

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2014/020611 A1

(43) International Publication Date
6 February 2014 (06.02.2014)

(51) International Patent Classification:
A61B 5/00 (2006.01) *A61B 3/16* (2006.01)
A61B 5/026 (2006.01) *A61B 5/145* (2006.01)
A61B 5/021 (2006.01) *A61B 5/02* (2006.01)

(IL). **MICO, Vicente**; C/Clariano 16, 4, 6, E-46021 Valencia (ES). **SANZ SABATER, Martin**; Plaza dels Furs 2, 8, (dels Furst Square 2, 8), E-46470 Catarroja Valencia (ES).

(21) International Application Number:
PCT/IL2013/050658

(74) Agent: **REINHOLD COHN AND PARTNERS**; P.O.B. 13239, 61131 Tel-Aviv (IL).

(22) International Filing Date:
1 August 2013 (01.08.2013)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
13/564,381 1 August 2012 (01.08.2012) US
61/678,131 1 August 2012 (01.08.2012) US

(71) Applicants: **BAR ILAN UNIVERSITY** [IL/IL]; 5290002 Ramat Gan (IL). **UNIVERSITAT DE VALENCIA** [ES/ES]; Av. Blasco Ibanez, 13, E-46010 Valencia (ES).
(72) Inventors: **ZALEVSKY, Zeev**; 1 HaChermon Street, 4856525 Rosh HaAyin (IL). **GARCIA, Javier**; C/Rodriguez de Cepeda, 48,1 Rodriguez de Cepeda Street, E-46021 Valencia (ES). **BEIDERMAN, Yevgeny**; 12 Gideon Street, 4223512 Netanya (IL). **MARGALIT, Israel**; 8 Ramat Chen Street., 5245561 Ramat Gan (IL). **OZANA, Nisim Nisan**; 49 Gordon Street, 7628616 Rehovot (IL). **ARBEL, Nadav**; 2 Hamavdil St., 5256202 Ramat Gan

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR NON-INVASIVELY MONITORING BIOLOGICAL OR BIOCHEMICAL PARAMETERS OF INDIVIDUAL

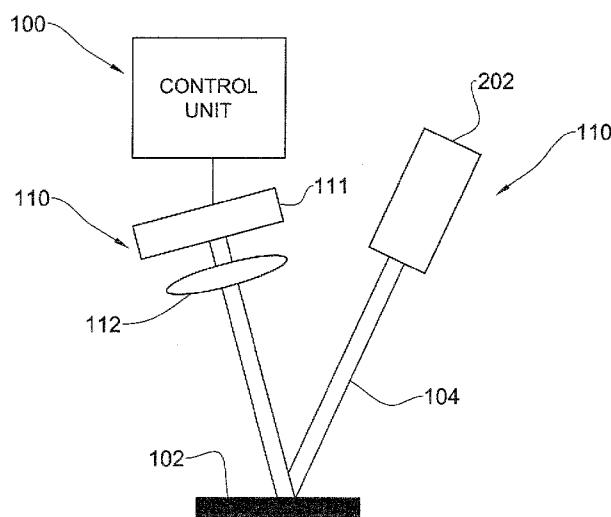


Fig. 1B

more corresponding body conditions.

(57) Abstract: A system and method are presented for use in monitoring one or more conditions of a subject's body. The system comprises a control unit which comprises an input port for receiving image data, a memory utility, and a processor utility. The image data is indicative of a sequence of speckle patterns generated by a portion of the subject's body according to a certain sampling time pattern. The memory utility stores one or more predetermined models, the model comprising data indicative of a relation between one or more measurable parameters and one or more conditions of the subject's body. The processor utility is configured and operable for carrying out the following: processing the image data and determining a spatial correlation function between successive speckle patterns in the sequence, and determining a time varying spatial correlation function in the form of a time-varying function of at least one feature of the correlation function, the time-varying spatial correlation function being indicative of a change of the speckle pattern over time; selecting at least one parameter of the time-varying spatial correlation function, and applying to said at least one parameter one or more of the models to determine one or more corresponding body conditions; and generating output data indicative of said one or

Declarations under Rule 4.17:

— *of inventorship (Rule 4.17(iv))*

— *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

Published:

— *with international search report (Art. 21(3))*

METHOD AND SYSTEM FOR NON-INVASIVELY MONITORING BIOLOGICAL OR BIOCHEMICAL PARAMETERS OF INDIVIDUAL

FIELD OF THE INVENTION

This invention relates to a method and system for non-invasively monitoring biological or biochemical parameters and conditions of an individual. The present invention is particularly useful for monitoring various parameters and conditions 5 relating to biological fluids such as blood, e.g. glucose concentration in blood, breathing, blood oxymetry, blood coagulation, as well as for monitoring parameters related to an internal organ being inspected.

BACKGROUND

The human body contains many fluids having vital functions within the body. 10 For example, blood flowing in the circulatory system delivers necessary substances such as nutrients and oxygen to cells, and transports metabolic waste products away from those cells. Another fluid is the aqueous humor in the eyes. The aqueous humor maintains the intraocular pressure and inflates the globe of the eye, provides nutrition (e.g. amino acids and glucose) for the avascular ocular tissues, posterior cornea, 15 trabecular meshwork, lens, and anterior vitreous.

Some properties of these bodily fluids are known to be indicative of a condition of the person's body, and determination of such properties may be used in order to monitor a person's health. For example, the blood glucose level (also referred to as blood glucose concentration) being too high or too low can be indicative of a 20 malfunction of the digestive system, such as diabetes mellitus. Blood oxygen level is typically monitored to identify oxygen saturation condition that enables identification of hypoxemia as well allows estimation of hemoglobin in blood. Blood alcohol level (also referred to as blood alcohol concentration) is indicative of alcohol consumption and may be used to determine detrimental effects of alcohol on the gastrointestinal, 25 cardiovascular and central nervous systems. Blood alcohol level is also indicative of impairment in a person's judgment and his ability to perform certain actions, such as driving a vehicle. In the eye, an important property of the aqueous humor is its pressure.

This property is commonly called "intraocular pressure". A high intraocular pressure may be indicative of disorders in the eye, such as glaucoma, iritis, and retinal detachment.

In the field of measuring blood-related parameters, such as glucose level and 5 oxygen saturation, many non-invasive techniques have been devised, including impedance-based techniques and optical. For example, in glucose meters based on near infrared spectroscopy, a tissue is illuminated with light in the infrared spectrum, and the light reflected by the tissue and/or the light transmitted through the tissue is measured. The portion of light that is reflected and/or transmitted is indicative of the blood glucose 10 level. Such glucose meters are used for tissue investigation in different depths varying from 1 to 100 millimeters or 10 to 50 micrometers. Some glucose meters use Raman spectroscopy to measure scattered light that has been influenced by the oscillation and rotation caused by glucose. Glucose meters based on photo-acoustic spectroscopy measure parameters of an acoustic pressure wave created by rapid heating of the 15 sampled area. Other glucose meters measure changes in the scattering and the polarization parameters of light caused by glucose. Femtosecond pulse interferometry can be used to determine glucose concentration, by measuring the group refraction index of a glucose solution using a time delay of femtosecond order in a time-of-flight method. Optical coherence tomography can be used to measure and analyze the 20 interference pattern between the coherently backscattered light from specific layers of tissues and a reference beam.

With regard to blood alcohol level, alcohol level is usually examined by determining blood alcohol concentration (BAC) in breath and blood of the affected person. The principle of BAC measurement is based on the fact that alcohol, taken 25 orally, goes into the body system. Equilibrium distribution of alcohol into the different parts of the body mainly liver, kidney, brain, and lungs is attained very rapidly. The ratio of alcohol in the blood to alcohol in alveolar air is approximately 2,100:1 at 34°C, the temperature at which the breath leaves the mouth. Thus, the extent of alcohol intoxication or alcohol consumption is monitored by examining BAC in breath and 30 blood of the affected person, but the obvious choice is blood, an absolute level can be obtained only by drawing a sample of blood. There are several methods for the estimation of BACs using iodometric titrations, breath analyzer, and biosensors.

With regard to intraocular pressure, the most commonly used ophthalmic device for measuring IOP, and current gold standard, is called applanation tonometer known as Goldmann tonometer. It is based on the assumption that the eye is a perfect sphere. Thus, the force required to achieve a fixed degree of applanation (3.06 mm in diameter) 5 when the tonometer head directly appitates the cornea is converted into millimetres of mercury (mmHg) providing the IOP resisting this deformation. Despite of its accuracy and precision, Goldmann tonometry mainly suffers from inter-individual variations due to difference in corneal thickness and rigidity while being an invasive (contact) technique with limitations for monitoring the IOP over time. Note also that this standard 10 method, which involves touching the cornea, also consequently necessitates the use of anesthetic eye drops. As alternative, one can measure the area of applanation when a given constant force is applied to the eye. This can be accomplished, for instance, by blowing from a given distance with a standard blast of air into the eye and measuring the applanation area of the cornea. Using this procedure, the contact in the measurement 15 is avoided but the technique still remains unpractical for monitoring IOP at large periods of time, that is, it fails when identifying peaks and IOP variations.

This single measurement working principle of classical tonometers has encouraged researchers to develop new ways of continuous IOP monitoring. Some examples are the use of sensing contact lenses, some sort of implants with telemetric 20 pressure transducers and devices based on optical principles. The latter is described for example in the following publications: Asejczyk-Widlicka, M., Pierscionek, B.K., *Fluctuations in intraocular pressure and the potential effect on aberrations of the eye*, Br. J. Ophthalmol. 91, 1054-1058, 2007; De la Torre-Ibarra, M.H., Ruiz, P.D., Huntley, J.M., *Double-shot depth-resolved displacement field measurement using phase-contrast 25 spectral optical coherence tomography*, Opt. Express 14, 9643-9656, 2006; Matsumoto, T., Nagata, R., Saishin, M., Matsuda, T., Nakao, S., *Measurement by holographic interferometry of the deformation of the eye accompanying changes in intraocular pressure*, Appl. Opt. 17, 3538-3539, 1978.

GENERAL DESCRIPTION

30 The present invention aims at providing a novel technique for non-invasively and contactless monitoring one or more parameters/conditions of a subject by analyzing image data corresponding to defocused images of secondary speckle pattern responses

of the subject varying over time in response to coherent illumination. More specifically, the invention is used for monitoring/measuring parameters/properties of bodily fluids, such as blood, aqueous humor, cerebrospinal fluid in the cranium, and is therefore described below with respect to this specific medical application. Also, as will be 5 described below, the principles of the present invention may be utilized in an endoscope-based system for monitoring one or more biomedical parameters/conditions of (or related to) an internal organ by analyzing image data corresponding to defocused images of secondary speckle pattern generated at a surface of the internal organ. For example, the present disclosure may be used for monitoring (measuring) one or more 10 parameters (properties) of fluid streams within organs as well as for detecting different types of infections, e.g. retinal diseases, cancer cells and etc. It should be understood that the term "*organ*" may also be contemplated as a portion of an organ in the following description. For example, an organ in the meaning of the present disclosure may refer to a blood vessel or to a tumor cell within an organ. Further, the term 15 "*internal organ*" may refer generally to an organ/tissue in a subject's body i.e. accessible by invasive techniques involving incision of the skin or by non-invasive techniques which do not involve incision of the skin such as endoscopy or puncture, etc.

The present invention makes use of the imaging technique disclosed in PCT Patent Publication WO2009/013738 developed by co-inventors of the present 20 application and assigned to the assignee of the present application. This technique is aimed at determining a motion of an object by an optical system, a so-called "optophone". According to this technique, a coherent speckle pattern propagating from an object is imaged, using an imaging system focused on a plane displaced from the object.

The inventors have now identified that various biological or biochemical 25 conditions of a subject's body affect a motion of the respective body portion. For example, the glucose level and alcohol level in blood affect, *inter alia*, the viscosity of blood. A change in the blood's viscosity affects the friction between the blood fluid and the vessel walls, and therefore produces a unique vibration profile in the blood vessel and on the skin proximal to the blood vessel. In addition, some of the above mentioned 30 chemicals, such as alcohol, affect the rate and shape of the heart pulsation which can be extracted using the proposed optical technique. The present invention is thus based on the understanding that there is a defined relation between a motion of the body portion (resulting from a motion of a bodily fluid in said portion) and one or more properties of

the fluid. The inventors have therefore developed a novel technique that utilizes relations between various parameters, characterizing a change in detected speckle pattern from the body over time, and the body conditions.

Thus, the present invention generally provides an optical technique for 5 monitoring/measuring various parameters/conditions of a subject (an individual) that affect an optical response of a region of interest in the subject's body to incident light due to motion effects in said region of interest. The motion effects can be determined by analyzing the optical response being in the form of a sequence of speckle patterns returned from a portion of the subject's body in response to illumination thereof by 10 coherent light according to a certain sampling time pattern.

According to the invention, speckle pattern is detected over time with a certain sampling rate, and variations of the speckle pattern images are determined. More specifically, a spatial correlation function between successively sampled frames (images) is determined. The correlation function typically has a Gaussian-like spatial 15 profile and can therefore be described by a "correlation peak" whose temporal variations correspond to a change in the speckle pattern over time. This may be a change in a position (shift) of the speckle pattern in the detector plane causing the change in the spatial position of the correlation peak (the shift of the speckle pattern in time shifts also the obtained spatial correlation peak), and/or a change in the shape or 20 distribution of the speckle pattern causing the change in the correlation peak value. Then, the change in location and/or value of the peak of the spatial correlation function over time (corresponding to the change in the speckle pattern as a result of motion of the corresponding body portion being imaged) is analyzed in accordance with the condition/property to be determined. To this end, the invention utilizes predetermined 25 models, each model presenting a relation between one or more parameters of the time varying spatial correlation function (e.g. the time varying position of the spatial correlation peak or the time varying value of this peak) and a biological or biochemical property/condition of the body. Thus, appropriate one or more parameters of the temporal change in some features of the spatial correlation function (as the temporal 30 change in the position of the peak of the spatial correlation function or in its value) are determined and then the selected model is applied to determine biological or biochemical property/condition.

With reference to blood, the inventors have found that human blood vessels vibrate due to variable (from systolic to diastolic) blood pressure. The human wrist may be one possible spot for blood vessels observation and vibration analysis, especially for heart beat monitoring. As the motion of the blood vessels is a function of blood pressure 5 change, appropriate detection of the blood vessels' movement provides for determining various properties/conditions of the blood, such as those related to blood pressure, namely blood pulse pressure (the difference between the systolic and diastolic pressures), as well as blood flow volume (relative), pulse wave velocity, substance concentration in blood, etc.

10 A vibration profile of a blood vessel is a unique one. It is characterized by many individual properties, such as vessel elasticity, human fat layer, blood viscosity etc. Therefore any change of one of these properties can distort this profile. For example, the glucose level and alcohol level in blood affect, *inter alia*, the viscosity of blood. A change in the blood's viscosity affects the friction between the blood fluid and the vessel 15 walls, and therefore produces a unique vibration profile in the blood vessel and on the skin proximal to the blood vessel. In addition, some of the above mentioned chemicals, such as alcohol, affect the rate and shape of the heart pulsation, which can be extracted using the proposed optical technique.

According to some embodiments of the present invention, there is provided an 20 optical technique to monitor substance concentration/level in blood based on determining and analyzing a change in the speckle pattern over time caused by skin vibrations due to blood flux pulsation. The secondary speckle pattern's spatial correlation function is indicative of the motion of a region of human skin (e.g. skin on the wrist) illuminated by a spot of laser beam, and can be therefore used to determine 25 the substance concentration/level in blood. One or more properties of the blood can be extracted by determining parameters in the time varying characteristics of features in the spatial correlation function of the speckle pattern (features as the position of the correlation peak or its value) generated in response to coherent illumination of the skin portion. For example, the inventors have shown that at least one parameter of the 30 temporal change in the spatial correlation function is in good agreement with the blood glucose level estimated by a conventional measurement technique. Also, the inventors have shown that parameter(s) of the temporal change in the spatial correlation function is in good agreement with blood alcohol level measured by a conventional technique.

With reference to aqueous humor, the inventors have found that intraocular pressure affects the vibration of the eye (e.g. sclera, iris, eye lid), and that a relation exists between intraocular pressure and some parameters of the temporal change in the spatial correlation function of a secondary speckle pattern generated in response to 5 coherent illumination of the eye (the temporal change in the spatial correlation function being indicative of the eye's vibration over time). Therefore, according to some embodiments of the present invention, there is provided a technique for measuring intraocular pressure based on detection and analysis of the temporal change in the spatial correlation function.

10 According to some further embodiments of the present invention, beams of several wavelengths (generally, at least two wavelengths) may be used to (simultaneously or successively) illuminate the region of interest, and the secondary speckle pattern (and the corresponding time varying spatial correlation function) is determined for each wavelength separately. The time varying spatial correlation 15 function is determined for each wavelength, and a relation between these two or more functions is determined, or a relation (e.g. ratio) between selected parameters of the different time varying spatial correlation functions is determined, as the case may be. More specifically, the time varying spatial correlation function for each wavelength is used (e.g. the change in the position of the spatial correlation peak with time), and the 20 two functions, corresponding to the two different wavelengths are divided one by the other; then the so-obtained time varying ratio is utilized to define the parameter of interest (e.g. the width of peaks, the standard deviation of background noise, etc.), for determination of the blood parameter using one or more appropriate models. This can be useful, for example, in the estimation of blood oxygen level which today is done by 25 pulse oxymetry based on determination of the ratio of transmission of the blood in two predefined wavelengths.

Therefore, according to an aspect of some embodiments of the present invention, there is provided a system for use in monitoring one or more conditions of a subject's body. The system includes a control unit, which includes an input port, a memory 30 utility, and a processor utility. The input port is configured for receiving image data in the form of a sequence of speckle patterns generated by a portion of the subject's body according to a certain sampling time pattern.

The memory utility is configured for storing one or more predetermined models, the model comprising data indicative of a relation between one or more measurable parameters and one or more conditions of the subject's body. The processor utility configured and operable for carrying out the following: processing the image data and

5 determining a spatial correlation function between successive speckle patterns in the sequence, and determining a time varying spatial correlation function in the form of a time-varying function of at least one feature of the correlation function, the time-varying spatial correlation function being indicative of a change of the speckle pattern over time; selecting at least one parameter of the time-varying spatial correlation

10 function, and applying to said at least one parameter one or more of the models to determine one or more corresponding body conditions; and generating output data indicative of said one or more corresponding body conditions.

15 Optionally, the at least one feature of the correlation function comprises at least one of the following: a position of a peak of the correlation unit, and a value of a peak of the correlation function.

In a variant, said one or more body conditions to be monitored comprises blood glucose concentration.

20 The at least one parameter of the time varying function may comprise at least one of the following: positive pulse amplitude, and ratio between positive and negative peak amplitudes.

In another variant, said one or more body conditions to be monitored comprises blood alcohol concentration.

25 The at least one parameter of the time varying function may comprise at least one of the following: pulse size, positive pulse size, distance between peak polarities, ratio between main and secondary peak positions, ratio between main and secondary peak amplitudes, and standard deviation of background noise.

In yet another variant, said one or more body conditions to be monitored comprise intra optical pressure (IOP).

30 The at least one parameter of the time varying function comprises an amplitude of oscillation.

In yet a further variant, the body condition is blood pulse pressure.

The at least one parameter of the time varying spatial correlation function comprises the amplitude of the main peak (pulse amplitude).

According to a second aspect of some of the embodiments of the present invention, there is provided a system for use in monitoring one or more conditions of a subject's body. The system includes an imaging device and a control unit. The imaging device is configured for imaging a predetermined portion of the subject's body, the

5 imaging device comprising a coherent light source for illuminating said portion of the subject's body with a predetermined number of wavelengths according to a certain sampling time pattern, and a pixel detector array configured and operable for detecting secondary speckle pattern generated by the illuminated portion of the body and generating measured image data indicative of the detected secondary speckle pattern.

10 The control unit is configured and operable for receiving and analyzing said measured image data, the control unit comprising: a memory utility for storing one or more predetermined models, the model comprising data indicative of a relation between one or more measurable parameter and one or more conditions of the subject's body; and a processor utility configured and operable for: processing the image data and

15 determining a spatial correlation function between successive speckle patterns in the sequence, and determining a time varying spatial correlation function in the form of a time-varying function of at least one feature of the correlation function, the time-varying spatial correlation function being indicative of a change of the speckle pattern over time; selecting at least one parameter of the time-varying spatial correlation

20 function, and applying to said at least one parameter one or more of the models to determine one or more corresponding body conditions; and generating output data indicative of said one or more corresponding body conditions.

According to a further aspect of some embodiments of the present invention, there is provided a method for use in monitoring one or more conditions of a subject's body, the method comprising: providing image data measured by a pixel detector array and being in the form of a sequence of speckle patterns generated by a portion of the subject's body in response to illumination thereof by coherent light according to a certain sampling time pattern; providing one or more predetermined models, the model comprising data indicative of a relation between one or more measurable parameters

25 and one or more conditions of the subject's body; processing the image data and determining a spatial correlation function between successive speckle patterns in the sequence, and determining a time-varying spatial correlation function in the form of a time-varying function of at least one feature of the correlation function, the time-

varying spatial correlation function being indicative of a change of the speckle pattern over time; analyzing the time-varying spatial correlation function and selecting at least one parameter of the time-varying function in accordance with one or more body conditions to be determined; and analyzing said at least one selected parameter using 5 one or more of the models to determine one or more corresponding body conditions, and generating output data indicative thereof.

In some embodiments of the present invention, said one or more conditions of a subject's body are associated with one or more properties of at least one bodily fluid.

10 Optionally, said at least bodily fluid comprises at least one of blood and aqueous humor.

The at least one feature of the correlation function may comprise at least one of the following: a position of a peak of the correlation unit, and a value of a peak of the correlation function.

In a variant, said one or more body conditions to be monitored comprises blood 15 glucose concentration.

The at least one parameter of the time varying function may comprise at least one of the following: positive pulse amplitude, and ratio between positive and negative peak amplitudes.

20 In another variant, said one or more body conditions to be monitored comprises blood alcohol concentration.

The at least one parameter of the time varying function may comprise at least one of the following: pulse amplitude, positive pulse size, distance between peak polarities, ratio between main and secondary peak positions, ratio between main and secondary peak amplitudes, and standard deviation of background noise.

25 In a further variant, said one or more body conditions to be monitored comprise intra optical pressure (IOP).

The at least one parameter of the time varying function may comprise an amplitude of oscillation.

In yet a further variant, the body condition is blood pulse pressure.

30 The at least one parameter of the time varying spatial correlation function comprises the amplitude of the main peak (pulse amplitude).

As indicated above, the invention can be used together with a conventional imaging system such as endoscope of any suitable configuration for

inspecting/measuring internal organs of a subject. Endoscopes are the common medical instrumentation to perform medical inspection of internal organs. There are two main types of endoscopes: flexible and rigid.

The flexible endoscopes are being constructed out of a bundle of single mode fibers while each fiber in the bundle transmits backwards spatial information corresponding to a single spatial point, i.e. a single pixel. The fibers bundle may go into the body while the imaging camera is located outside. Interface optics adapts the photonic information coming out of the bundle to the detection camera. The reason for using single mode fiber for each fiber in the bundle rather than multi mode fibers (capable of transmitting spatial information that is corresponding to plurality of pixels) is related to the fact that when inserting the endoscope and while navigating it inside the body it may be bent. When multi mode fibers are bent the spatial modes are coupled to each other and the image is strongly distorted. The typical diameter of a single mode fiber in the bundle is about 30 μ m (this is the diameter of its cladding, the core has diameter of about 8-9 μ m). The typical number of fibers in the bundle is about 10,000-30,000. Typical overall diameter (of the entire bundle) is about 3mm-5mm.

For example, an endoscope utilizing a multicore fiber is described in US Patent Publication US 2010/0046897 which discloses an endoscope system including an image fiber with an image fiber main body made of a plurality of cores for forming pixels and a cladding common thereto; and an optical system connected to an eyepiece side of the image fiber for causing laser light to enter the image fiber and for taking in an image from the image fiber, in which the image fiber has the cores arranged substantially uniformly over a cross-section of the image fiber main body, the cross-section being perpendicular to a longitudinal direction of the image fiber main body.

Thus, according to yet another aspect of the invention, there is provided a monitoring system for use inspecting an internal organ, the system comprising an imaging device for imaging a predetermined portion of the subject's body, and a control unit. The imaging device comprises a coherent light source for illuminating said portion of the subject's body with a predetermined number of wavelengths according to a certain sampling time pattern, and a pixel detector array configured and operable for detecting secondary speckle pattern generated by the illuminated portion of the body and generating measured image data indicative of the detected secondary speckle pattern. Generally, the imaging device may have any suitable known configuration. In

some embodiments, the imaging device comprises a multicore fiber configured for transferring light between a proximal end and a distal end of the multicore fiber which is intended to be placed in proximity of the internal organ. The control unit is configured and operable as described above for receiving and analyzing the measured 5 image data, using one or more predetermined models comprising data indicative of a relation between one or more measurable parameter and one or more conditions of the subject's body, to determine a spatial correlation function between successive speckle patterns in the sequence.

10 BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:

15 **Fig. 1A** is a block diagram of a system of the present invention for monitoring a subject's condition by measuring one or more biological or biochemical parameters/conditions of the subject;

Fig. 1B is a schematic illustration of the system of the invention used together with an imaging system for measuring a motion of a portion of the subject's body;

20 **Figs. 2A-2B** are schematic drawings illustrating the principles of the technique for measuring motion of an object used in the measurement unit of the system of Fig. 1A or 1B;

Figs. 3A-3C exemplify the processing of measured data by the control unit of the system of Fig. 1A or 1B;

25 **Fig. 4** exemplifies the use of the system of the invention with an endoscope, and shows a specific but not limiting example of the configuration of a light guiding unit suitable to be used in the endoscope;

Fig. 5 is a flowchart exemplifying a method of the present invention for monitoring a subject's condition by measuring one or more biological or biochemical properties of the subject;

30 **Fig. 6A** is a graph exemplifying a function indicative of a time variation of the speckle pattern, as generated by the system of the present invention, and illustrating a

plurality of parameters of the function in the time domain that can be used for determining the body conditions;

Fig. 6B is a graph which illustrates a test on a subject, in which a substantially constant level of blood glucose concentration was shown to correspond to a 5 substantially constant negative pulse width (parameter 6 of **Fig. 6A**);

Figs. 6C-6F are graphs illustrating the change in a test subject's blood glucose level and the corresponding change in the amplitude of positive peak (parameter 1 of **Fig. 6A**);

Figs. 7A-7D are graphs illustrating the change in a test subject's blood glucose 10 level and the corresponding change in the ratio between positive and negative peak (parameter 9 of **Fig. 6A**);

Figs. 8A-8D are graphs illustrating the change in a second test subject's blood glucose level and the corresponding change in the amplitude of positive peak (parameter 1 of **Fig. 6A**);

15 **Figs. 9A-9D** are graphs illustrating the change in a third test subject's blood glucose level and the corresponding change in the amplitude of positive peak (parameter 1 of **Fig. 6A**);

Figs. 10A-10D are graphs illustrating the change in a fourth test subject's blood glucose level and the corresponding change in the amplitude of positive peak 20 (parameter 1 of **Fig. 6A**);

Figs. 11A to 11F illustrate the experimental results for glucose concentration measurements (**Figs. 11B to 11F**) using a setup of **Fig. 11A** utilizing a magnet;

Figs. 12A-12B are graphs illustrating different functions indicative of a change 25 in the speckle pattern over time generated by the system of the present invention, based on measurements before and after alcohol consumption;

Fig. 13 is a graph illustrating the pulse size (width) of the function indicative of skin vibration;

Figs. 14A-14B are graphs illustrating the change of test subjects' pulse sizes over time, as a consequence of alcohol consumption;

30 **Fig. 15** is a graph illustrating the positive pulse size of the function indicative of skin vibration profile in the time domain;

Figs. 16A-16B are graphs illustrating the change of test subjects' positive pulse sizes over time, as a consequence of alcohol consumption;

Fig. 17 is a graph illustrating the distance between peak polarities of the function indicative of skin vibration profile in the time domain;

Figs. 18A-18B are graphs illustrating the change of test subjects' distances between peak polarities over time, as a consequence of alcohol consumption;

5 **Fig. 19** is a graph illustrating the main and secondary peak positions in the function indicative of skin vibration profile in the time domain;

Figs. 20A-20B are graphs illustrating the change of test subjects' ratios between main and secondary peak positions, as a consequence of alcohol consumption;

10 **Fig. 21** is a graph illustrating the main negative peak amplitude to the secondary positive peak amplitude in the function indicative of skin vibration profile in the time domain;

Figs. 22A-22B are graphs illustrating the change of test subjects' ratios between main and secondary peak positions, as a consequence of alcohol consumption;

15 **Fig. 23** is a graph illustrating the background noise in the function indicative of skin vibration profile in the time domain;

Fig. 24 is a graph illustrating the change of test subjects' standard deviation in background noise, as a consequence of alcohol consumption;

20 **Figs. 25A and 25B** present the results of one of the breathing experiments, and **Fig. 25C** shows a summary of the results of all 9 experiments, conducted by the inventors utilizing the system of the invention exemplified in Fig. 1B;

Fig. 26 presents the results of the INR experiment conducted by the inventors utilizing the system of the invention exemplified in Fig. 1B;

25 **Figs. 27A to 27C** present the experimental results for oxygen saturation measurements utilizing the system of the invention exemplified in Fig. 1B, obtained for two saturation level experiments and compared with a reference measurement obtained using a convention pulse oxymeter;

Fig. 28 is a graph illustrating the oscillation amplitude of a function indicative of the eye's vibration as a function of intra-ocular pressure (IOP), where the function was generated via the system of **Fig. 1B** using a 10mW laser;

30 **Fig. 29** is a graph illustrating a function indicative of the eye's vibration when IOP is changed in a rabbit's eye;

Fig. 30 is a graph illustrating amplitude of a function indicative of the eye's vibration as a function of intra-ocular pressure (IOP), where the function was generated via the system of **Fig. 1B** using a 2mW laser;

Fig. 31 is a graph illustrating the oscillation amplitude a function indicative of the eye's vibration as a function of intra-ocular pressure (IOP), where the IOP was measured via a Goldmann tonometer; and

Fig. 32 is a graph illustrating the change of a test subject's pulse amplitude over time, as compared to the test subject's pulse blood pressure.

DETAILED DESCRIPTION OF EMBODIMENTS

10 Referring now to the drawings, **Fig. 1A** is a block diagram of a system, generally designated **100**, configured and operable according to the invention for use in monitoring one or more conditions of a subject's body. The system **100** is configured as a computer system and includes an input port/utility **100A** for receiving image data; a memory utility **100B** for storing one or more predetermined models; a processor utility **100C**; and an output data utility **100D**, for example associated with a display. The system **100** is connectable (via wires or wireless signal transmission) to an imaging system or to a data storage utility, generally at **110**, for receiving the input image data which is measured data in the form of a sequence of speckle patterns generated by a pixel detector array being indicative of an optical response of a portion of the subject's body to illumination by coherent light according to a certain sampling time pattern. The imaging system **110** may be a motion measurement system configured generally similar to that of the above-indicated PCT Patent Publication WO2009/013738.

15

20

The memory utility **100B** stores one or more predetermined models indicative of a relation between one or more measurable parameters and one or more conditions of the subject's body. The processor utility **100C** is preprogrammed for processing the image data and utilizing one or more selected models to generate output data indicative of the one or more corresponding body conditions. To this end, the processor utility analyzes the image data and determines a spatial correlation function between successive speckle patterns in the sequence, and a time varying spatial correlation function in the form of a time-varying function of at least one feature of the correlation function. The time-varying spatial correlation function is indicative of a change of the speckle pattern over time. Then, at least one parameter of the time-varying spatial

25

30

correlation function is selected, and one or more of the models is applied to this at least one parameter to determine one or more corresponding body conditions.

Referring now to **Figs. 1B**, there is schematically illustrated a system **200** for use in monitoring the subject's body condition(s), e.g. measuring at least one property of a 5 bodily fluid, including a measurement unit **110** and a control unit configured as the above-described system **100**. The measurement unit **110** includes a source of coherent light **202** (e.g. laser source), an imaging unit having a pixel detector array (PDA) **111** and an imaging optics (e.g. single lens) **112**. The control unit **100** is connectable via wires or wireless signal transmission (e.g. RF, IR, acoustic) to the output of the PDA 10 111, and in some applications the same or additional control unit may include an illumination controller for selecting appropriate wavelength(s) for illumination.

The source of coherent light **202** emits a light beam **104** to illuminate the object **102** during a certain time period (continuously or by multiple timely separated sessions). The object constitutes a body region of a subject (e.g. individual) whose 15 movement is affected by a change in the body condition, typically a flow of a fluid of interest (i.e. a fluid having a property that is to be measured). The object's diffusive surface responds to coherent illumination by a speckle pattern which propagates toward the imaging optics **112** and is captured by the PDA **111** during said certain time period, to generate output measured data.

20 As shown more specifically in **Figs. 2A and 2B**, the imaging unit is configured for focusing coherent light on a plane **108** which is displaced from a plane of an object **102** to be monitored. In other words, the back focal plane of the lens **112** is displaced from the object plane thus producing a defocused image of the object. A coherent light beam **104** (e.g., a laser beam) illuminates an object **102**, and a secondary speckle pattern 25 is formed as the reflection/scattering of the coherent light beam **104** from the object **102**. The secondary speckle pattern is generated because of the diffusive surface of the object **102**. The speckle pattern propagates toward the in-focus plane **108**, where it takes a form **106**. The speckle pattern propagates in a direction along the optical axis of the system, is collected by the imaging lens **112** and is collected by the PDA **111**.

30 If the object **102** moves in the transverse direction (i.e. into and out of the page, or up and down), the detected speckle pattern changes phase. If the object **102** moves in the axial direction (toward and away from imaging lens **112**), the detected speckle pattern changes scale. If the object **102** tilts (as shown in **Fig. 2B**), then the speckle

pattern in the PDA plane shifts position. The scale and shape change as well as the position shift of the speckle pattern are detectable by the PDA, thereby allowing detection of the object's motion along the axial direction and tilting.

With reference to tilting, in **Fig. 2A** the speckle pattern is detected in the region 5 **A** of the PDA **110**, while in **Fig. 2B** following the tilt on the object's surface by an angle α , the speckle pattern illuminates and is detected by a region **B** of the PDA **111**. The relative shift of speckle pattern due to the displacement of the object's surface (the object **102**) can be estimated as

$$\beta = \frac{4\pi \tan \alpha}{\lambda} \approx \frac{4\pi \alpha}{\lambda} \quad (1)$$

10 where β is proportional to the relative shift δ of the speckle pattern (i.e. the distance between points **A** and **B**), α is the tilting angle of object's surface, and λ is the optical wavelength. Assuming that the change in the angle is small enough, a linear proportion is obtained between the relative shift and the angle of tilting.

15 In light of the above, it can be seen that the object's movement causes changes in properties/profile (phase, magnification, position) of the speckle pattern detected by the PDA **110**. Therefore, monitoring a change in the speckle pattern over time is associated with the movement of the object **102** and thus enables detection and characterization of the movement of the object **102**.

According to the present invention, the control unit **100** receives the measured 20 data (or data indicative thereof and appropriately formatted) from the pixel(s) of the PDA **111** illuminated by the speckle pattern response of the object, and processes this measured data to form a spatial correlation function by determining correlation between successive images of the speckle pattern. As exemplified in **Figs. 3A-3C**, measured data is in the form of a sequence of speckle patterns generated by the object in response to 25 coherent illumination according to a certain sampling time pattern - two such successively received speckle patterns being shown in **Figs. 3A and 3B**. The control unit processes these speckle patterns and determines a correlation function between them, as exemplified in **Fig. 3C** being in the form of a correlation peak. The black area in **Fig. 3C** represents the peak of the correlation function between the speckle patterns 30 in **Figs. 3A and 3B**.

The control unit 100 is configured for extracting one or more features of the spatial correlation function (e.g. the shift in the correlation peak and/or the change of its value) and monitoring temporal changes of such extracted features, in order to construct data indicative of time variation in the correlation function. The time variation in the 5 correlation function is in turn indicative of variation of the speckle pattern, and therefore of motion in the illuminated body part, which causes such variation in the speckle pattern. Then, from the data indicative of the time variation of the spatial correlation function, one or more parameters are extracted and used for determining one or more conditions of the body.

10 The optics 112 is slightly defocused with respect to the object's plane. This feature is important in order to convert the tilting movement of the object's surface into transversal movement of the speckles. This provides that the only varying property of the detected speckle pattern, returned from object that undergoes a tilting movement, is its position in the coordinate system of the PDA (i.e. pixel matrix) while other 15 properties (phase and magnification) practically do not change during the tilting of the illuminated object. A time function of the shift of such speckle pattern is tracked by the control unit which operates to apply a certain algorithm to the measured data for correlating the amplitude of the object's motion to the shift in the speckle pattern. In this connection, it should be understood that the speckle pattern shift along the PDA pixel 20 matrix is indicative of the tilting movement of the object with respect to the optical axis, while a change in the scaling (magnification) of the speckle pattern is indicative of the object's motion along the optical axis, and a change in phase of the speckle pattern is indicative of the object's motion substantially perpendicular to the optical axis. The amount of applied defocusing determines the amount of change in each one of the 25 above mentioned properties.

As explained above, the inventors have found that in bodies of humans and animals, one or more properties of a bodily fluid affect the motion of nearby body regions. For example, properties of flowing blood affect the motion of skin on a person's wrist. The pressure of the aqueous humor (i.e. the IOP) affects involuntary 30 vibrations in the eye. The intra cranial pressure affects the motion of the surface of the eardrum. Therefore, the temporal change in the correlation function (as indicated, for example by temporal change of the position and/or value of the obtained correlation function's peak) is indicative of properties (conditions) of the fluid of interest.

Therefore, the control unit **100** is configured to perform an analysis of the temporal variations of one or more features of the correlation function (such as the position and/or the value of the correlation peak), caused by time changes of the speckle pattern detected from the object during measurements. From the temporal change in the 5 correlation function analysis, one or more parameters are extracted, these parameters being related to one or more properties of the fluid. The parameters are thus used to determine one or more properties of the fluid.

As described above, the control unit **100** includes an input port **100A** connected to the output of the PDA **111** and configured for receiving measured data indicative of 10 the detected speckle pattern from the PDA's illuminated pixel(s), a processing utility **100C** (software/hardware utility), a memory utility **100B**, and an output port **100D** associated with a data presentation utility or an external storage device, as the case may be. The control unit's processing utility **100C** is configured to construct the speckle pattern's spatial correlation function according to the data received from the PDA; the 15 spatial correlation function data may be stored in the memory utility. The processing utility **100C** includes appropriate functional modules for determining a spatial correlation function, analyzing the spatial correlation function and extracting one or more features thereof and tracking their variation over time, and constructing data related to the temporal change in the spatial correlation function. Subsequently, the 20 processing utility **100C** utilizes a predetermined model (stored in the memory utility) selected for one or more body conditions to be monitored, and analyzes the temporal changes in the object's spatial correlation function according to the selected model. Generally, the model defines one or more sets of parameters (variables) of the temporal 25 changes in the spatial correlation function, the parameters being associated with properties of a certain bodily fluid (e.g., via algorithm or look-up table). Thus, the processor utility **100C** analyzes the spatial correlation function and identifies therein the values of one or more of the parameters. Once the parameters are extracted from temporal variations in the spatial correlation function, the processing utility **100C** operates for calculating one or more properties of the fluid, according to the selected 30 model.

As will be described more specifically further below, the second set parameters relating to the temporal change in the spatial correlation function may include an average amplitude of a sinusoidal vibration of the temporal change in the correlation

function, and/or parameters describing peaks in the temporal change in the correlation function, e.g. the width of the first positive peak.

The output port **100D** is configured for transmitting output data from the control unit to one or more output devices (e.g. display, printer, speaker), or to the monitor of the control unit, in order to present data to a user. The output data may include a graph of the temporal changes in the spatial correlation function and/or values of one or more of the extracted parameters, and/or values of one or more properties of the fluid.

As will be explained below, the system **100** (control unit) may be configured, *inter alia*, to determine blood-related parameters, such as concentration of substance in blood (e.g. glucose concentration, blood alcohol concentration) and/or oxygen saturation, and/or blood flow volume (relative), blood pulse wave velocity, as well other bodily fluid related parameters such as intra-ocular pressure and/or intra-cranial pressure.

The measurement unit **110** may be configured as an endoscope for inspecting internal organs. Generally, the endoscope may be of any known suitable configuration, in which, for the purposes of the present invention, an optical assembly is configured for setting a predetermined defocus between the surface of the internal organ and the detector array.

Fig. 4 shows specific but not limiting example a system of the present invention **300** formed by the above-described control unit **100** and a measurement unit **110** including an endoscope-based imaging system configured for providing measured data in the form of a sequence of speckle response to coherent de-focused illumination. The system **300** is adapted for monitoring biomedical parameter of an internal organ (object) **102**. The measurement unit **110** includes a source of coherent light **202**, a detector array **111** (e.g. including a CCD), an optical assembly **112**, and a light guiding unit **20**.

The light guiding unit **20** is configured as a micro probe that transfers light arriving from the internal organ **2** to an input edge (distal tip) **21** of the micro probe **20** toward an output edge **22** (proximal tip) of the micro probe **20**. The optical assembly **112** may be configured to collect light at the output edge **22** of the micro probe **20** and to form a defocused image of a surface of the internal organ **102** on the pixel detector array **111**. The optical assembly may comprise one or more lenses, as well as may be displaceable along an optical axis Δ so as to be capable of performing defocused imaging of an object at variable distance of the input edge **21** of the micro probe **20**.

In a focused imaging configuration (from which the present disclosure differs), since in respect to its imaging related property, the micro probe **20** may actually be regarded as if the input and output edges **21**, **22** of the micro probe **20** act similarly to principle planes of a lens, the position of the optical assembly **30** in order to obtain focused imaging may be determined according to the following relation:

$$\frac{1}{U_1} + \frac{1}{U_2} = \frac{1}{V} = \frac{1}{F} \quad (2)$$

wherein U_1 is the distance between the internal organ **102** and the input edge **21** of the micro probe **20**, U_2 is the distance between the output edge **22** of the micro probe **20**, V is the distance between an optical center of the optical assembly **112** and the detection array **10** and F is the focal length of the optical assembly **112**. In the defocused configuration of the present disclosure, the above position of the optical assembly **112** obtained using the abovementioned relation is not respected so that a slight defocusing exists. For example, the distance between the optical assembly **112** and the detector array **111** is different than the distance V obtained using the relation abovementioned.

Further, the micro probe **20** may be a multicore fiber. The diameter of a core and the diameter of the multicore fiber **20** may be respectively referred to as d and D . The values of d and D are defined by fabrication and application related limitations. For example, D may be smaller than 300 μm in order to remain non invasive in certain medical applications. The value of d may be determined according to a desired spatial resolution. If D is equal to 300 μm and one wishes to have 100x100 pixels resolution it means that d may be about 3 μm . Generally, d may be larger than an optical wavelength of the light collected in order to allow coupling of light to the fiber with sufficient energetic efficiency.

The illumination source **202** is a source of coherent light and is configured to inject an illumination beam into the input edge **21** of the micro probe **20** so that a speckle pattern can be generated at a surface of the internal organ **102**. The speckle pattern generated may propagate back toward the input edge **21** of the micro probe **20** to the output edge **22** of the micro probe **20**. The optical assembly **112** may perform defocused imaging of the speckle pattern on the detector array **111**.

As described above, the control unit **100** may be connected to an output of the detector array **111** via wires or wireless signal transmission (e.g. RF, IR, acoustic, etc.) and in some embodiments, the processing unit may be associated with the light source

for selecting one or more appropriate wavelengths for illumination. The processing unit **100C** may receive image data from the pixels of the pixel detector array **111** illuminated by the speckle pattern, and process the image data to calculate a correlation function between successive images of the speckle pattern. Two such successively received 5 speckle patterns are exemplified in **Figs. 3A and 3B** described above, and the correlation function between them is exemplified in **Fig. 3C** being in the form of a correlation peak.

In some embodiments, the control unit **100** is configured to apply component analysis in order to characterize and separate between the temporal characteristics of the 10 correlation peak for reflections related to different values of the inspected biomedical parameters. The rationale is that infected tissues have different temporal variations profile of speckle pattern correlation peak with respect to non-infected tissue. Basically each one of them may have its own correlation peak “signature”. The term signature refers for instance to the shape, amplitude value and/or the ratio between positive and 15 negative pulse width and etc. In addition, in case of infected tissue the severity level of the disease will act and affect differently the speckle pattern which in turn may have different type of signature. The definition of the disease severity can be evaluated or defined for instance by a “lookup table”.

It should be noted, although not specifically shown that the system may further 20 include an ultrasound device configured to excite the inspected organ. It should also be noted that the multicore fiber may be a fiber bundle or a photonic crystal, and may have a polygonal or substantially circular cross section defining two opposite substantially parallel facets.

As indicated above, the optical assembly **112** is slightly defocused with respect 25 to the organ surface plane and to the detector array plane. This feature enables to convert the tilting movement of the organ's surface into transversal movement of the speckles. This provides that the only varying property of the detected speckle pattern, returned from the organ that undergoes a tilting movement, is its position in the coordinate system of the PDA (i.e. pixel matrix) while other properties (phase and 30 magnification) practically do not change during the tilting of the illuminated organ. A time function of the shift of such speckle pattern is tracked by the control unit which operates to apply a certain algorithm to the measured data for correlating the amplitude of the organ's motion to the shift in the speckle pattern. In this connection, it should be

understood that the speckle pattern shift along the PDA pixel matrix is indicative of the tilting movement of the object with respect to the optical axis, while a change in the scaling (magnification) of the speckle pattern is indicative of the object's motion along the optical axis. The amount of applied defocusing determines the amount of change in 5 each one of the above mentioned properties.

As explained above, the inventors have found that in bodies of humans and animals, one or more properties of a fluid in an organ affect the motion of the organ. For example, properties of flowing blood affect the motion of the heart. Therefore, the temporal change in the correlation function (as indicated, for example by temporal 10 change of the position and/or value of the obtained correlation function's peak) is indicative of properties (conditions) of the fluid of interest. Therefore, analysis of the temporal variations of one or more features of the correlation function (such as the position and/or the value of the correlation peak), caused by time changes of the speckle pattern detected from the organ during measurements, enables to extract one or more 15 attributes related to one or more properties of the fluid. The attributes are thus used to determine one or more properties of the fluid. The attributes relating to the temporal change in the spatial correlation function may include an average amplitude of a sinusoidal vibration of the temporal change in the correlation function, and/or parameters describing peaks in the temporal change in the correlation function, e.g. the 20 width of the first positive peak.

The output data generated by the control unit 100 of the invention may include a graph of the temporal changes in the spatial correlation function and/or values of one or more of the extracted parameters, and/or values of one or more properties of the fluid.

As will be exemplified below, the system of the invention may be configured, 25 *inter alia*, to monitor local blood-related parameters of an internal organ, such as internal blood pressure of a blood vessel, concentration of substance in blood (e.g. glucose concentration, hemoglobin concentration) and/or oxygen saturation, and/or blood flow volume (relative), blood pulse wave velocity, temperature. The system may also be configured for other medical application as reminded in the general description 30 section.

Reference is now made to **Fig. 5**, in which a flowchart **400** exemplifies a method of the present invention for measuring a property of a fluid.

At 302, a function indicative of the speckle pattern profile over time is provided and analyzed, in order to extract one or more parameters relating to the temporal shape of the spatial correlation function (as described, for example, by the temporal change in the position of spatial correlation function's peak or the temporal change in the value of 5 this peak), in accordance to the body condition(s) to be monitored. At 304, the extracted parameter(s) is (are) used to determine one or more properties of the bodily fluid according to a predetermined model, and to generate output data indicative of the property of the bodily fluid.

The temporal change in the correlation function may be provided off-line from 10 another processor or storage device, or as exemplified in the figure, may be provided in an on-line mode by processing and analyzing measured data (speckle patterns) from an optical measurement device at 306, 308 and 310. At 306, the region of interest is illuminated by coherent light over a certain time period. At 308, a speckle pattern response to the coherent light is detected, and images of the speckle pattern are recorded 15 over time. Consequently, at 310, the images of the speckle pattern are analyzed to determine one or more characteristics (e.g., position and/or shape) of the speckle pattern. Change in the one or more speckle pattern characteristics is determined between subsequent images, to construct a spatial correlation function of the speckle pattern over the measurement time. One or more features of the spatial correlation function (e.g. a 20 position of the correlation function's peak and/or a value of the correlation function's peak) are extracted and monitored over time, in order to construct data indicative of the temporal change of the spatial correlation function. The so-estimated temporal change in the correlation function can then be analyzed in step 302.

The inventors have conducted various experiments demonstrating the capability 25 of the technique of the present invention for monitoring various subject's parameters/conditions, including for example glucose concentration in blood stream, breathing, coagulation, oximetry, as well as blood alcohol concentration, measurement of intra-ocular pressure, dehydration, monitoring of cattle, temperature, flow velocity and volume. The system of the invention can monitor several vital biomedical 30 parameters simultaneously, and also can be realized in a very simple and cost efficient manner involving simple camera and a laser source. The technique is based on the tracking of temporal changes of reflected secondary speckle produced in a region of interest in the subject when being illuminated by a laser beam. A temporal change in the

vibration profile of the region of interest generated due to fluid (e.g. blood) pulsation is analyzed for estimating the desired parameter (e.g. glucose concentration).

Speckle or speckle pattern may be produced in spatially coherent light due to self interference within the laser beam, while the temporal trajectories of the speckle 5 patterns that are captured by the camera are proportional to the temporal signals that are to be extracted (a vibration profile). A self-interference pattern is constructed on the CCD plane of the observing camera. A temporal change in the pattern is related to a relative spatial shift between two adjacent frames taken by the camera.

The following are some specific non-limiting examples of the technique of the 10 invention for determining various subject's parameters/conditions.

Blood Glucose Concentration

The following section refers to test conducted by the inventors on human subjects, in order to determine a relationship between blood glucose concentration and 15 parameters of the time varying function indicative of the time changes of the speckle pattern caused by vibration of skin on the subjects' wrists (i.e. the temporal change in the spatial correlation function).

The connection between different blood parameters and blood glucose level is explained by:

$$C_v(t) = \frac{(1-\varepsilon) \cdot q_0 \cdot h(t)}{F} \quad (3)$$

20 where $C_v(t)$ is the venous glucose concentration at time t , F is the blood flow (represents the amount of blood, usually in liters per minute), q_0 corresponds to a glucose pulse and represents the amount of glucose (in mg) in the blood (in Kg) per heart beat, ε is the fraction of the glucose pulse that is extracted from the blood system and is metabolized 25 (therefore it will never be recovered at the outlet of the vein), $h(t)$ is the reversible fates of glucose in the organ that causes a delay and a distortion in the appearance of glucose pulse in the vein.

A vibration profile of a blood vessel is a unique one. It is characterized by many individual parameters, such as vessel elasticity, human fat layer, blood viscosity etc. 30 Therefore any change of one of these parameters affects a change of this vibration profile. Changes in glucose level in blood affect the viscosity of blood, while a change in viscosity of blood affects the friction between the blood and the vessel walls, while a

change in the friction in turn affects the motion profile. Thus, a change of friction due to a change in glucose concentration in the arteries and veins causes a change of the vibration profile of the vessel. In order to determine glucose concentration from the analysis of the vibration profile of skin on a human wrist, the inventors have analyzed 5 the temporal changes in a spatial correlation function corresponding to the time variations of the speckle pattern in the successive images, by observing quantitative parameters of the temporal changes in a spatial correlation function before and after glucose intake. To be more specific, the temporal changes in the spatial correlation function were in the form of the temporal variations of the spatial correlation function's 10 peak and/or in the temporal variations of the value of the peak of the spatial correlation function. Such parameters were compared to the actual glucose level in the blood that is obtained via a reference measurement with conventional techniques.

An experimental system was constructed similar to the above-described system of **Fig. 1B**, and used to illuminate a wrist of a subject being fixed by gypsum to allow 15 more accurate measurement. In the experimental system, the source of coherent light was a green laser (having wavelength of 532nm). The laser output power was about 10mW. An imaging optics of the camera was slightly defocused. The focal length of the optics that was used in the experiments was 50mm and the distance from the laser to the subject's hand was about 50cm. The camera captured images of the secondary speckle 20 pattern from the wrist of the subject at rate of 350 frames per second (fps).

After extracting the speckle pattern in each frame, a spatial correlation between successive frames was performed as described in the above-indicated WO 2009/013738, which is incorporated herein by reference with respect to this specific functional step, to obtain a temporal change of the correlation function indicative of the change in the 2-D 25 position of the speckle pattern's peak versus time.

In **Fig. 6A**, a detected system output with high signal to noise ratio illustrates temporal change in the spatial correlation function indicative of the vibration profile of skin in a human wrist obtained in this experiment. The graph of **Fig. 6A** includes only several pulses, while in the experiment six pulses were taken into consideration and 30 averaged. It can be seen that every pulse is shaped similarly to electrocardiogram (ECG) PQRST-type pulse. It contains a P pulse, QRS complex, and a T pulse. However, this is a function indicative of a mechanical vibration profile, rather than an electrical signal

(as ECG), and therefore it corresponds to temporal information about vibration of blood vessels (proximal to the illuminated skin) due to blood flux pulsation.

In the experiment, the following parameters of the temporal change in the position of the peak of the spatial correlation function have been monitored: the main 5 temporal peak amplitude (positive and negative) during one heart beat, temporal pulse width (positive and negative), temporal pulse profile energy (positive and negative separately), mean temporal distance between temporal peaks (gap or pulse rate), positive to negative temporal pulse peak ratio, temporal distance from positive to negative temporal peak, secondary temporal peak amplitude and main to secondary 10 temporal peak amplitude ratio. These parameters are listed in Table 1 below, and the reference numerals in Table 1 refer to the numerals present in **Fig. 6A**.

Table 1: Parameters of the temporal change in the location of the peak of the spatial correlation function

N	Parameter	Units	Comments
1	Positive pulse amplitude	Pixels	Refers to highest amplitude during one heart beat
2	Positive pulse width	Seconds	Estimated between 2 zero-crossing points
3	Positive pulse energy	(Pixels) ²	Integral of the enclosed area in the positive pulse profile
4	Gap	Seconds	Number of frames between 2 peaks (pulse rate)
5	Negative pulse amplitude	Pixels	Refers to lowest negative amplitude during one heart beat
6	Negative pulse width	Seconds	Estimated between 2 zero-crossing points
7	Negative pulse energy	(Pixels) ²	Integral of the enclosed area in the negative pulse profile
8	Negative gap	Seconds	Number of frames between 2 negative peaks
9	Amplitude ratio	-	Absolute value of the ratio between the positive and the negative peaks
10	Peaks distance	Seconds	Number of frames between the positive and the negative peaks.
11	Secondary peak amplitude	Pixels	Refers to S point of QRS- complex
12	Main to secondary peak ratio	-	Absolute ratio between the main and the secondary peaks amplitude.

15 In this experiment, several data sets, each indicative of temporal change of the spatial correlation function during a certain sampling period, were obtained by carrying out multiple timely separated sessions, each lasting over a certain time interval including a desired number of detectable pulses, just in order to use average values for the above parameters for each measurement session. The measurement sessions 20 (coherent illumination and speckle pattern detection by pixel matrix) were applied to the same spot on the wrist. Before starting actual measurements, an individual hand template was constructed using gypsum, while a hole was drilled for each one of

different subjects to allow the illumination of the subject's wrist. The diameter of the hole was slightly larger than the laser beam's diameter (approximately 1cm). The test subjects of the experiment were four healthy subjects between the ages of 22 and 35 with different gender and weight. The summary of the subjects' personal information is 5 listed in Table 2. All measurements were repeated several times to assure repeatability and correctness.

Table 2:

#	Gender	Age	Weight
1	Female	22	55
2	Male	22	62
3	Female	24	44
4	Male	35	90

In order to authenticate the required accuracy of 10-15% variation (as per 10 standard glucometer) in the experiment results, the same spot on the wrist was illuminated over time, e.g. by multiple timely separated sessions. To ensure that this requirement was fulfilled, individual fixation devices were built for each subject's hand using gypsum, and several check tests were executed. In the check tests, the arm of each 15 subject was inserted into the fixation device, the spot at which the skin pulsed because of the blood flow was marked, and a hole was drilled through each gypsum in the position of the chosen pulsating spot. Each subject then pulled his/her hand out of the gypsum and re-inserted it. Upon reinsertion, the marked spot was again aligned with the 20 hole.

A second check test was aimed to check the stability of the gypsum fixation over 25 time. Each subject inserted his/her hand into the fixation device and stayed fixed for approximately 30 minutes, while he/she was monitored by the system. The result of the second test is illustrated in **Fig. 6B** where the stability of the system can be clearly seen, since the measured values' results do not vary more than 15%. Substantially constant glucose concentration corresponded to substantially constant negative pulse width 30 (parameter 6 of **Fig. 6A**) of the time variations in the position of the spatial correlation's function peak. Glucose concentration is shown by line **L₁** in units of [ml/dl] divided by 10 (representing a constant level of 100 [ml/dl]), while the parameter 6 is shown by line

L₁. The units of parameter 6 are counted in time samples (each sample is 1/rate in time units).

After the preliminary check tests, the actual measurement was performed to relate parameters of the temporal changes in the position of the peak of the spatial 5 correlation function to be indicative of the wrist's temporal pulse profile to glucose concentration in blood. To ensure that the glucose blood level would rise only as consequence of drinking of a sweetened beverage during the experiment, each examined subject preserved a fast for about 12 hours before the measurement took place. The expected values of blood glucose level for non-diabetic person after fasting 10 falls to values range between 90 to 110 [mg/dl]. At the beginning of every experiment it was checked that the subject's blood glucose level was at this range, while later the subject received a sweetened drink and the level was changed.

The rate at which the concentration of glucose increases is different for each individual and depends on many personal parameters, such as body weight, metabolic 15 rate, level of insulin in blood etc. The blood glucose level reached by the test subjects after drinking of about 400ml of sweetened beverage (40K Cal) was in the range between 150 and 190 [mg/dL]. Each experiment lasted for 50-80 minutes, during it the measurements were carried out repeatedly every 5 minutes. Each 5 minutes sampling included capturing six subsequent video files of the illuminated spot and taking an 20 accurate blood sample with a glucometer ("Accu-check") and manual blood pressure measurement using standard sphygmomanometer. All experiments showed that blood pressure did not change over the time of the experiment. It was important to check that blood pressure remained unchanged, in order to ensure that the expected change in the temporal pulse profile of the position of the speckle pattern's spatial correlation 25 function's peak was indeed caused by glucose intake, rather than by blood pressure change.

A MATLAB program analyzed the videos and extracted the observed parameters from the files. Each file contained about 5 seconds of video samples at rate of 350 fps (frames per second), enabling the construction of data indicative of the 30 temporal variation in position of the speckle pattern's spatial correlation function's peak, usually containing 6 temporal pulse peaks. Each peak was processed separately and the chosen parameters were extracted and averaged, therefore representing the average of approximately 30 peaks of pulse profile per each 5 minutes. For each parameter, the

final graph of the estimated glucose level was produced. Joint graphs of the estimated and the reference glucose level for each one of the parameters and for each one of the subjects were created.

In the experiment, only the first samples of the estimated values were taken into account. These samples corresponded to the time period in which the glucose level was rising. These samples were more reliable due to two main reasons. First, glucose metabolism causes changes in biochemical levels of insulinotropic second messengers, including cyclic nucleotides, inositol phosphates, diacylglycerol and Ca^{2+} . These changes can also affect blood viscosity. The change in blood fluid viscosity due to biochemistry metabolism is not linear. Second, the test subjects could suffer from “exhaustion”. More specifically, although the gypsum was reliable fixation, it was not attached “strongly” enough to the hand, and after approximately half an hour of testing, the subjects could produce spontaneous movement. Such spontaneous movement could have caused a change in the vibration profile not related to the actual glucose change.

The calculation include estimation of a correlation coefficient C_{fg} (which is also called the value of the correlation peak) between optically extracted parameter of the and true glucose concentration obtained via the reference measurement. It is important to mention that this correlation coefficient is not related to correlation function between speckle patterns. Rather, this correlation coefficient is an estimate of the level of correlation between the optically extracted parameter (i.e. the parameter of the temporal change of the spatial correlation function) and the glucose concentration obtained via the reference measurement. A correlation coefficient approaching 1 or -1 is indicative of good correlation between the optically extracted parameter and the glucose concentration. If the correlation coefficient near 0, little or no correlation exists between the optically extracted parameter and the glucose concentration.

For two spatial functions $g(x)$ and $f(x)$ the correlation is defined as:

$$C_{fg}(x) = \int f(x')g^*(x'-x)dx' \quad (4)$$

And for discrete functions:

$$C_{fg}(m\delta x) = \sum_n f(n\delta x)g^*(n\delta x - m\delta x) \quad (5)$$

where δx is the spatial sampling interval and m is an integer number. The correlation coefficient or the value of the correlation peak equals to:

$$(6)$$

$$C_{fg}(0) = \sum_n f(n\delta x) g^*(n\delta x)$$

Note that the spatial coordinate is time varying and thus what one actually has is:

$$C_{fg}(x+k(t)) = \int f(x') g^*(x'-x-k(t)) dx' \quad (7)$$

5 where $k(t)$ is a time varying function. For discrete functions:

$$C_{fg}(m\delta x+k(t)) = \sum_n f(n\delta x) g^*(n\delta x-m\delta x-k(t)) \quad (8)$$

The correlation coefficient or the value of the correlation peak equals to:

$$C_{fg}(k(t)) = \sum_n f(n\delta x) g^*(n\delta x-k(t)) \quad (9)$$

Furthermore, an estimation of root mean square error (RMSE) was performed to
10 quantify the relation between the reference measurement with conventional glucometer
and the measured data obtained by the optical measurements of the invention, where:

$$RMSE = \sqrt{\sum_{i=1}^N \frac{(x_i - r_i)^2}{N}} \quad (10)$$

where x_i is an i -th sample of the parameter values, r_i is an i -th sample of the reference glucose measurements and N is the number of samples. The calculated samples were
15 normalized to have energy of 1, before applying the RMSE estimator in order to obtain
the common estimation scale for all parameters.

Dozens of experiments were executed with four test subjects in order to present
a proof of principle validation. Initial results show a good correspondence of the
estimated parameters with the positive slope of glucose level change in blood. Some of
20 the obtained results are presented in the following figures.

In **Figs. 6C-6F, 7A-7D, 8A-8D, 9A-9D, 10Aa-10D** the temporal evolution of
the chosen parameters versus the reference measurement of glucose level taken by
glucometer are shown. Glucose concentration in blood is denoted by the lines with
triangles and the optically measured parameters from the pulse profile are denoted by
25 the lines with squares. The graph of the reference (glucose level) was obtained by using
a conventional glucose meter device ("Acuu-check"). Error bars refer to standard
deviation of positive and negative deviations separately, calculated over each 30 peak
samples (per each point on the graph). Four different graphs on each figure refer to four
different experiments taken with relevant subject on different days, during the morning
30 hours while each subject preserved a fast of 12 hours. Values of the extracted

parameters were linearly transformed to glucose level units according to the calibration done per each subject at the first measurement (time 0). Correlation and RMSE coefficients are shown below each graph.

The inventors have thus demonstrated that a strong correlation coefficient exists 5 between the glucose blood concentration in the internal organ and attribute 1. Therefore, it is possible to establish a linear dependency between the amplitude of positive peak amplitude in the variation of the position of the correlation peak and the glucose blood concentration.

Figs. 6C-6F are graphs illustrating the change in a test subject's blood glucose 10 level and the corresponding change in the amplitude of positive peak (parameter/attribute 1 of **Fig. 6A**). **Figs. 7A-7D** are graphs illustrating the change in a test subject's blood glucose level and the corresponding change in the ratio between positive and negative peak amplitudes (parameter 9 of **Fig. 6A**). **Figs. 8A-8D** are graphs illustrating the change in a second test subject's blood glucose level and the 15 corresponding change in the amplitude of positive peak (parameter 1 of **Fig. 6A**). **Figs. 9A-9D** are graphs illustrating the change in a third test subject's blood glucose level and the corresponding change in the amplitude of positive peak (parameter 1 of **Fig. 6A**). **Figs. 10A-10D** are graphs illustrating the change in a fourth test subject's blood glucose level and the corresponding change in the amplitude of positive peak (parameter 1 of 20 **Fig. 6A**).

Figs. 6C-6F refer to subject 1. The best correlative parameter for this subject was parameter 1. **Figs. 7A-7D** show an exact inverse ratio between the reference glucose level and the value of parameter 9. Note that parameter 9 is actually a ratio between parameters 1 and 5. Some of the results showed very high correlation with the 25 reference measurement for the full cycle of glucose changes in blood. In **Fig. 7B** it can be seen that parameter 9 tracks the reference glucose level (in opposite direction). The time profile of parameter 9 includes areas in which the slope is positive and areas in which the slope is negative, thereby presenting a full cycle of increase and decrease of glucose level in the blood. A correlation coefficient of -0.916 was obtained between the 30 two curves. RMSE estimator for this parameter was calculated between the inverse function of the normalized estimated parameter (one minus the normalized values) and the reference. RMSE estimator is equal to 0.17 in this case.

Figs. 8A-8D refer to subject 2. The best correlative parameter for this subject was found to be positive pulse amplitude (parameter 1). **Figs. 9A-9D** refer to subject 3. The best correlative parameter for this subject was found to be parameter 1 as well. **Figs. 10A-10D** refer to subject 4, with the best correlative parameter 1.

5 Table 3 summarizes all correlation coefficients, while Table 4 summarizes all RMSE estimator coefficients from the graphs presented in **Figs. 6C-6F, 7A-7D, 8A-8D, 9A-9D, 10A-10D**.

Table 3:

	Parameter	Test 1	Test 2	Test 3	Test 4	Average
Subject #1	Param. #1	0.862	0.945	0.91	0.964	0.92
	Param. #2	-0.9	-0.916	-0.88	-0.94	-0.909
Subject #2	Param. #1	0.984	0.896	0.966	0.99	0.959
Subject #3	Param. #1	0.99	0.93	0.85	0.943	0.928
Subject #4	Param. #1	0.99	0.88	0.98	0.967	0.954

10

Table 4:

	Parameter	Test 1	Test 2	Test 3	Test 4	Average
Subject #1	Param. #1	0.205	0.17	0.19	0.12	0.171
	Param. #2	0.236	0.17	0.202	0.16	0.192
Subject #2	Param. #1	0.083	0.31	0.18	0.08	0.138
Subject #3	Param. #1	0.058	0.18	0.28	0.158	0.169
Subject #4	Param. #1	0.02	0.31	0.08	0.108	0.105

15 Thus, the technique of the present invention has been shown to provide an optical remote configuration for the estimation of glucose concentration in blood. The system of the present invention was tested with clinical trial group and the estimated results show a high correlation and low error comparing to reference measurement obtained by conventional invasive means.

With the technique of the present invention, it was demonstrated that at least one parameter extracted from data indicative of the temporal change of the spatial 20 correlation function between speckle patterns obtained via measurements of speckle patterns generated from the wrist is proportional to the change of glucose concentration in blood. The technique of the present invention provides a non-invasive manner of

remote measurement of glucose concentration in blood, while it uses only a low power emitting laser and a camera.

The following is the description of yet another experiment conducted by the inventors for blood glucose concentration measurement. **Fig. 11A** illustrates the 5 experimental setup for glucose level measurements. The experimental system is constructed generally similar to the above-described system of **Fig. 1A**, namely includes a measurement unit **110** (camera) and a control unit (computer) **100**, and used to illuminate a wrist of a subject. As shown in the figure, the measurement system is carried by bracelet-like holder **120** mountable on a patient's wrist. As further shown in 10 the figure, a magnet **130** can be used, being placed between the patient's wrist and the measurement unit. This is in order to determine very small changes in the rotation produced by magneto-optic materials. The glucose exhibits the Faraday effect which is generated due to the circular structure of the glucose molecule. When a magnet is added to the setup (e.g., the bracelet-like design), the magnet generates magnetic field, and due 15 to the Faraday effect there is a modification of the speckle pattern due to the existence of the glucose molecules. As other materials do not exhibit the Faraday effect, the change in the speckle pattern caused only due to the concentration of the glucose can be allocated. This yields much higher accuracy in the estimation of the glucose concentration.

20 The source of coherent light is a green laser (having wavelength of 532nm). The laser output power is about 10mW. An imaging optics of the camera is slightly defocused. The focal length of the optics that is used in the experiments is 50mm and the distance from the laser to the subject's wrist is about 50cm. The camera captured images of the secondary speckle pattern from the wrist of the subject at rate of 350 25 frames per second (fps). After extracting the speckle pattern in each frame, correlation was performed and the change in the 2-D position of the peak versus time was obtained. Every pulse is shaped similarly to ECG PQRST, in the experiment the average of five pulses was taken into account.

The inventors used MATLAB software product modified to a new factor which 30 is the Faraday effect and its influence on the speckle field, to analyze the videos obtained from the camera and extract the observed parameters from the files. The algorithm analyzes the difference between two subsequent frames in means of lateral shift of speckle pattern using a correlation technique, therefore per one frame one value

of the shift profile is produced. Once the vibration profile is obtained the pulsation shift peak is considered. In some cases the temporal change of the pulsation profile is analyzed. Each file contained about 5 seconds of video samples at rate of 545 fps (frames per second), usually containing 8 pulse peaks. Each peak is processed 5 separately and the chosen parameters are extracted and averaged, therefore representing the average of approximately 30 peaks of pulse profile per each 5 minutes. The main measured parameter was the maximum pulse amplitude that refers to highest amplitude during one heart beat.

Fig. 11B shows one of the ECG measurements obtained by the bracelet-like 10 setup with magnet shown in Fig. 6C, this graph is used us to monitor the glucose concentration and the dehydration level. A MATLAB software program was used that analyzed the videos obtained from the camera and extract the observed parameters from the files. Each file contained about 5 seconds of video samples at rate of 545 fps (frames per second), usually containing 8 pulse peaks. Each peak is processed separately and the 15 chosen parameters are extracted and averaged, therefore representing the average of approximately 30 peaks of pulse profile per each 5 minutes. The main measured parameter was the maximum pulse amplitude that refers to highest amplitude during 20 one heart beat.

To ensure that the glucose blood level would rise only as consequence of 20 drinking of a sweetened beverage during the experiment, each examined subject preserved an overnight fast for about 12 hours before the measurement took place. The expected values of blood glucose level for non-diabetic person after fasting falls to values range between 90 to 110 [mg/dl]. At the beginning of every experiment, it was checked that the subject's blood glucose level was at this range, while later the subject 25 received a sweetened drink and the level was changed.

The rate at which the concentration of glucose increases is different for each individual and depends on many personal parameters, like body weight, metabolic rate, level of insulin in blood, etc. The blood glucose level obtained after drinking of 500ml of sweetened beverage (195 Cal) by the subjects was from 130 to 160 [mg/dL]. Each 30 experiment lasted for 50-80 minutes, during it the measurements were carried out repeatedly every 5 minutes. Each 5 minutes sampling included capturing four subsequent video files of the illuminated spot and taking an accurate blood sample with a glucometer ("Accu-check") and manual blood pressure measurement using standard

sphygmomanometer. All experiments showed that blood pressure have not been changed over the time of the experiment, which is important to check this point in order to ensure that the expected change in the pulse profile is indeed caused by glucose intake, rather than by blood pressure change.

5 **Figs. 11C-11F** show glucose level in blood and the maximum amplitude peak Glucose level is denoted by curve P_1 (red) and the optically measured parameter is denoted by curve P_2 (blue). The graph of the reference (glucose level) was obtained by using a conventional glucose meter device ("Acuu-check"). Four different graphs refer to four different experiments taken on different days, during the morning hours while 10 each subject preserved a fast of 12 hours. Estimated values were linearly transformed to glucose level units according to the calibration done per each subject at the first measurement (time 0). The standard deviation was measured between the optical measure of the invention to the reference. As shown, there is a tracking of the glucose level by the optically measured parameter, the optical measurement tracks up and falls 15 down when the glucose return to the norm level.

Blood Alcohol Concentration

The following section refers to tests conducted by the inventors on human subjects, in order to determine a relationship between blood alcohol concentration and 20 one or more parameters of the temporal changes in a feature (e.g. the correlation peak and/or its value) of the speckle pattern's spatial correlation function in the time domain.

The tests were conducted with an experimental system generally similar to that of **Fig. 1B**, designed as the above described bracelet-like setup. The experimental system included only a green laser to illuminate the inspected object (to generate the 25 secondary reflected speckle) and a defocused camera connected to a computer (control unit) that observes the secondary speckle pattern reflected from the wrist of the subject. The distance from the laser to the subject's wrist was about 10cm. In all of the experiments, the sampling rate of the camera was 405 FPS (frame per second). The coherent light emitter was a green CW (continuous wave) laser at a wavelength of 30 532nm at an approximate power of 100mW. The laser beam incidence angle was chosen to be 75 degrees relative to the subject's wrist.

During the measurements, each test subject was tested simultaneously by the experimental system and by a conventional alcohol breathing measurement device to get a reliable reference. A BAC calculator was also used to get a secondary reference.

The samples taken during the tests were in the form of an AVI file (video file) 5 that shows the speckles pattern through time. By using 'MATLAB' program with an image processing techniques, the inventors located the position of the 2-D speckles pattern at each frame. The Matlab program first removed background static noise by comparing the adjacent frames, then analyzed the shift in the speckles between adjacent frames to create data indicative of the skin (and therefore vascular) movement.

10 More specifically, a spatial correlation function between speckle patterns in adjacent frames was determined. Then, the X and Y coordinates of the position of the spatial correlation function's peak were plotted for each frame, and the shift of such peak between adjacent frames was determined, to create a time-varying function indicative of the temporal change of the spatial correlation function, and of the skin (and 15 therefore vascular) movement. The plots were analyzed and several parameters were extracted from the time-varying function. The parameters of the time-varying function included the main peak amplitude, distance between two nearby peaks, ratio between main and secondary peaks amplitude, etc. A total of 19 different parameters were extracted. Every AVI file provided six different temporal pulses and also the average 20 values of the parameters of the six pulses. All this data was plotted as an excel output data table. Each time, five samples of each test were taken and averaged.

This procedure was repeated approximately each 5-7 minutes throughout a period of 35 minutes. Five different experiments were conducted on five subjects. All of the subjects were healthy, average drinkers with average body weight (four males and 25 one female). The first measurement was at time zero, before starting drinking alcohol. Thereafter, the subjects drank known amounts of highly alcoholic beverage and the subjects' vascular behavior was examined. Every measurement by the experimental setup was followed by a breath test, to be used as a reference.

In a second battery of tests, five subjects were tested for a long duration (75min 30 when taking samples every 15 minutes).

Throughout the duration of the each experiment, each of the subjects was seated in front of the experimental system, while his wrist was illuminated by the laser beam. The arm of each test subject was tied and fixed to the system, in order to ensure that the

subject's pulse would not be affected by any other external variables (such as involuntary movement) and thereby to increase of the accuracy of the measurements.

Referring to **Figs. 12A-12B**, there are shown different time-varying functions indicative of time changes in the position of the speckle pattern (due to a motion of skin on a human wrist) as generated by the system of the present invention, based on measurements before alcohol consumption (**Fig. 12A**) and after alcohol consumption (**Fig. 12B**).

After collecting and analyzing all the results, five parameters which were the most relevant to the experiment were selected. According to scientific studies, alcohol takes time to be absorbed (unlike other materials, like glucose, for example). It was therefore decided that a suitable manner to examine the result is by two time settings: before the alcohol consumption and after half an hour. This is because, according to scientific studies, the maximum alcohol level is reached between half an hour to hour following the ingestion of alcohol. Thereafter, the alcohol level decreases. The selected parameters were: Pulse size, Negative pulse size, peak distance (Peakdis), ratio between main and secondary peak positions (Ratio wid), and ratio between main and secondary peak amplitudes (Main sec peak ratio). These parameters will be illustrated in the figures below. Another test was used as a reference, to measure the parameters of subjects that did not consume alcohol at all. Table 5 shows the relevant details about the test subjects.

Table 5

	Age	Gender	Weight	Alcohol consumption in the experiment [ml]	BAC
subject 1	28	Male	75	80	0.0524
subject 2	28	Male	61	80	0.0644
subject 3	21	Male	82	160	0.0958
subject 4	21	Male	78	160	0.1008
subject 5	25	Male	70	160	0.1123

Referring to **Fig. 13**, the pulse size in a function describing temporal changes in the position of the peak of the spatial correlation function (is the function being indicative of the skin vibration profile in the time domain) is illustrated. **Figs. 14A-14B** are graphs illustrating the change of test subjects' pulse sizes over time, as a consequence of alcohol consumption.

The pulse size is the width of the main pulse at the level at which the shift's amplitude is zero. The units of this parameter are milliseconds. The pulse size is the amount of time that the outer layers of the blood vessels are subjected to the largest shift.

5 Table 6 summarizes values the of pulse size before drinking alcohol and after significant time (25 min & 35 min). Table 7 summarizes the values of the pulse size in the long duration test, where measurements were taken before drinking alcohol and every 15 min thereafter (for 75 min).

Table 6:

10

	Before	After 25 min	After 35 min
subject 1	121.481	108.477	107.737
subject 2	102.551	100.049	95.185
subject 3	116.049	112.428	109.053
subject 4	135.852	128.642	118.025
subject 5	109.037	98.663	-----
reference	111.501	111.111	15

Table 7

	0	30min	45min	60min	75min
subject 1	112.4848	94.66667	103.4921	95.7193	88.5614
subject 2	115.0222	104.7111	105.6667	106.2667	105.2222
subject 3	112	104.475	103.6875	104.4231	102.2
subject 4	115.4211	103.0909	90.63158	91.58824	98.5
subject 5	113.4868	103.6364	103.125	101.25	96.90789

20

The data of tables 6 and 7 is shown graphically in **Figs. 14A** and **14B**, respectively.

It can be seen see that there is constant and prominently visible decrease in the pulse duration, that shows "sharper" (shorter) movement of the pulse. This decrease in 25 the pulse duration can be indicative of a high blood alcohol concentration.

Referring to **Fig. 15**, the positive pulse size in a function describing the temporal variations in the position of the spatial correlation function's peak is illustrated. **Figs.**

16A-16B are graphs illustrating the change of test subjects' positive pulse sizes over time, as a consequence of alcohol consumption.

The positive pulse size is the width of the positive pulse (relative to the main peak) at the level at which the shift's amplitude is zero. The units of this parameter are 5 milliseconds.

Table 8 summarizes values the of positive pulse size before drinking alcohol and after significant time (25 min & 35 min). Table 9 summarizes the values of the pulse size in the long duration test, where measurements were taken before drinking alcohol and every 15 min thereafter (for 75 min).

10

Table 8:

	Before	After 25 min	After 35 min
subject 1	167.737	176.675	192.428
subject 2	148.189	192.741	179.704
subject 3	134.140	181.152	172.016
subject 4	84.864	99.827	99.580
subject 5	104.938	118.765	115.136
reference	158.951	152.910	

Table 9:

	0	30min	45min	60min	75min
subject 1	52.13333	58.66667	87.53846	104.9333	105.7143
subject 2	59.07692	63.54545	65.40741	70.18182	67.90476
subject 3	51.42857	52.92308	65.14286	68.34783	75.46667
subject 4	50.36364	74.66667	75.17647	75.47368	84.5
subject 5	44.2	50	59.15789	68.76923	85.89474

15

The data of tables 8 and 9 is shown graphically in **Figs. 16A** and **16B**, respectively.

It can be seen that there is constant and prominently visible increase in the pulse 20 duration. This shows "dull" movement of the positive pulse, a behavior opposite to that of the main pulse.

Referring to **Fig. 17**, the distance between peak polarities in a function describing the temporal variations of the position of the spatial correlation function's peak is illustrated. **Figs. 18A-18B** are graphs illustrating the change of test subjects' distances between peak polarities over time, as a consequence of alcohol consumption.

5 The distance between peak polarities (also referred to as "peakdis") is the time in which the blood vessels moves from the maximum peak to the minimum peak or *vice versa*. This parameter is measured in milliseconds.

Table 10 summarizes values of the distance between peak polarities before drinking alcohol and after significant time (25 min & 35 min). Table 11 summarizes the 10 values of the distance between peak polarities in the long duration test, where measurements were taken before drinking alcohol and every 15 min thereafter (for 75 min).

Table 10:

	Before	After 25 min	After 35 min
15 subject 1	829.037	93.844	205.794
subject 2	343.160	282.272	200.296
subject 3	479.490	368.971	-----
subject 4	677.152	555.473	-----
subject 5	701.563	519.901	567.901
reference	643.062		644.170

20 Table 11:

	0	30min	45min	60min	75min
subject 1	493.375	292.2	246.7273	277.7143	263.5714
subject 2	548.7273	279.5833	258.8	256.6	271.4118
subject 3	517.5333	429.1583	341.3083	298.4333	253.4583
subject 4	448.2917	390.0658	390.0658	334.0167	332.0882
subject 5	454.1429	383.625	390	378.5556	355.2174

The data of tables 10 and 11 is shown graphically in **Figs. 17A and 17B**, respectively.

It can be seen that there is a prominent decrease in the time in which the blood 25 vessel jumps from max peak to the minimum peak.

Referring to **Fig. 19**, the main and secondary peak positions in a function describing the temporal variations of the position of the peak of the spatial correlation

function are shown. **Figs. 20A-20B** are graphs illustrating the change of test subjects' ratios between main and secondary peak positions, as a consequence of alcohol consumption. The ratio between the main and the secondary peak position is without units.

5 Table 12 summarizes values of ratios between main and secondary peak positions before drinking alcohol and after significant time (25 min & 35 min). Table 13 summarizes the values of ratios between main and secondary peak positions in the long duration test, where measurements were taken before drinking alcohol and every 15 min thereafter (for 75 min). The data of tables 12 and 13 is shown graphically in **Figs. 19A**
10 and **19B**, respectively.

Table 12:

	Before	After 25 min	After 35 min
subject 1	0.93	0.88	0.83
subject 2	0.93	0.86	0.86
subject 3	0.94	0.88	0.71
subject 4	0.94	0.90	0.87
subject 5	0.92	0.87	-----
Reference	0.90		0.91

Table 13:

15

	0	30min	45min	60min	75min
subject 1	1.065769	0.916087	0.879866	0.89725	0.894333
subject 2	0.940361	0.899331	0.899965	0.882474	0.762678
subject 3	0.91134	0.950579	0.911402	0.818973	0.81925
subject 4	0.932998	0.852055	0.860919	0.855898	0.84999
subject 5	0.914711	0.906142	0.82784	0.844785	0.843547

Referring to **Fig. 21**, the main negative peak amplitude and the secondary positive peak amplitude in a function describing the temporal variations of the position of the spatial correlation function's peak are shown. **Figs. 22A-22B** are graphs 20 illustrating the change of test subjects' ratios between main and secondary peak amplitudes, as a consequence of alcohol consumption.

Table 14 summarizes values of ratios between main and secondary peak amplitudes before drinking alcohol and after significant time (25 min & 35 min). Table

15 summarizes the values of ratios between main and secondary peak amplitudes in the long duration test, where measurements were taken before drinking alcohol and every 15 min thereafter (for 75 min). The data of tables 14 and 15 is shown graphically in **Figs. 22A and 22B**, respectively.

5 Table 14:

	Before	After 25 min	After 35 min
subject 1	3.38	4.30	4.74
subject 2	2.60	2.81	3.02
subject 3	1.90	3.87	2.70
subject 4	1.73	1.93	2.19
subject 5	2.26	2.60	-----
reference	2.34		2.34

10 Table 15:

	0	30min	45min	60min	75min
subject 1	2.997614	4.422284	3.86795	4.291934	3.837522
subject 2	2.736866	4.403912	3.397398	3.323514	3.503098
subject 3	2.834672	3.482034	5.07221	4.743223	4.78544
subject 4	2.623532	2.858851	3.100125	3.539668	3.700689
subject 5	2.611516	2.673833	3.034982	3.354123	3.633107

It can be seen that when there is an alcohol in the blood vessel, the secondary peak becomes smaller relative to the main pulse. This also demonstrates the importance 15 of the behavior of the secondary pulse as an indicator of presence of alcohol in the blood vessels.

Referring to **Fig. 23**, the background noise in a function describing the temporal variations of the spatial position of the correlation function's peak indicative of skin vibration profile in the time domain is shown. **Fig. 24** is a graph illustrating the change 20 of test subjects' standard deviation of background noise, as a consequence of alcohol consumption.

The standard deviation of background noise, was checked only in the long duration tests.

Table 16 summarizes the values standard deviations of background noise in the long duration test, where measurements were taken before drinking alcohol and every 15 min thereafter (for 75 min). The data of table 16 is shown graphically in **Fig. 24**.

5

Table 16:

	0	30min	45min	60min	75min
subject 1	0.3164	0.096496	0.137565	0.207878	0.095239
subject 2	0.357475	0.12388	0.248033	0.19633	0.15489
subject 3	0.378046	0.248033	0.228488	0.264168	0.175701
subject 4	0.467773	0.140524	0.131381	0.140187	0.216425
subject 5	0.392776	0.071516	0.132013	0.091129	0.109303

From table 16 and **Fig. 24**, it can be seen that when alcohol is present in the 10 blood vessel, the background noise decreases.

Thus, it has been shown that the present invention can be also used for measuring alcohol level in the blood. The advantage provided by the technique of the present invention lies in the fact that the present technique enables real-time and non invasive estimation of alcohol in the bloodstream. This is in contrast with the known 15 breath analysis technique, which is less reliable since it measures low concentrations of alcohol in breath.

The inventors have also conducted experiments for measuring breathing, blood coagulation and oxymetry using the technique of the present invention. The experimental setup used in these experiments was generally similar to the system of Fig. 20 1B, and in some cases a beam expander was also used.

In general, the system includes a laser, fast digital camera with its imaging lens and a computer to process the sensed images. All experiments were done twice by using two laser systems for comparison purposes. The first is a visible laser (Nd:YAG laser with wavelength of 532nm) and the second is a non-visible IR (Infra-Red) laser at 25 wavelength of 1550nm. The two systems produced similar results. For the system using a visible laser a digital PixelLink model number A741 camera was used. The camera captures images of the secondary speckle patterns being reflected from the chest of the subject at rate of about 2200 frames per second (fps). The focal length of the optics used

in the experiments was 150 mm for the 532nm laser system and 600 mm for the IR system. The distance from the laser to the subject's chest was about 40m. The laser output power was about 50mW. In order to collimate the laser beam a beam expander x3 was used. For the non-visible laser system an IR laser at 1550nm was used for eye safety reasons and the model of the camera was changed to EHD-IK112. The sampling rate of the camera depended on the specific experiment and varied from 20 fps up to about 2000 fps. In all cases the experiments were performed on healthy female swine models - domestic mixed breed of large white and landrace pigs having weight of around 50 kg. These animals are similar in blood circulation, heart, skin and digestive systems to humans. Ten experiments were performed for a different swine in each experiment. The swine were anesthetized and put under artificial respiration.

In order to test each of the indicators, all the parameters were controlled and only one of them was change for each measurement, by using medications and surgery instruments. For example, in order to measure pulse rates, adrenalin was used to decrease / raise the swine's heart rate, while the respirator and other medications controlled its blood pressure, oxygen saturation etc. In each experiment a few parameters were tested. All the measurements were taken from the same measuring point – the swine's chest. All the parameters were measured by using the same method. The only difference was the process at which the results were analyzed.

Pulse and breathing rates were measured on a time scale but the results of all the other parameters are extracted from the value of the amplitude of the movement. Therefore, the invention provides for monitoring simultaneously both the pulse and breathing rate and one or more additional parameters. Since each of the parameters has special characteristics (amplitude value and shape) and since the invention provides for tracing nanometric movements, it is possible to measure multiple parameters simultaneously.

It should also be noted that the experiments were conducted on different types of skin (texture and color) and it was shown that the results are practically independent on the wavelengths used.

Further, a calibration process is generally needed to perform remote biomedical estimation. The calibration is basically finding the translation factor that may translate the optical measurement done in pixels to the absolute value of the specific biomedical parameter. This is indeed done by equating the readings from the surgery room

equipment to the optical readout. Indeed the calibration may depend on the location from which the measurement is done. However, the inventors have found that the measurements are very repeatable. The inventors conducted experiments while placing the measurement system on a tracker so the system is able to measure the relevant 5 biomedical parameters on a moving subject and each time the measurement were extracted from the same location.

Breathing

Breathing is the process of supplying oxygen to the body and removing carbon 10 dioxide from it, while its rate is the number of breaths taken per minute. The normal rate for adults is 12-20 breaths per minute.

As in the heart rate experiment, the measurement was done by processing reflections from the swine's chest. The measurements involved correlation of the time varied speckle patterns and plotting the amplitude of the relative shift of the correlation 15 peak versus time. The reference measurement was done with a respirator, while the number of breaths per minute was controlled and changed in each measurement (within the range of 13-20 breaths per minute).

It should be noted that the data analysis algorithms allow to isolate the heart rate as well as the other parameters and to filter out the breathing movements from the 20 results. The results presented below are the heart beats and they are not affected by the breathing. The filtering was done by inspecting the spectrum domain, identifying the breathing frequency and then removing it from the temporal signal. In the breathing experiment, measurement were performed with and without the respirator and it was shown that there is no significant difference in measuring breathing when the subject 25 breaths freely.

A total of 9 breathing experiments were conducted, and the number of breaths was changed between experiments by using the respirator (or pumped air breathe machine). Then, a different breathing rate is forced for each one of the experiments.

Figs. 25A and 25B present the results of one of the breathing experiments (experiment 30 no. 1) and a summary of the results of all 9 experiments are presented in **Fig. 25C**. The experiment has demonstrated almost perfect correlation (99.7%) between the optical device and the reference measurement (respirator). The breathing experiment is summarized in Table 17.

Table 17:

Camera	Pixelink	
Laser	532	Nm
Duration	20	Sec
Pulse	61	Beats/min
Breath	20	Breaths/min
Breath measured	19.9	Breaths/min

5

Coagulation of blood (INR):

The technique of the present invention can also be used to determine a coagulation condition of blood. Coagulation is the process in which the blood forms clots after an injury in order to stop the bleeding and heal the injury. The process 10 involves two components – platelets and proteins which are known as clotting factors. The platelets form around the injury site and at the same time proteins in the blood plasma respond to form fibrin and strengthen the platelet plug. Disorders of coagulation occur when there is a deficiency or abnormality in one of the clotting factors or platelets. There can be either increased tendency for excessive clotting (thrombosis) or 15 an increased risk of bleeding (hemorrhage). Blood coagulation disorders can be either inherited or a result of another disease or a side effect of medications.

A common way of testing blood coagulation is the PT test (Prothrombin Time) which measures how long it takes for the blood to clot after adding certain chemicals to the blood. The normal result for PT test is 10-12 seconds. Since the result of the PT test 20 varies from one lab to another, a standardized test – INR (International Normalized Ratio) - is commonly used and it is defined as:

$$INR = \left(\frac{PT_{test}}{PT_{normal}} \right)^{ISI} \quad (11)$$

Here, *ISI* (International Sensitivity Index) represents the responsiveness of any commercial system relative to international standard. Each manufacturer assigns an *ISI* 25 value for any tissue factor they manufacture. The *ISI* value indicates how a particular batch of tissue factor compares to an international reference tissue factor. The *ISI* is usually between 1.0 and 2.0.

The normal INR value is close to 1 and is higher for patients who take anticoagulant medication and need to be monitored regularly (usually between 2 to 3).

INR can be monitored either by a blood test or by portable monitoring device which requires a drop of blood sampled from the fingertip and inserted into the device.

The reference measurement for coagulation used in the experiments conducted by the inventors was done with the automatic INR measurement using CoaguCheck XP 5 device. The swine got two shots of Herafin, while each 5 min the INR level was monitored. A pulse profile was distinguished out of the time evolution of the vibrations of the body due to blood vascular activity.

The experimental procedure was similar to the previous ones. The results were analyzed from the heart rate peaks and it's amplitude's shape and value. More 10 specifically, a system similar to that of **Fig. 1B** was used to illuminate a portion of the skin. Variations in the speckle pattern were detected and processed as described above to determine a correlation function and a time variation of a feature (e.g., peak position and/or peak size) of the correlation function. Indeed, since a change in coagulation directly affects the viscosity of the blood, a change in coagulation strongly affects the 15 mechanical movement of the surface of the skin that may be for example in proximity to a main blood artery. Measuring the movement profile with the opto phone may therefore allow after calibration to extract an INR parameter representing a coagulation condition of blood.

Fig. 26 presents the results of the INR experiment. Curve **C₁** (red) corresponds 20 to the reference measurement, while curve **C₂** (blue) corresponds to optical output. The correlation coefficient between the graphs was 0.8, i.e. correlation of 80% between the two methods. The INR results can be estimated by analyzing the amplitude's value and shape.

25 Oxygen saturation

Blood oxygen saturation level is the percentage of red blood cells that are loaded with oxygen. When red blood cells pass through the lungs they are saturated with oxygen which is then carried to body's organs. The normal percentage of red blood cells that are saturated (oxygen saturation) is above 95%. When oxygen saturation falls 30 below 90% it is considered hypoxia. The body cannot function properly without an adequate level of blood oxygen.

There are two classical ways to measure blood oxygen level: the pulse oximeter and an arterial blood gas test. The oxygen saturation can also be measured in the visible range (450 nm to 700 nm) using spectroscopic optical coherence tomography.

The pulse oximeter is an optical sensor which is based on the fact that hemoglobin – the carrier of oxygen in the red blood cells - changes its absorption of visible light differently with varied oxygen levels. Hemoglobin which carries oxygen absorbs light at different wavelength than deoxygenated hemoglobin. The oximeter uses red and infra-red light emitter and a photo detector that receives the light that passes through the sensor site. In the experiments conducted by the inventors, the oximeter served as the reference measurement device by attaching the oximeter to the swine's tail. Oxygen level was recorded each 10 seconds. Laser beam was projected onto swine's chest, while the oxygen pumping machine was turned off and the swine stopped breathing which caused the oxygen values to drop down. Also, neuromuscular blocker was injected in order to prevent independent breathing.

Figs. 27A-27C presents the results received for two saturation level experiments while a reference measurement was performed and compared with the optical outcome. The optical system of the invention made 150 seconds of recording. A time evolution of the vibrations of the body due to blood vascular activity, as recorded by the optical system is shown in **Fig. 27A**. The sampling frequency was 1027 Hz. The change in a graph due to oxygen change in blood was analyzed, by analyzing the standard deviation (STD) of the vibration profile of each 10 seconds. The STD of the vibration profile is opposite to the oxygen level in blood stream. The optical results were multiplied by a constant (37.6) so that the first value would be the same value for the optical system and the reference value. The results are presented in **Figs. 27B and 27C**, where curve **H₁** (red) corresponds to the reference measurement and curve **H₂** (blue) corresponds to the optical output of the optical system of the invention. The correlation coefficients between the graphs are 0.944 and 0.981 for **Figs. 27B and 27C** respectively. Summary of the technical parameters of the experiment appear in Table 18.

Camera	Pixelink	
Laser	532	Nm
Duration	150	Sec
Pulse	84	Beats/min
Oxygen (%)	94-81	%
Breathing	19.9	Breaths/min

The following is the description of additional experiments of the invention demonstrating how the invention can be used for measuring various other parameters/conditions of a subject.

5

Intra-Ocular Pressure

The following section, describing **Figs. 28-32**, refers to tests conducted by the inventors on rabbits, in order to determine a relationship between intra-ocular pressure (IOP) and parameters of the vibration profile of the subjects' eye in the time domain.

10 The tests compared IOP of a rabbit's eye with the average amplitude of oscillations of a time-varying function describing the time varying position of the peak of the spatial correlation function (the time-varying function being indicative of vibrations of the rabbit's eye). The tests showed that the temporal change of the IOP is proportional to the temporal change of $\beta(t)$ (which is proportional to the relative shift of
15 the speckle pattern):

$$P_{IOP}(t) \propto \beta(t) \quad (12)$$

Therefore, $\beta(t)$ can be used to estimate IOP.

The aim of the test was to show that the blood pressure in the blood vessels in the retina affects the movement of the sclera/iris in a way that is correlated to the IOP,
20 i.e. the sclera/iris slightly pulsates due to the blood supply to the eye. This movement, although being very small, can be detected by the speckle-based measurement of the present invention, since the movement precision that our technique can allow is in the nanometric scale. It is important to emphasize that the measured movement is solely the pulse of the iris/sclera, and not the movements of the iris or the eye. The movements of
25 the iris or the eye are undesirable, and can be we aim to filtered out by performing measurement over sufficiently short time scale.

In the experimental setup, rabbits had an infusion connected to their eye in order to control their IOP. The experimental system was set up as the system of **Fig. 1B**, where and the optically based monitoring system was positioned at range of about 50cm
30 from the rabbit. The system included a fast camera and a laser. The readout of the camera was analyzed with Matlab software by a computer (control unit). The experimental system monitored the secondary speckle patterns generated due to

reflection from the rabbit's sclera, and tracked the trajectory of the movement of the speckle patterns. During the experiments the rabbits were anesthetized. The source of coherent light was a harmonic of CW Nd:YAG laser which produced a beam having wavelength of 532nm to illuminate the sclera of the rabbit. The reflections were 5 analyzed using fast digital camera from "PixelLink". The obtained results were analyzed with Matlab software.

In order to vary the IOP of the rabbit's eye during the experiment, the elevation of the infusion bag was changed. It is known that pressure difference is proportional to elevation difference and can be estimated as:

$$10 \quad \Delta P = \rho g \Delta h \quad (13)$$

where ρ is the density of the infusion liquid, g the gravity acceleration and Δh the elevation difference. The translation between the pressure value obtained in Eq. 6 into mmHg units can be calculated using the following translation:

$$1Pa = 1N/m^2 = 9.8692 \times 10^{-6} atm = 7.5006 \times 10^{-3} torr = 7.5 \times 10^{-3} mmHg \quad (14)$$

15 Referring to **Fig. 28**, there is depicted a graph illustrating the oscillation amplitude of a time-varying function describing the time varying position for the spatial correlation function's peak being indicative of the eye's vibration as a function of intraocular pressure (IOP), where the time varying-function was generated via the above-described system using a 2mW laser.

20 One may see the relation between the oscillation amplitude of the time varying position of the spatial correlation function's peak obtained by using the above mentioned experimental system and the IOP in mmHg units computed according to Eq. 7 and 8 (based on the height difference between the infusion bag and the eye of the rabbit).

25 The graph illustrates three different sets of measurements, each set being performed according to a different technique. The uppermost curve **600** was obtained by sampling at rate of 100 frames/sec, while each measurement was taken separately and not in a continuous manner along the time axis. The middle curve **602** corresponds to a measurement taken at sampling rate of 133 frames/sec in a continuous measuring 30 manner. The lowermost curve **604** was obtained using a continuous measuring but at sampling rate of 100 frames/sec. The bars around each measurement designate the

standard deviation that we had after averaging more than 20 measurements. The current to the laser was 0.2A which means illumination power of about 2mW.

From the obtained results one may see that the decrease in the optically determined oscillation amplitude of the time varying positions of the peak of the spatial 5 correlation function is obtained for pressure above ~40 mmHg. This is since this was approximately the inherent IOP of the rabbit's eye; when pressure was induced above this IOP value, the decrease was measured since the infusion bag overcame the inherent pressure in the eye of the rabbit. One may also see that in the experiment, the error in measurement is about 15%. But it is important to note that the accuracy of conventional 10 measurement devices is also about 10%-15% while the current technique is a remote non harmful measuring device.

In order to understand how the values of the amplitude were extracted, reference is made to **Fig. 29**, which illustrates an example of the obtained readout in one of the performed experiments. In **Fig. 29** one may see that a time-varying function describing 15 the time varying position of the peak of the spatial correlation function being indicative of the eye's pulsating motion was generated. Every 500 samples, the elevation of the infusion bag was changed. During these changes, high amplitude artifacts appear due to the change in the elevation of the infusion bag. The oscillation amplitude of the time-varying function was measured and averaged for each set of 500 samples, in order to 20 obtain an average amplitude corresponding to each elevation of the infusion bag (i.e. corresponding to a different IOP).

The same experiment was repeated using a 10 mW laser. The results of this experiment are shown in **Fig. 30**. One may see that in this case the standard deviation error is much lower and can be estimated to be about 5%. The reason for the improved 25 performance is related to the optical power of the illuminating laser. When the supply current was only 0.2A the laser was at the threshold of its lasing and thus it was not stable enough. Its instability caused some of the standard deviations fluctuations. When the supply current was 0.25A the laser was more stable and the results were much more repeatable. Note that the difference between the various curves in each one of the 30 figures of **Figs. 28 and 30** is related to measurements performed at different positions along the sclera or measurements performed for different eyes. The standard variation for each one of the curves in **Figs. 28 and 30** is obtained for measurement performed in the same location for the same rabbit over the duration of the same experiment.

Note that the same measurement can be performed with eye-safe laser at wavelength of 1550nm.

Referring to **Fig. 31**, there is depicted a graph illustrating the oscillation amplitude of time-varying function describing a time varying position of the peak of the 5 spatial correlation function (the time-varying function being indicative of the eye's vibration) as a function of intra-ocular pressure (IOP), where the IOP was measured via a Goldmann tonometer.

Another important measurement was performed on a new rabbit following the same measurement procedure as for the experiment of **Fig. 30**, but this time the 10 extracted results were compared with absolute reference measurement coming from a conventional Goldmann tonometer. The measurement was done as before by illuminating the rabbit's iris.

It must be noted that the measurement at 10mm/Hg in **Fig. 31** was performed before inserting the infusion bag. The measurement presented in **Figs. 28** and **30** were 15 performed on rabbits after tens of attempts of inserting the infusion into their eye. Those attempts deformed the rabbit's eye and changed their inherent IOP. In the measurement of **Fig. 31** a new rabbit was used and indeed its IOP was lower. In fact, it was verified, using the reference Goldmann tonometer, that the average IOP of the rabbits used in the experiments of **Figs. 28** and **30**, that after finishing the experiment the rabbits' IOP 20 indeed changed from 10mmHg (before experiment) to around 35mmHg (right after the experiment).

In **Fig. 31**, the extracted results show good monotonic relation between the optically measured amplitude and the reference IOP measurement. The amplitude values are smaller than those of **Figs. 28** and **30** since a lens with different focal length 25 was used in the optical device (55mm in **Fig. 31** instead of a lens with focal length of 50mm used to obtain the results of **Figs. 28** and **30**).

From the obtained results included in **Fig. 28**, it can be seen that that the induced variations in the IOP causes a variation of the reflected speckle patterns at the iris of the rabbit's eye. In two of the experiments (uppermost curve **600** and lowermost curve 30 **604**), the monitoring of that variation was performed continuously, while in the third experiment (middle curve **602**), the measurements were obtained independently one from each other. In all the three cases, the curve's tendency is the same and it validates

the correlation existing between the IOP and the processing applied over the speckle patterns reflected from the iris.

When comparing the continuous monitoring experiments, both curves 600 and 604 have the same aspect but are scaled with respect to the global amplitude value. This 5 is due to the fact that the lower the sampling rate, the lower is the amplitude of the speckle patterns.

In all the cases presented in **Fig. 28**, the measurement error has standard deviation of about 15%. The results depicted in **Fig. 30** show a reduction of the standard deviation error until approximately 5%. The reason for that improved performance is 10 related to the timing of the measurement. In fact, the results of **Fig. 30** were obtained in the beginning stage of our experiment, while the results of **Fig. 28** were obtained after large number of tests, which affected the structure and therefore also the IOP of the rabbit's eye. Note that the difference between the various curves of **Fig. 28** and those of **Fig. 30** arises either because the measurements were performed at different positions 15 along the iris or because the measurements were performed on different eyes. The standard deviation for each one of the curves in **Figs. 28 and 30** is obtained for measurements performed in the same location for the same rabbit over the duration of the same experiment. This fact suggests that the standard deviation error may be independent of the measurement point.

20 The results presented in **Fig. 31** show a monotonic and a distinct relation between the absolute reference measurement of the IOP performed by Goldmann tonometer and the amplitude readout produced by the constructed optical device.

The Goldmann tonometer has a measurement error of about 1mmHg. In contrast, the error of the present technique, is about 0.775mmHg – considering standard 25 deviation error of 5% and a typical IOP values in humans of 15.5mmHg in average. Therefore, the technique of the present invention provided both a lower measurement error (i.e. higher accuracy), as well as the advantage of remote and continuous monitoring capability.

Furthermore, increase in IOP is the major risk factor for glaucoma, while 30 decrease in IOP indicates fluid leakage and deflation of the eyeball (an undesirable condition in its own right). The results of **Fig. 28** show that the technique of the present invention is sensible to both increase and decrease of IOP.

Blood Pulse Pressure

As mentioned above, the technique of the present invention can be used to determine blood pulse pressure. To do this, a system similar to that of **Fig. 1B** can be 5 used to illuminate a region of a patient's skin adjacent to blood vessel(s) (e.g. the wrist). Variations in the speckle pattern are detected and processed as described above to determine a correlation function and a time variation of a feature (e.g., peak position and/or peak size) of the correlation function. The time variation of the spatial correlation function has a profile *similar* to that shown as shown in **Fig. 6A**, and the 10 amplitude of the peaks is indicative of the blood flow in the measurement (illuminated) location. The inventors have found that the amplitude of the main peak (parameter 1 of **Fig. 6A**) of the time varying spatial correlation function is in good correlation with the patient's blood pulse pressure, owing to the fact the time variation of the measured data (speckle pattern) corresponds to the blood flow (motion) within the measurement 15 location.

Fig. 32 is a graph illustrating the change of a test subject's pulse amplitude over time, as compared to the test subject's pulse blood pressure. The reference pulse pressure is shown by the curve denoted as curve Δ , and was obtained by subtracting diastolic pressure (curve 702) from systolic pressure (curve 700), both of which were 20 measured using a manual sleeve-based reference measurement device. The curve (denoted as **M**) illustrates the value of the pulse amplitude obtained using the proposed optical technique at same time as the above-mentioned reference measurements. The time duration of the experiment was 350sec. The sampling of the camera (PDA) was performed at 300Hz. It can be seen that a strong correlation exists between the reference 25 curve Δ and the curve **M** obtained by the technique of the present invention.

Cattle monitoring:

The technique of the present invention can also be used to determine biomedical parameters of a ruminant. Ruminant biomedical parameters monitoring such as 30 monitoring of heart beating, pulse count, blood pulse pressure and breathing count can be very important in case of cattle as this information can be used to optimize the milking and the breeding timing of caws. Advantageously, such monitoring is performed without contact which is appreciable when dealing with animals. Applying

the opto-phone technology and observing the surface of the skin of the cow, in positions that are close to a main blood artery, may allow - after monitoring of the movement and after proper calibration - to extract the above mentioned biomedical parameters in real time and in a continuous manner.

5

Temperature monitoring:

The technique of the present invention can also be used to determine the temperature of a biological tissue. To do this, a system similar to that of **Fig. 1B** can be used to illuminate the biological tissue (e.g. a portion of skin of a body). Variations in 10 the speckle pattern are detected and processed as described above to determine a correlation function and a time variation of a feature (e.g., peak position and/or peak size) of the correlation function. Indeed, the temperature of a tissue is related to the temporal movement profile of the tissue. Therefore, by extracting this profile and after proper calibration it is possible to estimate the temperature of the inspected tissue.

15

Flow velocity and volume monitoring

The technique of the present invention can also be used to monitor the flow velocity and volume. The flow velocity and volume may be correlated to temporal variations of the spectral content of the temporal pattern of the correlation peak 20 extracted from a correlation function between successive defocused images of a speckle pattern generated at a surface of an organ in which the flow is monitored. Indeed, by inserting nanoparticles through the flowing liquid and inspecting the temporal change in the speckle patterns generated due to the scattering from those nanoparticles, one may estimate the velocity and the volume of the flow because e.g. faster flow may generate 25 faster movement of the speckle patterns. Thus, the velocity of flow is proportional to the temporal flickering of the inspected speckle patterns. This flickering can be computed in real time by correlation based processing.

The measurement of the opto phone provides sensing of the temporal movement profile of the inspected surface. It can be applied in plurality of wavelengths and in 30 plurality of spatial positions. When plurality of wavelengths is applied, e.g. two, the measurements can be useful for application as oxymetry where the difference or the ratio of the temporal behavior at two wavelengths of absorption is inspected.

In case of flow velocity the measurement can be done in one of two possible ways. In a first method, measurement of the temporal profile may be simultaneously performed at two (or more) spatial positions with a known distance between them. By correlating the temporal sequence of pulses extracted from the two spatial positions, the 5 temporal relative shift between the two sets of pulses may be computed. This temporal shift when dividing by the *a priori* known spatial distance between the two measurement points provides the flow velocity. In a second method, the measurement of the flow velocity can be done by doing only one measurement in a single spatial location. In this case the exact temporal profile of the pulsation is measured at high 10 temporal resolution (with fast detector at sampling rate of e.g. GHz). Since the flow velocity affects the flow profile along the blood artery as explained above, the high precision extraction of the temporal pulsation profile can be related to the flow velocity. In all cases of measurement of the flow velocity and oxymetry etc, it is preferred to 15 perform the measurement near principle blood artery where the pulsation affects are significantly more evident.

Bond fractions measurement

The inventors have conducted experiments aimed at measuring/detecting bond fractions. To this end, laud speakers were placed close to a body portion, e.g. patient's 20 hand. The laud speakers generate acoustic signals, i.e. pressure waves, which cause vibrations to the patient's hand. The movement of the bond having fractions is different from one without fractions. The above-described opto phone (measurement unit) was used to inspect the movement of the skin and the bond (generate a sequence of the speckle patterns), and the control unit processes this data to identify whether there is a 25 deviation from the calibrated value (which can be the second and the non broken hand). The intensity of the speaker depends on the distance at which the speakers are positioned. Positioning the speakers a few centimeters from the patient's hand (generally a body portion) and applying intensity of about 90dB provides that the speakers vibrate the hand, and if the bond has fractions it does not vibrate as a healthy 30 hand does. This can be identified by doing proper calibration (i.e. mapping the hand before it was broken) or comparing the optical response between the two hands that are supposed to be substantially symmetrical. Thus, to implement the technique of the present invention for identifying/detection fractions in a bond, first, the unbroken bone

of the subject is inspected in means of vibration profile and frequencies domain. This measurement is used as a reference measurement. Later, the broken bone (or the one which is supposed to be broken) is inspected, while its vibration profile and frequencies are compared to the reference measurement in order to extract the differences and to 5 define wherever the bone is broken or not. Upon identifying the existence of fraction, the laser spot scans the hand and maps it point by point. This technique can be used as a replacement for or addition to a Roentgen image for observing fractions. This can be an indication for lack of calcium in bonds in elderly woman etc.

Thus, the present invention provides a novel, simple and effective technique for 10 monitoring/measuring various conditions of a subject's body. Those skilled in the art will readily appreciate that various modifications and changes can be applied to the embodiments of the invention as hereinbefore exemplified without departing from its scope defined in and by the appended claims.

CLAIMS:

1. A system for use in monitoring one or more conditions of a subject's body, the system comprising a control unit comprising:
 - an input port for receiving image data in the form of a sequence of speckle patterns generated by a portion of the subject's body according to a certain sampling time pattern;
 - a memory utility for storing one or more predetermined models, the model comprising data indicative of a relation between one or more measurable parameters and one or more conditions of the subject's body; and
- 10 a processor utility configured and operable for:
 - processing the image data and determining a spatial correlation function between successive speckle patterns in the sequence, and determining a time varying spatial correlation function in the form of a time-varying function of at least one feature of the correlation function, the time-varying spatial correlation function being indicative of a change of the speckle pattern over time;
 - 15 selecting at least one parameter of the time-varying spatial correlation function, and applying to said at least one parameter one or more of the models to determine one or more corresponding body conditions; and
 - generating output data indicative of said one or more corresponding body conditions.
- 20 2. The system of claim 1, wherein the at least one feature of the correlation function comprises at least one of the following: a position of a peak of the correlation unit, and a value of a peak of the correlation function.
3. The system of claim 1, wherein said one or more body conditions to be monitored comprises blood glucose concentration.
- 25 4. The system of claim 3, wherein the at least one parameter of the time varying function comprises at least one of the following: positive pulse amplitude, and ratio between positive and negative peak amplitudes.
5. The system of any one of the preceding claims, wherein said one or more body conditions to be monitored comprises blood alcohol concentration.
- 30 6. The system of claim 5, wherein the at least one parameter of the time varying function comprises at least one of the following: pulse size, positive pulse size, distance

between peak polarities, ratio between main and secondary peak positions, ratio between main and secondary peak amplitudes, and standard deviation of background noise.

7. The system of any one of the preceding claims, wherein said one or more body conditions to be monitored comprise intra optical pressure (IOP).

8. The system of claim 7, wherein the at least one parameter of the time varying function comprises an amplitude of oscillation.

9. The system of any one of the preceding claims, wherein the body condition is blood pulse pressure.

10 10. The system of claim 8, wherein the at least one parameter of the time varying spatial correlation function comprises the amplitude of the main peak.

11. The system of any one of the preceding claims, wherein the body condition comprises at least one of the following: coagulation of blood; temperature; flow velocity and volume.

15 12. The system of any one of the preceding Claims, comprising an optical measurement unit producing measured data in the form of said sequence of speckle patterns generated by a portion of the subject's body.

13. The system of claim 12, wherein the measurement unit comprises an imaging device for imaging a predetermined portion of the subject's body, the imaging device comprising a coherent light source for illuminating said portion of the subject's body with a predetermined number of wavelengths according to a certain sampling time pattern, and a pixel detector array configured and operable for detecting secondary speckle pattern generated by the illuminated portion of the body and generating measured image data indicative of the detected sequence of secondary speckle patterns.

25 14. The system of claim 12 or 13, wherein the measurement unit comprises a magnet unit generating a magnetic field, thereby inducing Faraday effect causing a modification of the speckle pattern due glucose molecules in said portion of the subject's body enabling measurement of one or more glucose related parameters of the subject.

30 15. The system of any one of Claims 12 to 14, wherein the imaging device comprises an endoscope for inspecting an internal organ.

16. The system of Claim 15, wherein the endoscope comprises a rigid or flexible guide for directing illuminating and collected light towards and from a region of interest.

17. The system of Claim 15 or 16, wherein the endoscope comprises a multicore 5 fiber configured for transferring light between a proximal end and a distal end of the multicore fiber, the distal end being intended to be placed in proximity of the internal organ being inspected.

18. The system of any one of the preceding Claims, wherein the control unit is configured and operable for determining at least one biomedical parameter by:

10 - extracting from the correlation function a temporal evolution of a feature of a correlation peak; and
 - calculating an attribute of the temporal evolution of the extracted feature by processing the extracted feature on a predetermined period of time.

19. The system of Claim 17, wherein the control unit comprises a memory utility 15 configured for storing the reference model, the reference model relating the calculated attribute and the biomedical parameter.

20. The system of Claim 17 to 18, wherein the feature extracted comprises at least one of: a position of the correlation peak of the correlation function and an intensity of the correlation peak of the correlation function.

21. The system of any one of claims 17 to 20, wherein the attribute comprises at 20 least one of: an amplitude of a pulse in the extracted feature, a ratio between positive and negative peak amplitudes in the extracted feature, a period between peaks in the extracted feature, a standard deviation of a background noise.

22. The system of any of Claims 17 to 20, configured for monitoring internal 25 pressure of a blood vessel and the one or more attributes comprise: the amplitude of the main peak in the extracted feature over time.

23. The system of any of Claims 17 to 22, wherein the system is configured for monitoring a concentration of a chemical in a fluid stream of the internal organ and the 30 one or more attributes comprise at least one of: a positive pulse amplitude in the extracted feature over time and a ratio between positive and negative peak amplitudes in the extracted feature over time.

24. The system of any one of Claims 12 to 23, wherein the control unit is further configured to apply component analysis in order to characterize and separate between

the temporal characteristics of the correlation peak for reflections related to different values of the inspected biomedical parameters.

25. The system of any of the preceding claims, further comprising an ultrasound device configured to excite an inspected organ.

5 **26.** The system according to any of claims 17 to 25, wherein the multicore fiber is a fiber bundle or a photonic crystal.

27. The system according to any of Claims 17 to 26, wherein the multicore fiber has a polygonal cross section defining two opposite substantially parallel facets.

10 **28.** The system according to any of the preceding claims, further comprising a display unit configured for displaying a value of the determined parameter determined.

29. A method for use in monitoring one or more conditions of a subject's body, the method comprising:

15 providing image data measured by a pixel detector array and being in the form of a sequence of speckle patterns generated by a portion of the subject's body in response to illumination thereof by coherent light according to a certain sampling time pattern;

providing one or more predetermined models, the model comprising data indicative of a relation between one or more measurable parameters and one or more conditions of the subject's body;

20 processing the image data and determining a spatial correlation function between successive speckle patterns in the sequence, and determining a time-varying spatial correlation function in the form of a time-varying function of at least one feature of the correlation function, the time-varying spatial correlation function being indicative of a change of the speckle pattern over time;

25 analyzing the time-varying spatial correlation function and selecting at least one parameter of the time-varying function in accordance with one or more body conditions to be determined; and

30 analyzing said at least one selected parameter using one or more of the models to determine one or more corresponding body conditions, and generating output data indicative thereof.

30. The method of Claim 29, wherein said one or more conditions of a subject's body are associated with one or more properties of at least one bodily fluid.

31. The method of Claim 30, wherein said at least bodily fluid comprises at least one of blood and aqueous humor.
32. The method of claim 29, wherein the at least one feature of the correlation function comprises at least one of the following: a position of a peak of the correlation unit, and an amplitude of a peak of the correlation function.
5
33. The method of claim 29, wherein said one or more body conditions to be monitored comprises blood glucose concentration.
34. The method of claim 33, wherein the at least one parameter of the time varying function comprises at least one of the following: positive pulse amplitude, and ratio 10 between positive and negative peak amplitudes.
35. The method of claim 29, wherein said one or more body conditions to be monitored comprises blood alcohol concentration.
36. The method of claim 35, wherein the at least one parameter of the time varying function comprises at least one of the following: pulse size, positive pulse size, distance 15 between peak polarities, ratio between main and secondary peak positions, ratio between main and secondary peak amplitudes, and standard deviation of background noise.
37. The method of claim 29, wherein said one or more body conditions to be monitored comprise intra optical pressure (IOP).
- 20 38. The method of claim 37, wherein the at least one parameter of the time varying function comprises an amplitude of oscillation.
39. The method of claim 29, wherein the body condition is blood pulse pressure.
40. The method of claim 29, wherein the at least one parameter of the time varying spatial correlation function comprises the amplitude of the main peak.

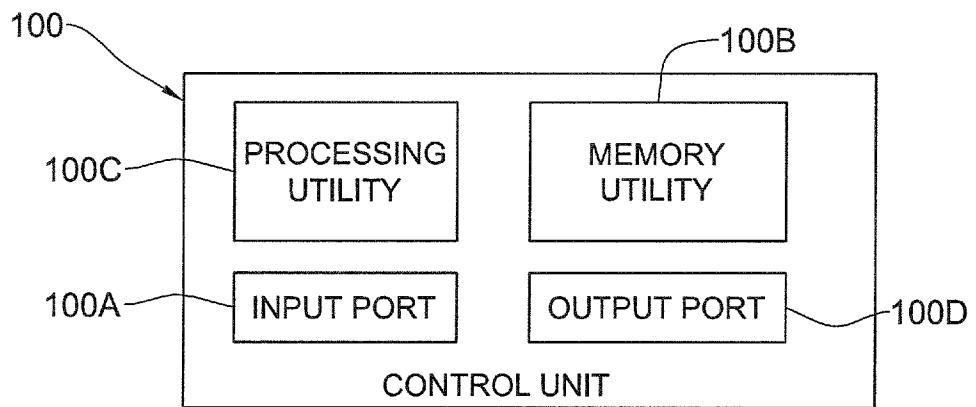


Fig. 1A

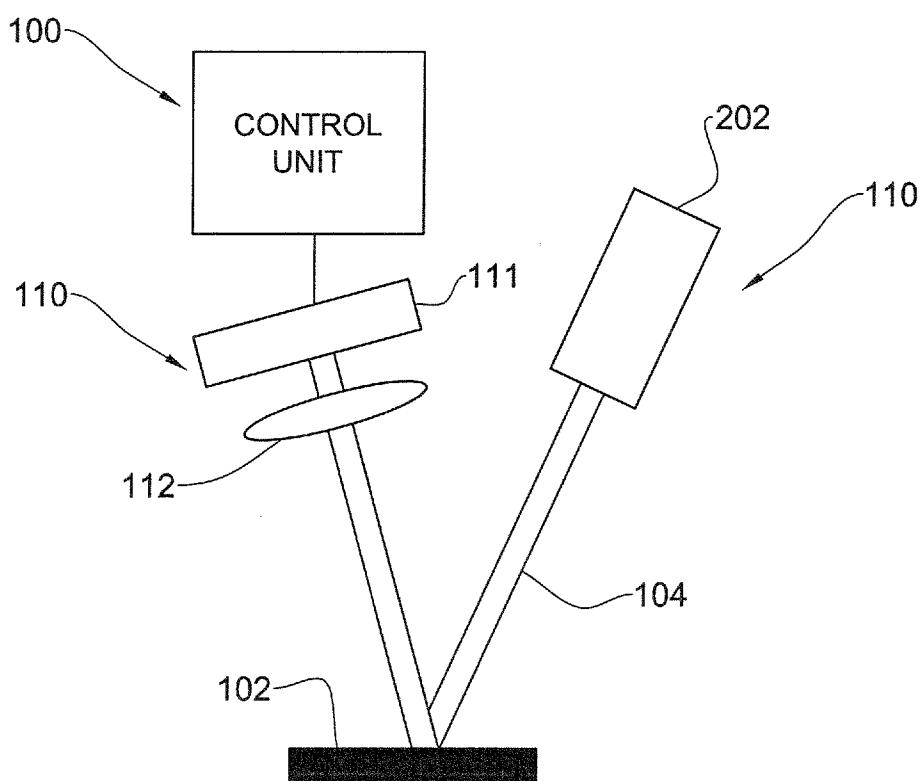


Fig. 1B

Fig. 2A

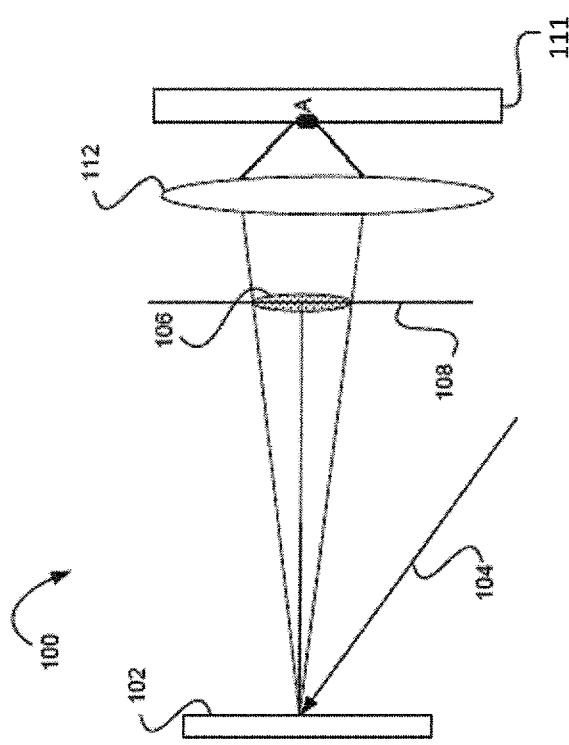
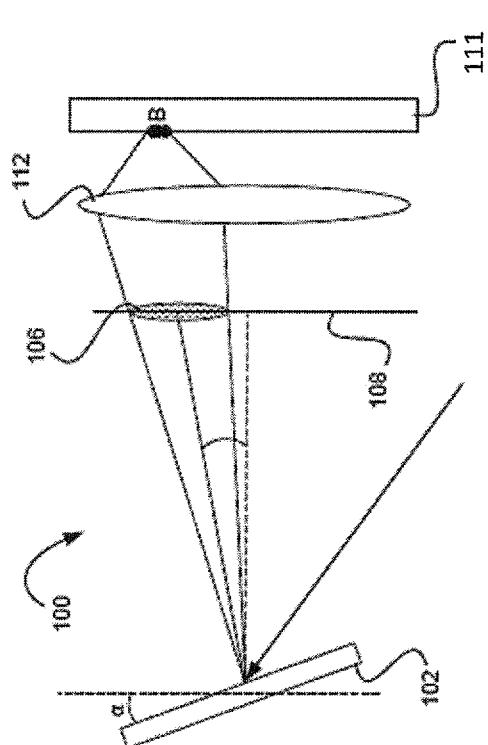



Fig. 2B

3/29

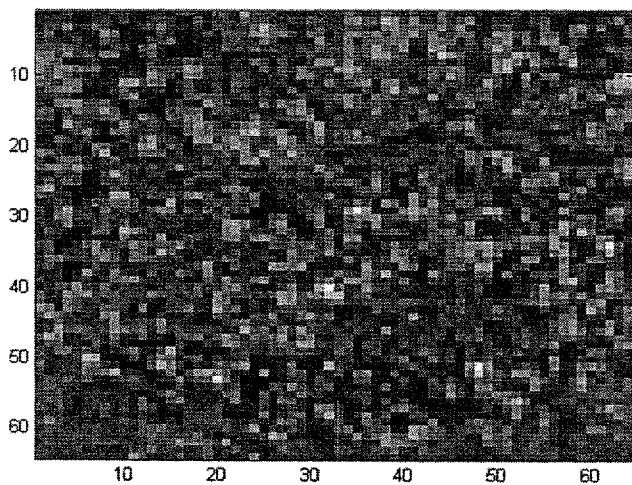


Fig. 3A

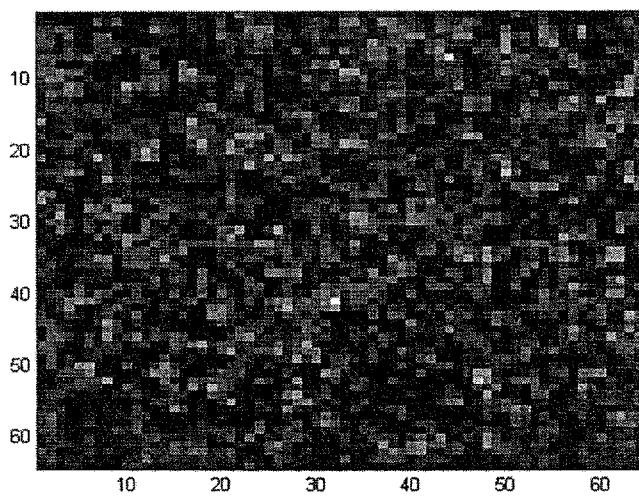


Fig. 3B

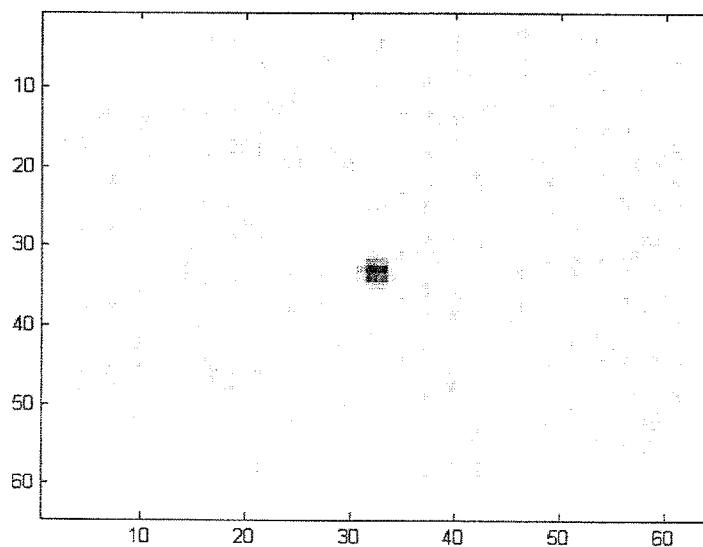


Fig.3C

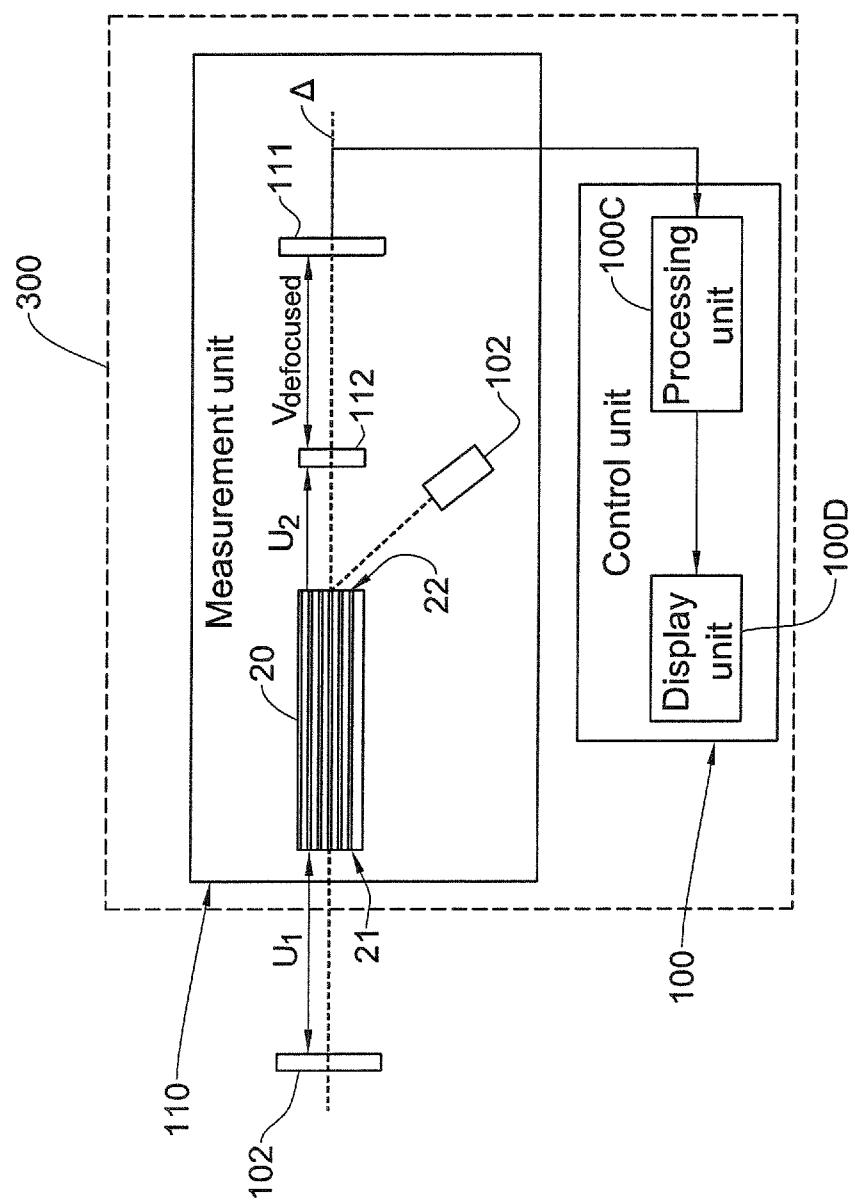


Fig. 4

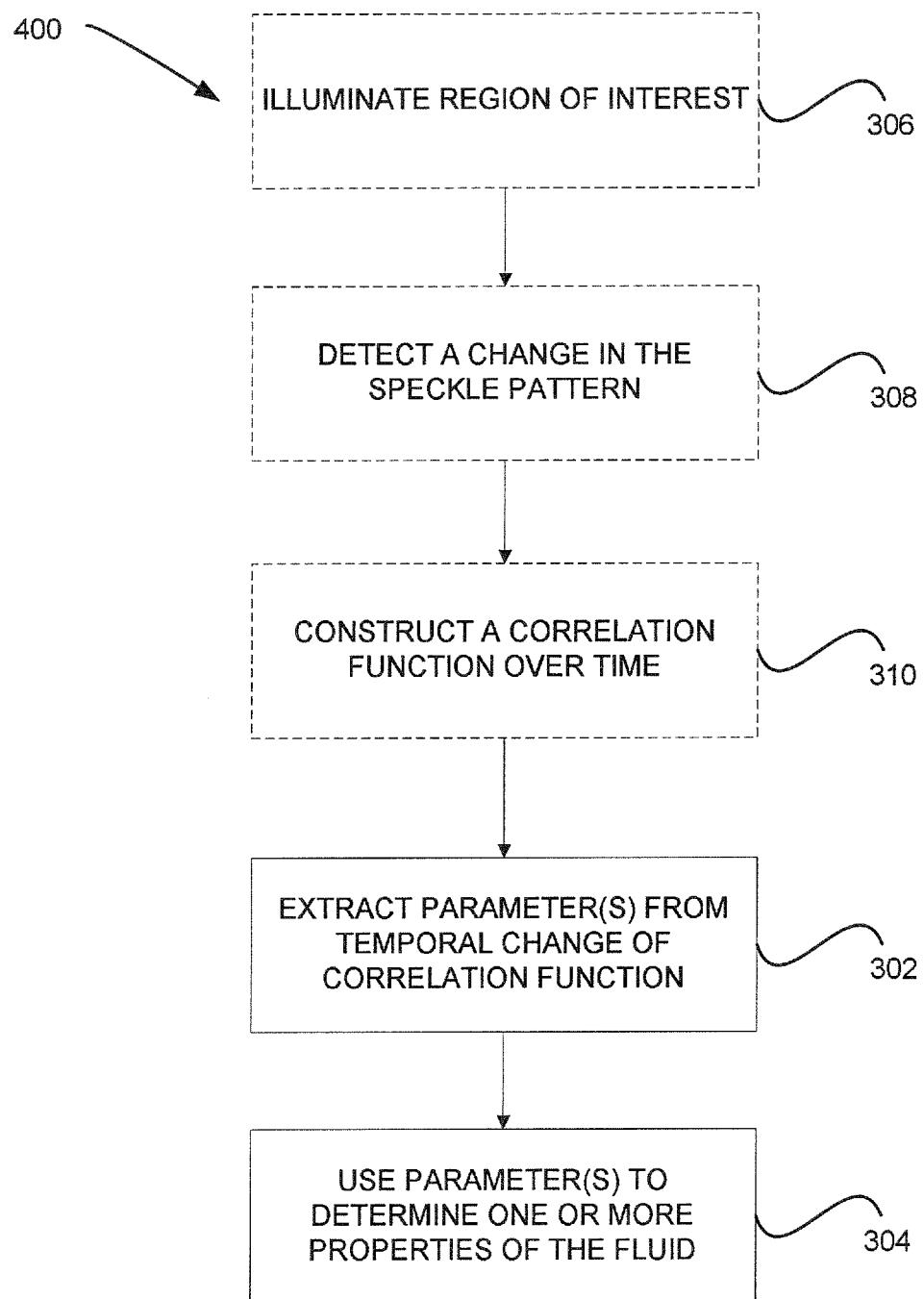


Fig. 5

6/29

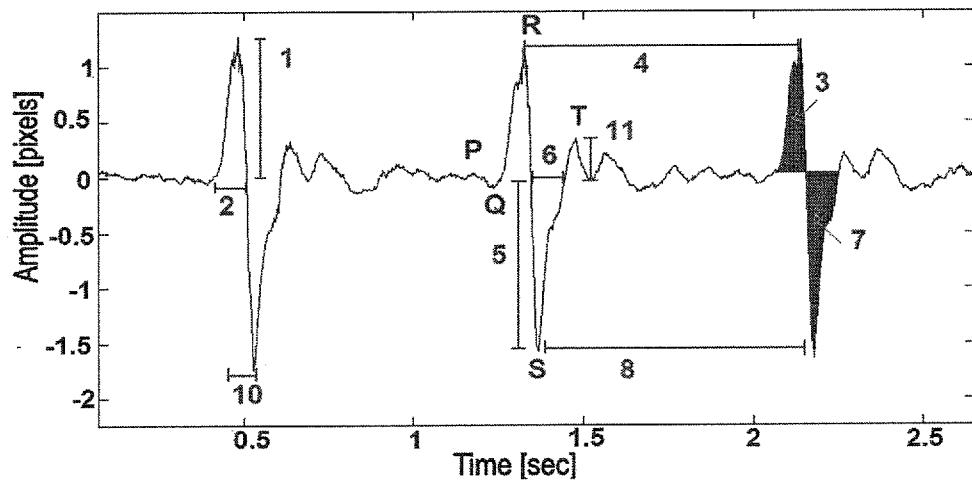
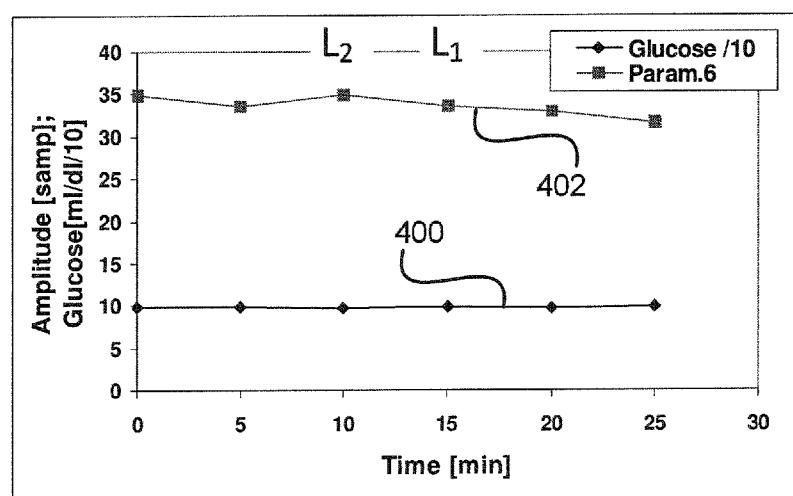
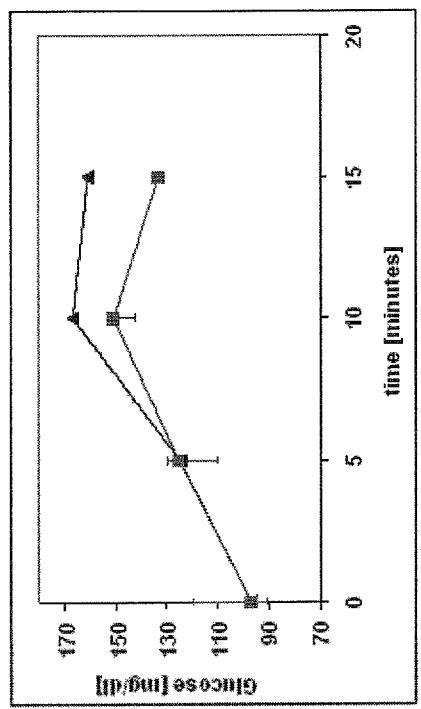
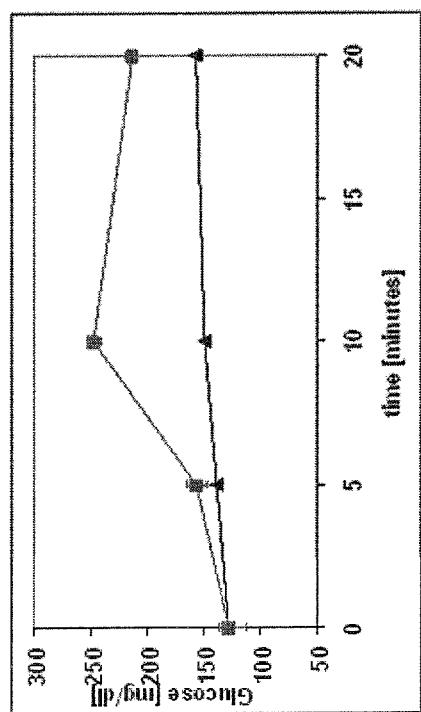
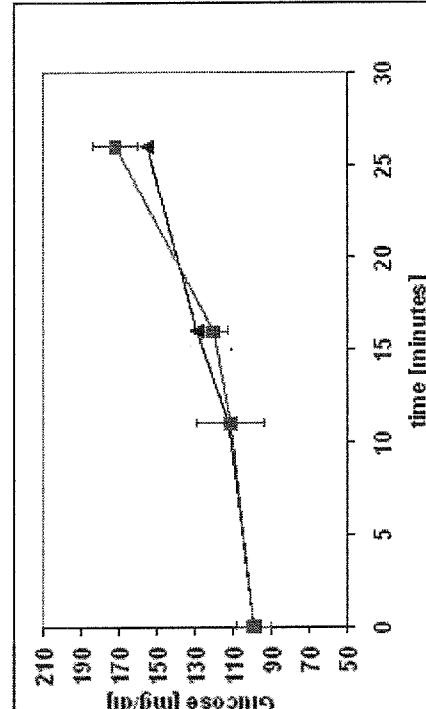
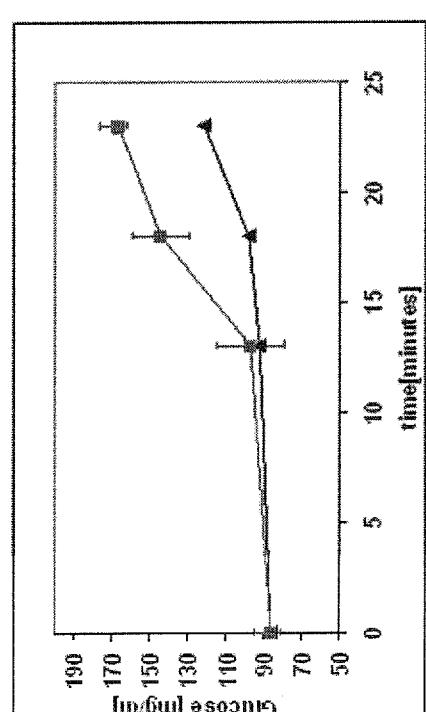


Fig. 6A


Fig. 6B


Correlation 0.945
RMSE 0.17
Fig. 6D

Correlation 0.862
RMSE 0.205
Fig. 6C

Correlation 0.964
RMSE 0.12
Fig. 6F

Correlation 0.91
RMSE 0.19
Fig. 6E

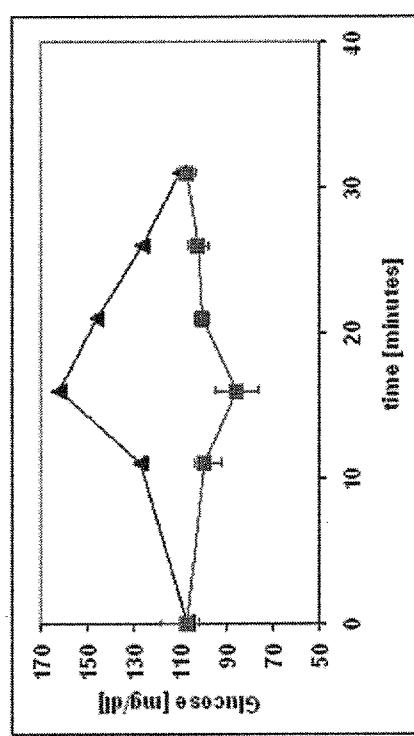


Fig. 7A

Correlation: 0.916
RMSE: 0.17

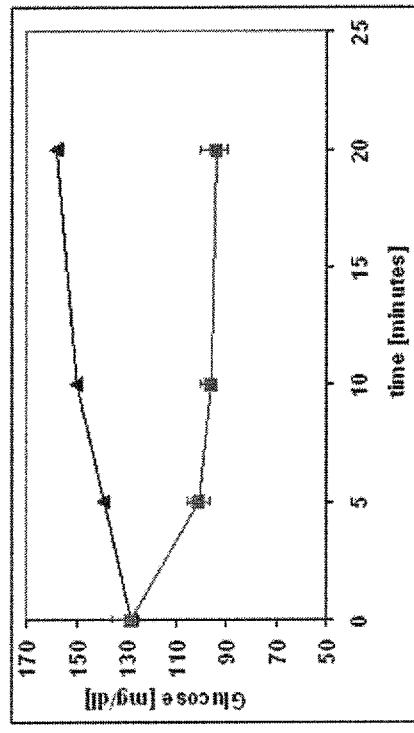


Fig. 7B

Correlation: 0.916
RMSE: 0.17

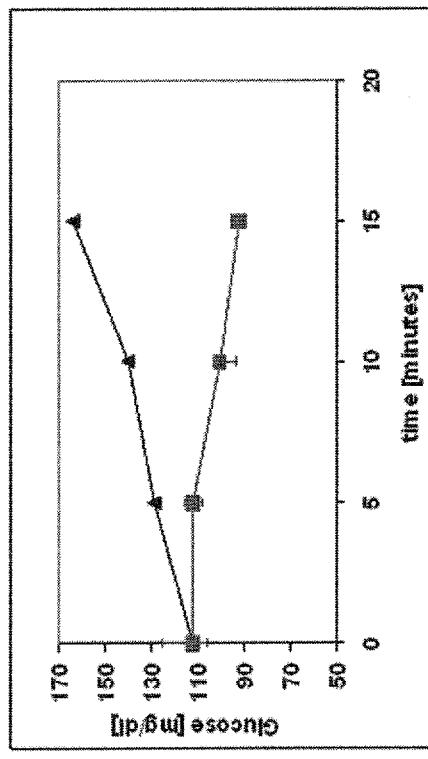


Fig. 7C

Fig. 7D

9/29

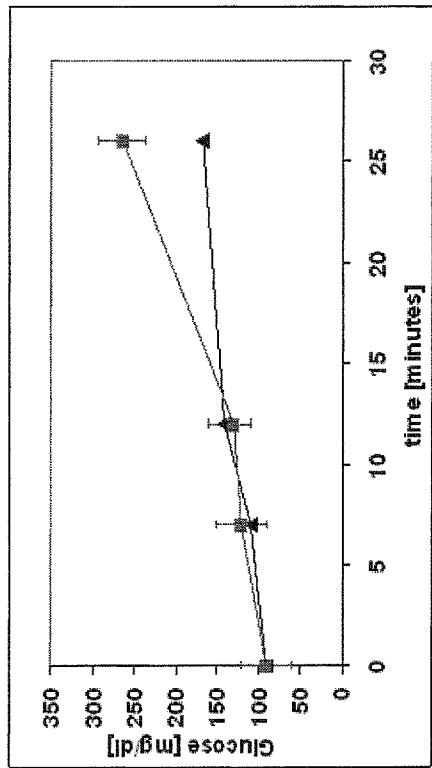
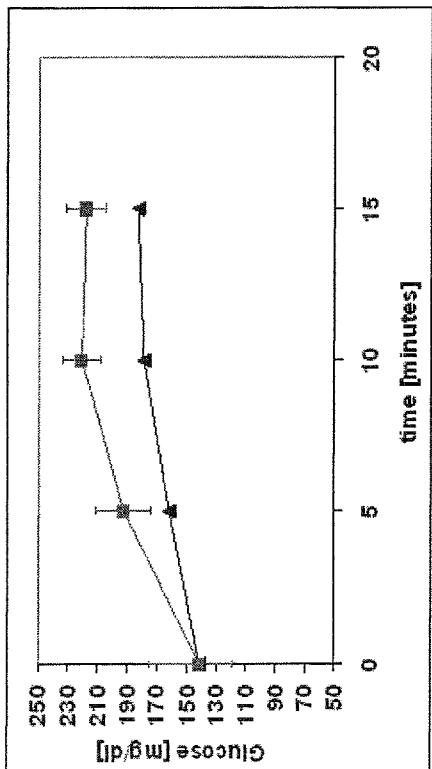
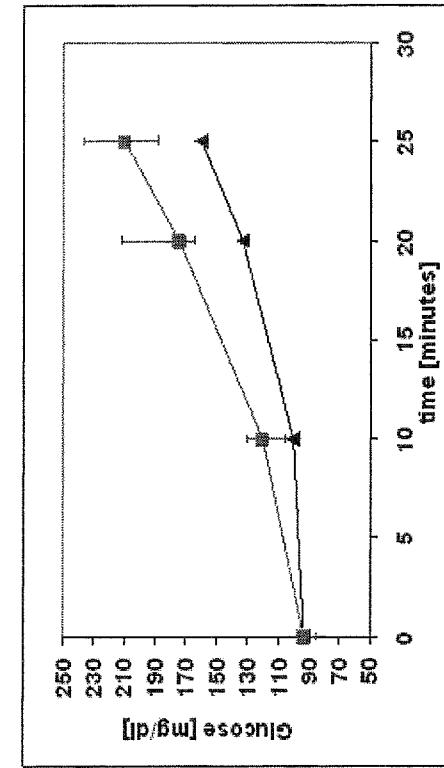
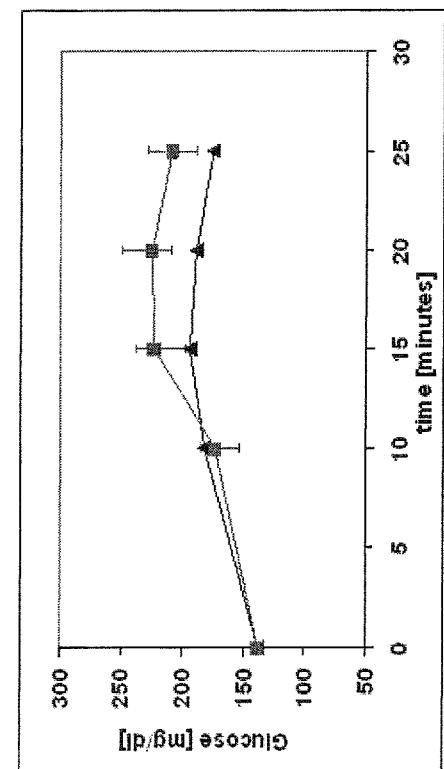
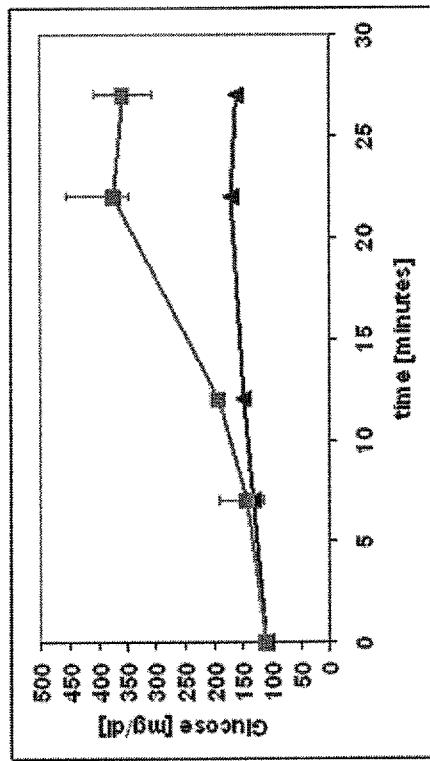




Fig. 8A
Correlation 0.984
RMSE 0.083


Correlation 0.896
RMSE 0.21

Correlation 0.99
RMSE 0.08


Correlation 0.966
RMSE 0.18

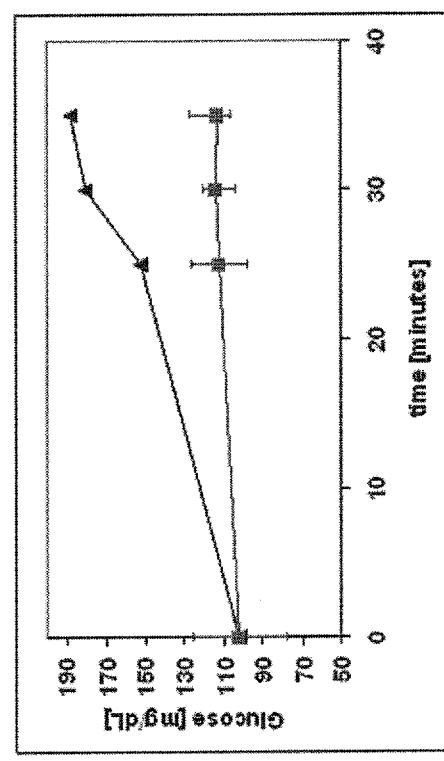
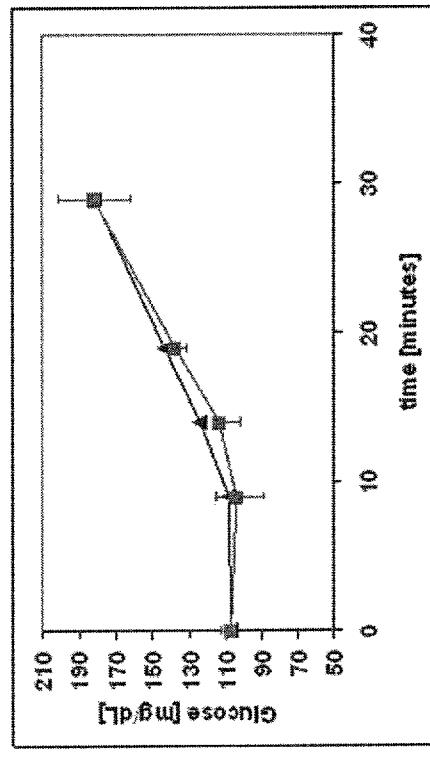
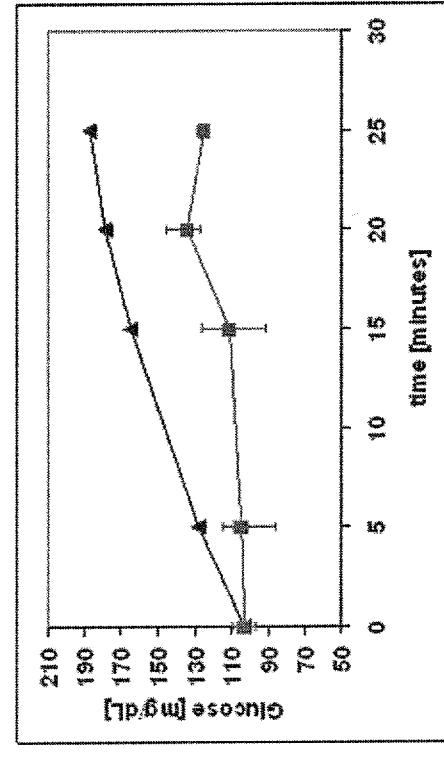
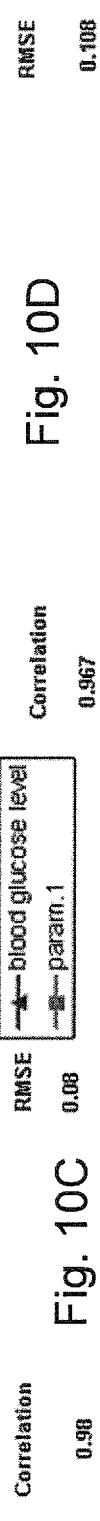
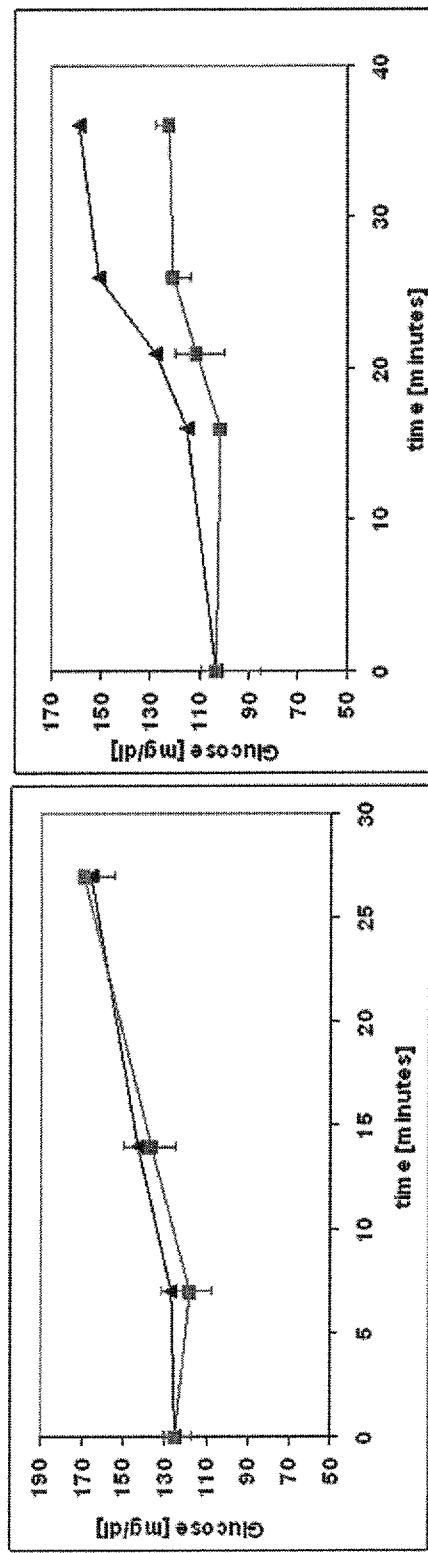
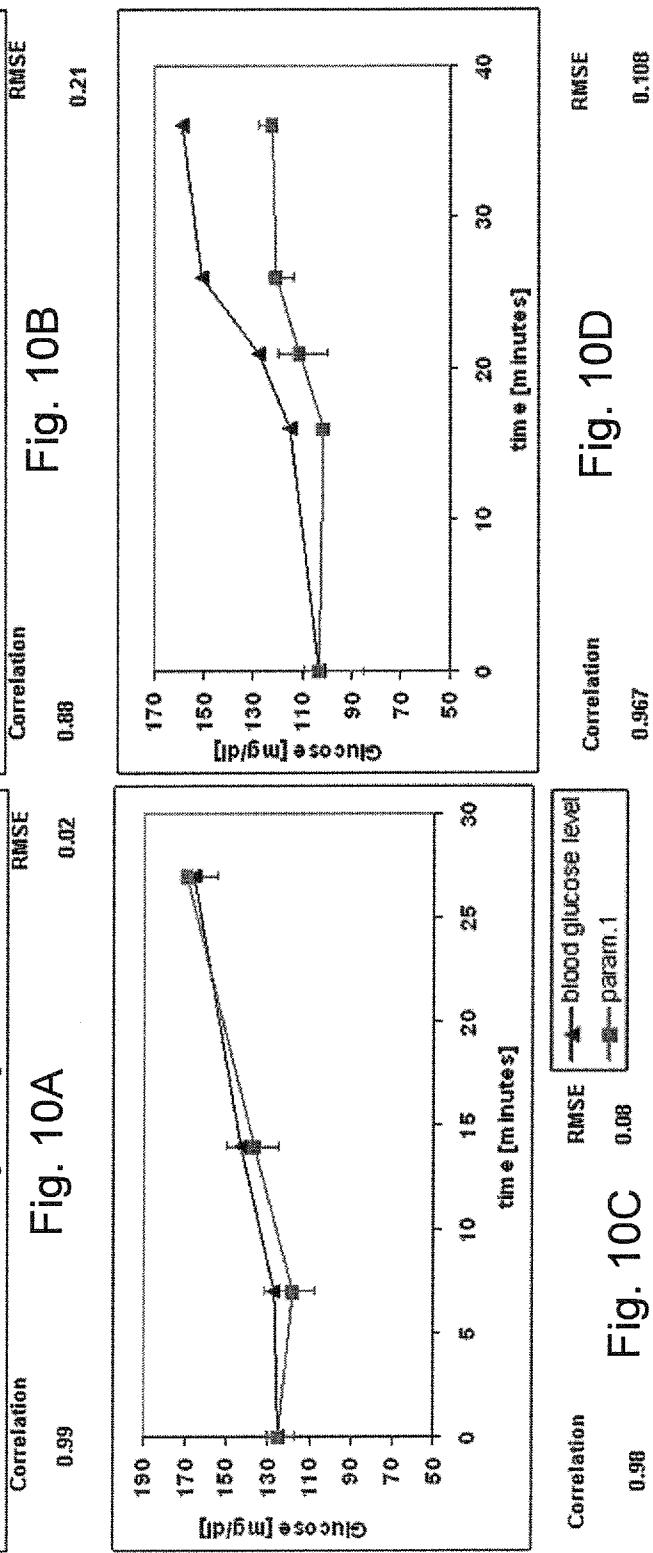
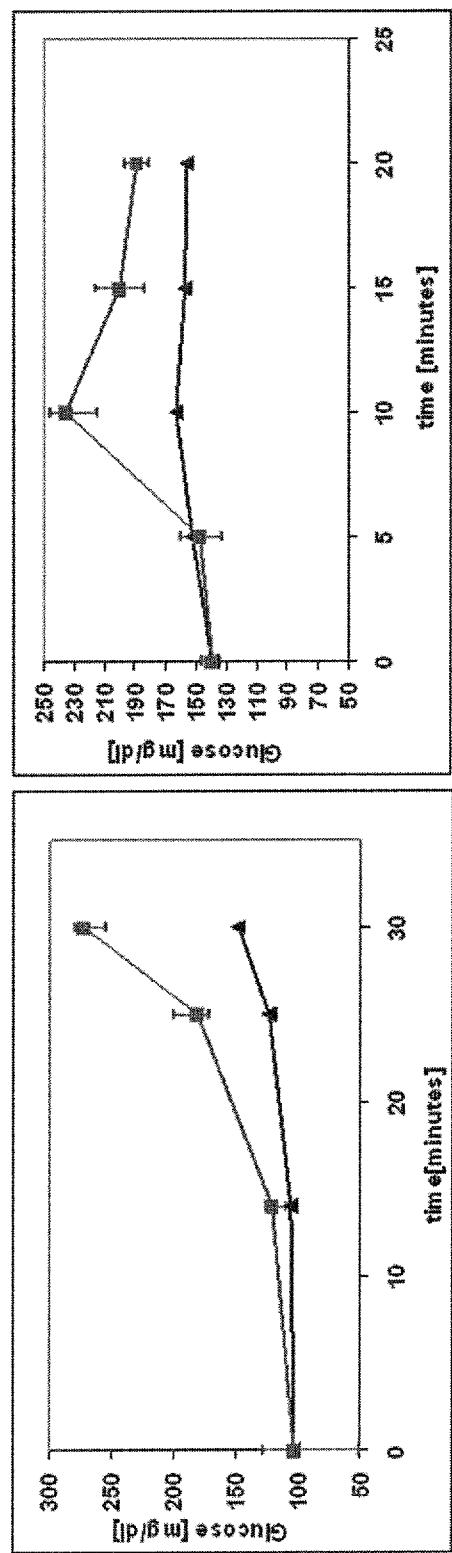

Correlation 0.99
RMSE 0.08

Fig. 8C


10/29


Correlation 0.99
RMSE 0.058
Fig. 9A

Correlation 0.93
RMSE 0.18
Fig. 9B

Correlation 0.85
RMSE 0.28
Fig. 9C

Correlation 0.943
RMSE 0.158
Fig. 9D

11/29

12/29

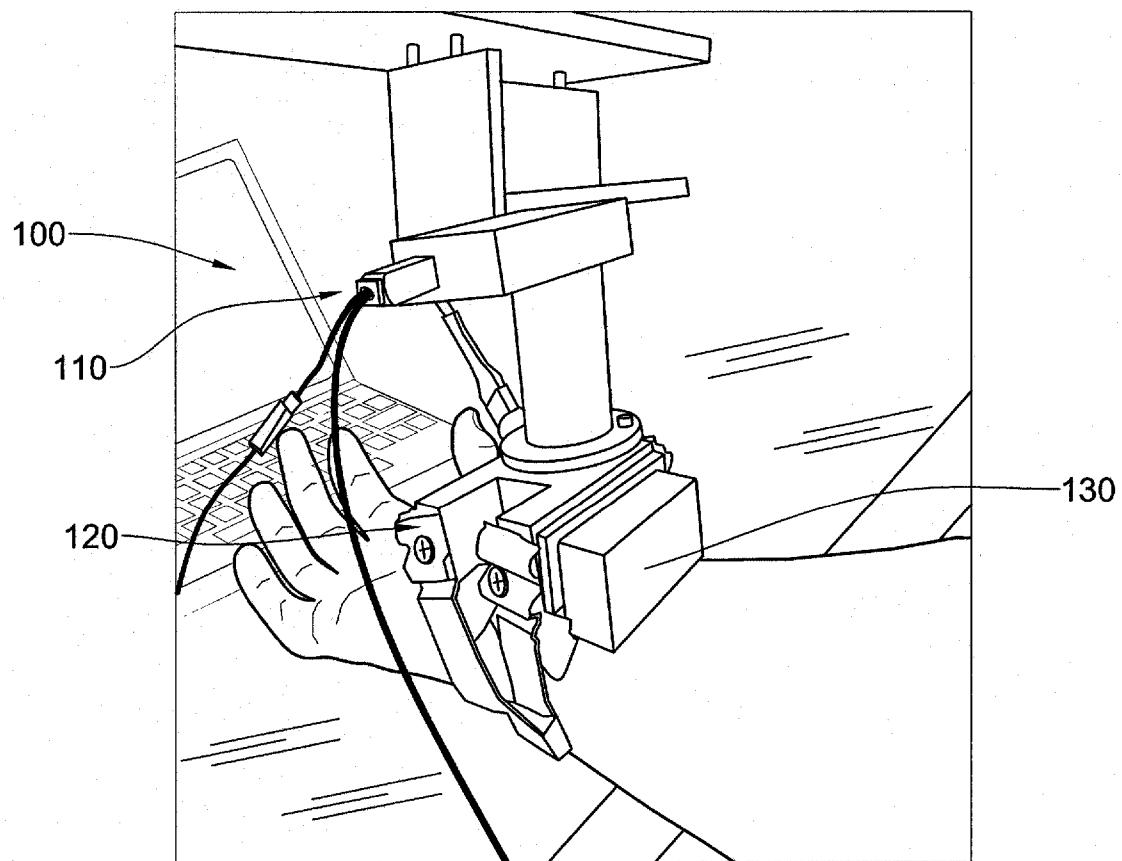


Fig. 11A

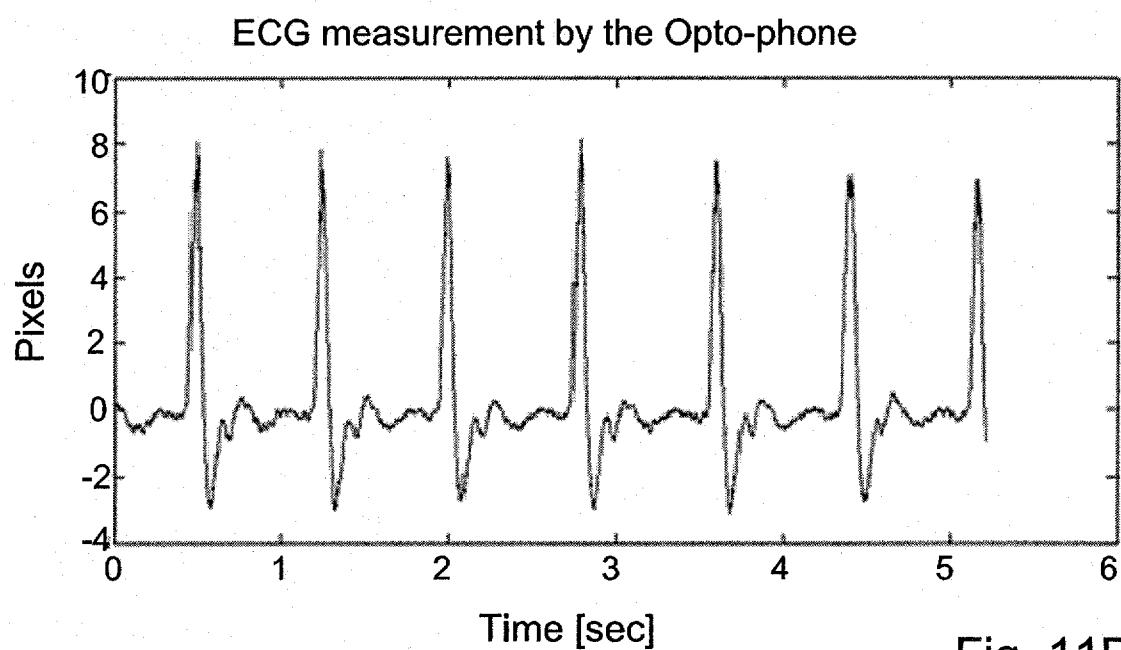


Fig. 11B

13/29

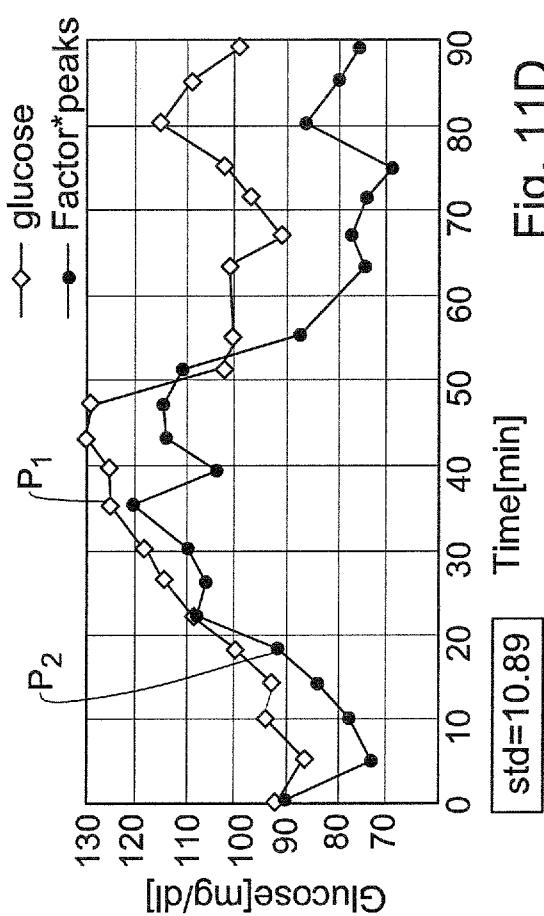


Fig. 11D

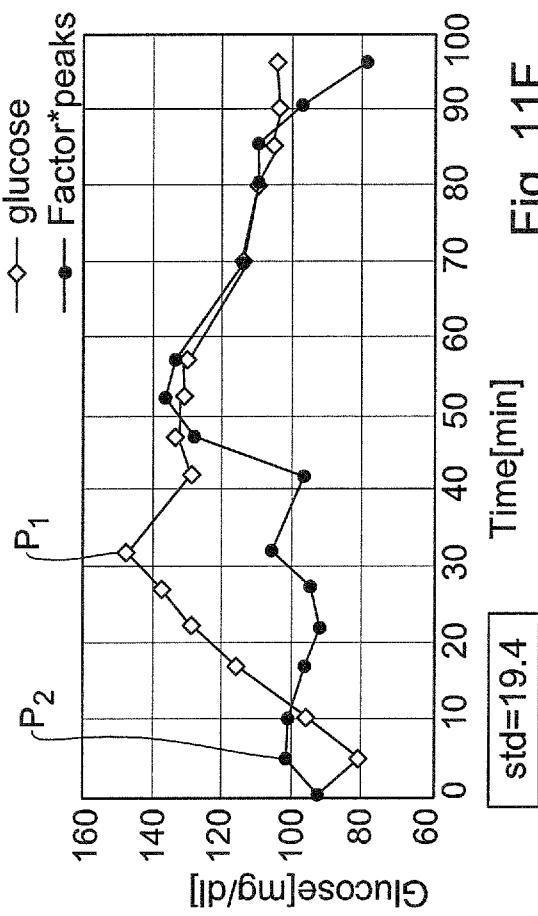


Fig. 11F

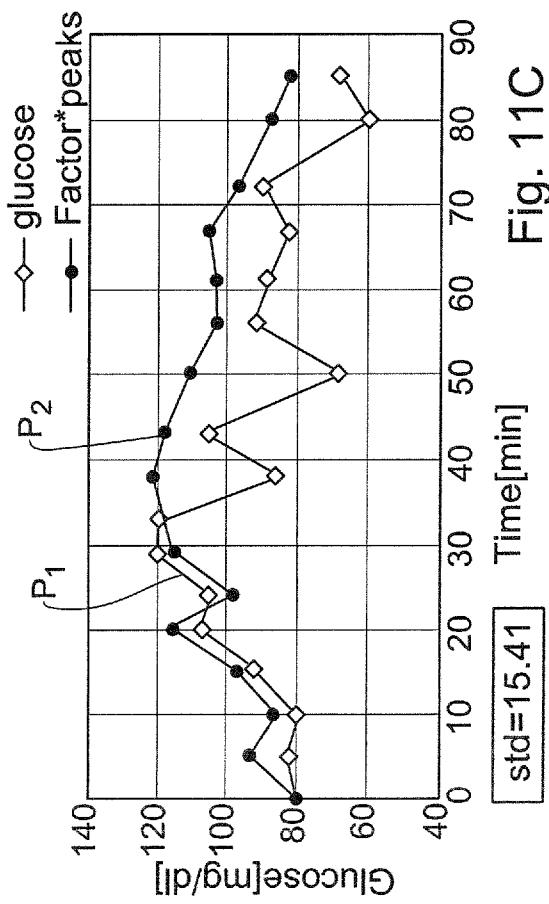


Fig. 11C

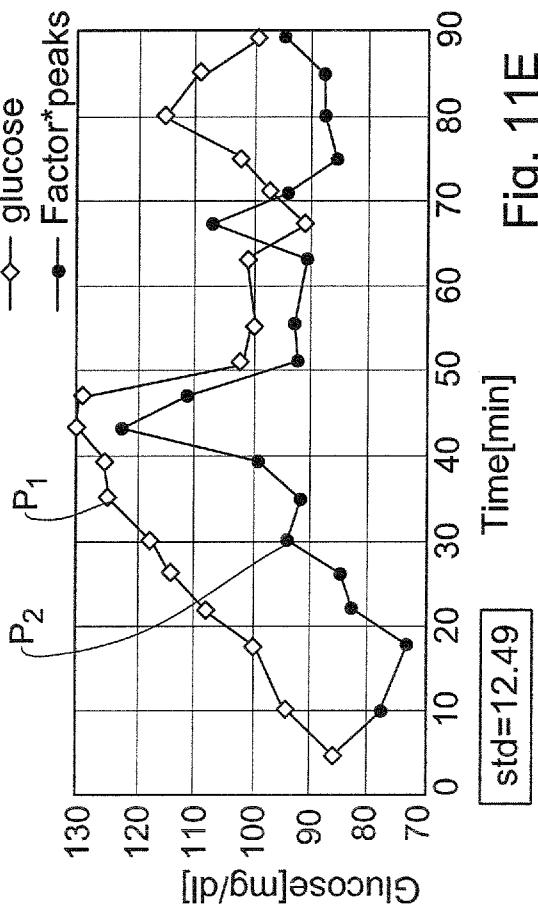


Fig. 11E

14/29

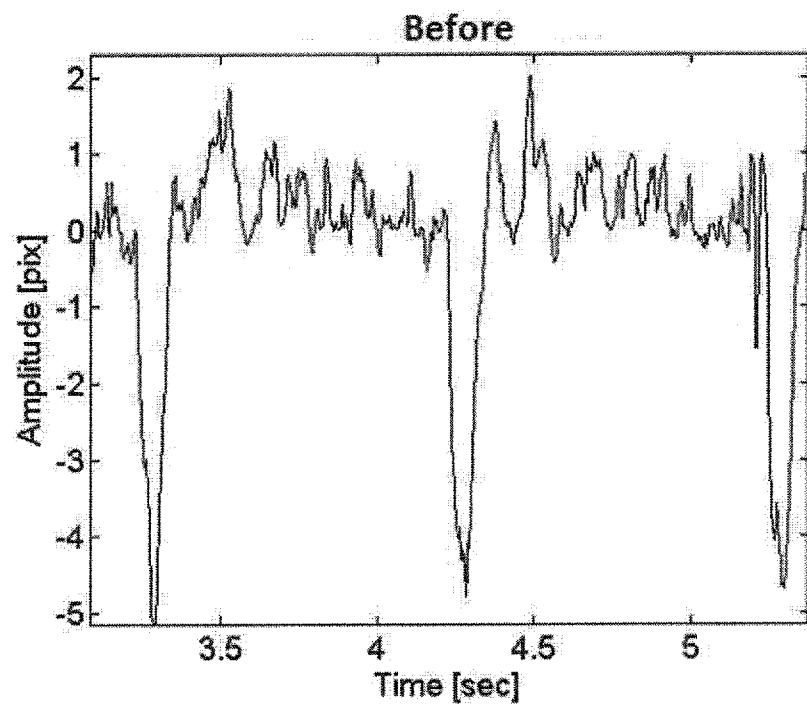


Fig. 12A

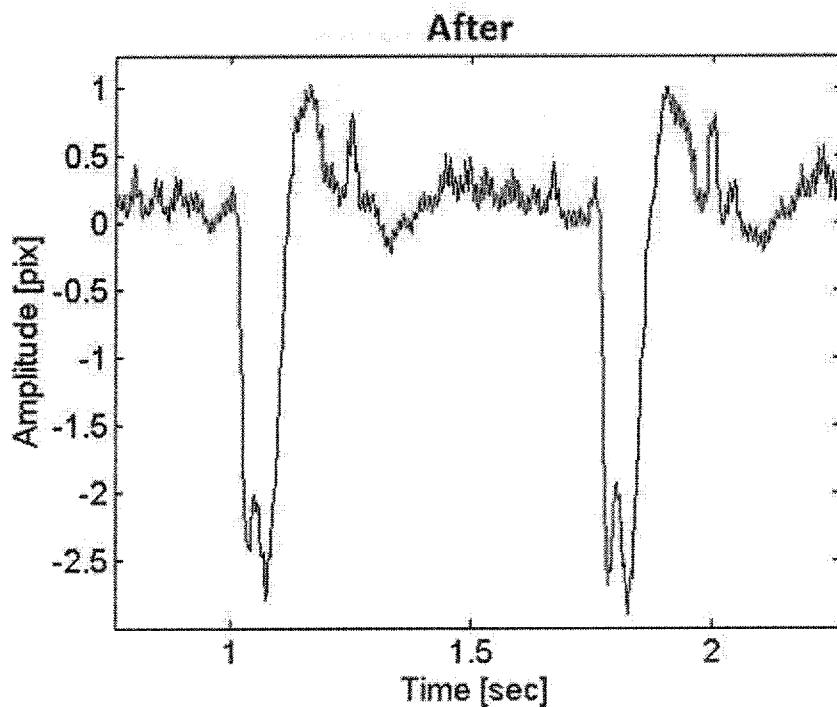


Fig. 12B

15/29

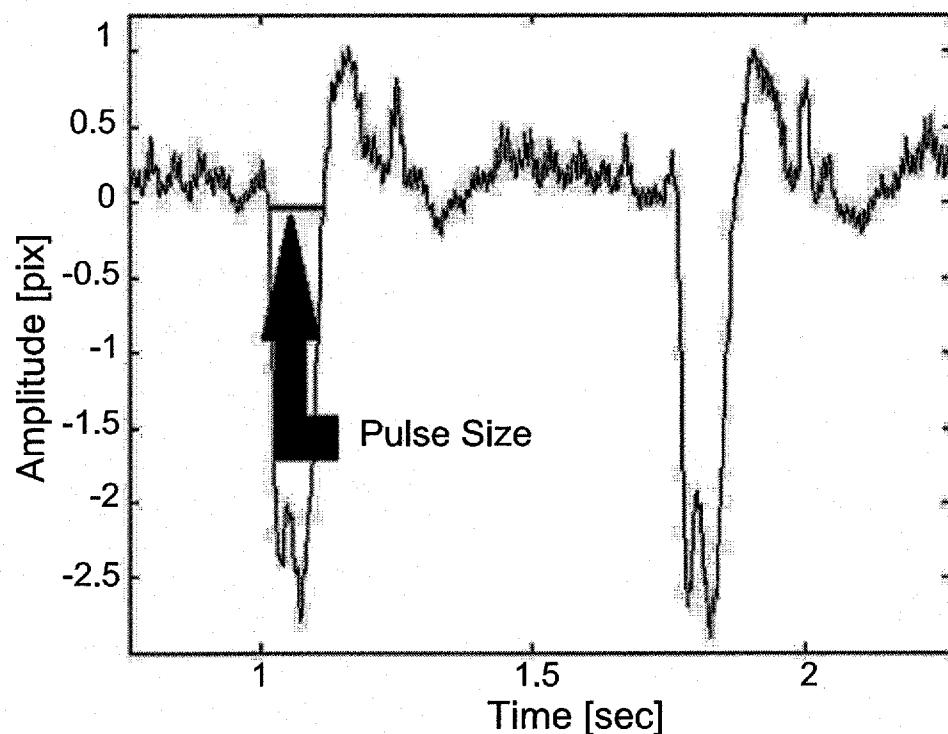


Fig. 13

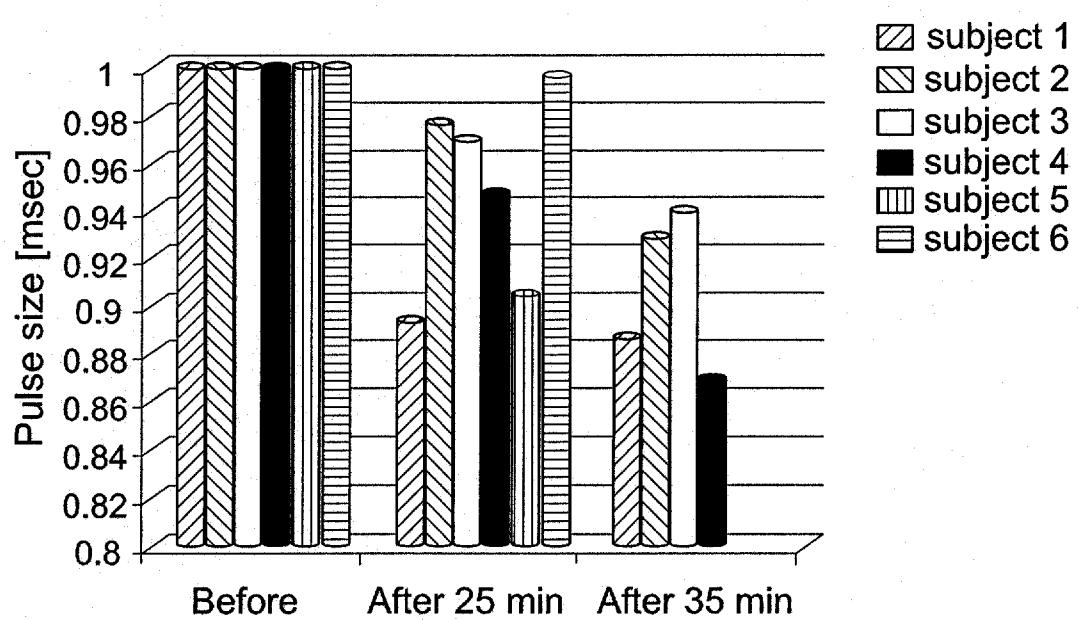


Fig. 14A

16/29

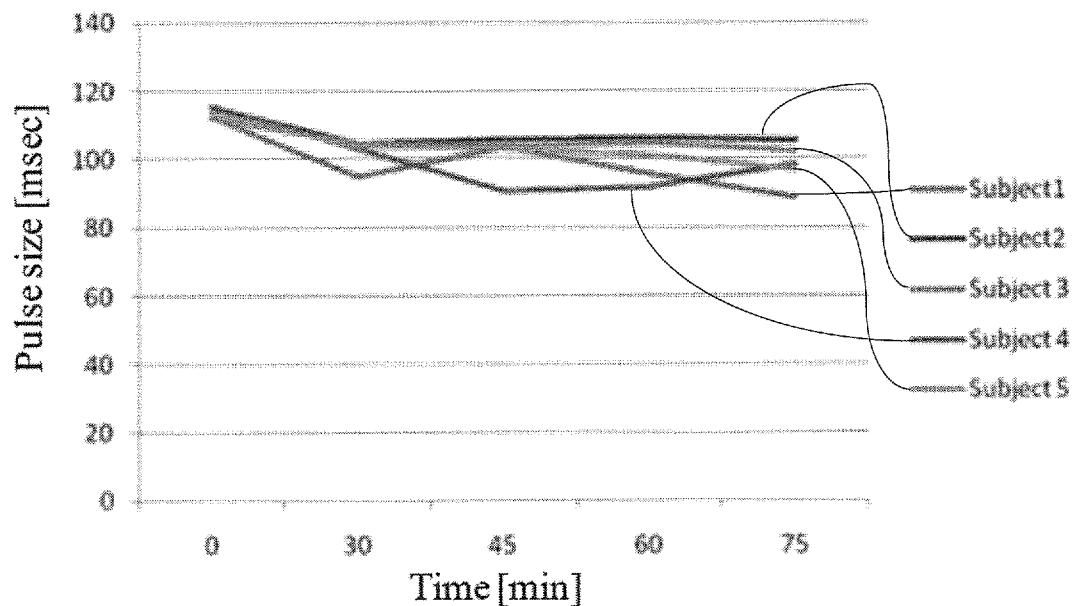


Fig. 14B

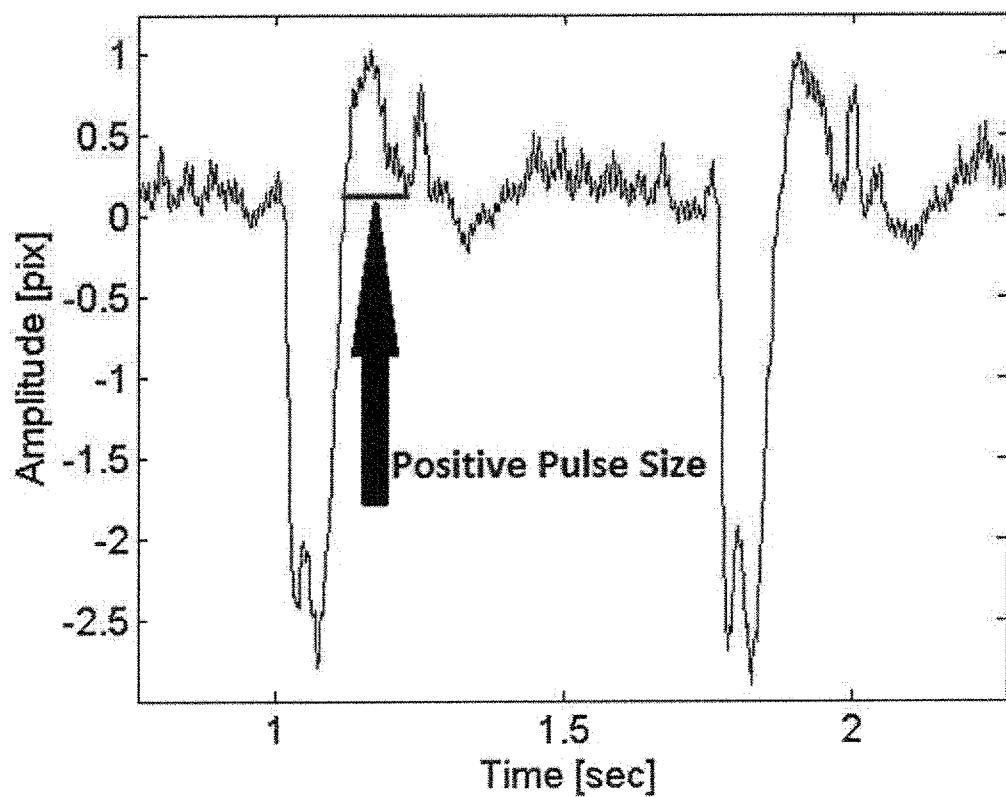


Fig. 15

17/29

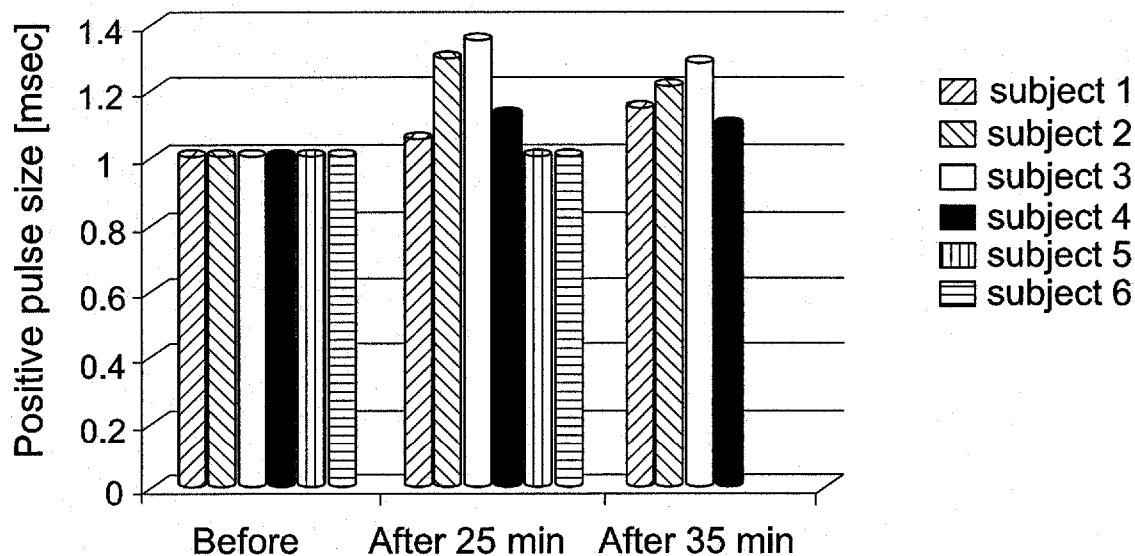


Fig. 16A

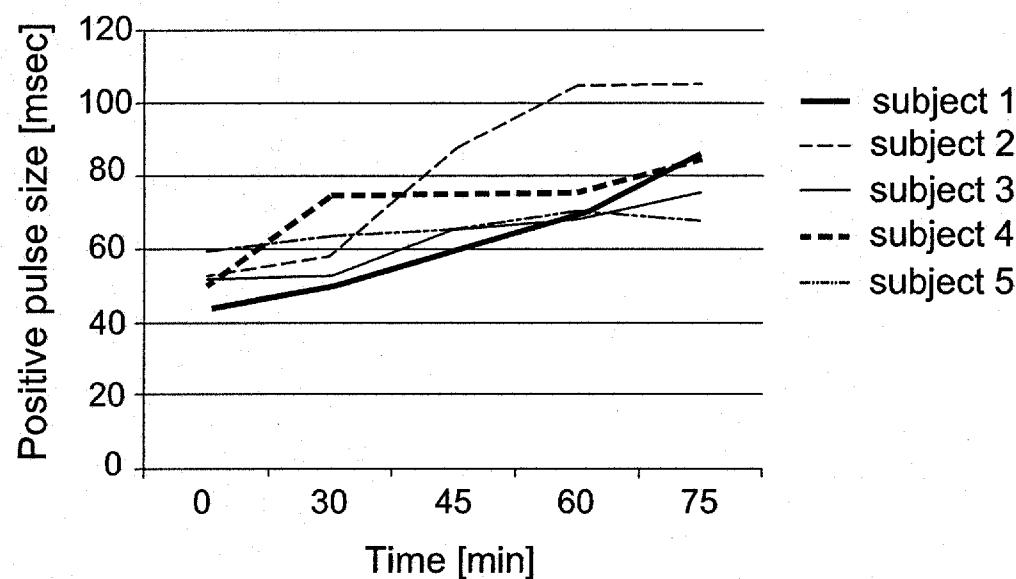


Fig. 16B

18/29

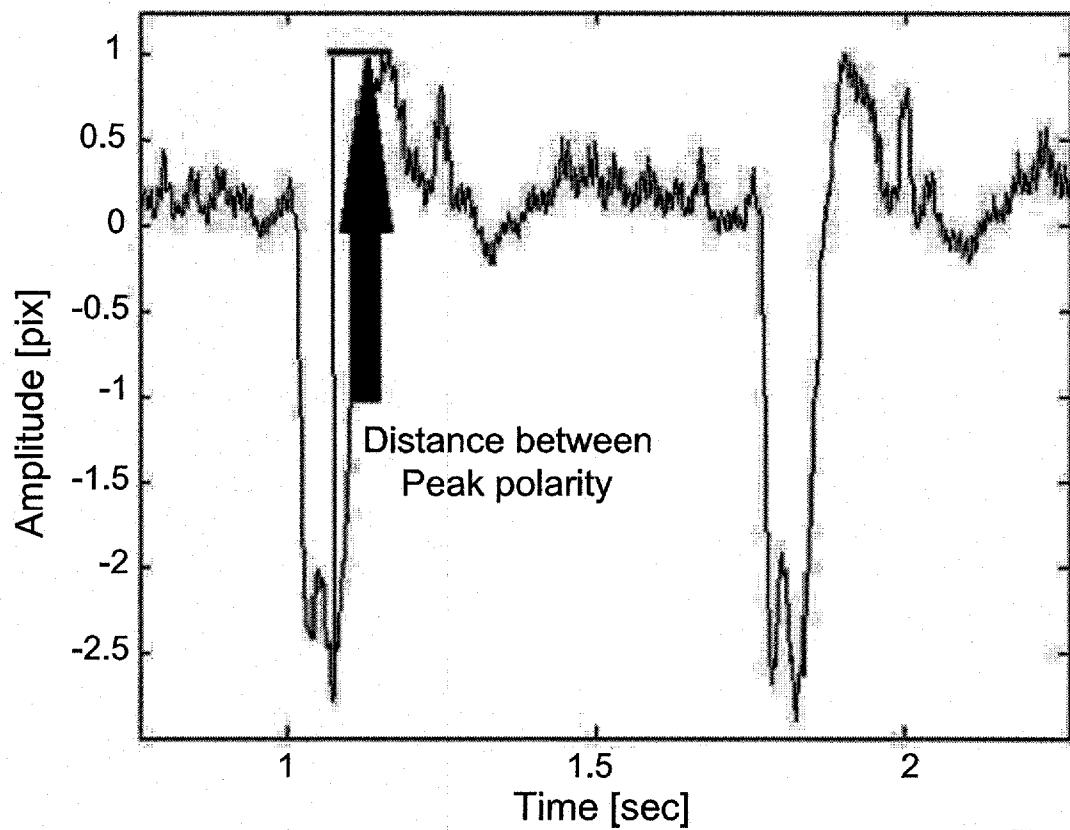


Fig. 17

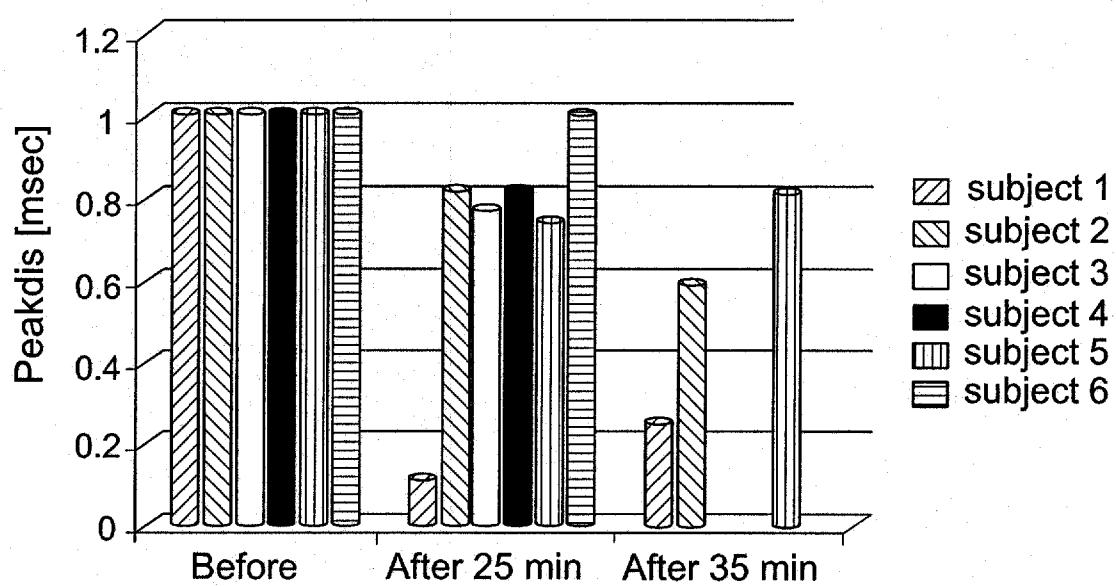


Fig. 18A

19/29

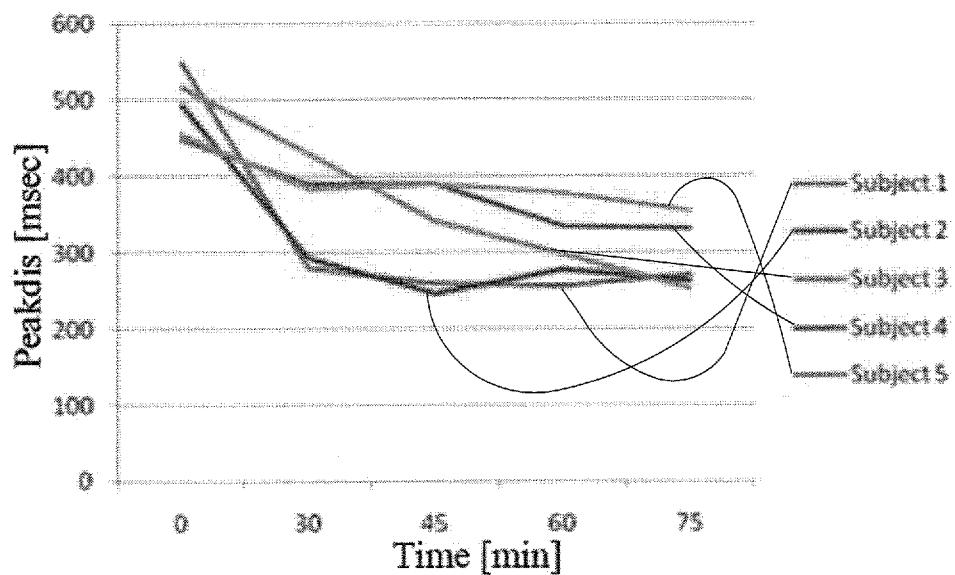


Fig. 18B

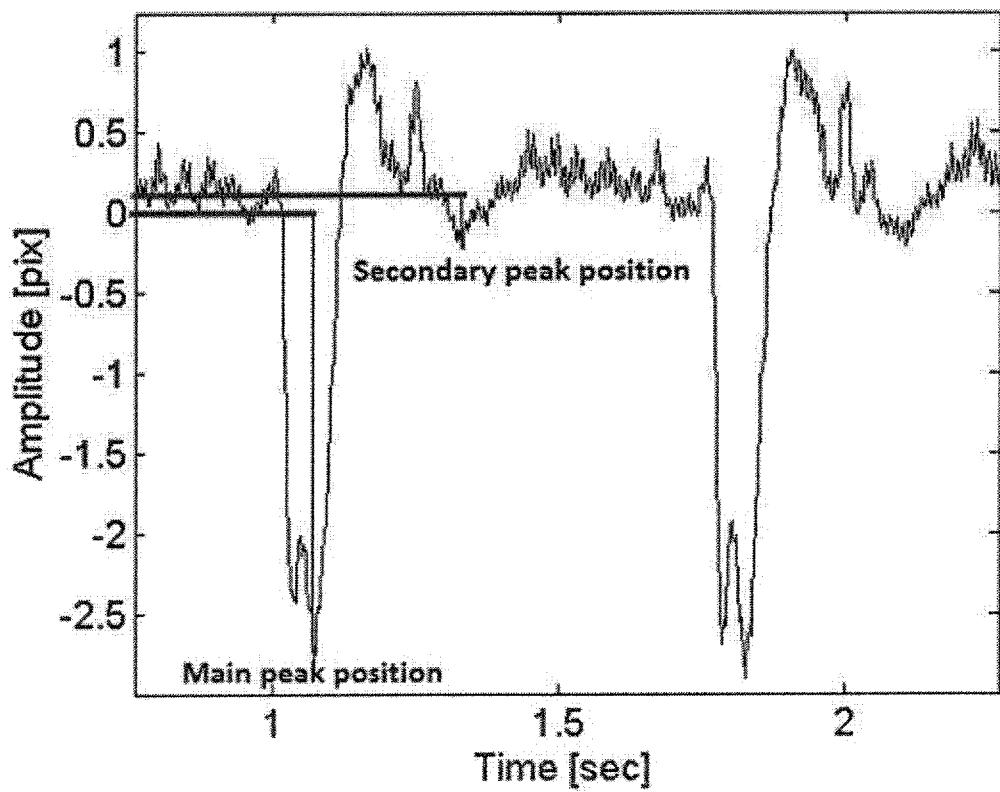


Fig. 19

20/29

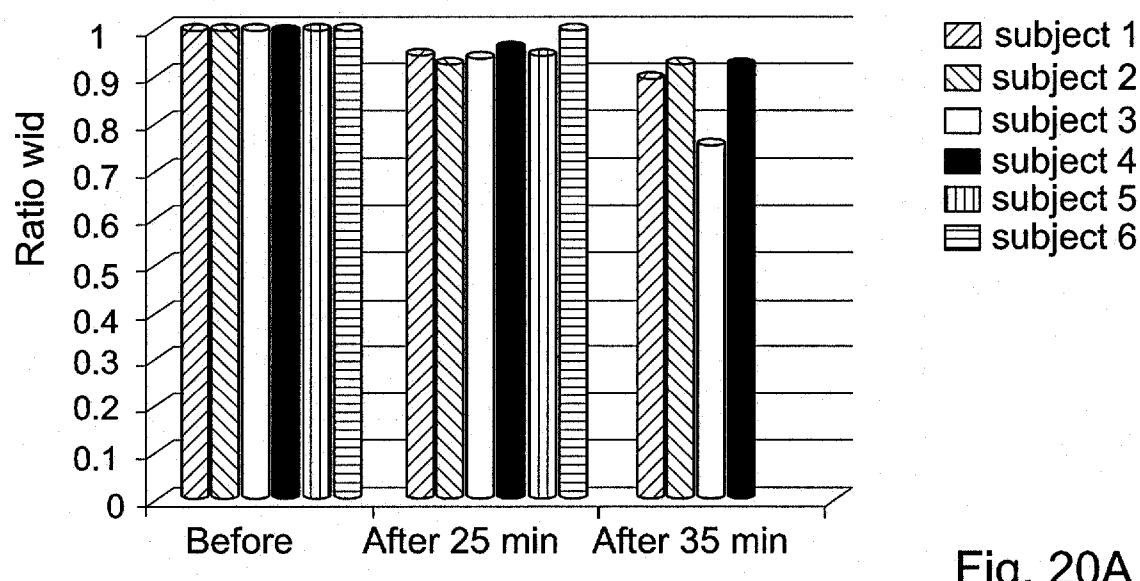


Fig. 20A

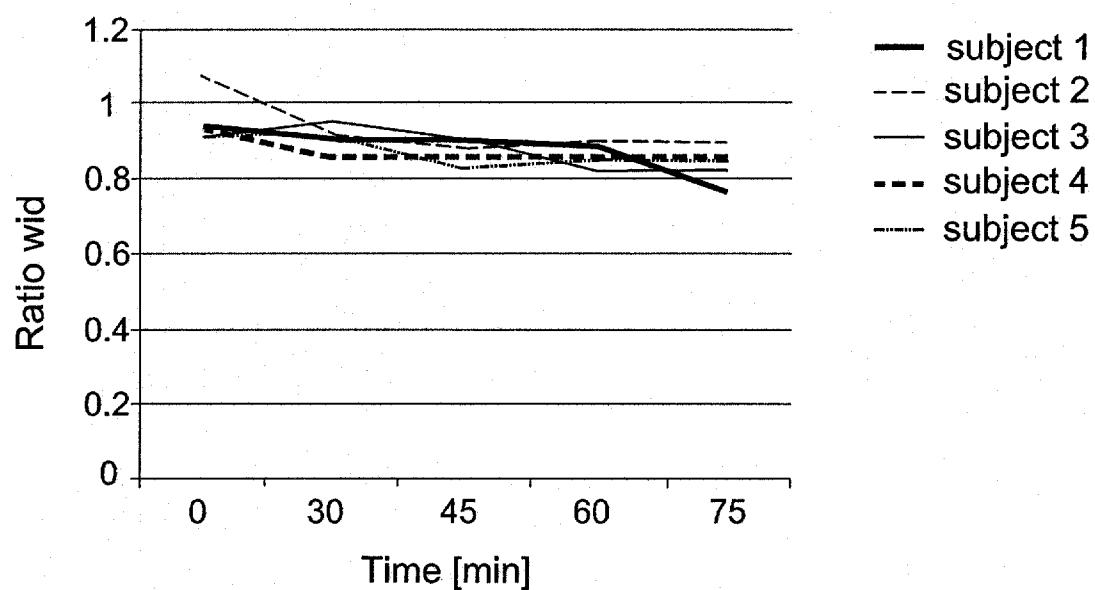


Fig. 20B

21/29

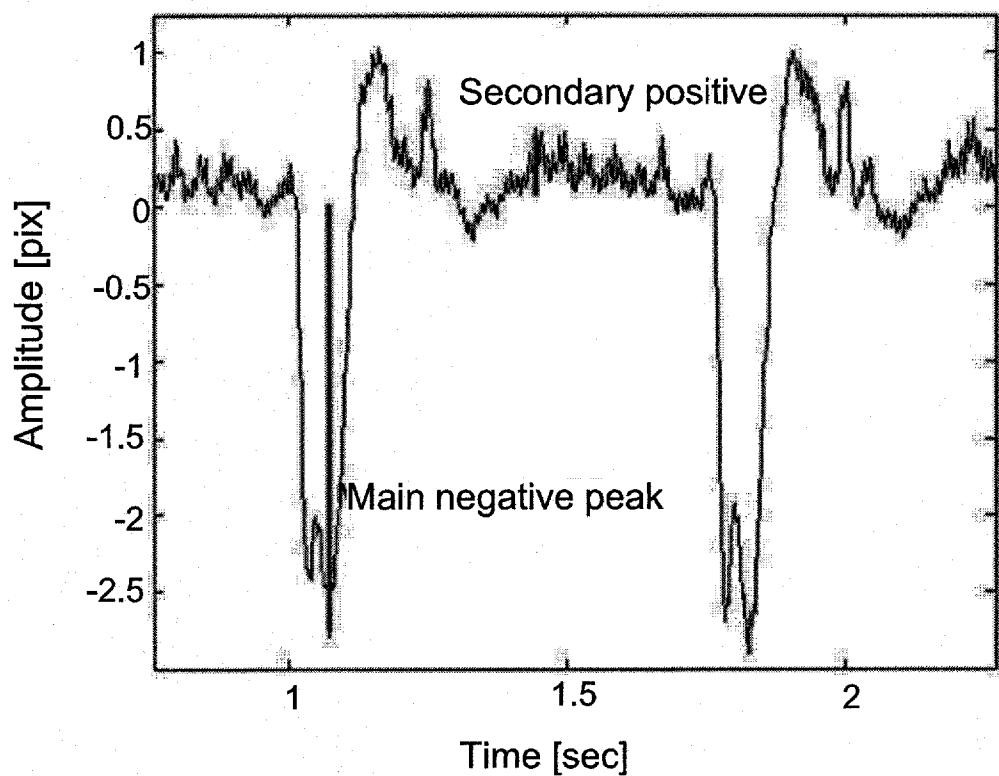


Fig. 21

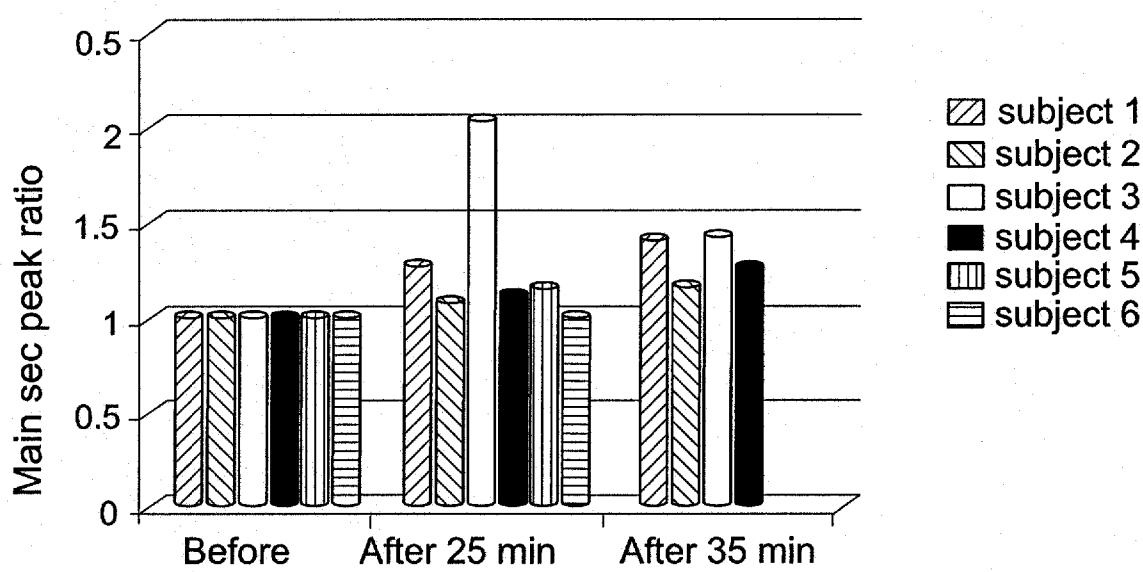


Fig. 22A

22/29

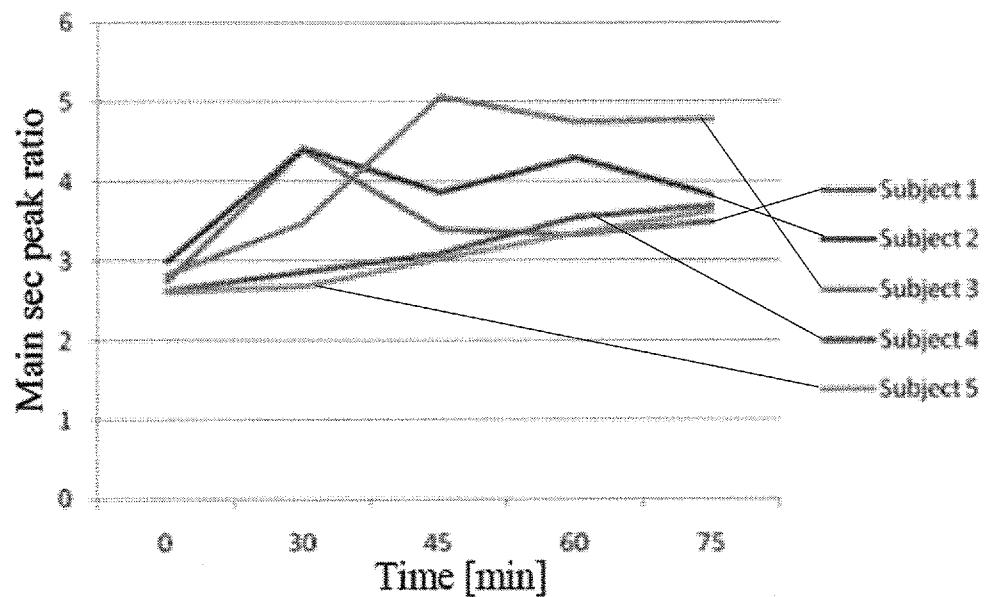


Fig. 22B

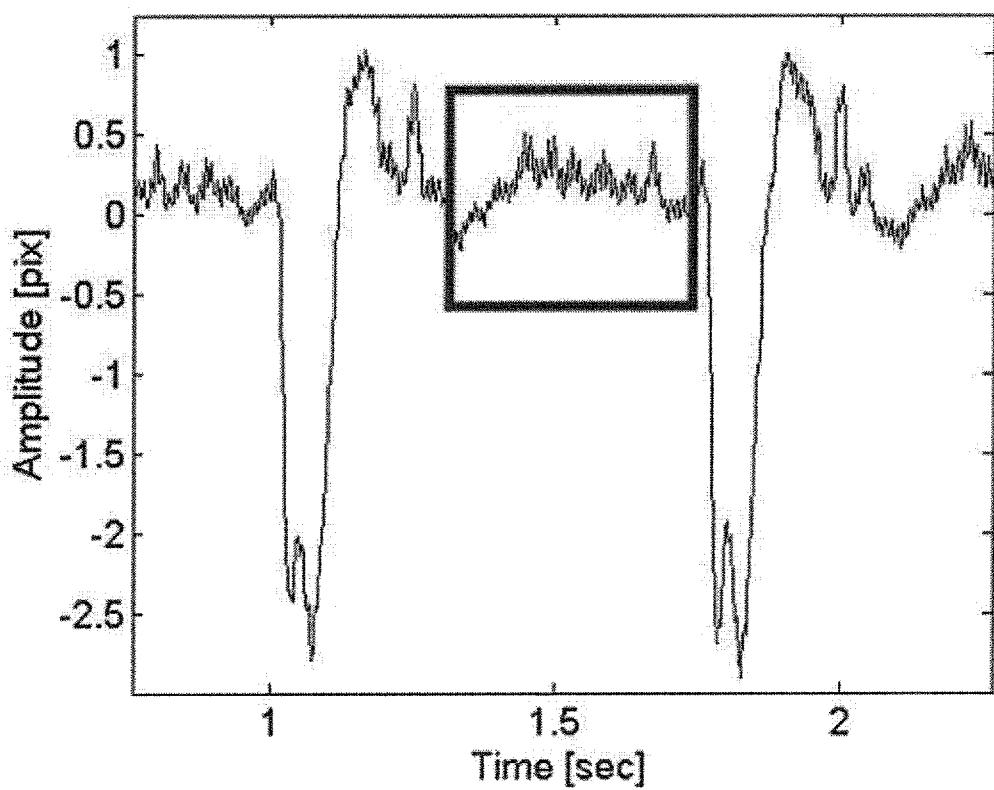


Fig. 23

23/29

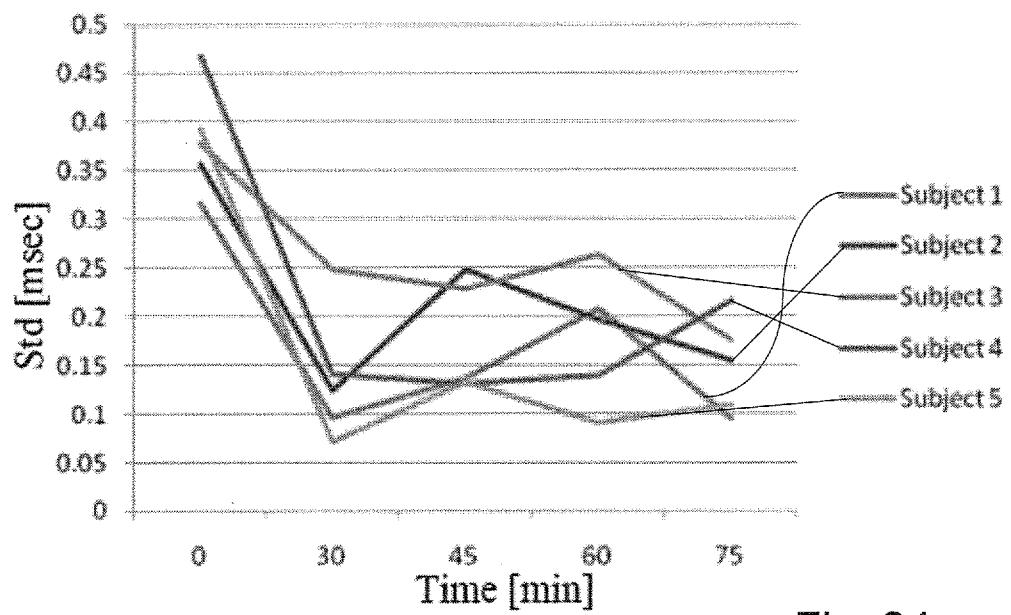


Fig. 24

24/29

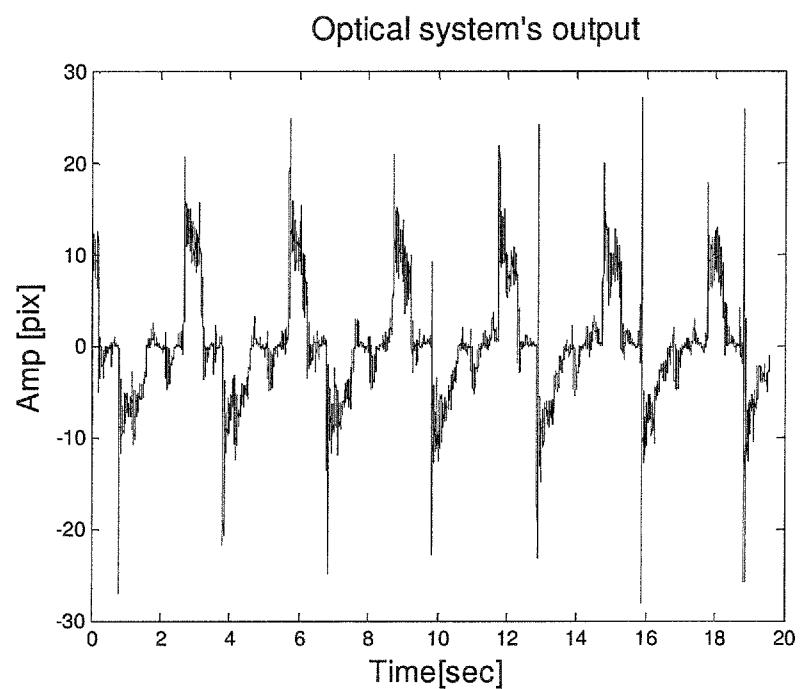


FIG. 25A

A zoom of the two breathing signal

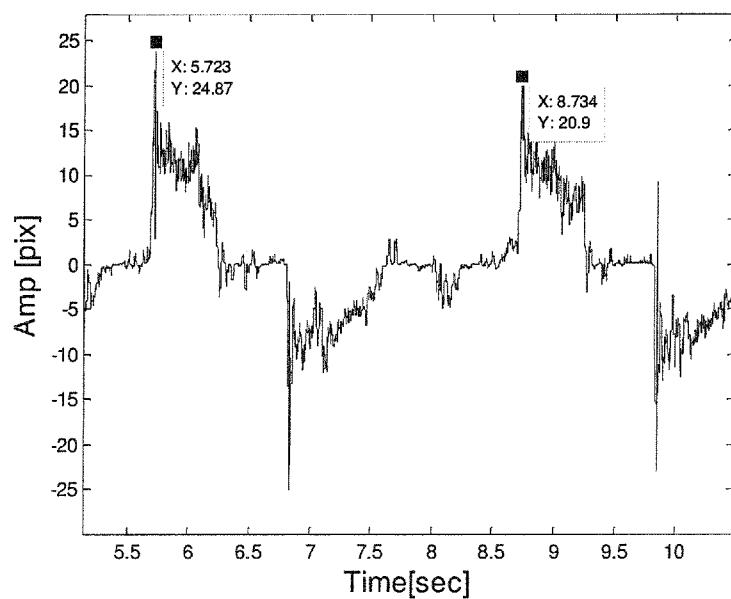


FIG. 25B

25/29

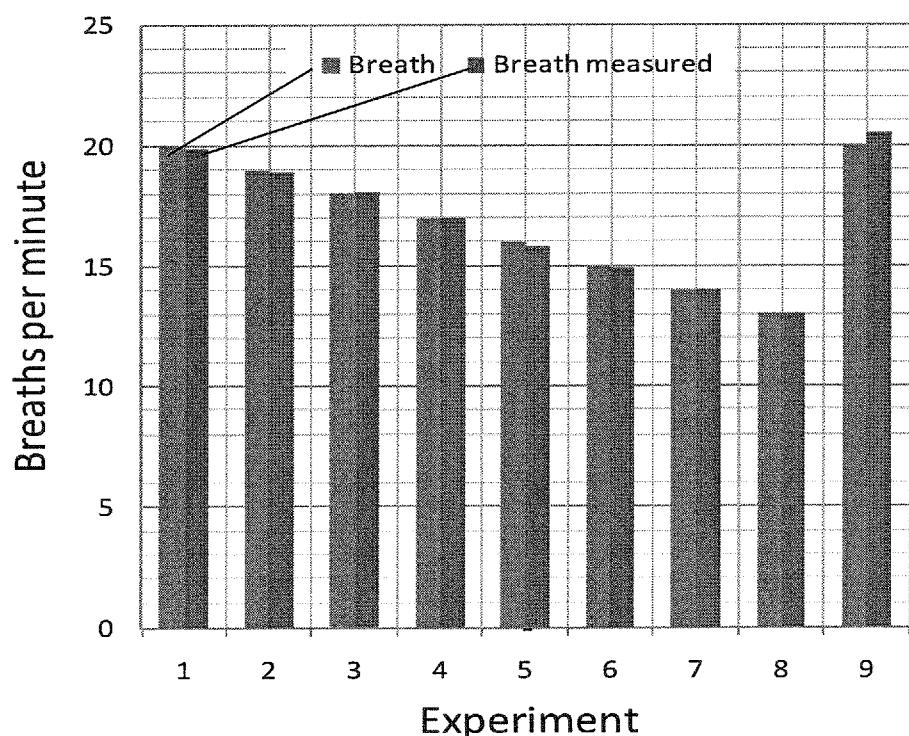


FIG. 25C

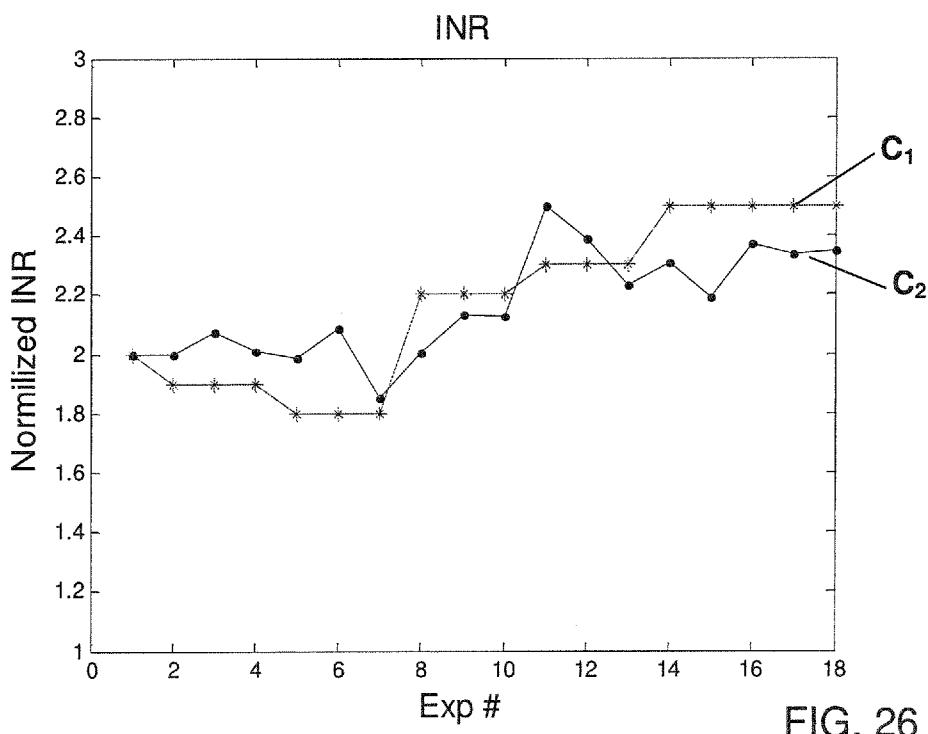


FIG. 26

26/29

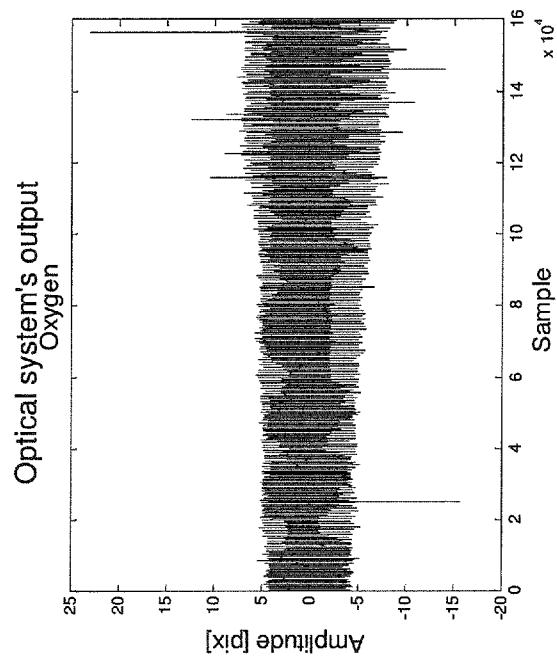


FIG. 27A

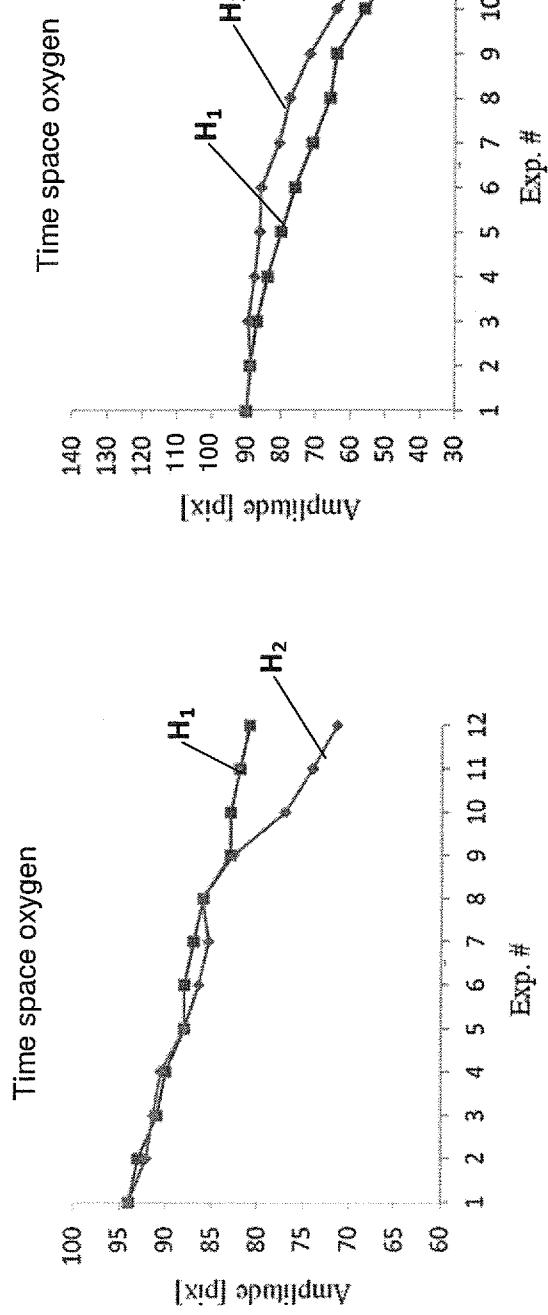


FIG. 27C

FIG. 27B

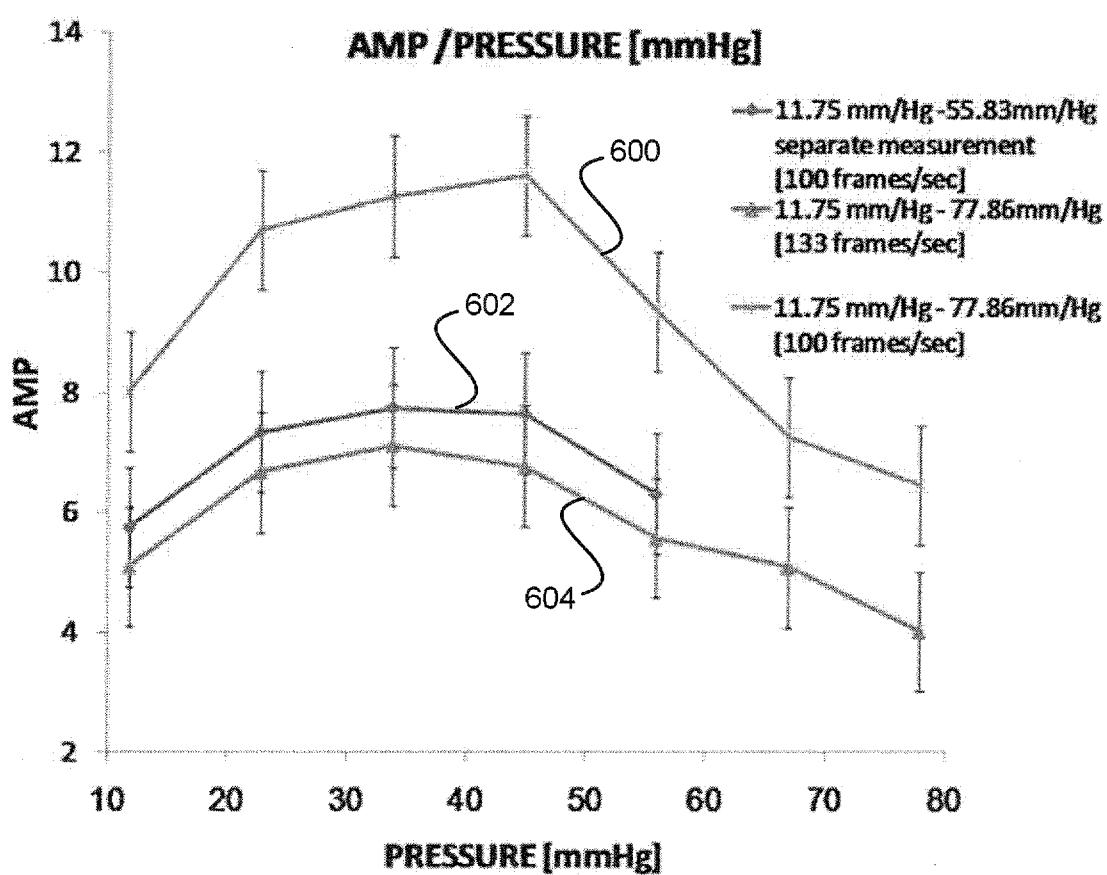


Fig. 28

28/29

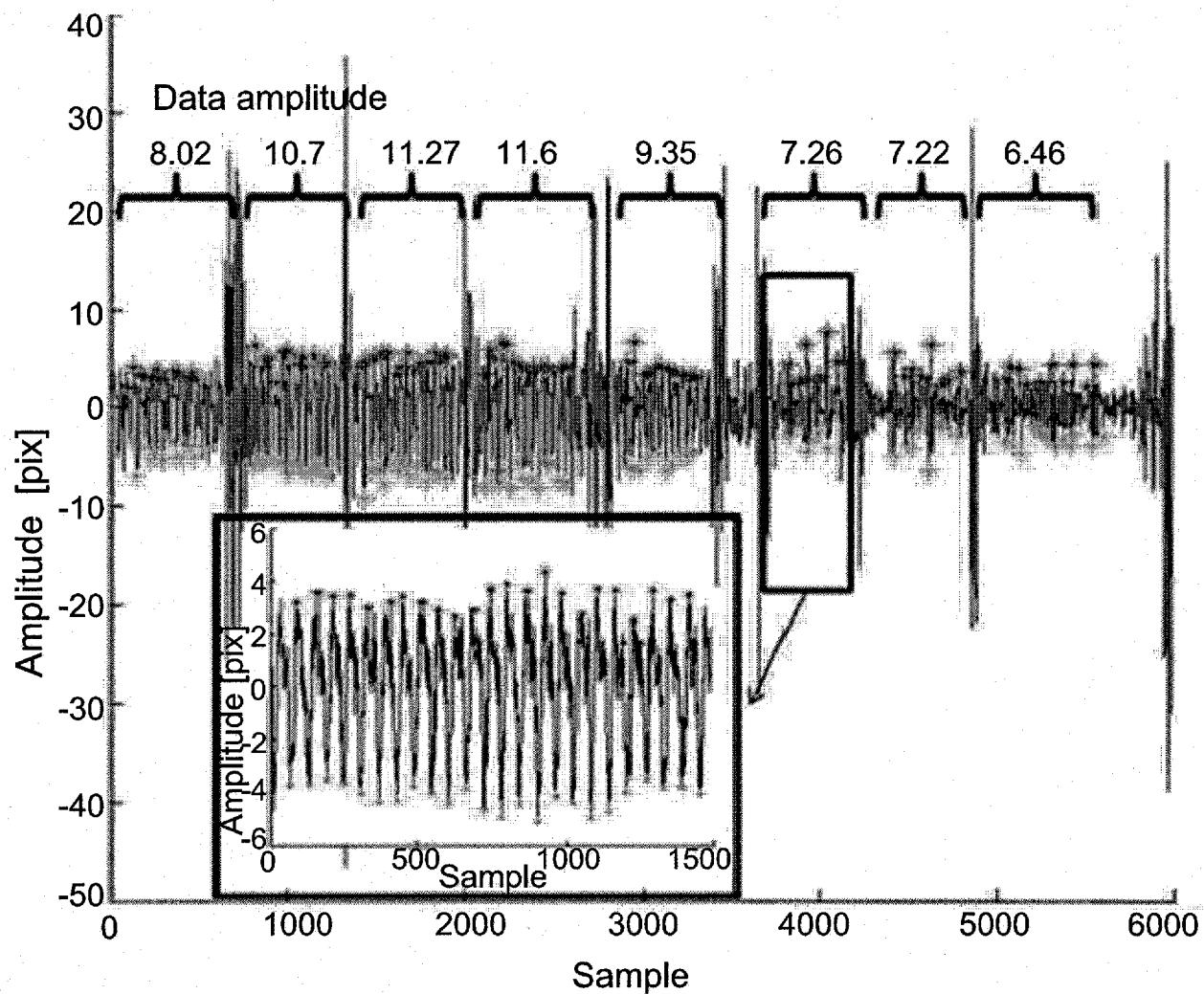


Fig. 29

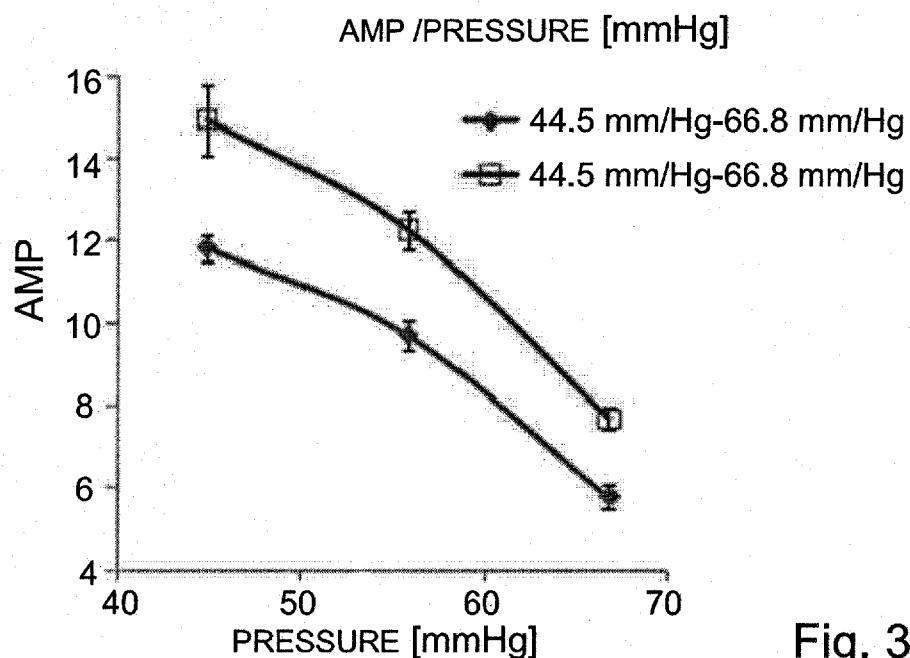


Fig. 30

SUBSTITUTE SHEET (RULE 26)

29/29

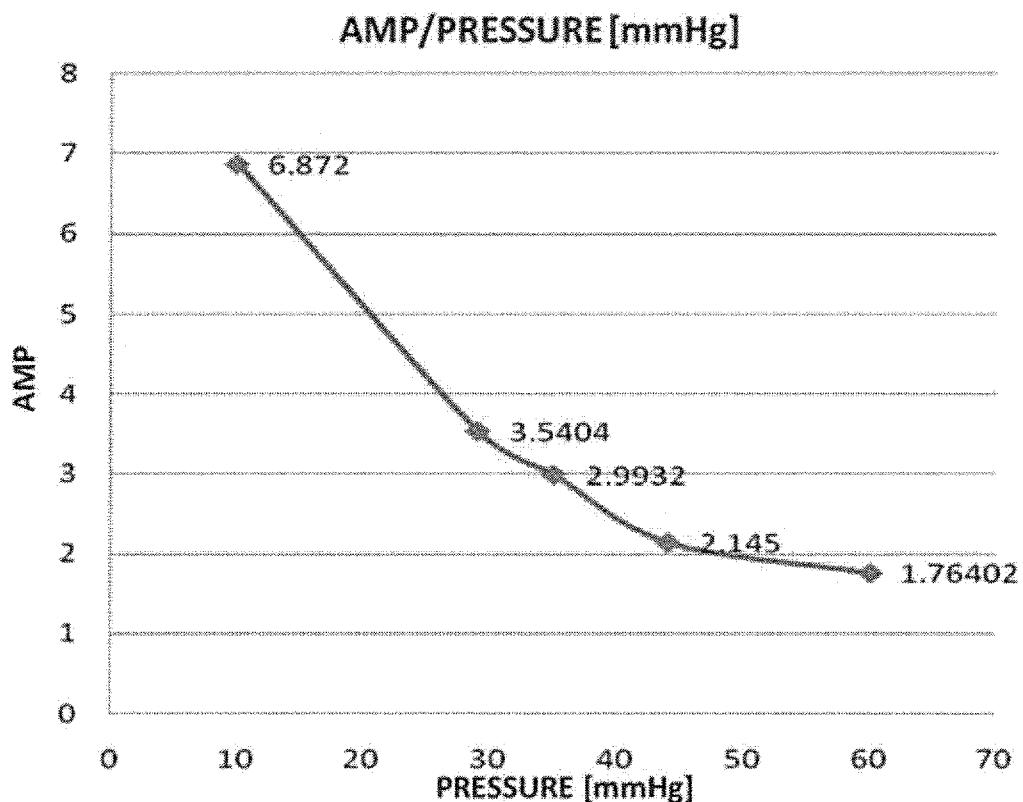


Fig. 31

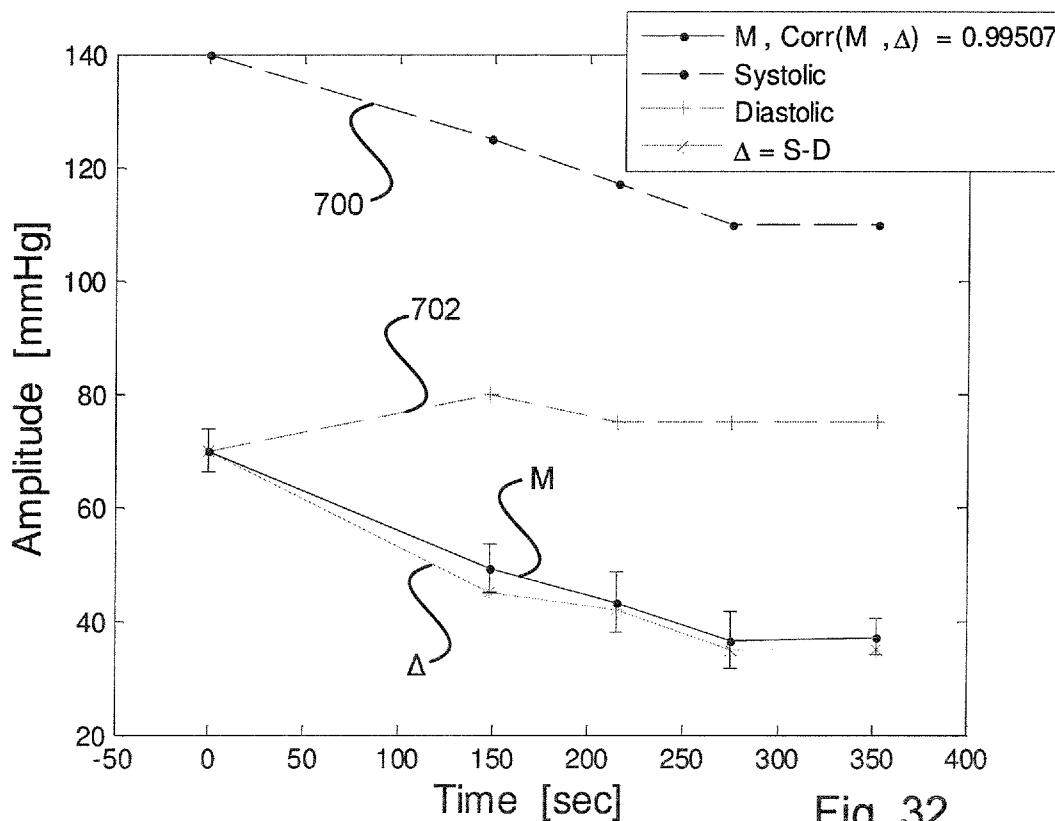


Fig. 32

INTERNATIONAL SEARCH REPORT

International application No

PCT/IL2013/050658

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61B5/00 A61B5/026 A61B5/021 A61B3/16 A61B5/145
ADD. A61B5/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X, P	WO 2012/101644 A2 (UNIV BAR ILAN [IL]; UNIV VALENCIA [ES]; ZALEVSKY ZEEV [IL]; GARCIA JAV) 2 August 2012 (2012-08-02) the whole document	1-13, 15-40
A, P	-----	14
A	WO 01/50955 A1 (FLOCK STEPHEN T [AU]; MARCHITTO KEVIN S [AU]) 19 July 2001 (2001-07-19) page 40, line 8 - page 41, line 10 ----- -/-	14

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

17 December 2013

Date of mailing of the international search report

07/01/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Anscombe, Marcel

INTERNATIONAL SEARCH REPORT

International application No

PCT/IL2013/050658

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	YEVGENY BEIDERMAN ET AL: "Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern", JOURNAL OF BIOMEDICAL OPTICS, vol. 15, no. 6, 1 November 2010 (2010-11-01), page 061707, XP055093274, ISSN: 1083-3668, DOI: 10.1117/1.3505008 page 061707-3, right hand column, 2nd paragraph from top; figure 2	1,29
A	----- WO 2009/013738 A1 (UNIV BAR ILAN [IL]; UNIVERSTITAT DE VALENCIA [ES]; ZALEVSKY ZEEV [IL];) 29 January 2009 (2009-01-29) the whole document	14
A	----- WO 2008/053474 A2 (ELFI TECH LTD [IL]; FINE ILYA [IL]) 8 May 2008 (2008-05-08) the whole document	1-40
A	----- WO 02/36015 A1 (GEN HOSPITAL [US]; TEARNEY GUILLERMO J [US]; BOUMA BRETT E [US]) 10 May 2002 (2002-05-10) the whole document	1-40
A	----- JP 2007 244533 A (UNIV YAMAGUCHI) 27 September 2007 (2007-09-27) the whole document	1-40

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IL2013/050658

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 2012101644	A2	02-08-2012	EP US WO	2667778 A2 2013144137 A1 2012101644 A2		04-12-2013 06-06-2013 02-08-2012
WO 0150955	A1	19-07-2001	AU WO	2944201 A 0150955 A1		24-07-2001 19-07-2001
WO 2009013738	A1	29-01-2009	AU CA EP KR US WO	2008278642 A1 2697625 A1 2183543 A1 20100076944 A 2010226543 A1 2009013738 A1		29-01-2009 29-01-2009 12-05-2010 06-07-2010 09-09-2010 29-01-2009
WO 2008053474	A2	08-05-2008	EP JP US WO	2079363 A2 2010508056 A 2009209834 A1 2008053474 A2		22-07-2009 18-03-2010 20-08-2009 08-05-2008
WO 0236015	A1	10-05-2002	AT AU EP JP JP US US US WO	454845 T 3084202 A 1434522 A1 4241038 B2 2004512538 A 2002183601 A1 2007073162 A1 2012022381 A1 0236015 A1		15-01-2010 15-05-2002 07-07-2004 18-03-2009 22-04-2004 05-12-2002 29-03-2007 26-01-2012 10-05-2002
JP 2007244533	A	27-09-2007	JP JP	4257982 B2 2007244533 A		30-04-2009 27-09-2007