发明名称
用于双出口导叶的风扇毂框架

摘要
一种风扇毂框架，包括圆形毂，其具有沿轴向延伸的开口，发动机核心能够定位在该开口中；圆形毂具有径向外表面，该径向外表面具有多个托架；托架中的各个具有下表面和棱条，棱条设置在下表面与向上延伸的侧壁之间，托架能够收纳双出口导叶。
1. 一种风扇毂框架，包括：
圆形毂，其具有沿轴向延伸的开口，发动机核心能够定位在所述开口中；
所述圆形毂具有径向外表面，所述径向外表面具有多个托架；
所述托架中的各个具有下表面和棱条，所述棱条设置在所述下表面与向上延伸的侧壁之间；
所述托架能够收纳双出口导叶。
2. 根据权利要求1所述的风扇毂框架，其特征在于，还包括所述托架中的多个孔口以用于与所述双出口导叶连接。
3. 根据权利要求2所述的风扇毂框架，其特征在于，所述双出口导叶从所述圆形毂朝风扇壳延伸。
4. 根据权利要求1所述的风扇毂框架，其特征在于，还包括所述托架的周向侧部上的流动通路表面。
5. 根据权利要求4所述的风扇毂框架，其特征在于，所述流动通路表面从所述毂框架的前端朝后端弯曲。
6. 根据权利要求1所述的风扇毂框架，其特征在于，所述托架围绕所述径向外表面沿周向间隔开。
7. 根据权利要求1所述的风扇毂框架，其特征在于，所述风扇毂框架通过所述托架和双出口导叶将负载传递至发动机架。
8. 一种风扇毂框架，包括：
圆形毂，其具有径向外表面和径向内开口，推进器可定位在所述径向内开口中；
多个托架，其沿所述圆形毂的所述径向外表面沿周向间隔开；
所述多个托架中的各个由能够收纳双出口导叶的棱条限定；
多个紧固件孔口，其沿径向方向延伸穿过所述托架。
9. 根据权利要求8所述的风扇毂框架，其特征在于，所述托架沿轴向方向从所述托架的前端弯曲至后端。
10. 根据权利要求8所述的风扇毂框架，其特征在于，所述棱条沿轴向方向从轴向前端与后端之间弯曲。
用于双出口导叶的风扇毂框架

相关申请的交叉引用

技术领域
公开的实施例大体上关于燃气涡轮发动机。更具体而言，本实施例涉及双风扇出口导叶的结构，和包括双出口导叶的快速发动机更换组件的结构构件。

发明内容
本发明的实施例提供了一种用于燃气涡轮发动机的双出口导叶组件。该组件具有：第一导叶，其具有第一端部、与第一端部相对的第二端部；和第二导叶，其具有第一端部、与第一端部相对的第二端部。第一端部结构跨越第一导叶第一端部与第二导叶第一端部之间。第二端部结构跨越第一导叶第二端部与第二导叶第二端部之间。第一导叶、第二导叶、第一端部结构和第二端部结构一体地形成在一起，以形成具有连续外表面前和连续内表面的双叶。

一种用于燃气涡轮发动机的双出口导叶组件包括：第一导叶，其具有第一端部、与第一端部相对的第二端部；和第二导叶，其具有第一端部、与第一端部相对的第二端部。第一端部结构，其跨越第一导叶第一端部与第二导叶第一端部之间；和第二端部结构，其跨越第一导叶第二端部与第二导叶第二端部之间。其中，第一导叶、第二导叶、第一端部结构和第二端部结构一体地形成在一起，以形成具有第一端部和与第一端部相对的第二端部的双叶，且其中，双叶具有连续外表面前和连续内表面。

一种双出口导叶包括：第一弯曲导叶和第二弯曲导叶，其以径向地相邻的方式布置，所述第一和第二弯曲导叶中的各个具有压力侧、吸力侧、前缘和后缘；第一端部结构，其在第一和第二导叶的第一端部处跨越第一导叶与第二导叶之间；和第二端部结构，其在所述第一和第二导叶的第二端部处从第一叶朝第二叶延伸；第一和第二端部结构在棱条处连接到第一和第二导叶；和流动通路，其限定在第一和第二弯曲导叶与第一端部和第二端部之间，其中，风扇毂框架与前发动机架之间的主负载通路限定为通过双出口导叶。

一种成对导叶，包括：第一端部结构，其具有径向内表面和径向外表面；和第二端部结构，其与第一端部结构间隔开，第二端部结构具有第二径向内表面和第二径向外表面。第一导叶，其具有第一前缘、第二后缘和在第一前缘与后缘之间延伸的第一压力侧和吸力侧；第二导叶，其具有第二前缘、第二后缘和在第二前缘与后缘之间延伸的第二压力侧和吸力侧。第一和第二端部结构在棱条处连接第一和第二导叶，成对导叶能够在前发动机核心与前发动机架之间传送负载。

一种快速发动机更换组件，包括：第一圆形框架部件；多个成对支承件，其围绕第一圆形框架部件间隔开，成对支承件沿轴向方向形成外形；流动表面，其限定在多个成对支
承件之间，和多个托架，托架中的各个包括成对支承件，成对支承件从托架的下部部分至流动表面。

【0009】一种快速发动机更换组件，包括：连续圆形框架，其具有第一环和第二环；托架，其沿轴向形成在第一环与第二环之间，托架具有径向内部部分和从径向内部部分沿径向向外延伸的棱条，棱条朝设置在托架附近的流动通路表面升高。

【0010】一种快速发动机更换组件包括：圆形框架，其由至少一个圆环形成；托架，其沿轴向方向延伸以用于收纳风扇双出口导叶；托架包括用于风扇双出口导叶的多个支承件；流动表面，其设置在相邻托架之间且轴向方向延伸；紧固件孔口，其沿轴向方向延伸穿过圆形框架，能够连接到风扇毂框架。

【0011】一种风扇毂框架包括：圆形毂，其具有沿轴向延伸的开口，发动机核心能够定位在该开口中，圆形毂具有径向外表面，径向外表面具有多个托架，托架中的各个具有下表面和设置在下表面与向上延伸的侧壁之间的棱条，托架能够收纳双出口导叶。

【0012】一种风扇毂框架包括：圆形毂，其具有径向外表面和径向内开口，推进器可定位在该径向开口中，多个托架，其沿圆形毂的径向外表面沿周向间隔开，多个托架中的各个由能够收纳双出口导叶的棱条限定；多个紧固件孔口，其沿径向方向延伸穿过托架。

【0013】一种结构平台，包括第一端部、第二端部、第一侧壁和第二侧壁、在第一端部与第二端部之间且还在第一侧壁与第二侧壁之间延伸的平台本体、连接第一侧壁和平台本体的第一棱条、连结第二侧壁和平台本体的第二棱条，侧壁为弯曲的。

【0014】该结构平台包括在第一端部与第二端部之间延伸的第一侧壁、在第一端部与第二端部之间延伸的第二侧壁、第一侧壁与第二侧壁之间延伸且从第一端部延伸到第二端部的平台本体，设置在第一侧壁和第二侧壁中的各个之间的棱条，第一侧壁和第二侧壁在第一端部与第二端部之间弯曲，曲率接近翼型件表面的曲率。

附图说明

【0015】在以下示图中示出了本发明的实施例。

【0016】图 1 为示意性涡轮发动机的侧部截面视图。

【0017】图 2 为风扇毂框架组件的透视图。

【0018】图 3 为双出口导叶的透视图，其详细绘出了双出口导叶的径向在内端的内特征和双出口导叶的径向在外端的外特征。

【0019】图 4 为双出口导叶的透视图，其详细绘出了双出口导叶的径向在外端的内特征和双出口导叶的径向在内端的外特征。

【0020】图 5 为双出口导叶的透视图，其详细绘出了双出口导叶的径向在内的端的内特征和双出口导叶的径向在外的端的外特征，其中两个端部在其中具有结构平台。

【0021】图 6 为双出口导叶的透视图，其详细绘出了双出口导叶的径向在外的端的内特征和双出口导叶的径向在内的端的外特征，其中两个端部在其中具有结构平台。

【0022】图 7 为图 5 和 6 中所示的实施例的分解组件示图。

【0023】图 8 为图 5 和 6 中所示的实施例的分解组件示图。

【0024】图 9 为图 7 中所示的实施例的分解组件示图。
具体实施方式

现在将详细地参照所提供的实施例，其一个或更多个实施例在附图中示出。作为所公开实施例的说明而不是限制来提供各个实施例。事实上，本领域技术人员将清楚的是，可在一个实施例中制作出各种改型和变形，而不脱离本公开内容的范围或精神。例如，示为或描述为一个实施例的一部分的特征可与另一个实施例一起使用来进一步产生另一个实施例。因此，意图本发明覆盖在所附权利要求和它们的等同物的范围内的此类改型和变形。

参看图1-14，给出了燃气涡轮发动机10的各种实施例，其具有带结构平台的双出口导叶。这些结构可与不并要求与允许快速移除推进器的快速发动机更换组件一起使用。双出口导叶可由轻量材料形成，同时仍提供用于发动机到发动机架的负载通路。本文描述了各种改进。

如本文使用的用语“轴向”或“轴向地”是指沿发动机的纵轴线的维度。结合“轴向”或“轴向地”使用的用语“前”是指沿朝发动机入口的方向移动，或构件相比于另一个构件离发动机入口相对更近。结合“轴向”或“轴向地”使用的用语“后”是指沿朝发动机喷嘴的方向移动，或构件相比于另一个构件离发动机喷嘴相对更近。

如本文使用的用语“径向”或“径向地”是指在发动机的中心轴线与发动机外周之间延伸的维度。单独地或结合用语“径向”或“径向地”使用的用语“近侧”或“近侧”是指沿朝中心轴线的方向移动，或构件相比于另一个构件离中心轴线相对更近。单独地或结合用语“径向”或“径向地”使用的用语“远侧”或“远侧”是指沿朝发动机外周的方向移动，或构件相比于另一个构件离发动机外周相对更近。

如本文使用的用语“横向”或“横向地”是指垂直于轴向和径向维度二者的维度。

首先参看图1，示出了燃气涡轮发动机10的示意性侧部截面视图，其具有发动机入口端部12，其中空气进入推进器13，推进器13大体上由压缩机14、燃烧器16和多级高压涡轮20限定。共同地，推进器13在操作期间提供推力或动力。燃气涡轮10可用于航空、发电、工业、海洋等。取决于用途，发动机入口12可为选地包含多级压缩机而非风扇。燃气涡轮10关于发动机轴线26或轴24成轴对称，以便各种发动机构件围绕其旋转。在操作中，空气经由发动机10的空气入口端部12进入，且移动穿过至少一个压缩级，在该处，空气压力增大且被引送至燃烧器16。压缩空气与燃料混合且焚烧，从而提供热燃烧气体，热燃烧气体朝高压涡轮20离开燃烧器16。在高压涡轮20处，从热燃烧气体提取能量，从而导致涡轮叶片旋转，这又引起轴24的旋转。轴24朝发动机的前部穿过，以取决于涡轮设计而使一个或更多个压缩机级14、涡扇18或入口风扇叶片继续旋转。

轴对称轴24延伸穿过涡轮发动机10，从前端到后端。轴24由轴承沿其长度支承。轴24可为中空的，以允许低压涡轮轴28在其中旋转。两个轴24，28可围绕发动机的中心
轴线26旋转。在操作期间，轴24、28与连接于轴的其它结构（诸如涡轮20和压缩机14的转子组件）一起旋转，以便取决于使用领域（例如，发电、工业或航空）来产生动力或推力。[0037] 仍参看图1，入口12包括涡扇18，其具有多个叶片。涡扇18由轴28连接到压缩机26，且产生用于涡轮发动机10的推力。低压空气还可用于协助冷却发动机的构件。
[0038] 典型的燃气涡轮发动机通常具有前端和后端，其中其若干构件沿着其间的进入线路。空气入口或进气口在发动机的前部处。朝后端移动，进气口后面依次跟着压缩机、燃烧室、涡轮和发动机的后端处的喷嘴。本领域技术人员将容易地清楚的是，附加的构件还包括在发动机中，诸如，低压和高压压缩机、高压和低压涡轮，和外轴。然而，这不是穷举的列表。发动机通常还具有内轴，其沿轴向穿过发动机的中心纵轴线设置。内轴连接到涡轮和空气压缩机二者，使得涡轮对空气压缩机提供旋转输入以驱动压缩机叶片。典型的燃气涡轮发动机还可认为具有外周，外周具有穿过其的中心纵轴线。
[0039] 参看图2，示出了风扇框架组件100的透视图。风扇框架组件100大体上具有第一圆形框架部分或风扇毂框架102、第二圆形框架部分或风扇壳104，和以径向阵列围绕毂框架102和风扇壳104设置的多个双出口（“成对”）导叶200。组件100具有中心纵轴线101，中心纵轴线101穿过其间设置，大体上是燃气涡轮发动机26（图1）的纵轴线，组件100将与其相关联。风扇毂框架102还可以以其它名称为人所知，诸如中间压缩机壳。成对导叶200提供从风扇毂框架（且从而推动器13）到前发动机架（未示出）的负载通道。
[0040] 参看图3和4，提供了双出口导叶200的相反的透视图。双导叶200具有第一导叶202和第二导叶204。第一端部结构206跨越第一导叶202的径向在内的第一端部与第二导叶204的径向在内的第二端部之间。第二端部结构208跨越第一导叶202的径向在外的第一端部与第二导叶204的径向在外的第二端部之间。第一导叶202、第二导叶204、第一端部结构206和第二端部结构208一体地形成在一起，以形成双叶200，其具有大致连续的外表面和大致连续的内表面。穿过其间提供用于流化流的流动通路210。
[0041] 双出口导叶200可由多种材料制成，诸如，例如，复合材料或金属。一种此类材料可为纤维复合物，诸如碳纤维复合叠层。成对叶200可以以一种方式制成，使得纤维连续地且不间断地围绕成对叶200卷绕。制造此结构的方法例如可通过以下实现：利用纤维的树脂传递模制、自动纤维铺放，或利用预浸渍纤维的手动铺层过程。成对叶200还可由金属制成，诸如，例如，铝合金、钛合金，和适用于燃气涡轮发动机的其它已知合金。
[0042] 现在参看图5和6，双出口叶200以透视图示出，其中第一和第二结构平台306、308抵接第一和第二端部结构206、208的内表面。第一和第二结构平台306、308具有表面，该表面面对第一和第二端部结构206、208的内表面，且大体上匹配第一和第二端部结构206、208的内表面的几何形状和轮廓。结构平台306、308用于将由双叶200经历的负载传播至它们所附接的周围硬件，诸如，风扇毂框架102和风扇壳104。
[0043] 现在参看图7，提供了双叶第一端部结构206和第一结构平台306的内表面的分解组件视图。图8为第二端部结构208和第二结构平台308的内表面的组件的分解组件视图。当组装到风扇毂框架102和风扇壳104时，第一端部结构206设置在第一结构平台306与风扇毂框架102之间（见图9）。同样，第二端部结构208设置在第二结构平台308与风扇壳104之间（见图10）。第一和第二端部结构和它们相应的结构平台可为通过紧固件312或通过任何已知的结合方法的风扇壳组件。第一和第二端部结构和它们相应的结构
平台可通过任何已知的结合方法安装到彼此。平台 306、308 对成对件 200 提供刚性和稳定性，同时允许成对件 200 由轻量材料形成。

[0045] 现在参看图 9 和 10，示出了组件 100 的透视图。多个双叶 200 提供成组装到风扇毂框架 102 和风扇壳 104。在图 9 中，第一端部结构 206 安装到风扇毂框架 102 的径向外表面。风扇毂框架 102 的径向外表面 216 可具有托架状结构 218，其适应以匹配第一端部结构 206 的外表面的几何形状和轮廓。托架 218 包括棱条 220，其与托架 218 的侧壁一起形成用于双叶出口 200 的支承件。在图 10 中，第二端部结构 208 安装到风扇壳 104 的径向内表面。风扇壳 104 的径向内表面示为没有托架状结构。然而，可使用托架状结构。另外，风扇壳 104 的内表面顺应第二端部结构 208 的外表面。在两种构造中，第一和第二端部结构 206、208 分别设置在第一和第二端部平台 306、308 与风扇毂框架 102 和风扇壳 104 之间。如图所示，毂框架 102 具有托架状结构，且风扇壳 104 并非如此。然而，毂框架 102 或风扇壳 104 中的任一者都具有或不具有为任何组合形式的托架状结构。

[0046] 现在参看图 11，绘出了后风扇壳组件 400 的透视图。根据前述实施例，双出口或成对导叶 200 定位在风扇毂框架 102 中（图 2）。然而，本实施例规定成对导叶 200 设置在快速发动机更换构造中。正如前述实施例那样，本实施例提供了通过后风扇壳组件 400 和双出口导叶 200 的主负载通道。后风扇壳组件 400 包括在内半径处的第一圆环框架 410 和外半径处的第二圆环框架 412，其中成对导叶 200 设置在其间。根据一些实施例，第一圆环框架 410 为快速发动机更换环，且第二圆环框架 412 为风扇壳，例如，诸如后风扇壳。大体上在图 14 中所示，快速发动机更换环 410 允许成对叶组件与通常需要更频繁的维护的推进器构件 13 的容易的分离。推进器构件 13 可因定期或不定期维护而受影响。同时，第二推进器可安装在快速发动机更换环 410 中，以便如果期望，则发动机可更快地恢复工作。

[0047] 快速发动机更换环 410 包括第一环 422 和第二环 424。环 422、424 在发动机轴线 26 的方向上沿轴向间隔开，且可各自由连续的一件或连接在一起的多件形成。多个流动表面 416 在第一环 422 和第二环 424 之间沿轴向方向延伸。流动通路表面 416 改善通过环 422、424 的空气移动，同时允许两个环的重量节省设计，而非实心的或其它较重的结构。托架 418 在第一与第二环 422、424 之间且还在流动表面 416 之间沿轴向方向延伸。托架 418 中的各个包括弯曲部分，在该处，托架的最下方部分朝流动表面 416 向上弯曲。静止的成对导叶 200 定位在托架 418 中的各个内，以便以期望的方式使空气流转向穿过燃气涡轮发动机 10 的部分。流动通路在导叶 202、204 中的各个之间和托架 418 之间形成。根据该实施例，推进器 13 可快速地分开，以易于移除和更换，从而允许发动机继续工作。

[0047] 现在参看图 12，示出了后风扇壳组件 400 的一部分的分解透视图。快速发动机更换环 410 显示在图的底部处。流动表面 416 在第一环 422 与第二环 424 之间延伸。这些提供流动或控制表面，当空气经过成对导叶 200 之间时，空气可沿该流动或控制表面移动。绘出的流动表面 416 在前环 422 与后环 424 之间弯曲。流动表面还可沿周向方向弯曲。流动表面 416 可备选地在第一与第二环 422、424 之间和/或周向方向上为直线的。快速发动机更换环 410 包括流动表面 416 之间的托架 418。托架 418 收纳成对导叶 200 的径向内端，且具有弯曲表面 420，弯曲表面 420 在托架 418 与流动表面 416 之间过渡。紧固件孔口 419 在托架 418 的沿第一环 422 和第二环 424，紧固件孔口 419 在相对于发动机的大体轴向方向上延伸穿过环或圈。孔口 419 用于将成对导叶 200 连接到快速发动机更换环 410。第一和
第二环还分别包括孔口426,428,从而允许风扇壳组件400与推进器13的快速分开,如将在本文中进一步论述的。

[0048] 托架418在成对导叶200下方,托架418提供了用于成对叶200的设置位置。托架418具有U形截面,该U形截面以沿轴向方向从第一环422移动至第二环424的方式弯曲。托架418在导叶200的侧部向上延伸,以支承导叶202,204的下端。流动通路表面416所设置的高度和弯曲部分420引起成对叶200的承托。该承托提供了附加支承,且限制了操作期间成对叶200的挠曲。托架418还包括弯曲表面或棱条,以改善圆形框架310的刚性且改善可制造性。

[0049] 外环或风扇壳412也分解,以描述成对叶200的径向外端。风扇壳412收纳紧固件,该紧固件延伸穿过成对导叶200的上表面208,且穿过风扇壳412。各个成对叶200通过加长成对导叶200夹在平台308与风扇壳412之间来连接到风扇壳组件400。


[0051] 类似地,结构平台308在导叶200的上端或径向外端208处,结构平台308将上端208夹在平台308与风扇壳412之间。平台308的横向端部弯曲以配合平台200的弯曲端部209,从而至少在横向或横向方向上提供结构支承。

[0052] 下端结构和上端结构206,208中的各个具有径向内表面和径向外表面。结构206,208中的各个可与叶202,204一体地形成,或可由或与叶202,204连结形成成对导叶200的一件或更多件形成。

[0054] 器件可用于形成平台 306、308 的示例性实施例与导叶 200 和环 410 以及壳 412 之间的连接。根据示例性实施例，穿过孔口 307 和 311 使用紧固件。此外，尽管平台 306 的内表面示为不平的或非光滑的，但插入件、表皮或盖可用于提供光滑表面来改善穿过导叶 200 的气流。该表皮或盖还可用于覆盖螺栓孔，从而夹住平台 306、308、成对叶 200 和第一和第二圆形框架部件 102、104 和 410、412。

[0055] 快速发动机更换环组件 400 使用根据第一连续环 422 和第二连续环 424 的一个实例形成的圆形框架部件 410。第一连续环 422 和第二连续环 424 定位成在轴向方向上彼此平行。组件 400 还包括流动表面 416。该流动表面 416 从第一环 422 延伸到第二环 424 且在成对叶 200 之间延伸。流动表面 416 从第一和第二连续环 422、424 升高。作为结果，形成流入表面 416 之间的托架 418，成对叶 200 可定位在其中。

[0056] 仍参看图 12，示出了成对导叶 200。如前所述，导叶 200 包括第一和第二叶 202、204，第一和第二叶 202、204 沿弦向方向从前缘延伸至后缘。各导叶具有压力侧和吸力侧。叶 202、204 在外径处比内径处短。此外，在周向上，成对导叶在上端 208 处比内端 206 处宽。首先，径向内端 206、导叶 202、204 连结以提供刚性下端。各个叶 202、204 以沿周向相邻的方式布置，根据一个示例性实施例，每个导叶 200 两个。可使用其它布置。径向内端结构 206 在径向内端处连接导叶 202、204 以提供刚性。类似地，在相对的径向外端 208 处，导叶 202、204 连接以提供封闭结构。在上端 208 处，导叶 202、204 弯曲 209 以连接上端 208，类似于下端 206 处的弯曲或圆角 207。圆角 207、209 收纳在托架 418 和风扇壳 412 的对应地弯曲的成对支承件 420 中。这些弯曲区域提供用于成对导叶 200 的强度和支承，且结构平台 306、308 提供进一步的支承。成对导叶 200 可由金属或复合材料形成。

[0057] 再次简要地参看图 11，组件 400 包括多个单叶 500，这与成对导叶 200 不同。单叶 500 大体上由金属形成，且强度高于双导叶 200。单导叶 500 用于传送较高负载通过至用于燃气涡轮发动机的发动机架。叶 500 包括底脚 502，底脚 502 将叶 500 连接到内环 422 和 424。根据示例性实施例，在叶 500 的径向内端处存在四个底脚 502，两个底脚在轴向前方且两个底脚在轴向后方。径向内底脚例如可连接到风扇毂框架 102，或可连接到本文进一步描述的快速发动机更换组件。在叶 500 的外端处，还存在四个底脚 502（未示出），其将叶连接到径向外结构，例如风扇壳 104、412。

[0058] 现在参看图 13，绘出了燃气涡轮发动机 10 的一部分的侧视图。具体而言，示出了前后壳组件 110，且示出后壳壳组件 200 连结在凸耳或凸缘组件 112 处。

[0059] 前风扇壳组件 100 包括风扇 18，风扇 18 固连到盘 19 且在毂盖（spinner）或锥体 21 的轴向后方。风扇 18 和盘 19 围绕发动机轴线 26 旋转。压缩机 14 在风扇 18 后方，压缩机 14 为推进器 13 的一部分，推进器 13 大体上是指引起推进的发动机核心构件中的全部，诸如涡轮、轴、压缩机 14，它们从前风扇壳组件 110 延伸，穿过后风扇壳组件 200 且向后，以限制燃气涡轮发动机 10。增压器面板 32 在压缩机 14 上方沿轴向延伸，且连接到快速发动机更换环 410。增压器面板 32 限制压缩机 14 中的空气流与移动穿过导叶 200 的空气混合。导叶 200 在快速发动机更换环 410 与后风扇壳 412 之间延伸。

[0060] 如前所述，快速发动机更换实施例提供了容易更换的发动机构件，具体是推进器，其大体上具有着较高维修要求的故障部分和磨损部分。

[0061] 现在参看图 14，发动机推进器 13 的内部构件与后风扇壳组件 400 分开。这允许了
风扇壳组件 400 或推进器构件 13 中的任一者的快速更换。更具体而言，旋转体或锥体 21
在发动机进气口区域处从发动机前端移除。接下来，从发动机沿轴向向前移除且拉走风扇
叶片 18。在风扇叶片 18 之后移除增压器面板 32。

[0062] 在移除了这些部分的情况下，从快速发动机更换环 410 移除轴向前螺栓和后螺
栓。轴向前紧固件孔口 426 和轴后孔口 428 在图 12 中最佳地示出。这些孔口 426, 428
用于将径向外推进器 13 连接到径向外部的快速发动机更换环 410 和后风扇壳组件 400 的
在外构件。在从孔口 426, 428 移除了这些螺栓的情况下，推进器 13 可在沿轴向向后的方向
上从后风扇壳组件 400 移除。

[0063] 各种器件可用于形成平台 306, 308 的示例性实施例对导叶 200 和环 410 以及壳
412 的连接。根据示例性实施例，穿过孔口 307 和 311 利用紧固件。此外，尽管平台 306 的
内表面示为不平的或非光滑的，但插入件或盖可用于提供光滑表面，以用于改善穿过导叶
200 的空气流。

[0064] 已经出于图示的目的提出了结构和方法的以上描述。其不意图和细化的或将本
发明用于公开的精确步骤和/或形式，且很明显的是，鉴于以上教导，许多设计和变型是可能
的。本文所述的特征可以以任何组合的形式来组合。本文所述的方法的步骤可以以物理上
可能的任何顺序来执行。应理解的是，尽管已经示出且描述了具有结构平台的出口导叶的
某些形式，但其不限于此，而是将仅由附此处于的权利要求限制。
图 1
图 3