发明名称

一种低胆固醇鸡蛋

摘要

本发明涉及一种低胆固醇鸡蛋，具体的说是提供一种低胆固醇的鸡蛋，其胆固醇含量较普通鸡蛋低一倍以上，为100～300mg/100g。在蛋鸡的养殖过程中摄入壳寡糖或注射壳寡糖，连续30～50天后，蛋鸡所产的鸡蛋，即为低胆固醇鸡蛋，蛋鸡的摄入量为≥1.1mg，蛋鸡的注射量为≥1mg。本发明技术操作简单，只需要将壳寡糖加入饲料中，或者加入鸡饮水中、或者将壳寡糖静脉注射、或直接喂养壳寡糖颗粒均可。成本低，可大规模实验；壳寡糖制备技术成熟，价格不贵，且每次用量不多。本发明所述的鸡蛋较普通鸡蛋蛋黄更大，蛋黄颜色更黄，口感更佳。针对目前人们对鸡蛋高胆固醇的害怕，本发明对开发低胆固醇鸡蛋具有重要的经济和社会意义。
1. 一种低胆固醇鸡蛋，其特征在于：
在蛋鸡的养殖过程中摄入壳寡糖，连续 40 天后，蛋鸡所产的鸡蛋，即为低胆固醇鸡蛋，
蛋鸡的壳寡糖日摄入量为 ≥ 1.1mg；
在蛋鸡的养殖过程中摄入壳寡糖过程是指在蛋鸡饮水中连续地加入壳寡糖，具体为：
在蛋鸡基础日粮中添加壳寡糖，混均后作为鸡饲料，壳寡糖于鸡饲料中的添加量为
20 30mg/kg 蛋鸡基础日粮，喂鸡自由采食，喂养 40 天后蛋鸡所产的鸡蛋，即为低胆固醇鸡蛋；
或在蛋鸡的日饮用水中添加壳寡糖，使其浓度为 0.01g 0.015g/L，供鸡日常饮用，喂养
40 天后蛋鸡所产的鸡蛋，即为低胆固醇鸡蛋；
或在蛋鸡的养殖过程，直接以壳寡糖成型颗粒喂养鸡，喂养量为每只鸡每天 20 ～
30mg，喂养 40 天后蛋鸡所产的鸡蛋，即为低胆固醇鸡蛋。
所述低胆固醇鸡蛋中的胆固醇含量为 100 ～300mg/100g。

2. 根据权利要求 1 所述低胆固醇鸡蛋，其特征在于：所述壳寡糖的平均分子量在
300 ～6000Da，脱乙酰度为 50% ～100%。

3. 根据权利要求 1 所述低胆固醇鸡蛋，其特征在于：所述鸡的养殖过程或喂养是指蛋
鸡产蛋期前 40 天直至蛋鸡产蛋期结束均可。
说明书

一种低胆固醇鸡蛋

技术领域
[0001] 本发明涉及一种低胆固醇鸡蛋，具体的说是通过鸡的生长过程中摄入壳寡糖或注射壳寡糖，生产低胆固醇的鸡蛋。

背景技术
[0002] 鸡蛋营养丰富，含有蛋白质、脂肪、胆固醇、卵磷脂、维生素和铁、钙、钾等人体所需的矿物质，长期以来备受人们的青睐。然而从上世纪开始，有学者提出鸡蛋胆固醇含量相对较高，过多地摄入鸡蛋会导致人体血清胆固醇增高，进而引发高脂血症和冠心病。为了降低血清胆固醇水平，一些组织和个人提出了限制蛋类消费的主张，使得蛋类的消费和利用受到很大冲击。因此，开发低胆固醇的鸡蛋具有重要的经济和社会意义。目前已有相关研究降低鸡蛋胆固醇含量，主要分为两类：一类是改良鸡的品种，通过选育和基因突变可以获得低胆固醇鸡蛋的鸡品种；另外一类就是通过后天调控的方法降低鸡蛋胆固醇的含量，主要有注射激素，或者在饲料中添加微量元素、中草药、生物制剂等成分。同时，这些技术存在一定的问题，遗传育种的鸡品种技术复杂，且受生长环境影响大，其遗传性状的稳定性也存在一定的问题，注射激素的技术则存在激素的副作用比较严重，而且激素易在禽产品中残留，间接危害人类健康；饲料中添加微量元素、中草药、生物制剂等的技术实施较为简单，但是一般胆固醇降低程度有限，一般不超过 20%。
[0003] 壳寡糖又称甲壳低聚糖、寡聚氨基葡萄糖，是由几丁质脱掉乙酰基后降解的产物。由于其分子量小，其水溶性好，在人和动植物体内吸收率很高。壳寡糖所具有的抑菌、抗肿瘤、抗病虫害、增强免疫、活化细胞、排除毒素等功能，已广泛应用在医药、农业、保健食品、精细化工等领域。以壳寡糖来生产低胆固醇鸡蛋目前未见文献和专利报道。

发明内容
[0004] 本发明的目的在于提供一种低胆固醇鸡蛋，其胆固醇含量较普通鸡蛋低一倍以上，为 100～300mg/100g；
[0005] 为实现上述目标，本发明采用的技术方案为：
[0006] 本发明涉及的技术操作简单，生产出的鸡蛋胆固醇低，口感好；针对目前人们对于鸡蛋高胆固醇的危害，本发明对开发低胆固醇的鸡蛋具有重要的经济和社会意义。
[0007] 本发明的优点
[0008] 本发明所述的以喂养或注射壳寡糖的方式生产低脂肪鸡蛋的方法较其它生产低胆固醇鸡蛋的专利和文献具有以下的优点：
[0009] 1. 本发明所述的低脂肪鸡蛋的胆固醇含量更低，以及公开的专利和文献所报道的低胆固醇鸡蛋较普通鸡蛋胆固醇下降一般为 5%～20%；而本专利所述的鸡蛋较普通鸡蛋胆固醇含量下降超过 50%；
[0010] 2. 本发明所述的技术操作简单，只需要将壳寡糖加入饲料中，或者加入鸡饮用水的水中，或者将壳寡糖注射入静脉中即可。
3. 本发明所述的技术成本低，可大规模实验；壳寡糖制备技术成熟，价格不贵，且每次用量较少。
4. 本发明所述的鸡蛋较普通鸡蛋色泽好，蛋黄与蛋白分明，口感更佳。

具体实施方式

实施例 1 将壳寡糖添加到基础饲料中生产低胆固醇鸡蛋

选择产蛋率及体重相近的 32 周龄尼克红商品代蛋鸡 720 羽，随机分成 3 组，每组 4 个重复。

预试期 1 周。正式试验从 33 周龄起至 46 周龄，为期 13 周。试验 I 组在基础饲料中每 kg 饲料添加 30mg 壳寡糖，试验 II 组每 kg 饲料添加 20mg 壳寡糖，对照组不添加。饲养管理采用开放式鸡舍，2层立体笼养，每天光照 16h，每天 8:00 和 15:00 各饲喂 1 次。自由饮水，每天清粪，刷洗水槽，3天一次带鸡消毒，每笼 3 只鸡，20 个笼为 1 个重复，共 60 只鸡。

基础日粮由玉米、豆粕、麸皮、菜粕等组成，其组成如下（均为重量百分比）：玉米 64.4%，麸皮 3.4%，豆粕 15.3%，菜粕 3.0%，鱼粉 3.0%，石粉 7.4%，磷酸氢钙 1.5%，微量元素预混料 1.2%，维生素预混料 0.05%，氯化胆碱（50%）0.1%，食盐 0.2%，小苏打 0.1%，DL-2 蛋氨酸 0.1 5%，L-赖氨酸 0.1 5%。

饲养 40 天后取鸡蛋，检测鸡蛋中的胆固醇，采用紫外分光光度计，依照国标 GB/T 5034.128-2003 检测鸡蛋中的胆固醇，发现试验 I 组的鸡蛋胆固醇含量为 225mg/100g；试验 II 组的鸡蛋胆固醇含量为 254mg/100g；对照组的鸡蛋胆固醇含量为 540mg/100g。

实施例 2 将壳寡糖加入鸡的饮水中生产低胆固醇鸡蛋

选择产蛋率及体重相近的 32 周龄尼克红商品代蛋鸡 720 羽，随机分成 3 组，每组 4 个重复。预试期 1 周。正式试验从 33 周龄起至 46 周龄，为期 13 周。试验 I 组的饮用水为 0.015g/L 的壳寡糖溶液，试验 II 组的饮用水为 0.01g/L 的壳寡糖溶液，对照组饮用水不添加壳寡糖。饲养管理采用开放式鸡舍，2层立体笼养，每天光照 16h，每天 8:00 和 15:00 各饲喂 1 次。自由饮水，每天清粪，刷洗水槽，3天一次带鸡消毒，每笼 3 只鸡，20 个笼为 1 个重复，共 60 只鸡。

基础日粮由玉米、豆粕、麸皮、菜粕等组成，其组成如下（均为重量百分比）：玉米 64.4%，麸皮 3.4%，豆粕 15.3%，菜粕 3.0%，鱼粉 3.0%，石粉 7.4%，磷酸氢钙 1.5%，微量元素预混料 1.2%，维生素预混料 0.05%，氯化胆碱（50%）0.1%，食盐 0.2 5%，小苏打 0.1%，DL-2 蛋氨酸 0.1 5%，L-赖氨酸 0.1 5%。

饲养 40 天后取鸡蛋，检测鸡蛋中的胆固醇，采用紫外分光光度计，依照国标 GB/T 5034.128-2003 检测鸡蛋中的胆固醇，发现试验 I 组的鸡蛋胆固醇含量为 217mg/100g；试验 II 组的鸡蛋胆固醇含量为 228mg/100g；对照组的鸡蛋胆固醇含量为 540mg/100g。

实施例 3 对鸡注射壳寡糖生产低胆固醇鸡蛋

选择产蛋率及体重相近的 32 周龄尼克红商品代蛋鸡 720 羽，随机分成 3 组，每组 4 个重复。预试期 1 周。正式试验从 33 周龄起至 46 周龄，为期 13 周。试验 I 组每周注射 2mg 的壳寡糖溶液，试验 II 组每周注射 1mg 的壳寡糖溶液，对照组不注射壳寡
糖溶液。饲养管理采用开放式鸡舍，2层立体笼养，每天光照16h，每天8：00和15：00各饲喂1次。自由饮水，每天清粪，刷洗水槽，3天一次带鸡消毒，每笼3只鸡，20个笼为1个重复，共60只鸡。

【0025】基础日粮由玉米、豆粕、麸皮、菜粕等组成，其组成如下（均为重量百分比）：玉米64.4%，麸皮3.4%，豆粕15.3%，菜粕3.0%，鱼粉3.0%，石粉7.4%，磷酸氢钙1.5%，微量元素预混料1.2%，维生素预混料0.05%，氯化胆碱（50%）0.1%，食盐0.2%，小苏打0.1%，DL-2蛋氨酸0.15%，L-赖氨酸0.1%。

【0026】饲养40天后取鸡蛋，检测鸡蛋中的胆固醇，采用紫外分光光度计，依据国标GB/T5009.128-2003检测鸡蛋中的胆固醇。发现试验I组的鸡蛋胆固醇含量为231mg/100g；试验II组的鸡蛋胆固醇含量为278mg/100g；对照组的鸡蛋胆固醇含量为540mg/100g。

【0027】实施例4对鸡直接喂养壳寡糖成形颗粒生产低胆固醇鸡蛋

【0028】选择产蛋率及体重相近的32周龄尼克红商品代蛋鸡720羽，随机分成3组，每组4个重复。预试验1周。正式试验从33周龄起至66周龄，为期13周。试验I组在喂养饲料前喂养一次壳寡糖成形颗粒，喂养量为平均每只鸡每天30mg，试验II组在喂养饲料前喂养一次壳寡糖成形颗粒，喂养量为平均每只鸡每天20mg，对照组不喂养壳寡糖颗粒。饲养管理采用开放式鸡舍，2层立体笼养，每天光照16h，每天8：00和15：00各饲喂1次。自由饮水，每天清粪，刷洗水槽，3天一次带鸡消毒，每笼3只鸡，20个笼为1个重复，共60只鸡。

【0029】基础日粮由玉米、豆粕、麸皮、菜粕等组成，其组成如下（均为重量百分比）：玉米64.4%，麸皮3.4%，豆粕15.3%，菜粕3.0%，鱼粉3.0%，石粉7.4%，磷酸氢钙1.5%，微量元素预混料1.2%，维生素预混料0.05%，氯化胆碱（50%）0.1%，食盐0.2%，小苏打0.1%，DL-2蛋氨酸0.15%，L-赖氨酸0.1%。

【0030】饲养40天后取鸡蛋，检测鸡蛋中的胆固醇，采用紫外分光光度计，依据国标GB/T5009.128-2003检测鸡蛋中的胆固醇，发现试验I组的鸡蛋胆固醇含量为223mg/100g；试验II组的鸡蛋胆固醇含量为245mg/100g；对照组的鸡蛋胆固醇含量为540mg/100g。

【0031】本发明技术操作简单，只需要将壳寡糖加入饲料中、或者加入鸡饮水中、或者将壳寡糖静脉注射，或直接喂养壳寡糖颗粒均可。成本低，可大规模实验；壳寡糖制备技术成熟，价格不贵，且每次用量不多。本发明所述的鸡蛋较普通鸡蛋蛋黄更大，蛋黄颜色更黄，口感更佳。针对目前人们对于鸡蛋高胆固醇的害怕，本发明对开发低胆固醇鸡蛋具有重要的经济和社会意义。

【0032】委托中科院沈阳生态所农产品安全与环境质量检测中心对以壳寡糖喂养生产的低胆固醇鸡蛋的检测。

【0033】鸡蛋1号为实施例1中试验I组鸡蛋，鸡蛋二号为实施例1中试验II组鸡蛋，鸡蛋3号为市售普通鸡蛋。

【0034】鸡蛋1号中胆固醇含量为217.3mg/100g；鸡蛋二号中胆固醇含量为243.1mg/100g；市售普通鸡蛋中胆固醇含量为548.9mg/100g。