURCE:

- (B) CLONE: E. coli NM522(pMYC2317) NRRL B- 18816

(i x) FEATURE:

- (A) NAME/KEY: mat peptide
- (B) LOCATION: 1..1185

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:8:

ATGATTTAG GGAATGGAAA GACTTACCA AAGCATATAA GATTAGCTCA TATTTTGCA	6 0
ACACAGAATT CTTCAGCTAA GAAAGACAAT CCTCTTGGAC CAGAGGGAT GGTTACTAAA	12 0
GACGGTTTA TAATCTCTAA GGAAGAATGG GCATTTGTGC AGGCCTATGT GACTACAGGC	18 0
ACTGGTTTAC CTATCAATGA CGATGAGATG CGTAGACATG TTGGGTTACC ATCACGCATT	24 0
CAAATTCCCTG ATGATTTAA TCAATTATAT AAGGTTTATA ATGAAGATAA ACATTTATGC	30 0
AGTTGGTGG A ATGGTTCTT GTTCCATTA GTTCTAAAA CAGCTAATGA TATTTCCGCT	36 0
TACGGATTAA AATGTGCTGG AAAGGGTGCC ACTAAAGGAT ATTATGAGGT CATGCAAGAC	42 0
GATGTAGAAA ATATTCAGA TAATGGTTAT GATAAAGTTG CACAAGAAAA AGCACATAAG	48 0
GATCTGCAGG CGCGTTGTAA AATCCTTATT AAGGAGGCTG ATCAATATAA,AGCTGCAGCG	54 0
GATGATGTTT CAAAACATT AAACACATT CTTAAAGGCG GTCAAGATT C AGATGGCAAT	60 0

-continued

GATGTTATTG	GCGTAGAGGC	TGTTCAAGTA	CAACTAGCAC	AAGTAAAAGA	TAATCTTGAT	660
GGCCTATATG	GCGACAAAAG	CCCAAGACAT	GAAGAGTTAC	TAAAGAAAGT	AGACGACCTG	720
AAAAAAGAGT	TGGAAGCTGC	TATTA&AGCA	GAGAATGAAT	TAGAAAAGAA	AGTGAAAATG	780
AGTTTGCTT	TAGGACCATT	ACTTGGATT	GTTGTATATG	AAATCTTAGA	GCTAACTGCG	840
GTCAAAAGTA	TACACAAGAA	AGTTGAGGCA	CTACAAGCCG	AGCTTGACAC	TGCTAATGAT	900
GAACCTGACA	GAGATGTAAA	AATCTTAGGA	ATGATGAATA	GCATTGACAC	TGATATTGAC	960
AACATGTTAG	AGCAAGGTGA	GCAAGCTCTT	GTTGTATTTA	GAAAAATTGC	AGGCATTGAG	1020
AGTGTATAA	GTCTTAATAT	CGGCAATCTT	CGAGAAACAT	CTTAAAAGA	GATAGAAGAA	1080
GAAAATGATG	ACGATGCACT	GTATATTGAG	CTTGGTGATG	CCGCTGGTCA	ATGGAAAGAG	1140
ATAGCCGAGG	AGGCACAATC	CTTGTACTA	AATGCTTATA	CTCCT		1185

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 395 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: BACILLUS THURINGIENSIS
- (C) INDIVIDUAL ISOLATE: PS69D1

(vii) IMMEDIATE SOURCE:

- (B) CLONE: E. coli NMS22(pMYC2317) NRRL B-18816

(ix) FEATURE:

- (A) NAME/KEY: Protein
- (B) LOCATION: 1..395

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met	Ile	Leu	Gly	Asn	Gly	Lys	Thr	Leu	Pro	Lys	His	Ile	Arg	Leu	Ala
1					5			10						15	
His	Ile	Phe	Ala	Thr	Gln	Asn	Ser	Ser	Ala	Lys	Lys	Asp	Asn	Pro	Leu
		20					25							30	
Gly	Pro	Glu	Gly	Met	Val	Thr	Lys	Asp	Gly	Phe	Ile	Ile	Ser	Lys	Glu
		35					40							45	
Glu	Trp	Ala	Phe	Val	Gln	Ala	Tyr	Val	Thr	Thr	Gly	Thr	Gly	Leu	Pro
	50				55						60				
Ile	Asn	Asp	Asp	Glu	Met	Arg	Arg	His	Val	Gly	Leu	Pro	Ser	Arg	Ile
	65				70					75					80
Gln	Ile	Pro	Asp	Asp	Phe	Asn	Gln	Leu	Tyr	Lys	Val	Tyr	Asn	Glu	Asp
		85						90							95
Lys	His	Leu	Cys	Ser	Trp	Trp	Asn	Gly	Phe	Leu	Phe	Pro	Leu	Val	Leu
		100						105						110	
Lys	Thr	Ala	Asn	Asp	Ile	Ser	Ala	Tyr	Gly	Phe	Lys	Cys	Ala	Gly	Lys
	115						120							125	
Gly	Ala	Thr	Lys	Gly	Tyr	Tyr	Glu	Val	Met	Gln	Asp	Asp	Val	Glu	Asn
	130				135						140				
Ile	Ser	Asp	Asn	Gly	Tyr	Asp	Lys	Val	Ala	Gln	Glu	Lys	Ala	His	Lys
	145					150					155				160
Asp	Leu	Gln	Ala	Arg	Cys	Lys	Ile	Leu	Ile	Lys	Glu	Ala	Asp	Gln	Tyr
					165				170						175

-continued

Lys	Ala	Ala	Ala	Asp	Asp	Val	Ser	Lys	His	Leu	Asn	Thr	Phe	Leu	Lys
180							185						190		
Gly	Gly	Gln	Asp	Ser	Asp	Gly	Asn	Asp	Val	Ile	Gly	Val	Glu	Ala	Val
195						200						205			
Gln	Val	Gln	Leu	Ala	Gln	Val	Lys	Asp	Asn	Leu	Asp	Gly	Leu	Tyr	Gly
210					215						220				
Asp	Lys	Ser	Pro	Arg	His	Glu	Glu	Leu	Leu	Lys	Lys	Val	Asp	Asp	Leu
225					230					235					240
Lys	Lys	Glu	Leu	Glu	Ala	Ala	Ile	Lys	Ala	Glu	Asn	Glu	Leu	Glu	Lys
		245						250					255		
Lys	Val	Lys	Met	Ser	Phe	Ala	Leu	Gly	Pro	Leu	Leu	Gly	Phe	Val	Val
		260					265					270			
Tyr	Glu	Ile	Leu	Glu	Leu	Thr	Ala	Val	Lys	Ser	Ile	His	Lys	Lys	Val
		275				280						285			
Glu	Ala	Leu	Gln	Ala	Glu	Leu	Asp	Thr	Ala	Asn	Asp	Glu	Leu	Asp	Arg
		290			295						300				
Asp	Val	Lys	Ile	Leu	Gly	Met	Met	Asn	Ser	Ile	Asp	Thr	Asp	Ile	Asp
		305			310					315					320
Asn	Met	Leu	Glu	Gln	Gly	Glu	Gln	Ala	Leu	Val	Val	Phe	Arg	Lys	Ile
			325						330					335	
Ala	Gly	Ile	Trp	Ser	Val	Ile	Ser	Leu	Asn	Ile	Gly	Asn	Leu	Arg	Glu
		340				345									350
Thr	Ser	Leu	Lys	Glu	Ile	Glu	Glu	Glu	Asn	Asp	Asp	Asp	Ala	Leu	Tyr
		355				360					365				
Ile	Glu	Leu	Gly	Asp	Ala	Ala	Gly	Gln	Trp	Lys	Glu	Ile	Ala	Glu	Glu
		370				375					380				
Ala	Gln	Ser	Phe	Val	Leu	Asn	Ala	Tyr	Thr	Pro					
		385			390				395						

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 22 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (synthetic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:10:

AGARTRK W T W AATGG W GCKM A W-

22

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Pro Thr Phe Asp Pro Asp Leu Tyr

1

5

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 14 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

-continued

(i i) MOLECULE TYPE: protein

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Ala	Ile	Leu	Asn	Glu	Leu	Tyr	Pro	Ser	Val	Pro	Tyr	Asn	Val
1				5						10			

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 14 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Ala	Ile	Leu	Asn	Glu	Leu	Tyr	Pro	Ser	Val	Pro	Tyr	Asn	Val
1				5						10			

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Met	Ile	Ile	Asp	Ser	Lys	Thr	Thr	Leu	Pro	Arg	His	Ser	Leu	Ile	Asn
1				5					10					15	

Thr

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: protein

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Met	Ile	Leu	Gly	Asn	Gly	Lys	Thr	Leu	Pro	Lys	His	Ile	Arg	Leu	Ala
1				5					10				15		

His	Ile	Phe	Ala	Thr	Gln	Asn	Ser
							20

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (synthetic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GCAATTTAA ATGAATTATA TCC

23

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 38 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single

-continued

(D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (synthetic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:18:

AAACATATTA GATTAGCACA TATTTTGCA ACACAAAA

3 8

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (synthetic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CAAYTACAAG C W CAACC

1 7

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (synthetic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:20:

AGGAACAAAY TCAAK W CGRT CTA

2 3

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (synthetic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:21:

TGGAATAAAT TCAATTYKRT C W A

2 3

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 28 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (synthetic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:22:

TGATTTT W MT CAATTATATR AKGTTTAT

2 8

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (synthetic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:23:

AAGAGTTAYT ARARAAAGTA

2 0

-continued

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 35 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (synthetic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:24:

TTAGGACCAT TRYT W GGATT TGTGT W TAT GAAAT

3 5

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 27 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (synthetic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GAYAGAGATG T W AAAATY W T AGGAATG

2 7

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 bases
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (synthetic)

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:26:

TTMTTAAA W C W GCTAATGAT ATT

2 3

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1425 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(i i) MOLECULE TYPE: DNA (genomic)

(i i i) HYPOTHETICAL: NO

(i v) ANTI-SENSE: NO

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: BACILLUS THURINGIENSIS
- (C) INDIVIDUAL ISOLATE: PS86A1

(v i i) IMMEDIATE SOURCE:

- (B) CLONE: E. coli NMS22(pMYC1638) NRRL B-18751

(i x) FEATURE:

- (A) NAME/KEY: mat peptide
- (B) LOCATION: 1..1425

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:27:

ATGATTATTG ATAGTAAAC GACTTACCT AGACATTCAC TTATTCATAC AATTAAATTA 6 0
 AATTCTAATA AGAAATATGG TCCTGGTGAT ATGACTAATG GAAATCAATT TATTATTTCA 12 0
 AAACAAGAAT GGGCTACGAT TGGAGCATAT ATTCAGACTG GATTAGGTTT ACCAGTAAAT 18 0
 GAACAACAAT TAAGAACACA TGTAAATTG AGTCAGGATA TATCAATACC TAGTGATTT 24 0

-continued

TCTCAATTAT ATGATGTTA TTGTTCTGAT AAAACTTCAG CAGAATGGTG GAATAAAAAT	3 0 0
TTATATCCTT TAATTATTAATCTGCTAAT GATATTGCTT CATATGGTTT TAAAGTTGCT	3 6 0
GGTGATCCTT CTATTAAGAA AGATGGATAT TTTAAAAAAT TGCAAGATGA ATTAGATAAT	4 2 0
ATTGTTGATA ATAATTCCGA TGATGATGCA ATAGCTAAAG CTATTAAGA TTTAAAGCG	4 8 0
CGATGTGGTA TTTAATTAA AGAAGCTAAA CAATATGAAG AAGCTGCAA AAATATTGTA	5 4 0
ACATCTTAG ATCAATTTCACATGGTGT CAGAAAAAAT TAGAAGGTGT TATCAATATT	6 0 0
CAAAAACGTT TAAAGAAGT TCAAACAGCT CTTAATCAAG CCCATGGGA AAGTAGTCCA	6 6 0
GCTCATAAAG AGTTATTAGA AAAAGTAAA AATTTAAAAA CAACATTAGA AAGGACTATT	7 2 0
AAAGCTGAAC AAGATTTAGA GAAAAAAGTA GAATATAGTT TTCTATTAGG ACCATTGTTA	7 8 0
GGATTGTTG TTTATGAAAT TCTGAAAAT ACTGCTGTTA AGCATATAAA AAATCAAATT	8 4 0
GATGAGATAA AGAAAACAATT AGATTCTGCT CAGCATGATT TGGATAGAGA TGTTAAAATT	9 0 0
ATAGGAATGT TAAATAGTAT TAATACAGAT ATTGATAATT TATATAGTCA AGGACAAGAA	9 6 0
GCAATTAAAG TTTCCAAAAA GTTACAAGGT ATTTGGCTA CTATTGGAGC TCAAATAGAA	1 0 2 0
AATCTTAGAA CAACGTCGTT ACAAGAAGTT CAAGATTCTG ATGATGCTGA TGAGATACAA	1 0 8 0
ATTGAACCTG AGGACGCTTC TGATGCTTGG TTAGTTGTGG CTCAAGAAGC TCGTGATTT	1 1 4 0
ACACTAAATG CTTATTCAAC TAATAGTGA CAAAATTAC CGATTAATGT TATATCAGAT	1 2 0 0
TCATGTAATT GTTCAACAAC AAATATGACA TCAAATCAAT ACAGTAATCC ACAACAAAT	1 2 6 0
ATGACATCAA ATCAATATAT GATTTCACAT GAATATACAA GTTACCAAA TAATTTATG	1 3 2 0
TTATCAAGAA ATAGTAATT AGAATATAAA TGTCTGAAA ATAATTTAT GATATATTGG	1 3 8 0
TATAATAATT CGGATTGGTA TAATAATTG GATTGGTATA ATAAT	1 4 2 5

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 475 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

- (A) ORGANISM: BACILLUS THURINGIENSIS
- (C) INDIVIDUAL ISOLATE: PS86A1

(vii) IMMEDIATE SOURCE:

- (B) CLONE: E. coli NM522(pMYC1638) NRRL B-18751

(ix) FEATURE:

- (A) NAME/KEY: Protein
- (B) LOCATION: 1..475

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Met	Ile	Ile	Asp	Ser	Lys	Thr	Thr	Leu	Pro	Arg	His	Ser	Leu	Ile	His
1				5				10					15		
Thr	Ile	Lys	Leu	Asn	Ser	Asn	Lys	Lys	Tyr	Gly	Pro	Gly	Asp	Met	Thr
	20						25						30		
Asn	Gly	Asn	Gln	Phe	Ile	Ile	Ser	Lys	Gln	Glu	Trp	Ala	Thr	Ile	Gly
	35						40					45			
Ala	Tyr	Ile	Gln	Thr	Gly	Leu	Gly	Leu	Pro	Val	Asn	Glu	Gln	Gln	Leu
	50					55					60				
Arg	Thr	His	Val	Asn	Leu	Ser	Gln	Asp	Ile	Ser	Ile	Pro	Ser	Asp	Phe
	65						70			75					80

-continued

Ser Gln Leu Tyr Asp Val Tyr Cys Ser Asp Lys Thr Ser Ala Glu Trp
 85 90 95

Trp Asn Lys Asn Leu Tyr Pro Leu Ile Ile Lys Ser Ala Asn Asp Ile
 100 105 110

Ala Ser Tyr Gly Phe Lys Val Ala Gly Asp Pro Ser Ile Lys Lys Asp
 115 120 125

Gly Tyr Phe Lys Lys Leu Gln Asp Glu Leu Asp Asn Ile Val Asp Asn
 130 135 140

Asn Ser Asp Asp Asp Ala Ile Ala Lys Ala Ile Lys Asp Phe Lys Ala
 145 150 155 160

Arg Cys Gly Ile Leu Ile Lys Glu Ala Lys Gln Tyr Glu Glu Ala Ala
 165 170 175

Lys Asn Ile Val Thr Ser Leu Asp Gln Phe Leu His Gly Asp Gln Lys
 180 185 190

Lys Leu Glu Gly Val Ile Asn Ile Gln Lys Arg Leu Lys Glu Val Gln
 195 200 205

Thr Ala Leu Asn Gln Ala His Gly Glu Ser Ser Pro Ala His Lys Glu
 210 215 220

Leu Leu Glu Lys Val Lys Asn Leu Lys Thr Thr Leu Glu Arg Thr Ile
 225 230 235 240

Lys Ala Glu Gln Asp Leu Glu Lys Lys Val Glu Tyr Ser Phe Leu Leu
 245 250 255

Gly Pro Leu Leu Gly Phe Val Val Tyr Glu Ile Leu Glu Asn Thr Ala
 260 265 270

Val Gln His Ile Lys Asn Gln Ile Asp Glu Ile Lys Lys Gln Leu Asp
 275 280 285

Ser Ala Gln His Asp Leu Asp Arg Asp Val Lys Ile Ile Gly Met Leu
 290 295 300

Asn Ser Ile Asn Thr Asp Ile Asp Asn Leu Tyr Ser Gln Gly Gln Glu
 305 310 315 320

Ala Ile Lys Val Phe Gln Lys Leu Gln Gly Ile Trp Ala Thr Ile Gly
 325 330 335

Ala Gln Ile Glu Asn Leu Arg Thr Thr Ser Leu Gln Glu Val Gln Asp
 340 345 350

Ser Asp Asp Ala Asp Gln Ile Gln Ile Glu Leu Glu Asp Ala Ser Asp
 355 360 356

Ala Trp Leu Val Val Ala Gln Glu Ala Arg Asp Phe Thr Leu Asn Ala
 370 375 380

Tyr Ser Thr Asn Ser Arg Gln Asn Leu Pro Ile Asn Val Ile Ser Asp
 385 390 395 400

Ser Cys Asn Cys Ser Thr Thr Asn Met Thr Ser Asn Gln Tyr Ser Asn
 405 410 415

Pro Thr Thr Asn Met Thr Ser Asn Gln Tyr Met Ile Ser His Glu Tyr
 420 425 430

Thr Ser Leu Pro Asn Asn Phe Met Leu Ser Arg Asn Ser Asn Leu Glu
 435 440 445

Tyr Lys Cys Pro Glu Asn Asn Phe Met Ile Tyr Trp Tyr Asn Asn Ser
 450 455 460

Asp Trp Tyr Asn Asn Ser Asp Trp Tyr Asn Asn
 465 470 475

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3471 base pairs
- (B) TYPE: nucleic acid

-continued

(C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(i i i) MOLECULE TYPE: DNA (genomic)

(i i i) HYPOTHETICAL: NO

(i v) ANTI-SENSE: NO

(v i) ORIGINAL SOURCE:

(A) ORGANISM: *Bacillus thuringiensis*
 (B) STRAIN: *kumamotoensis*
 (C) INDIVIDUAL ISOLATE: PS50C

(v i i) IMMEDIATE SOURCE:

(B) CLONE: *E. coli* NM522(pMYC2320) NRRL B-18769

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:29:

ATGAGTCCAA ATAATCAAAA TGAATATGAA ATTATAGATG CGACACCTTC TACATCTGTA	6 0
TCCAGTGATT CTAACAGATA CCCTTTGCG AATGAGCCAA CAGATGCGTT ACAAAATATG	12 0
AATTATAAAG ATTATCTGAA AATGTCTGGG GGAGAGAACATC CTGAATTATT TGGAAATCCG	18 0
GAGACGTTTA TTAGTTCATC CACGATTCAA ACTGGAATTG GCATTGTTGG TCGAATACTA	24 0
GGAGCTTTAG GGGTTCCATT TGCTAGTCAG ATAGCTAGTT TCTATAGTT CATTGTTGGT	30 0
CAATTATGGC CGTCAAAGAG CGTAGATATA TGGGGAGAAAA TTATGGAACG AGTGGAAAGAA	36 0
CTCGTTGATC AAAAAATAGA AAAATATGTA AAAGATAAGG CTCTTGCTGA ATTAAAAGGG	42 0
CTAGGAAATG CTTGGATGT ATATCAGCAG TCACTTGAAG ATTGGCTGGA AAATCGCAAT	48 0
GATGCAAGAA CTAGAAGTGT TGTTTCTAAT CAATTTATAG CTTTAGATCT TAACTTTGTT	54 0
AGTTCAATTG CATCTTTGC AGTATCCGGA CACGAAGTAC TATTATTAGC AGTATATGCA	60 0
CAGGCTGTGA ACCTACATT ATTGTTATTA AGAGATGCTT CTATTTTGG AGAAGAGTGG	66 0
GGATTTCACAC CAGGTGAAAT TTCTAGATT TATAATCGTC AAGTGCACACT TACCGCTGAA	72 0
TATTCAGACT ATTGTGTAAA GTGGTATAAA ATCGGCTTAG ATAAATTGAA AGGTACCACT	78 0
TCTAAAAGTT GGCTGAATTA TCATCAGTTC CGTAGAGAGA TGACATTACT GGTATTAGAT	84 0
TTGGTGGCGT TATTTCCAAA CTATGACACA CATATGTATC CAATCGAAAC AACAGCTCAA	90 0
CTTACACGGG ATGTGTATAC AGATCCGATA GCATTTAACCA TAGTGACAAG TACTGGATTC	96 0
TGCAACCCCTT GGTCAACCCA CAGGGTATT CTTTTTATG AAGTTGAAAA CAACGTAATT	102 0
CGTCCGCCAC ACTTGTTGA TATACTCAGC TCAGTAGAAAA TTAATACAAG TAGAGGGGT	108 0
ATTACGTTAA ATAATGATGC ATATATAAAC TACTGGTCAG GACATACCCCT AAAATATCGT	114 0
AGAACAGCTG ATTGACCGT AACATACACA GCTAATTACG GTCGAACATC TTCAGAAAAG	120 0
AATTCAATTG CACTTGAGGA TAGGGATATT TTTGAAATTAA ATTCAACTGT GGCAAACCTA	126 0
GCTAATTACT ACCAAAAGGC ATATGGTGTG CCGGGATCTT GGTTCCATAT GGTAAAAGG	132 0
GGAACCTCAT CAACAAACAGC GTATTTATAT TCAAAAACAC ATACAGCTCT CCAAGGGTGT	138 0
ACACAGGTTT ATGAATCAAG TGATGAAATA CCTCTAGATA GAACTGTACC GGTAGCTGAA	144 0
AGCTATAGTC ATAGATTATC TCATATTACC TCCCATTCTT TCTCTAAAAA TGGGAGTGCA	150 0
TACTATGGGA GTTCCCTCT ATTGTW TGG ACACATACTA GTGCGGATT AAATAATACA	156 0
ATATATTCAAG ATAAAATCAC TCAAATTCCA GCGGTAAGG GAGACATGTT ATATCTAGGG	162 0
GGTTCCGTAG TACAGGGTCC TGGATTACA GGAGGAGATA TATTAAGAACCAATCCT	168 0
AGCATATTAG GGACCTTTGC GGTTACAGTA AATGGGTCGT TATCACAAAG ATATCGTGT	174 0
AGAATTTCGCT ATGCCTCTAC AACAGATTAA GAATTTACTC TATACCTTGG CGACACAATA	180 0
GAAAAAAATA GATTTAACAA AACTATGGAT AATGGGGCAT CTTAAACGTA TGAAACATTT	186 0
AAATTTCGCAA GTTTCATTAC TGATTTCCAA TTCAGAGAAA CACAAGATAA AATACTCCTA	192 0

-continued

TCCATGGGTG	ATTTAGCTC	CGGTCAAGAA	GTTTATATAG	ACCGAATCGA	ATTCACTCCC	1980
GTAGATGAGA	CATATGAGGC	GGAACAAGAT	TTAGAAGCGG	CGAAGAAAGC	AGTGAATGCC	2040
TTGTTTACGA	ATACAAAAGA	TGGCTTACGA	CCAGGTGTA	CGGATTATGA	AGTAAATCAA	2100
GCGGCAAAC	ACT TAGTGGATG	CCTATCGGAT	GATTTATATC	CAAATGAAAA	ACGATTGTTA	2160
TTTGATGCGG	TGAGAGAGGC	AAAACGCCTC	AGTGGGGCAC	GTAACTTACT	ACAAGATCCA	2220
GATTTCCAAG	AGATAAACCG	AGAAAATGGA	TGGGCGGC	GTACGGGAAT	TGAGATTGTA	2280
GAAGGGGATG	CTGTATTTAA	AGGACGTTAT	CTACGCCTAC	CAGGTGCACG	AGAAATTGAT	2340
ACGGAAACGT	ATCCAACGTA	TCTGTATCAA	AAAGTAGAGG	AAGGTGTATT	AAAACCATA	2400
ACAAGATATA	GAUTGAGAGG	GTTTGTGGG	AGTAGTCAAG	GATTAGAAAT	TTATACGATA	2460
CGTCACCAAA	CGAATCGAAT	TGAAAGAAT	GTACCAAGATG	ATTTATTGCC	AGATGTATCT	2520
CCTGTAAACT	CTGATGGCAG	TATCAATCGA	TGCAGCGAAC	AAAAGTATGT	GAATAGCCGT	2580
TTAGAAGGAG	AAAACCGTTC	TGGTGATGCA	CATGAGTTCT	CGCTCCCTAT	CGATATAGGA	2640
GAGCTGGATT	ACAATGAAAA	TGCAGGAATA	TGGGTTGGAT	TTAAGATTAC	GGACCCAGAG	2700
GGATACGCAA	CACTTGGAAA	TCTTGAATT	GTCGAAGAGG	GACCTTTGTC	AGGAGACGCA	2760
TTAGAGCGCT	TGCAAAGAGA	AGAACAAACAG	TGGAAGATT	AAATGACAAG	AAGACGTGAA	2820
GAGACAGATA	GAAGATAACAT	GGCATCGAAA	CAAGCGGTAG	ATCGTTATA	TGCCGATTAT	2880
CAGGATCAAC	AACTGAATCC	TGATGTAGAG	ATTACAGATC	TTACTGCGGC	TCAAGATCTG	2940
ATACAGTCCA	TTCCTTACGT	ATATAACGAA	ATGTTCCCAG	AAATACCAGG	GATGAACAT	3000
ACGAAGTTA	CAGAATTAAC	AGATCGACTC	CAACAAGCGT	GGAATTGTA	TGATCAGCGA	3060
AATGCCATAC	CAAATGGTGA	TTTCGAAAT	GGGTTAAGTA	ATTGGAATGC	AACGCCTGGC	3120
GTAGAAGTAC	ACAAATCAA	TCATACATCT	GTCCTTGTGA	TTCCAAACTG	GGATGAACAA	3180
GTTTCACAAC	AGTTTACAGT	TCAACCGAAT	CAAAGATATG	TATTACGAGT	TACTGCAAGA	3240
AAAGAAGGGG	TAGGAAATGG	ATATGTAAGT	ATTCGTGATG	GTGGAAATCA	ATCAGAAACG	3300
CTTACTTTA	GTGCAAGCGA	TTATGATACA	AATGGTGTGT	ATAATGACCA	AACCGGCTAT	3360
ATCACAAAAA	CAGTGACATT	CATCCCGTAT	ACAGATCAA	TGTGGATTGA	AATAAGTGAA	3420
ACAGAAGGTA	CGTTCTATAT	AGAAAGTGT	GAATTGATTG	TAGACGTAGA	G	3471

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1157 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: YES

(iv) ANTI-SENSE: NO

(v i) ORIGINAL SOURCE:

- (A) ORGANISM: *Bacillus thuringiensis*
- (B) STRAIN: *kumamotoensis*
- (C) INDIVIDUAL ISOLATE: PSS0C

(vii) IMMEDIATE SOURCE:

- (B) CLONE: *E. coli* NM522(pMYC2320) NRRL B-18769

(x i) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Met	Ser	Pro	Asn	Asn	Gln	Asn	Glu	Tyr	Glu	Ile	Ile	Asp	Ala	Thr	Pro
1					5				10					15	
Ser	Thr	Ser	Val	Ser	Ser	Asp	Ser	Asn	Arg	Tyr	Pro	Phe	Ala	Asn	Glu

-continued

20

25

30

Pro Thr Asp Ala Leu Gln Asn Met Asn Tyr Lys Asp Tyr Leu Lys Met
 3 40 45

Ser Gly Gly Glu Asn Pro Glu Leu Phe Gly Asn Pro Glu Thr Phe Ile
 50 55 60

Ser Ser Ser Thr Ile Gln Thr Gly Ile Gly Ile Val Gly Arg Ile Leu
 65 70 75 80

Gly Ala Leu Gly Val Pro Phe Ala Ser Gln Ile Ala Ser Phe Tyr Ser
 85 90 95

Phe Ile Val Gly Gln Leu Trp Pro Ser Lys Ser Val Asp Ile Trp Gly
 100 105 110

Glu Ile Met Glu Arg Val Glu Glu Leu Val Asp Gln Lys Ile Glu Lys
 115 120 125

Tyr Val Lys Asp Lys Ala Leu Ala Glu Leu Lys Gly Leu Gly Asn Ala
 130 135 140

Leu Asp Val Tyr Gln Gln Ser Leu Glu Asp Trp Leu Glu Asn Arg Asn
 145 150 155 160

Asp Ala Arg Thr Arg Ser Val Val Ser Asn Gln Phe Ile Ala Leu Asp
 165 170 175

Leu Asn Phe Val Ser Ser Ile Pro Ser Phe Ala Val Ser Gly His Glu
 180 185 190

Val Leu Leu Ala Val Tyr Ala Gln Ala Val Asn Leu His Leu Leu
 195 200 205

Leu Leu Arg Asp Ala Ser Ile Phe Gly Glu Glu Trp Gly Phe Thr Pro
 210 215 220

Gly Glu Ile Ser Arg Phe Tyr Asn Arg Gln Val Gln Leu Thr Ala Glu
 225 230 235 240

Tyr Ser Asp Tyr Cys Val Lys Trp Tyr Lys Ile Gly Leu Asp Lys Leu
 245 250 255

Lys Gly Thr Thr Ser Lys Ser Trp Leu Asn Tyr His Gln Phe Arg Arg
 260 265 270

Glu Met Thr Leu Leu Val Leu Asp Leu Val Ala Leu Phe Pro Asn Tyr
 275 280 285

Asp Thr His Met Tyr Pro Ile Glu Thr Thr Ala Gln Leu Thr Arg Asp
 290 295 300

Val Tyr Thr Asp Pro Ile Ala Phe Asn Ile Val Thr Ser Thr Gly Phe
 305 310 315 320

Cys Asn Pro Trp Ser Thr His Ser Gly Ile Leu Phe Tyr Glu Val Glu
 325 330 335

Asn Asn Val Ile Arg Pro Pro His Leu Phe Asp Ile Leu Ser Ser Val
 340 345 350

Glu Ile Asn Thr Ser Arg Gly Gly Ile Thr Leu Asn Asn Asp Ala Tyr
 355 360 365

Ile Asn Tyr Trp Ser Gly His Thr Leu Lys Tyr Arg Arg Thr Ala Asp
 370 375 380

Ser Thr Val Thr Tyr Thr Ala Asn Tyr Gly Arg Ile Thr Ser Glu Lys
 385 390 395 400

Asn Ser Phe Ala Leu Glu Asp Arg Asp Ile Phe Glu Ile Asn Ser Thr
 405 410 415

Val Ala Asn Leu Ala Asn Tyr Tyr Gln Lys Ala Tyr Gly Val Pro Gly
 420 425 430

Ser Trp Phe His Met Val Lys Arg Gly Thr Ser Ser Thr Thr Ala Tyr
 435 440 445

Leu Tyr Ser Lys Thr His Thr Ala Leu Gln Gly Cys Thr Gln Val Tyr
 450 455 460

-continued

Glu Ser Ser Asp Glu Ile Pro Leu Asp Arg Thr Val Pro Val Ala Glu
 465 470 475 480
 Ser Tyr Ser His Arg Leu Ser His Ile Thr Ser His Ser Phe Ser Lys
 485 490 495
 Asn Gly Ser Ala Tyr Tyr Gly Ser Phe Pro Val Phe Val Trp Thr His
 500 505 510
 Thr Ser Ala Asp Leu Asn Asn Thr Ile Tyr Ser Asp Lys Ile Thr Gln
 515 520 525
 Ile Pro Ala Val Lys Gly Asp Met Leu Tyr Leu Gly Gly Ser Val Val
 530 535 540
 Gln Gly Pro Gly Phe Thr Gly Gly Asp Ile Leu Lys Arg Thr Asn Pro
 545 550 555 560
 Ser Ile Leu Gly Thr Phe Ala Val Thr Val Asn Gly Ser Leu Ser Gln
 565 570 575
 Arg Tyr Arg Val Arg Ile Arg Tyr Ala Ser Thr Thr Asp Phe Glu Phe
 580 585 590
 Thr Leu Tyr Leu Gly Asp Thr Ile Glu Lys Asn Arg Phe Asn Lys Thr
 595 600 605
 Met Asp Asn Gly Ala Ser Leu Thr Tyr Glu Thr Phe Lys Phe Ala Ser
 610 615 620
 Phe Ile Thr Asp Phe Gln Phe Arg Glu Thr Gln Asp Lys Ile Leu Leu
 625 630 635 640
 Ser Met Gly Asp Phe Ser Ser Gly Gln Glu Val Tyr Ile Asp Arg Ile
 645 650 655
 Glu Phe Ile Pro Val Asp Glu Thr Tyr Glu Ala Glu Gln Asp Leu Glu
 660 665 670
 Ala Ala Lys Lys Ala Val Asn Ala Leu Phe Thr Asn Thr Lys Asp Gly
 675 680 685
 Leu Arg Pro Gly Val Thr Asp Tyr Glu Val Asn Gln Ala Ala Asn Leu
 690 695 700
 Val Glu Cys Leu Ser Asp Asp Leu Tyr Pro Asn Glu Lys Arg Leu Leu
 705 710 715 720
 Phe Asp Ala Val Arg Glu Ala Lys Arg Leu Ser Gly Ala Arg Asn Leu
 725 730 735
 Leu Gln Asp Pro Asp Phe Gln Glu Ile Asn Gly Glu Asn Gyl Trp Ala
 740 745 750
 Ala Ser Thr Gly Ile Glu Ile Val Glu Gly Asp Ala Val Phe Lys Gly
 755 760 765
 Arg Tyr Leu Arg Leu Pro Gly Ala Arg Glu Ile Asp Thr Glu Thr Tyr
 770 775 780
 Pro Thr Tyr Leu Tyr Gln Lys Val Glu Glu Gly Val Leu Lys Pro Tyr
 785 790 795 800
 Thr Arg Tyr Arg Leu Arg Gly Phe Val Gly Ser Ser Gln Gly Leu Glu
 805 810 815
 Ile Tyr Thr Ile Arg His Gln Thr Asn Arg Ile Val Lys Asn Val Pro
 820 825 830
 Asp Asp Leu Leu Pro Asp Val Ser Pro Val Asn Ser Asp Gly Ser Ile
 835 840 845
 Asn Arg Cys Ser Glu Gln Lys Tyr Val Asn Ser Arg Leu Glu Gly Glu
 850 855 860
 Asn Arg Ser Gly Asp Ala His Glu Phe Ser Leu Pro Ile Asp Ile Gly
 865 870 875 880
 Glu Leu Asp Tyr Asn Glu Asn Ala Gly Ile Trp Val Gly Phe Lys Ile
 885 890 895

-continued

Thr	Asp	Pro	Glu	Gly	Tyr	Ala	Thr	Leu	Gly	Asn	Leu	Glu	Leu	Val	Glu
900								905				910			
Glu	Gly	Pro	Leu	Ser	Gly	Asp	Ala	Leu	Glu	Arg	Leu	Gln	Arg	Glu	Glu
915								920				925			
Gln	Gln	Trp	Lys	Ile	Gln	Met	Thr	Arg	Arg	Arg	Glu	Glu	Thr	Asp	Arg
930						935					940				
Arg	Tyr	Met	Ala	Ser	Lys	Gln	Ala	Val	Asp	Arg	Leu	Tyr	Ala	Asp	Tyr
945						950				955					960
Gln	Asp	Gln	Gln	Leu	Asn	Pro	Asp	Val	Glu	Ile	Thr	Asp	Leu	Thr	Ala
965								970							975
Ala	Gln	Asp	Leu	Ile	Gln	Ser	Ile	Pro	Tyr	Val	Tyr	Asn	Glu	Met	Phe
980								985					990		
Pro	Glu	Ile	Pro	Gly	Met	Asn	Tyr	Thr	Lys	Phe	Thr	Glu	Leu	Thr	Asp
995								1000					1005		
Arg	Leu	Gln	Gln	Ala	Trp	Asn	Leu	Tyr	Asp	Gln	Arg	Asn	Ala	Ile	Pro
1010							1015				1020				
Asn	Gly	Asp	Phe	Arg	Asn	Gly	Leu	Ser	Asn	Trp	Asn	Ala	Thr	Pro	Gly
1025						1030					1035				1040
Val	Glu	Val	Gln	Gln	Ile	Asn	His	Thr	Ser	Val	Leu	Val	Ile	Pro	Asn
1045								1050					1055		
Trp	Asp	Glu	Gln	Val	Ser	Gln	Gln	Phe	Thr	Val	Gln	Pro	Asn	Gln	Arg
1060								1065					1070		
Tyr	Val	Leu	Arg	Val	Thr	Ala	Arg	Lys	Glu	Gly	Val	Gly	Asn	Gly	Tyr
1075								1080					1085		
Val	Ser	Ile	Arg	Asp	Gly	Gly	Asn	Gln	Ser	Glu	Thr	Leu	Thr	Phe	Ser
1090						1095					1100				
Ala	Ser	Asp	Tyr	Asp	Thr	Asn	Gly	Val	Tyr	Asn	Asp	Gln	Thr	Gly	Tyr
1105						1110					1115				1120
Ile	Thr	Lys	Thr	Val	Thr	Phe	Ile	Pro	Tyr	Thr	Asp	Gln	Met	Trp	Ile
1125								1130					1135		
Glu	Ile	Ser	Glu	Thr	Glu	Gly	Thr	Phe	Tyr	Ile	Glu	Ser	Val	Glu	Leu
1140								1145					1150		
Ile	Val	Asp	Val	Glu											
				1155											

We claim:

1. An isolated DNA encoding a δ -endotoxin which is active against acarides wherein said gene is obtained from a *Bacillus thuringiensis* isolate selected from the group consisting of B.t. PS72L1, B.t. PS75J1, B.t. PS83E5, B.t. PS45B1, B.t. PS24J, B.t. PS94R3, B.t. PS62B1 and B.t. PS74G1.

45 2. A transformed host selected from the group consisting of a microbe and a baculovirus transformed by a gene encoding a δ -endotoxin active against acarides, wherein said gene is obtained from a *Bacillus thuringiensis* isolate selected from the group consisting of B.t. PS72L1, B.t. PS75J1, B.t. PS83E5, B.t. PS45B1, B.t. PS24J, B.t. PS94R3, B.t. PS62B1 and B.t. PS74G1.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,424,410

Page 1 of 5

DATED : June 13, 1995

INVENTOR(S) : Jewel M. Payne, et al

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 1, line 49: Delete "HaH, F.R." and insert --Hall, F.R.--.

Column 3, lines 34: Delete "PS50C." and insert --PS86A1.--

Column 3, line 36: Delete "PS50C." and insert --PS86A1.--

Column 3, line 38: Delete "PS86A1." and insert --PS50C.--

Column 3, line 40: Delete "PS86A1." and insert --PS50C.--

Column 3, line 64: Delete "equivalent toms)" and insert --equivalent toxins)--.

Column 5, line 3: Delete "amorphie," and insert --amorphic,--.

Column 6, line 10: Delete "³²P, ¹²⁵I," and insert --³²P, ¹²⁵I,--.

Column 7, line 6: Delete "hornology" and insert --homology--.

Column 8, line 22: Delete "(pNffC 2321)" and insert --(pMYC 2321)--.

Column 8, line 23: Delete "(pNffc 1627)" and insert --(pMYC 1627)--.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,424,410

Page 2 of 5

DATED : June 13, 1995

INVENTOR(S) : Jewel M. Payne, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 8, line 63: Delete "ataritidal - effective" and insert --acaricidal - effective--.

Column 9, line 6: Delete "thuringiens" and insert --thuringiensis--.

Column 9, line 34: Delete "102 to" and insert --10² to--.

Column 10, line 21-22: Delete "Eustimanatophyceae," and insert --Eustigmatophyceae,--

Column 10, line 34: Delete "Kluyveromyces" and insert --Kluyveromyces--.

Column 10, line 63: Delete "toxin," and insert --toxin,--.

Column 14, line 6: Delete "the B.t , spores" and insert --the B.t. spores--.

Column 14, line 39: Delete "routants" and insert --mutants--.

Column 15, line 28: Delete "CaCl₂ Solution (100 ml) 3.66 g
CaCl₂·2H₂O"

and insert

--CaCl₂ Solution (100 ml)

CaCl₂·2H₂O

3.66 g--

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,424,410

Page 3 of 5

DATED : June 13, 1995

INVENTOR(S) : Jewel M. Payne, et al

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 16, line 27: Delete "[³²P]" and insert --[³²P]--.

Column 16, line 30: Delete "(GCAATITFAAATGAATrATATCC)" and insert --(GCAATTAAATGAATTATATCC)--.

Column 16, line 46: Delete "KW25 1 E. coli" and insert --KW251 E. coli--.

Column 17, line 6: Delete "S-Bromo" and insert --5-Bromo--.

Column 17, line 9: Delete "(Beta)galactosidase" and insert --(Beta) - galactosidase--.

Column 18, line 12: Delete "BarnHI" and insert --BamHI--.

Column 18, line 21: Delete "SalII" and insert --SalI--.

Column 18, line 38: Delete "putalive" and insert --putative--.

Column 18, line 38: Delete "(Maniatis" and insert --(Maniatis--.

Column 18, line 46: Delete "electropotation" and insert --electroporation--.

Column 18, line 58: Delete "69D1D" and insert --69D1-D--.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,424,410

Page 4 of 5

DATED : June 13, 1995

INVENTOR(S) : Jewel M. Payne, et al

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 19, line 22: Delete "HindIII" and insert --HindIII--.

Column 19, line 28: Delete "HindIII - digested pHTBluell" and insert
--HindIII - digested pHTBlueII--.

Column 19, line 39: Delete "HindIII" and insert --HindIII--.

Column 20, line 43: Delete "SEQ ID NO." and insert --SEQ ID NO.--.

Column 20, lines 45-46: Delete "(AAT GAA GTAZF TAT CCA/T GTAfF AAT)" and
insert --(AAT GAA GTA/T TAT CCA/T GTA/T AAT)--.

Column 21, line 12: Delete "GTTYAT" and insert --GTTTAT--.

Column 21, line 16: Delete "CATr(A" and insert --CATT(A--.

Column 21, lines 16-17: Delete "GGATTITGTYGT" and insert --GGATTTGTTGT--.

Column 24, line 4: Delete "Penhock et al." and insert --Pennock et al.--.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,424,410
DATED : June 13, 1995
INVENTOR(S) : Jewel M. Payne, et al

Page 5 of 5

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 77, line 48: Delete "said gene is" and insert --said DNA is--.

Column 78, line 47: Delete "gene encoding" and insert --DNA encoding--.

Column 78, line 48: Delete "said gene is" and insert --said DNA is--.

Signed and Sealed this

Nineteenth Day of September, 1995

Attest:

BRUCE LEHMAN

Attesting Officer

Commissioner of Patents and Trademarks