Abstract:

Methods and compositions for disrupting biofilm utilizing chitosan-derivative compounds are described herein. Methods of disrupting (e.g., reducing the viscosity of, or dissolving) a preformed biofilm in a subject, the method comprising: administering to the subject an effective amount of a composition comprising a soluble chitosan or derivatized chitosan wherein the soluble chitosan or derivatized chitosan when administered contacts the preformed biofilm, thereby disrupting (e.g., reducing the viscosity of, or dissolving) the preformed biofilm.

Published:

— with international search report (Art. 21(3))

Title: METHODS AND COMPOSITIONS FOR DISRUPTING BIOFILM UTILIZING CHITOSAN- DERIVATIVE COMPOUNDS

Figure 1A

Figure 1B
METHODS AND COMPOSITIONS FOR DISRUPTING BIOFILM UTILIZING CHITOSAN-DERIVATIVE COMPOUNDS

Cross Reference to Related Applications

This application claims priority to U.S. Application Serial No. 61/239,180, filed on September 2, 2009, the contents of which are hereby incorporated by reference in their entirety.

Field of the Invention

The invention relates to soluble chitosans or derivatized chitosans and their use to disrupt or dissolve a biofilm in a subject.

Background

Microbial populations are present in body cavities including the mouth, ear, nose, throat, sinuses, respiratory tree including the lungs, gastrointestinal tract, skin, or wound. Unbalanced populations of bacteria can cause increases in particular microbial populations that are no longer controlled or in balance with the body. These conditions can occur through e.g., pathogenic infections, compromised immune system, and side effects from antibiotics. Pathogenic bacteria can adhere to a host or a surface, colonizing it to form biofilms.

Summary of the Invention

Compositions comprising soluble chitosans and derivatized chitosans (e.g., liquid, solid particulate and semisolid compositions) and related methods of use are described herein. In these embodiments, the derivatized chitosans are water soluble. Exemplary methods using the compositions described herein include, for example, methods of disrupting preformed biofilm in a subject; methods of preventing or delaying the time to the formation of biofilm in the mouth, ear, nose, throat, sinuses, eyes, respiratory system, and/or digestive tract of a subject; methods of treating or preventing complications of cystic fibrosis in a subject; methods of treating or preventing pulmonary infections in a subject; methods of treating or preventing gastrointestinal tract infections in a subject; and methods of treating a wound, e.g., treating or preventing wound infection in a subject. In some embodiments, a composition described herein can result in the clumping of bacteria, for example, to a
chitosan derivative. The clumped bacteria can be discarded, for example, expirated or expectorated by a subject, or can be ingested.

In one aspect, the invention features a method of disrupting (e.g., reducing the viscosity of, or dissolving) a preformed biofilm in a subject, the method comprising: administering to the subject an effective amount of a composition comprising a soluble derivatized chitosan wherein the soluble derivatized chitosan when administered contacts the preformed biofilm, thereby disrupting (e.g., reducing the viscosity of, or dissolving) the preformed biofilm.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the composition.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the composition.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.999\% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the composition.

In one embodiment, the method further comprises administering an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same composition or dosage form).

In one embodiment, the method further comprises administering an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the composition.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the respiratory system (e.g., airways, lung, throat, nose), ear, mouth (e.g., tooth, tongue, mucosal surface), digestive system (e.g., stomach, small intestine, large intestine, colon, bowel), skin, or wound.
In one embodiment, the subject has a complication of cystic fibrosis (e.g., lung infection or respiratory congestion), pneumonia, oral disease (e.g., gingivitis, dental caries, or halitosis), ear infection, throat infection, sinusitis, a complication in immunocompromised patient (e.g., lung infection or respiratory congestion), gastrointestinal infection, enteritis, or a symptom thereof.

In one embodiment, the subject is infected with bacteria listed in Table 1, 2, 3, or 4.

In one embodiment, the composition is administered topically, orally, or enterally.

In one embodiment, the composition is administered by inhalation (e.g., nebulizer, nasal spray, nasal swab, or sinus spray).

In one embodiment, the effective amount is therapeutically effective amount.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in wounds or duodenum.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 2.0 to about pH 4.0, e.g., in stomach.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 8.0 to about pH 8.5, e.g., in lower part of the gastrointestinal tract.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{formula (I)}
\end{align*}
\]

wherein:

\(n\) is an integer between 20 and 6000; and

each \(R^1\) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):
or R1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II).

In one embodiment, between 25-95% of R^1 substituents are hydrogen.

In one embodiment, between 55-90% of R^1 substituents are hydrogen.

In one embodiment, between 1-50% of R^1 substituents are acetyl.

In one embodiment, between 4-20% of R^1 substituents are acetyl.

In one embodiment, between 2-50% of R^1 substituents are a group of formula (II).

In one embodiment, between 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, 55-90% of R^1 substituents are hydrogen, 4-20% of R^1 substituents are acetyl, 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, R^2 is amino and R^3 is an arginine side chain.

In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^2 is amino and R^1 is a lysine side chain.

In one embodiment, R^1 is selected from one of the following:
In one embodiment, **R**₂ is amino and **R**₃ is a histidine side chain.

In one embodiment, **R**¹ is selected from one of the following:

In one embodiment, at least 1% of **R**¹ substituents are selected from one of the following:

AND at least 1% of **R**¹ substituents are selected from the following:

In one embodiment, **R**₂ is amino and **R**³ is a substituted C₁-C₆ alkyl.

In one embodiment, **R**³ is C₁-C₆ alkyl substituted with an amino group.

In one embodiment, **R**³ is C₁ alkyl substituted with an amino group.

In one embodiment, **R**³ is C₂ alkyl substituted with an amino group.

In one embodiment, **R**³ is C₃ alkyl substituted with an amino group.

In one embodiment, **R**³ is C₄ alkyl substituted with an amino group.
In one embodiment, R is alkyl substituted with an amino group.

In one embodiment, R is alkyl substituted with an amino group.

In one embodiment, R is selected from one of the following:

In one embodiment, R is alkyl substituted with a guanidino group.

In one embodiment, R is alkyl substituted with a guanidino group.

In one embodiment, R is alkyl substituted with a guanidino group.

In one embodiment, R is alkyl substituted with a guanidino group.

In one embodiment, R is alkyl substituted with a guanidino group.

In one embodiment, R is selected from one of the following:

In one embodiment, R is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is iert-butyloxycarbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.
In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R1 is amino.
In one embodiment, R2 is hydrogen and R3 is amino.
In one embodiment, R2 is hydrogen and R3 is guanidino.
In one embodiment, R2 is hydrogen and R3 is a substituted C1-C6 alkyl.
In one embodiment, R3 is C1 alkyl substituted with an amino group.
In one embodiment, R3 is C1 alkyl substituted with an amino group.
In one embodiment, R3 is C2 alkyl substituted with an amino group.
In one embodiment, R3 is C3 alkyl substituted with an amino group.
In one embodiment, R3 is C4 alkyl substituted with an amino group.
In one embodiment, R3 is Calkyl substituted with a guanidino group.

In one embodiment, R1 is selected from one of the following:

\[\begin{align*}
\text{R1} & = \text{O} \quad \text{O} \\
& \quad \| \quad \| \\
\text{NH}_2 & \quad \text{NH}_2 \\
\end{align*} \]

In one embodiment, R3 is C1-C6 alkyl substituted with a guanidino group.
In one embodiment, R3 is C1 alkyl substituted with a guanidino group.
In one embodiment, R3 is C2 alkyl substituted with a guanidino group.
In one embodiment, R3 is C3 alkyl substituted with a guanidino group.
In one embodiment, R3 is C4 alkyl substituted with a guanidino group.
In one embodiment, R3 is C5 alkyl substituted with a guanidino group.
In one embodiment, R3 is C6 alkyl substituted with a guanidino group.
In one embodiment, R1 is selected from one of the following:
In one embodiment, at least 25% of R^1 substituents are H, at least 1% of R^1
substituents are acetyl, and at least 2% of R^1 substituents independently selected from
any of the formulae specifically shown above.

In one embodiment, the chitosan formula (I) may be further derivatized on
the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is
between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is
between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is
between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is
between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is
between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is
between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized
chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized
chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan
is between 1.0 and 2.5.
In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the functionalized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diarginine, triarginine, etc).

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a method of preventing (e.g., reducing the degree of) the formation of a biofilm in the respiratory system of a subject, the method comprising: administering to the respiratory system of the subject an effective amount of a composition comprising a soluble derivatized chitosan, thereby preventing or treating the formation of a biofilm in the respiratory system of the subject.

In one embodiment, the method further comprises administering an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant).

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the method further comprises administering an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with or subsequent to the administration of the composition.

In one embodiment, the method further comprises administering an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the composition.

In one embodiment, the subject is infected with planktonic bacteria or infected with bacteria listed in Table 3.

In one embodiment, the subject is diagnosed with bacterial pneumonia.

In one embodiment, the composition reduces the viability of planktonic bacteria.
In one embodiment, the composition reduces colonization of the planktonic bacteria.

In one embodiment, the composition is administered by inhalation (e.g., nebulizer, nasal spray, or sinus spray).

In one embodiment, the effective amount is therapeutically effective amount.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\text{formula (I)}
\]

wherein:

n is an integer between 20 and 6000; and

each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\text{formula (II)}
\]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

\(R^3 \) is amino, guanidino, \(C_{1-6} \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 25-95% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 55-90% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 1-50% of \(R^1 \) substituents are acetyl.
In one embodiment, between 4-20% of \(R^1 \) substituents are acetyl.

In one embodiment, between 2-50% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 4-30% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, 55-90% of \(R^1 \) substituents are hydrogen, 4-20% of \(R^1 \) substituents are acetyl, 4-30% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, \(R^2 \) is amino and \(R^3 \) is an arginine side chain.

In one embodiment, \(R^1 \) is selected from one of the following:

![Chemical structures](attachment:structures.png)

In one embodiment, \(R^2 \) is amino and \(R^3 \) is a lysine side chain.

In one embodiment, \(R^1 \) is selected from one of the following:

![Chemical structures](attachment:structures2.png)

In one embodiment, \(R^2 \) is amino and \(R^3 \) is a histidine side chain.

In one embodiment, \(R^1 \) is selected from one of the following:

![Chemical structures](attachment:structures3.png)

In one embodiment, at least 1% of \(R^1 \) substituents are selected from one of the following:
of R substituents are selected from the following:

In one embodiment, R\textsubscript{2} is amino and R\textsubscript{3} is a substituted C\textsubscript{1}-C\textsubscript{6} alkyl.
In one embodiment, R\textsubscript{3} is C\textsubscript{1}-C\textsubscript{6} alkyl substituted with an amino group.
In one embodiment, R\textsubscript{3} is C\textsubscript{1} alkyl substituted with an amino group.
In one embodiment, R\textsubscript{3} is C\textsubscript{2} alkyl substituted with an amino group.
In one embodiment, R\textsubscript{3} is C\textsubscript{3} alkyl substituted with an amino group.
In one embodiment, R\textsubscript{3} is C\textsubscript{4} alkyl substituted with an amino group.
In one embodiment, R\textsubscript{3} is C\textsubscript{i} alkyl substituted with an amino group.
In one embodiment, R\textsubscript{3} is C\textsubscript{5} alkyl substituted with a guanidino group.
In one embodiment, R\textsubscript{3} is C\textsubscript{6} alkyl substituted with a guanidino group.
In one embodiment, R² is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is tert-butyloxycarbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R² is amino.
In one embodiment, R² is hydrogen and R⁷ is amino.
In one embodiment, R² is hydrogen and R³ is guanidino.
In one embodiment, R² is hydrogen and R³ is a substituted C₅-C₆ alkyl.
In one embodiment, R³ is C₅-C₆ alkyl substituted with an amino group.
In one embodiment, R³ is C₆ alkyl substituted with an amino group.
In one embodiment, R³ is C₇ alkyl substituted with an amino group.
In one embodiment, R³ is C₃ alkyl substituted with an amino group.
In one embodiment, R³ is C₄ alkyl substituted with an amino group.
In one embodiment, R³ is C₅ alkyl substituted with an amino group.
In one embodiment, R³ is C₆ alkyl substituted with an amino group.
In one embodiment, R³ is selected from one of the following:
In one embodiment, R₃ is C₁-C₆ alkyl substituted with a guanidino group.

In one embodiment, R₁ is C₃ alkyl substituted with a guanidino group.

In one embodiment, at least 25% of R¹ substituents are H, at least 1% of R¹ substituents are acetyl, and at least 2% of R¹ substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diarginine, triarginine, etc).

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a method of preventing (e.g., reducing the degree of) the formation of a biofilm in the mouth, nose, throat, ear, skin, wound, or digestive tract of a subject, the method comprising: administering to the mouth, nose, ear or digestive tract of the subject an effective amount of a composition comprising a soluble derivatized chitosan, thereby preventing the formation of a biofilm in the mouth, nose, throat, ear, skin, wound, or digestive tract of the subject.

In one embodiment, the method further comprises administering an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic
surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the method further comprises administering an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with or subsequent to the administration of the composition.

In one embodiment, the method further comprises administering an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the composition.

In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the subject is infected with bacteria listed in Tables 1 and/or 2.

In one embodiment, the composition reduces the viability of planktonic bacteria.

In one embodiment, the composition reduces colonization of the planktonic bacteria.

In one embodiment, the composition is administered topically, orally, enterally, or by inhalation (e.g., nebulizer, nasal spray, or sinus spray).

In one embodiment, the effective amount is therapeutically effective amount.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{HO} & \quad \text{OH} \\
\text{NH} & \quad \text{OH} \\
R^1 & \quad n \\
\text{HO} & \quad \text{OH} \\
\text{NH} & \quad \text{OH} \\
R^1 & \quad n
\end{align*}
\]

formula (I)

wherein:

n is an integer between 20 and 6000; and
each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[O \begin{array}{c} \text{R}^2 \\ \text{R}^3 \end{array} \]

formula (II)
or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II).

In one embodiment, between 25-95% of R^1 substituents are hydrogen.

In one embodiment, between 55-90% of R^1 substituents are hydrogen.

In one embodiment, between 1-50% of R^1 substituents are acetyl.

In one embodiment, between 2-50% of R^1 substituents are acetyl.

In one embodiment, between 2-50% of R^1 substituents are a group of formula (II).

In one embodiment, between 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, 55-90% of R^1 substituents are hydrogen, 4-20% of R^1 substituents are acetyl, 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, R^2 is amino and R^3 is an arginine side chain.

In one embodiment, R^1 is selected from one of the following:

\[O \begin{array}{c} \text{NH}_2 \\ \text{NH} \\ \text{NH}_2 \end{array} \quad \text{and} \quad O \begin{array}{c} \text{NH}_2 \\ \text{NH} \\ \text{NH}_2 \end{array} \]

In one embodiment, R^2 is amino and R^3 is a lysine side chain.

In one embodiment, R' is selected from one of the following:
In one embodiment, R\textsubscript{2} is amino and R\textsubscript{3} is a histidine side chain.

In one embodiment, R\textsubscript{1} is selected from one of the following:

- \begin{align*}
\text{O} & \text{NH}_2 \\
\text{NH}_2 \text{ and } \text{NH}_2 \\
\text{N} & \text{H} \text{NH}_2
\end{align*}

and

- \begin{align*}
\text{O} & \text{NH}_2 \\
\text{NH}_2 \text{ and } \text{NH}_2 \\
\text{N} & \text{H} \text{NH}_2
\end{align*}

In one embodiment, at least 1\% of R\textsubscript{1} substituents are selected from one of the following:

- \begin{align*}
\text{O} & \text{NH}_2 \\
\text{NH}_2 \text{ and } \text{NH}_2 \\
\text{N} & \text{H} \text{NH}_2
\end{align*}

and at least 1\% of R\textsubscript{1} substituents are selected from the following:

- \begin{align*}
\text{O} & \text{NH}_2 \\
\text{NH}_2 \text{ and } \text{NH}_2 \\
\text{N} & \text{H} \text{NH}_2
\end{align*}

In one embodiment, R\textsubscript{2} is amino and R\textsubscript{3} is a substituted C\textsubscript{1}-C\textsubscript{6} alkyl.

In one embodiment, R\textsubscript{3} is C\textsubscript{1}-C\textsubscript{6} alkyl substituted with an amino group.

In one embodiment, R\textsubscript{3} is C\textsubscript{1} alkyl substituted with an amino group.

In one embodiment, R\textsubscript{3} is C\textsubscript{2} alkyl substituted with an amino group.

In one embodiment, R\textsubscript{3} is C\textsubscript{3} alkyl substituted with an amino group.

In one embodiment, R\textsubscript{3} is C\textsubscript{4} alkyl substituted with an amino group.
In one embodiment, R^3 is C_5 alkyl substituted with an amino group.
In one embodiment, R^3 is C_6 alkyl substituted with an amino group.
In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^3 is C_1-C_6 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_1 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_2 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_3 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_4 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_5 alkyl substituted with a guanidino group.
In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^2 is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is tert-butyloxycarbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.
In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R is amino.
In one embodiment, R is hydrogen and R is amino.
In one embodiment, R is hydrogen and R is guanidino.
In one embodiment, R is hydrogen and R is a substituted C-C alkyl.
In one embodiment, R is C alkyl substituted with an amino group.
In one embodiment, R is C alkyl substituted with an amino group.
In one embodiment, R is C alkyl substituted with an amino group.
In one embodiment, R is C alkyl substituted with an amino group.
In one embodiment, R is C alkyl substituted with an amino group.
In one embodiment, R is C alkyl substituted with a guanidino group.
In one embodiment, R is C alkyl substituted with a guanidino group.
In one embodiment, R is C alkyl substituted with a guanidino group.
In one embodiment, R is C alkyl substituted with a guanidino group.
In one embodiment, R is C alkyl substituted with a guanidino group.
In one embodiment, R is selected from one of the following:

In one embodiment, R is C alkyl substituted with a guanidino group.
In one embodiment, R is C alkyl substituted with a guanidino group.
In one embodiment, R is C alkyl substituted with a guanidino group.
In one embodiment, R is C alkyl substituted with a guanidino group.
In one embodiment, R is C alkyl substituted with a guanidino group.
In one embodiment, R is C alkyl substituted with a guanidino group.
In one embodiment, R is selected from one of the following:
In one embodiment, at least 25% of R₁ substituents are H, at least 1% of R₁ substituents are acetyl, and at least 2% of R₁ substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.
In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the functionahzed chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargine, triargine, etc).

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a method of treating or preventing (e.g., reducing the degree of) a complication of cystic fibrosis in a subject, the method comprising: administering to the subject an effective amount of a composition comprising a soluble chitosan or derivatized chitosan, thereby treating or preventing a complication of cystic fibrosis.

In one embodiment, the complication of cystic fibrosis is lung infection or respiratory congestion.

In one embodiment, the subject has a bacterial infection, e.g., bacteria list in Table 3, e.g., Pseudomonas aeruginosa.

In one embodiment, the subject comprises at least one biofilm.

In one embodiment, exopolysaccharides (EPS) of the biofilm comprises alginate and/or polysaccharide synthesis locus (Psl) (e.g., in Pseudomonas aeruginosa); acidic polysaccharide (e.g., in Burkholderia cepacia); collanic acid, poly-p-l,6-GlcNAc (PGA) or cellulose (e.g., in Escherichia coli); cellulose (e.g., in Salmonella); N-acetylglucosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose (e.g., in Vibrio cholerae); polysaccharide intercellular adhesion (PIA) (e.g., in Staphylococcus); glucose and mannose rich component (e.g., in Bacillus subtilis); mannose polysaccharide (e.g., in Prevotella intermedia, Capnocytophaga ochracea, or Prevotella nigrescens).

In one embodiment, the biofilm is associated with actin and/or DNA released from bacteria or cells such as neutrophils.
In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the composition.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the composition.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.999% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the composition.

In one embodiment, the method further comprises administering an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same composition or dosage form).

In one embodiment, the method further comprises administering an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the composition.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the respiratory system (e.g., airways, lung, throat, nose).

In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the composition reduces the viability of planktonic bacteria.

In one embodiment, the composition reduces colonization of the planktonic bacteria.

In one embodiment, the planktonic bacteria are clumped, e.g., to facilitate removal by expectoration, lavage, or chest percussion.

In one embodiment, the composition is administered by inhalation (e.g., nebulizer, nasal spray, nasal swab, or sinus spray).

In one embodiment, the effective amount is therapeutically effective amount.
In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

```latex
\begin{align*}
\text{formula (I)}
\end{align*}
```

wherein:
- n is an integer between 20 and 6000; and
- each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

```latex
\begin{align*}
\text{formula (II)}
\end{align*}
```

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_3-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II).

In one embodiment, between 25-95% of R^1 substituents are hydrogen.

In one embodiment, between 55-90% of R^1 substituents are hydrogen.

In one embodiment, between 1-50% of R^1 substituents are acetyl.

In one embodiment, between 4-20% of R^1 substituents are acetyl.

In one embodiment, between 2-50% of R^1 substituents are a group of formula (II).

In one embodiment, between 4-30% of R^1 substituents are a group of formula (II).
In one embodiment, 55-90% of R1 substituents are hydrogen, 4-20% of R1 substituents are acetyl, 4-30% of R1 substituents are a group of formula (II).

In one embodiment, R2 is amino and R3 is an arginine side chain.

In one embodiment, R1 is selected from one of the following:

\[
\text{O} \quad \text{NH}_2 \quad \text{HN} \quad \text{NH}_2 \quad \text{HN} \quad \text{NH}_2
\]

In one embodiment, R2 is amino and R3 is a lysine side chain.

In one embodiment, R1 is selected from one of the following:

\[
\text{O} \quad \text{NH}_2 \quad \text{HN} \quad \text{NH}_2 \quad \text{HN} \quad \text{NH}_2
\]

In one embodiment, R2 is amino and R3 is a histidine side chain.

In one embodiment, R1 is selected from one of the following:

\[
\text{O} \quad \text{NH}_2 \quad \text{HN} \quad \text{NH}_2 \quad \text{HN} \quad \text{NH}_2
\]

In one embodiment, at least 1% of R1 substituents are selected from one of the following:

\[
\text{O} \quad \text{NH}_2 \quad \text{HN} \quad \text{NH}_2 \quad \text{HN} \quad \text{NH}_2
\]

AND at least 1% of R1 substituents are selected from the following:
In one embodiment, R^2 is amino and R^1 is a substituted C_{i-C} alkyl.
In one embodiment, R^1 is C_{1-C_6} alkyl substituted with an amino group.
In one embodiment, R^3 is C_1 alkyl substituted with an amino group.
In one embodiment, R^J is C_2 alkyl substituted with an amino group.
In one embodiment, R^3 is C_3 alkyl substituted with an amino group.
In one embodiment, R^3 is C_4 alkyl substituted with an amino group.
In one embodiment, R^3 is C_5 alkyl substituted with an amino group.
In one embodiment, R^3 is C_6 alkyl substituted with an amino group.
In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^3 is C_{1-C_6} alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_1 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_2 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_3 alkyl substituted with a guanidino group.
In one embodiment, R^J is C_4 alkyl substituted with a guanidino group.
In one embodiment, R^J is C_5 alkyl substituted with a guanidino group.
In one embodiment, R^J is C_6 alkyl substituted with a guanidino group.
In one embodiment, R^1 is selected from one of the following:
In one embodiment, \(R_2 \) is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is fcr?-butyloxy carbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of \(pH < 3 \), after the synthesis.

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, \(R_2 \) is amino.
In one embodiment, \(R_2 \) is hydrogen and \(R_3 \) is amino.
In one embodiment, \(R_2 \) is hydrogen and \(R_3 \) is guanidino.
In one embodiment, \(R_2 \) is hydrogen and \(R_3 \) is a substituted \(\text{C}_1-\text{C}_6 \) alkyl.
In one embodiment, \(R_3 \) is \(\text{C}_1-\text{C}_9 \) alkyl substituted with an amino group.
In one embodiment, \(R_3 \) is \(\text{C}_1 \) alkyl substituted with an amino group.
In one embodiment, \(R_3 \) is \(\text{C}_2 \) alkyl substituted with an amino group.
In one embodiment, \(R_3 \) is \(\text{C}_3 \) alkyl substituted with an amino group.
In one embodiment, \(R_3 \) is \(\text{C}_4 \) alkyl substituted with an amino group.
In one embodiment, \(R_3 \) is \(\text{C}_5 \) alkyl substituted with an amino group.
In one embodiment, \(R_3 \) is \(\text{C}_6 \) alkyl substituted with an amino group.
In one embodiment, \(R' \) is selected from one of the following:

In one embodiment, \(R_3 \) is \(\text{C}_1-\text{C}_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R_3 \) is \(\text{C}_1 \) alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_2 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_3 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_4 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_5 alkyl substituted with a guanidino group.
In one embodiment, R^1 is C_6 alkyl substituted with a guanidino group.
In one embodiment, R^1 is selected from one of the following:

In one embodiment, at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.
In one embodiment, the chitosan is functionalized at between 5% and 50%.
In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.
In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diarginine, triarginine, etc).

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a method of treating or preventing (e.g., reducing the degree of) a gastrointestinal tract infection in a subject, the method comprising: administering to the subject an effective amount of a composition comprising a soluble derivatized chitosan, thereby treating or preventing the gastrointestinal tract infection.

In one embodiment, the gastrointestinal tract infection is noninflammatory gastroenteritis, inflammatory gastroenteritis, invasive gastroenteritis, or necrotic or necrotizing enteritis.

In one embodiment, the subject is infected with Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Clostridium botidim, Vibrio cholerae, Escherichia coli, Clostridium difficile, Vibrio parahemolyticus, Bacillus anthracis, Shigella sp., Salmonella sp., Campylobacter jejuni, Vibrion vulnificus, Yersinia sp., Francisella tularensis, or Helicobacter pylori.

In one embodiment, the subject is infected with bacteria listed in Table 2.

In one embodiment, the subject comprises at least one biofilm.
In one embodiment, exopolysaccharides (EPS) of the biolim comprises alginate and/or polysaccharide synthesis locus (PsI) (e.g., in Pseudomonas aeruginosa); acidic polysaccharide (e.g., in Burkholderia cepacia); collanic acid, poly-P-l,6-GlcNAc (PGA) or cellulose (e.g., in Escherichia coli); cellulose (e.g., in Salmonella); N-acetylgalactosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose (e.g., in Vibrio cholerae); polysaccharide intercellular adhesion (PIA) (e.g., in Staphylococcus); glucose and mannose rich component (e.g., in Bacillus subtilis); mannose polysaccharide (e.g., in Prevotella intermedia, Capnocytophaga ochracea, or Prevotella nigrescens).

In one embodiment, the biofilm is associated with actin and/or DNA released from bacteria or cells such as neutrophils.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the composition.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the composition.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, or 99.999% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the composition.

In one embodiment, the method further comprises administering an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same composition or dosage form).

In one embodiment, the method further comprises administering an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the composition.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the gastrointestinal tract.
In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the composition reduces the viability of planktonic bacteria.

In one embodiment, the composition reduces colonization of the planktonic bacteria.

In one embodiment, the planktonic bacteria are clumped.

In one embodiment, the composition is administered orally, or enterally.

In one embodiment, the effective amount is therapeutically effective amount.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in duodenum.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 2.0 to about pH 4.0, e.g., in stomach.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 8.0 to about pH 8.5, e.g., in lower part of the gastrointestinal tract.

In one embodiment, the composition is active below pH 6 (e.g., in stomach and duodenum) or near or above pH 8 (e.g., in colon).

In one embodiment, the composition is active between pH 6 and pH 8.

In one embodiment, the composition is delivered e.g., by capsule, time release capsule, pH release capsule, as a powder dissolved in the digestive tract, or lozenge.

In one embodiment, the composition is delivered by mixing in food, or dissolved in any liquid, e.g., in a liquid formulation, e.g., daily or multiple times daily.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\text{formula (I)}
\]

wherein:

n is an integer between 20 and 6000; and
each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{align*}
\text{O} & \quad \text{R}^2 \\
\text{R}^3
\end{align*}
\]

formula (II)

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II).

In one embodiment, between 25-95% of R^1 substituents are hydrogen.

In one embodiment, between 55-90% of R^1 substituents are hydrogen.

In one embodiment, between 1-50% of R^1 substituents are acetyl.

In one embodiment, between 4-20% of R^1 substituents are acetyl.

In one embodiment, between 2-50% of R^1 substituents are a group of formula (II).

In one embodiment, between 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, 55-90% of R^1 substituents are hydrogen, 4-20% of R^1 substituents are acetyl, 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, R^2 is amino and R^3 is an arginine side chain.

In one embodiment, R^1 is selected from one of the following:

\begin{align*}
\text{O} & \quad \text{NH}_2 \\
\text{NH} & \quad \text{NH}_2
\end{align*}

and

\begin{align*}
\text{NH} & \quad \text{NH}_2
\end{align*}

In one embodiment, R^2 is amino and R^3 is a lysine side chain.

In one embodiment, R^1 is selected from one of the following:
In one embodiment, R_2 is amino and R_3 is a histidine side chain.

In one embodiment, R_i is selected from one of the following:

In one embodiment, at least 1% of R_i substituents are selected from one of the following:

AND at least 1% of R_i substituents are selected from the following:

In one embodiment, R_2 is amino and R_3 is a substituted C_1-C_6 alkyl.

In one embodiment, R_3 is C_1-C_6 alkyl substituted with an amino group.

In one embodiment, R_3 is C_1 alkyl substituted with an amino group.

In one embodiment, R_3 is C_2 alkyl substituted with an amino group.

In one embodiment, R_3 is C_3 alkyl substituted with an amino group.

In one embodiment, R_3 is C_4 alkyl substituted with an amino group.
In one embodiment, R^1 is C_5 alkyl substituted with an amino group.

In one embodiment, R^1 is C_6 alkyl substituted with an amino group.

In one embodiment, R^1 is selected from one of the following:

![Structures]

In one embodiment, R^3 is C_1-C_6 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C_1 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C_2 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C_3 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C_4 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C_5 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C_6 alkyl substituted with a guanidino group.

In one embodiment, R^1 is selected from one of the following:

![Structures]

In one embodiment, R^2 is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is feri-butyloxy carbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.
In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R² is amino.
In one embodiment, R² is hydrogen and R³ is amino.
In one embodiment, R² is hydrogen and R³ is guanidino.
In one embodiment, R² is hydrogen and R³ is a substituted C₁-C₆ alkyl.
In one embodiment, R³ is C₁-C₆ alkyl substituted with an amino group.
In one embodiment, R³ is C₁ alkyl substituted with an amino group.
In one embodiment, R³ is C₁ alkyl substituted with an amino group.
In one embodiment, R³ is C₄ alkyl substituted with an amino group.
In one embodiment, R³ is C₅ alkyl substituted with an amino group.
In one embodiment, R³ is C₆ alkyl substituted with an amino group.
In one embodiment, R³ is selected from one of the following:

```
O
NH₂
```

In one embodiment, R³ is C₁-C₆ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₁ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₃ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₄ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₅ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₆ alkyl substituted with a guanidino group.
In one embodiment, R¹ is selected from one of the following:
In one embodiment, at least 25% of R substituents are H, at least 1% of R substituents are acetyl, and at least 2% of R substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.
In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargin, triargin, etc).

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a method of treating or preventing (e.g., reducing the degree of) a wound infection in a subject, the method comprising: administering to the wound of the subject an effective amount of a composition comprising a soluble derivatized chitosan, thereby treating or preventing the wound infection. Exemplary wounds include wounds on the skin of a subject, such as a wound that damages and/or penetrates the skin of a subject.

In one embodiment, the subject is infected with bacteria listed in Table 4.

In one embodiment, the wound of the subject comprises at least one biofilm.

In one embodiment, exopolysaccharides (EPS) of the biofilm comprises alginate and/or polysaccharide synthesis locus (Psl) (e.g., in Pseudomonas aeruginosa); acidic polysaccharide (e.g., in Burkholderia cepacia); collanic acid, poly-N-P-l,6-GlcNAc (PGA) or cellulose (e.g., in Escherichia coli); cellulose (e.g., in Salmonella); N-acetylglucosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose (e.g., in Vibrio cholerae); polysaccharide intercellular adhesion (PIA) (e.g., in Staphylococcus); glucose and mannose rich component (e.g., in Bacillus subtilis); mannose polysaccharide (e.g., in Prevoiella intermedia, Capnocytophaga ochracea, or Prevoiella nigrescens).

In one embodiment, the biofilm is associated with actin and/or DIMA released from bacteria or cells such as neutrophils.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the composition.
In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the composition.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.99% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the composition.

In one embodiment, the composition is a rinse, a leave-in rinse, a gel, a component of a dressing, or a time-release formulation.

In one embodiment, the method further comprises administering an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant).

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same composition or dosage form).

In one embodiment, the method further comprises administering an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the composition.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the method further comprises rinsing the wound with a composition described herein.

In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the composition reduces the viability of planktonic bacteria.

In one embodiment, the composition reduces colonization of the planktonic bacteria.

In one embodiment, the planktonic bacteria are clumped.

In one embodiment, the composition is administered topically.

In one embodiment, the effective amount is therapeutically effective amount.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.
In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in the wound.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\text{formula (I)}
\]

wherein:

n is an integer between 20 and 6000; and

each R\(^1\) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\text{formula (II)}
\]

or R\(^1\), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R\(^2\) is hydrogen or amino; and

R\(^3\) is amino, guanidino, C\(_1\)-C\(_6\) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R\(^1\) substituents are H, at least 1% of R\(^1\) substituents are acetyl, and at least 2% of R\(^1\) substituents are a group of formula (II).

In one embodiment, between 25-95% of R\(^1\) substituents are hydrogen.

In one embodiment, between 55-90% of R\(^1\) substituents are hydrogen.

In one embodiment, between 1-50% of R\(^1\) substituents are acetyl.

In one embodiment, between 4-20% of R\(^1\) substituents are acetyl.

In one embodiment, between 2-50% of R\(^1\) substituents are a group of formula (II).

In one embodiment, between 4-30% of R\(^1\) substituents are a group of formula (II).

In one embodiment, 55-90% of R\(^1\) substituents are hydrogen, 4-20% of R\(^1\) substituents are acetyl, 4-30% of R\(^1\) substituents are a group of formula (II).
In one embodiment, R^2 is amino and R^3 is an arginine side chain.

In one embodiment, R^1 is selected from one of the following:

\[
\begin{align*}
\text{O} & \quad \text{NH}_{2} \\
\text{NH} & \quad \text{NH}_{2} \\
\text{HN} & \quad \text{NH}_{2} \quad \text{and}
\end{align*}
\]

In one embodiment, R^2 is amino and R^3 is a lysine side chain.

In one embodiment, R^1 is selected from one of the following:

\[
\begin{align*}
\text{O} & \quad \text{NH}_{2} \\
\text{NH}_{2} & \quad \text{NH}_{2} \\
\text{and}
\end{align*}
\]

In one embodiment, R^2 is amino and R^3 is a histidine side chain.

In one embodiment, R^1 is selected from one of the following:

\[
\begin{align*}
\text{O} & \quad \text{NH}_{2} \\
\text{NH} & \quad \text{NH} \\
\text{HN} & \quad \text{NH}_{2} \quad \text{and}
\end{align*}
\]

In one embodiment, at least 1% of R^1 substituents are selected from one of the following:

\[
\begin{align*}
\text{O} & \quad \text{NH}_{2} \\
\text{NH} & \quad \text{NH}_{2} \\
\text{HN} & \quad \text{NH}_{2} \quad \text{and}
\end{align*}
\]

and at least 1% of R^1 substituents are selected from the following:
In one embodiment, R_2 is amino and R_3 is a substituted C_1-C_6 alkyl.
In one embodiment, R_3 is C_i-C_e alkyl substituted with an amino group.
In one embodiment, R_3 is C_i alkyl substituted with an amino group.
In one embodiment, R_3 is C_2 alkyl substituted with an amino group.
In one embodiment, R_3 is C_3 alkyl substituted with an amino group.

In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^3 is C_i-C_e alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_i alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_2 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_3 alkyl substituted with a guanidino group.

In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^3 is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is Zer-$/b$utyloxycarbonyl (Boc).
In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R^2 is amino.
In one embodiment, R^2 is hydrogen and R^3 is amino.
In one embodiment, R^2 is hydrogen and R^3 is guanidino.
In one embodiment, R^2 is hydrogen and R^3 is a substituted C_{1-6} alkyl.
In one embodiment, R^2 is C_{1-6} alkyl substituted with an amino group.
In one embodiment, R^3 is C_1 alkyl substituted with an amino group.
In one embodiment, R^3 is C_2 alkyl substituted with an amino group.
In one embodiment, R^3 is C_3 alkyl substituted with an amino group.
In one embodiment, R^3 is C_4 alkyl substituted with an amino group.
In one embodiment, R^3 is C_5 alkyl substituted with an amino group.
In one embodiment, R^3 is C_6 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_1 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_2 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_3 alkyl substituted with a guanidino group.
In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^3 is C_{1-6} alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_1 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_2 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_3 alkyl substituted with a guanidino group.
In one embodiment, R^1 is selected from one of the following:
In one embodiment, at least 25% of R1 substituents are H, at least 1% of R1 substituents are acetyl, and at least 2% of R1 substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxy moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In another aspect, the invention features a liquid composition comprising a soluble chitosan or derivatized chitosan described herein.

In one embodiment, the composition further comprises a thickening agent.
In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{array}{c}
\text{HO} \quad \text{O} \quad \text{OH} \\
\text{OH} \quad \text{O} \quad \text{NH} \quad \text{R}^1 \\
\text{NH} \quad \text{R}^1_n \quad \text{HO} \quad \text{O} \quad \text{OH}
\end{array}
\]

\text{formula (I)}

wherein:

n is an integer between 20 and 6000; and

each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{array}{c}
\text{O} \quad \text{R}^2 \\
\text{R}^3
\end{array}
\]

\text{formula (II)}

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

\(R^3 \) is amino, guanidino, \(C_1-C_6 \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 25-95% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 55-90% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 1-50% of \(R^1 \) substituents are acetyl.

In one embodiment, between 4-20% of \(R^1 \) substituents are acetyl.

In one embodiment, between 2-50% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 4-30% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, 55-90% of \(R^1 \) substituents are hydrogen, 4-20% of \(R^1 \) substituents are acetyl, 4-30% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, \(R^2 \) is amino and \(R^3 \) is an arginine side chain.

In one embodiment, \(R^1 \) is selected from one of the following:
In one embodiment, R^2 is amino and R^3 is a lysine side chain.

In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^2 is amino and R^3 is a histidine side chain.

In one embodiment, R^1 is selected from one of the following:

AND at least 1% of R^1 substituents are selected from the following:
In one embodiment, R2 is amino and R3 is a substituted C\textsubscript{1}-C\textsubscript{6} alkyl.
In one embodiment, R3 is C\textsubscript{1}-C\textsubscript{6} alkyl substituted with an amino group.
In one embodiment, R3 is C\textsubscript{1} alkyl substituted with an amino group.
In one embodiment, R3 is C\textsubscript{2} alkyl substituted with an amino group.
In one embodiment, R3 is C\textsubscript{3} alkyl substituted with an amino group.
In one embodiment, R3 is C\textsubscript{4} alkyl substituted with an amino group.
In one embodiment, R3 is C\textsubscript{5} alkyl substituted with an amino group.
In one embodiment, R3 is C\textsubscript{6} alkyl substituted with an amino group.
In one embodiment, R3 is selected from one of the following:

In one embodiment, R3 is C\textsubscript{1}-C\textsubscript{6} alkyl substituted with a guanidino group.
In one embodiment, R3 is C\textsubscript{1} alkyl substituted with a guanidino group.
In one embodiment, R3 is C\textsubscript{2} alkyl substituted with a guanidino group.
In one embodiment, R3 is C\textsubscript{3} alkyl substituted with a guanidino group.
In one embodiment, R3 is C\textsubscript{4} alkyl substituted with a guanidino group.
In one embodiment, R3 is C\textsubscript{5} alkyl substituted with a guanidino group.
In one embodiment, R3 is C\textsubscript{6} alkyl substituted with a guanidino group.
In one embodiment, R3 is selected from one of the following:
In one embodiment, R is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is tert-butyloxycarbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R = amino.

In one embodiment, R is hydrogen and R is amino.

In one embodiment, R is hydrogen and R is guanidino.

In one embodiment, R is hydrogen and R is a substituted C-C alkyl.

In one embodiment, R is a C alkyl substituted with an amino group.

In one embodiment, R is a C alkyl substituted with an amino group.

In one embodiment, R is a C alkyl substituted with an amino group.

In one embodiment, R is a C alkyl substituted with a guanidino group.

In one embodiment, R is a C alkyl substituted with a guanidino group.

In one embodiment, R is a C alkyl substituted with a guanidino group.

In one embodiment, R is a C alkyl substituted with a guanidino group.

In one embodiment, R is a C alkyl substituted with a guanidino group.

In one embodiment, R is a C alkyl substituted with a guanidino group.

In one embodiment, R is a C alkyl substituted with a guanidino group.

In one embodiment, R is a C alkyl substituted with a guanidino group.
In one embodiment, R^2 is C_2 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_3 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_4 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_5 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_6 alkyl substituted with a guanidino group.
In one embodiment, R^1 is selected from one of the following:

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{H}_2\text{N} & \quad \text{H}_2\text{N} \\
\text{NH} & \quad \text{NH}
\end{align*}
\]

In one embodiment, at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment embodiment, the chitosan is functionalized at between 20% and 30%.
In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the composition is active below pH 6 (e.g., in stomach and duodenum) or near or above pH 8 (e.g., in colon).

In one embodiment, the composition is active between pH 6 and pH 8.

In one embodiment, the composition further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargine, triargine, etc).

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a solid particulate (e.g., solid lipid particulate) composition comprising a soluble derivatized chitosan described herein.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{HO} & \quad \text{OH} & \quad \text{NH} \\
R^1 & \quad R^1 & \quad R^1 \\
\text{HO} & \quad \text{OH} & \quad \text{OH}
\end{align*}
\]

formula (I)
wherein:

n is an integer between 20 and 6000; and
each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

![Formula Image]

formula (II)

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, Ci-C_alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II).

In one embodiment, between 25-95% of R^1 substituents are hydrogen.
In one embodiment, between 55-90% of R^1 substituents are hydrogen.
In one embodiment, between 1-50% of R^1 substituents are acetyl.
In one embodiment, between 4-20% of R^1 substituents are acetyl.
In one embodiment, between 2-50% of R^1 substituents are a group of formula (II).
In one embodiment, between 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, 55-90% of R^1 substituents are hydrogen, 4-20% of R^1 substituents are acetyl, 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, R^2 is amino and R^3 is an arginine side chain.

In one embodiment, R^1 is selected from one of the following:

![Image of selected groups]
In one embodiment, \(R^2 \) is amino and \(R^3 \) is a lysine side chain.
In one embodiment, \(R^1 \) is selected from one of the following:

\[
\begin{align*}
&\text{and} \\
\end{align*}
\]

In one embodiment, \(R^2 \) is amino and \(R^3 \) is a histidine side chain.
In one embodiment, \(R^1 \) is selected from one of the following:

\[
\begin{align*}
&\text{and} \\
\end{align*}
\]

In one embodiment, at least 1\% of \(R^1 \) substituents are selected from one of the following:

\[
\begin{align*}
&\text{and} \\
\end{align*}
\]

and at least 1\% of \(R^1 \) substituents are selected from the following:

\[
\begin{align*}
&\text{and} \\
\end{align*}
\]

In one embodiment, \(R^2 \) is amino and \(R^3 \) is a substituted \(C_1-C_6 \) alkyl.
In one embodiment, \(R^3 \) is \(C_1-C_6 \) alkyl substituted with an amino group.
In one embodiment, \(R^1 \) is \(C_1 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_2 \) alkyl substituted with an amino group.
In one embodiment, R₃ is C₃ alkyl substituted with an amino group.
In one embodiment, R¹ is C₄ alkyl substituted with an amino group.
In one embodiment, R₃ is C₅ alkyl substituted with an amino group.
In one embodiment, R₃ is C₆ alkyl substituted with an amino group.
In one embodiment, R¹ is selected from one of the following:

In one embodiment, R² is C₁-C₆ alkyl substituted with a guanidino group.
In one embodiment, R₃ is C₃ alkyl substituted with a guanidino group.
In one embodiment, R² is C₃ alkyl substituted with a guanidino group.
In one embodiment, R₃ is C₄ alkyl substituted with a guanidino group.
In one embodiment, R² is C₅ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₆ alkyl substituted with a guanidino group.
In one embodiment, R¹ is selected from one of the following:

In one embodiment, R² is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is tert-butyloxycarbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.
In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R2 is amino.
In one embodiment, R2 is hydrogen and R3 is amino.
In one embodiment, R2 is hydrogen and R3 is guanidno.
In one embodiment, R2 is a substituted \textit{C}i-\textit{C}\textsubscript{6}alkyl.
In one embodiment, R3 is \textit{C}\textsubscript{1}-\textit{C}e alkyl substituted with an amino group.
In one embodiment, R3 is \textit{C}\textsubscript{2}alkyl substituted with an amino group.
In one embodiment, R3 is \textit{C}\textsubscript{3}alkyl substituted with an amino group.
In one embodiment, R3 is \textit{C}\textsubscript{4}alkyl substituted with an amino group.
In one embodiment, R3 is \textit{C}\textsubscript{5}alkyl substituted with an amino group.
In one embodiment, R3 is \textit{C}\textsubscript{6}alkyl substituted with an amino group.
In one embodiment, R3 is \textit{C}\textsubscript{1}-\textit{C}e alkyl substituted with a guanidino group.
In one embodiment, R3 is \textit{C}\textsubscript{1}alkyl substituted with a guanidno group.
In one embodiment, R3 is \textit{C}\textsubscript{2}alkyl substituted with a guanidino group.
In one embodiment, R3 is \textit{C}\textsubscript{3}alkyl substituted with a guanidino group.
In one embodiment, R3 is \textit{C}\textsubscript{4}alkyl substituted with a guanidino group.
In one embodiment, R3 is \textit{C}\textsubscript{5}alkyl substituted with a guanidino group.
In one embodiment, R3 is \textit{C}\textsubscript{6}alkyl substituted with a guanidino group.
In one embodiment, R1 is selected from one of the following:
In one embodiment, at least 25% of R1 substituents are H, at least 1% of R1 substituents are acetyl, and at least 2% of R1 substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.
In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in wounds or duodenum.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 2.0 to about pH 4.0, e.g., in stomach.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 8.0 to about pH 8.5, e.g., in lower part of the gastrointestinal tract.

In one embodiment, the composition further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargin, triargin, etc).

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a semisolid (e.g., ointment, cream, gel, paste, or liniment) composition comprising a soluble derivatized chitosan described herein.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):
wherein:

n is an integer between 20 and 6000; and
each R is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

or R₁, when taken together with the nitrogen to which it is attached, forms a guanidine moiety.

wherein R² is hydrogen or amino; and
R³ is amino, guanidino, C₁-C₆ alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of Rᵢ substituents are H, at least 1% of Rᵢ substituents are acetyl, and at least 2% of Rᵢ substituents are a group of formula (II).

In one embodiment, between 25-95% of Rᵢ substituents are hydrogen.
In one embodiment, between 55-90% of Rᵢ substituents are hydrogen.
In one embodiment, between 1-50% of Rᵢ substituents are acetyl.
In one embodiment, between 4-20% of Rᵢ substituents are acetyl.
In one embodiment, between 2-50% of Rᵢ substituents are a group of formula (II).

In one embodiment, between 4-30% of Rᵢ substituents are a group of formula (II).
In one embodiment, 55-90% of Rᵢ substituents are hydrogen, 4-20% of Rᵢ substituents are acetyl, 4-30% of Rᵢ substituents are a group of formula (II).
In one embodiment, R² is amino and R³ is an arginine side chain.
In one embodiment, Rᵢ is selected from one of the following:
In one embodiment, R^2 is amino and R^3 is a lysine side chain.

In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^2 is amino and R^3 is a histidine side chain.

In one embodiment, R^1 is selected from one of the following:

In one embodiment, at least 1% of R^1 substituents are selected from one of the following:

and at least 1% of R^1 substituents are selected from the following:
In one embodiment, R_2 is amino and R_3 is a substituted C_1-C_6 alkyl.
In one embodiment, R_3 is C_1-C_6 alkyl substituted with an amino group.
In one embodiment, R_3 is C_1 alkyl substituted with an amino group.
In one embodiment, R_3 is C_2 alkyl substituted with an amino group.
In one embodiment, R_3 is C_3 alkyl substituted with an amino group.
In one embodiment, R_3 is C_4 alkyl substituted with an amino group.
In one embodiment, R_3 is C_5 alkyl substituted with an amino group.
In one embodiment, R_3 is C_6 alkyl substituted with an amino group.
In one embodiment, R_3 is selected from one of the following:

In one embodiment, R_i is C_1-C_6 alkyl substituted with a guanidino group.
In one embodiment, R_i is C_1 alkyl substituted with a guanidino group.
In one embodiment, R_i is C_2 alkyl substituted with a guanidino group.
In one embodiment, R_i is C_3 alkyl substituted with a guanidino group.
In one embodiment, R_i is C_4 alkyl substituted with a guanidino group.
In one embodiment, R_i is C_5 alkyl substituted with a guanidino group.
In one embodiment, R_i is C_6 alkyl substituted with a guanidino group.
In one embodiment, R_i is selected from one of the following:
In one embodiment, R_i is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is tert-butyloxycarbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R_i^2 is amino.
In one embodiment, R_i^2 is hydrogen and R_i^3 is amino.
In one embodiment, R_i^2 is hydrogen and R_i^3 is guanidino.
In one embodiment, R_i^2 is hydrogen and R_i^3 is a substituted C$_1$-C$_6$ alkyl.
In one embodiment, R_i^2 is C$_1$-C$_6$ alkyl substituted with an amino group.
In one embodiment, R_i^3 is C$_1$ alkyl substituted with an amino group.
In one embodiment, R_i^3 is C$_2$ alkyl substituted with an amino group.
In one embodiment, R_i^3 is C$_3$ alkyl substituted with an amino group.
In one embodiment, R_i^3 is C$_4$ alkyl substituted with an amino group.
In one embodiment, R_i^3 is C$_5$ alkyl substituted with an amino group.
In one embodiment, R_i^3 is C$_6$ alkyl substituted with an amino group.
In one embodiment, R_i^4 is selected from one of the following:

In one embodiment, R_i^3 is C$_1$-C$_6$ alkyl substituted with a guanidino group.
In one embodiment, R_i^3 is C$_1$ alkyl substituted with a guanidino group.
In one embodiment, Rᵢ is C₂ alkyl substituted with a guanidino group.
In one embodiment, Rᵢ is C₃ alkyl substituted with a guanidino group.
In one embodiment, Rᵢ is C₄ alkyl substituted with a guanidino group.
In one embodiment, Rᵢ is C₅ alkyl substituted with a guanidino group.
In one embodiment, Rᵢ is C₆ alkyl substituted with a guanidino group.
In one embodiment, Rᵢ is selected from one of the following:

\[
\begin{align*}
\text{O} & \quad \text{NH} \\
\text{H₂N} & \quad \text{NH} \\
\text{NH₂} & \quad \text{NH}
\end{align*}
\]

In one embodiment, at least 25% of Rᵢ substituents are H, at least 1% of Rᵢ substituents are acetyl, and at least 2% of Rᵢ substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.
In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.
In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in wounds.

In one embodiment, the composition further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargin, triargin, etc).

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a dressing or an ointment comprising soluble derivatized chitosan described herein, wherein the dressing or ointment is formulated such that the soluble chitosan or derivatized chitosan described herein is diffusible into a subject upon administration to the subject.

In one embodiment, the composition of the derivatized chitosan was autoclaved before use in the body.
In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{R}^1 & \quad \text{R}^1 \\
\text{NH} & \quad \text{NH} \quad \text{n} \\
\text{OH} & \quad \text{OH} \\
\text{R}^1 & \quad \text{R}^1 \\
\text{OH} & \quad \text{OH}
\end{align*}
\]

wherein:

- \(n \) is an integer between 20 and 6000; and
- each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{align*}
\text{R}^2 & \\
\text{R}^3 & \\
\text{R}^2 & \text{R}^3
\end{align*}
\]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety.

wherein \(R^2 \) is hydrogen or amino; and

- \(R^3 \) is amino, guanidino, \(-\text{NH}-\text{C}_n\text{H} _\text{alkyl substituted with an amino or guamdmo moiety, or a natural or unnatural amino acid side chain,}

wherein at least 25% of \(R^1 \) substituents are \(\text{H} \), at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II).

- In one embodiment, between 25-95% of \(R^1 \) substituents are hydrogen.
- In one embodiment, between 55-90% of \(R^1 \) substituents are hydrogen.
- In one embodiment, between 1-50% of \(R^1 \) substituents are acetyl.
- In one embodiment, between 4-20% of \(R^1 \) substituents are acetyl.
- In one embodiment, between 2-50% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 4-30% of \(R^1 \) substituents are a group of formula (II).

- In one embodiment, 55-90% of \(R^1 \) substituents are hydrogen, 4-20% of \(R^1 \) substituents are acetyl, 4-30% of \(R^1 \) substituents are a group of formula (II).
- In one embodiment, \(R^2 \) is amino and \(R^3 \) is an arginine side chain.
- In one embodiment, \(R^1 \) is selected from one of the following:
In one embodiment, \(R^2 \) is amino and \(R^3 \) is a lysine side chain.

In one embodiment, \(R^1 \) is selected from one of the following:

In one embodiment, \(R^2 \) is amino and \(R^3 \) is a histidine side chain.

In one embodiment, \(R^1 \) is selected from one of the following:

In one embodiment, at least 1% of \(R^1 \) substituents are selected from one of the following:

and at least 1% of \(R^1 \) substituents are selected from the following:
In one embodiment, R₂ is amino and R₃ is a substituted C₁-C₆ alkyl.
In one embodiment, R_i is C₁-C_i alkyl substituted with an amino group.
In one embodiment, R₃ is C₁ alkyl substituted with an amino group.
In one embodiment, R₂ is C₂ alkyl substituted with an amino group.
In one embodiment, R₃ is C₃ alkyl substituted with an amino group.
In one embodiment, R₂ is C₄ alkyl substituted with an amino group.
In one embodiment, R₃ is C₅ alkyl substituted with an amino group.
In one embodiment, R₃ is C₆ alkyl substituted with an amino group.
In one embodiment, R_i is selected from one of the following:

In one embodiment, R₃ is C_i-C₆ alkyl substituted with a guanidino group.
In one embodiment, R₃ is C₁ alkyl substituted with a guanidino group.
In one embodiment, R₃ is C₂ alkyl substituted with a guanidino group.
In one embodiment, R₃ is C₃ alkyl substituted with a guanidino group.
In one embodiment, R₂ is C₄ alkyl substituted with a guanidino group.
In one embodiment, R₃ is C₅ alkyl substituted with a guanidino group.
In one embodiment, R₃ is C₆ alkyl substituted with a guanidino group.
In one embodiment, R_i is selected from one of the following:
In one embodiment, R^2 is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is $\text{t}-\text{butyloxycarbonyl}$ (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R^2 is amino.
In one embodiment, R^2 is hydrogen and R^3 is amino.
In one embodiment, R^2 is hydrogen and R^3 is guanidino.
In one embodiment, R^2 is hydrogen and R^3 is a substituted C_1-C_6 alkyl.
In one embodiment, R^3 is C_1-C_6 alkyl substituted with an amino group.
In one embodiment, R^3 is C_1 alkyl substituted with an amino group.
In one embodiment, R^3 is C_2 alkyl substituted with an amino group.
In one embodiment, R^3 is C_3 alkyl substituted with an amino group.
In one embodiment, R^3 is C_4 alkyl substituted with an amino group.
In one embodiment, R^3 is C_5 alkyl substituted with an amino group.
In one embodiment, R^3 is C_6 alkyl substituted with an amino group.
In one embodiment, R^4 is selected from one of the following:

In one embodiment, R^3 is C_1-C_6 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_i alkyl substituted with a guanidino group.
In one embodiment, \(R^1 \) is \(\text{C}_2 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(\text{C}_3 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^1 \) is \(\text{C}_4 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(\text{C}_5 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^1 \) is \(\text{C}_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is selected from one of the following:

![Chemical structures](image)

In one embodiment, at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.
In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in wounds.

In one embodiment, the dressing or ointment further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the dressing or ointment has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargine, triargine, etc).

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a kit comprising:

- a soluble derivatized chitosan described herein; and
- instructions to disrupt a performed biofilm in a subject.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the derivatized chitosan.
In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.99% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the kit further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same derivatized chitosan or dosage form).

In one embodiment, the kit further comprises an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the derivatized chitosan.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the respiratory system (e.g., airways, lung, throat, nose), ear, eyes, mouth (e.g., tooth, tongue, mucosal surface), digestive system (e.g., stomach, small intestine, large intestine, colon, bowel), skin, or wound.

In one embodiment, the subject has a complication of cystic fibrosis (e.g., lung infection or respiratory congestion), pneumonia, dental plaque, oral disease (e.g., gingivitis, dental caries, or halitosis), ear infection, throat infection, eye infection (e.g., conjunctivitis), a complication in immunocompromised patient (e.g., lung infection or respiratory congestion), gastrointestinal infection, enteritis, or a symptom thereof.

In one embodiment, the subject is infected with bacteria listed in Table 1, 2, 3, or 4.

In one embodiment, the derivatized chitosan is administered topically, orally, or enterally.

In one embodiment, the derivatized chitosan is administered by inhalation (e.g., nebulizer, nasal spray, nasal swab, or sinus spray).
In one embodiment, the effective amount is therapeutically effective amount.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in wounds or duodenum.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 2.0 to about pH 4.0, e.g., in stomach.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 8.0 to about pH 8.5, e.g., in lower part of the gastrointestinal tract.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\text{formula (I)}
\]

wherein:
- \(n \) is an integer between 20 and 6000; and
- each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\text{formula (II)}
\]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

\(R^3 \) is amino, guanidino, \(C_1-C_6 \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 25-95% of \(R^1 \) substituents are hydrogen.
In one embodiment, between 55-90% of R^1 substituents are hydrogen.
In one embodiment, between 1-50% of R^1 substituents are acetyl.
In one embodiment, between 4-20% of R^1 substituents are acetyl.
In one embodiment, between 2-50% of R^1 substituents are a group of formula (II).

In one embodiment, between 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, 55-90% of R^1 substituents are hydrogen, 4-20% of R^1 substituents are acetyl, 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, R^2 is amino and R^3 is an arginine side chain.

In one embodiment, R^1 is selected from one of the following:

\begin{align*}
\text{and}
\end{align*}

In one embodiment, R^2 is amino and R^3 is a lysine side chain.

In one embodiment, R^1 is selected from one of the following:

\begin{align*}
\text{and}
\end{align*}

In one embodiment, R^2 is amino and R^3 is a histidine side chain.

In one embodiment, R^1 is selected from one of the following:

\begin{align*}
\text{and}
\end{align*}

In one embodiment, at least 1% of R^1 substituents are selected from one of the following:
and at least 1% of \(R^1 \) substituents are selected from the following:

In one embodiment, \(R^2 \) is amino and \(R^3 \) is a substituted \(C_1-C_6 \) alkyl.
In one embodiment, \(R^2 \) is \(C_1-C_6 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_1 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_2 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_3 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_4 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_5 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with an amino group.
In one embodiment, \(R^1 \) is selected from one of the following:

In one embodiment, \(R^3 \) is \(C_1-C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_1 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_2 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_3 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_4 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_5 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^1 \) is selected from one of the following:

\[
\begin{array}{cccccc}
\text{NH}_2 & \text{NH}_2 & \text{NH}_2 & \text{NH}_2 & \text{NH}_2 & \text{NH}_2 \\
\text{H}_2\text{N} & \text{H}_2\text{N} & \text{H}_2\text{N} & \text{H}_2\text{N} & \text{H}_2\text{N} & \text{H}_2\text{N} \\
\end{array}
\]

In one embodiment, \(R^2 \) is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is feri-butyloxy carbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of \(\text{pH} < 3 \), after the synthesis.

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, \(R^2 \) is amino.

In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is amino.

In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is guanidino.

In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is a substituted \(\text{C}_1-\text{C}_4 \) alkyl.

In one embodiment, \(R^3 \) is \(\text{C}_1-\text{C}_6 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(\text{C}_1 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(\text{C}_2 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(\text{C}_3 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(\text{C}_4 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(\text{C}_5 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(\text{C}_6 \) alkyl substituted with an amino group.

In one embodiment, \(R' \) is selected from one of the following:
In one embodiment, \(R^3 \) is \(C_1 \cdot C_6 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_1 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_2 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_3 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_4 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_5 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_7 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^1 \) is selected from one of the following:

In one embodiment, at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the functionalized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the kit has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargine, triargine, etc).

In one embodiment, the kit has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a kit comprising:

- a soluble derivatized chitosan described herein; and

instructions to prevent (e.g., reduce the degree of) the formation of a biofilm in the respiratory system of a subject.

In one embodiment, the kit further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.
In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the kit further comprises an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with or subsequent to the administration of the derivatized chitosan.

In one embodiment, the kit further comprises an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the derivatized chitosan.

In one embodiment, the subject is infected with planktonic bacteria or infected with bacteria listed in Table 3.

In one embodiment, the subject is diagnosed with bacterial pneumonia.

In one embodiment, the derivatized chitosan reduces the viability of planktonic bacteria.

In one embodiment, the derivatized chitosan reduces colonization of the planktonic bacteria.

In one embodiment, the derivatized chitosan is administered by inhalation (e.g., nebulizer, nasal spray, or sinus spray).

In one embodiment, the kit comprises an effective amount (e.g., therapeutically effective amount) of derivatized chitosan.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{formula (I)}
\end{align*}
\]

wherein:

n is an integer between 20 and 6000; and

each R^i is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{align*}
\text{formula (II)}
\end{align*}
\]
or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

\(R^3 \) is amino, guanidino, \(C_1-C_6 \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25\% of \(R^1 \) substituents are H, at least 1\% of \(R^1 \) substituents are acetyl, and at least 2\% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 25-95\% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 55-90\% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 1-50\% of \(R^1 \) substituents are acetyl.

In one embodiment, between 4-20\% of \(R^1 \) substituents are acetyl.

In one embodiment, between 2-50\% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 4-30\% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, 55-90\% of \(R^1 \) substituents are hydrogen, 4-20\% of \(R^1 \) substituents are acetyl, 4-30\% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, \(R^2 \) is amino and \(R^3 \) is an arginine side chain.

In one embodiment, \(R^1 \) is selected from one of the following:

\[\text{and} \]

In one embodiment, \(R^2 \) is amino and \(R^3 \) is a lysine side chain.

In one embodiment, \(R^1 \) is selected from one of the following:
In one embodiment, R^2 is amino and R^3 is a histidine side chain.

In one embodiment, R^1 is selected from one of the following:

In one embodiment, at least 1% of R^1 substituents are selected from one of the following:

and at least 1% of R^1 substituents are selected from the following:

In one embodiment, R^2 is amino and R^3 is a substituted C_1-C_6 alkyl.

In one embodiment, R^3 is C_1-C_6 alkyl substituted with an amino group.

In one embodiment, R^3 is C_1 alkyl substituted with an amino group.

In one embodiment, R^3 is C_2 alkyl substituted with an amino group.

In one embodiment, R^3 is C_3 alkyl substituted with an amino group.

In one embodiment, R^3 is C_4 alkyl substituted with an amino group.
In one embodiment, R_3 is alkyl substituted with an amino group.
In one embodiment, R_3 is C_5 alkyl substituted with an amino group.
In one embodiment, R_1 is selected from one of the following:

In one embodiment, R_3 is C_1-C_6 alkyl substituted with a guanidino group.
In one embodiment, R_3 is C_1 alkyl substituted with a guanidino group.
In one embodiment, R_3 is C_2 alkyl substituted with a guanidino group.
In one embodiment, R_3 is C_3 alkyl substituted with a guanidino group.
In one embodiment, R_3 is C_4 alkyl substituted with a guanidino group.
In one embodiment, R_3 is C_5 alkyl substituted with a guanidino group.
In one embodiment, R_1 is C_6 alkyl substituted with a guanidino group.
In one embodiment, R_1 is selected from one of the following:

In one embodiment, R_2 is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is tert-butyloxycarbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.
In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R² is amino.

In one embodiment, R² is hydrogen and R¹ is amino.

In one embodiment, R² is hydrogen and R³ is guanidino.

In one embodiment, R² is hydrogen and R³ is a substituted C₁-C₅ alkyl.

In one embodiment, R³ is C₁-C₆ alkyl substituted with an amino group.

In one embodiment, R³ is C₁ alkyl substituted with an amino group.

In one embodiment, R³ is C₂ alkyl substituted with an amino group.

In one embodiment, R³ is C₃ alkyl substituted with an amino group.

In one embodiment, R³ is C₄ alkyl substituted with an amino group.

In one embodiment, R³ is C₅ alkyl substituted with an amino group.

In one embodiment, R³ is C₆ alkyl substituted with an amino group.

In one embodiment, R¹ is selected from one of the following:

\[
\begin{align*}
\text{R¹} & \quad \text{C₁-C₆ alkyl substituted with a guanidino group.} \\
\text{R¹} & \quad \text{C₁ alkyl substituted with a guanidino group.} \\
\text{R¹} & \quad \text{C₂ alkyl substituted with a guanidino group.} \\
\text{R¹} & \quad \text{C₃ alkyl substituted with a guanidino group.} \\
\text{R¹} & \quad \text{C₄ alkyl substituted with a guanidino group.} \\
\text{R¹} & \quad \text{C₅ alkyl substituted with a guanidino group.} \\
\text{R¹} & \quad \text{C₆ alkyl substituted with a guanidino group.} \\
\end{align*}
\]

In one embodiment, R¹ is selected from one of the following:
In one embodiment, at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.
In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the kit has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargin, triargin, etc).

In one embodiment, the kit has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a kit comprising:
a soluble derivatized chitosan described herein; and
instructions to prevent or treat a complication of cystic fibrosis in a subject.

In one embodiment, the complication of cystic fibrosis is lung infection or respiratory congestion.

In one embodiment, the subject has a bacterial infection, e.g., bacteria list in Table 3, e.g., Pseiidomonas aeruginosa.

In one embodiment, the subject comprises at least one biofilm.

In one embodiment, exopolysaccharides (EPS) of the biofilm comprises alginate and/or polysaccharide synthesis locus (Psl) (e.g., in Pseiidomonas aeruginosa); acidic polysaccharide (e.g., in Burkholderia cepacia); collanic acid, poly-L-1,6-GlcNAc (PGA) or cellulose (e.g., in Escherichia coli); cellulose (e.g., in Salmonella); N-acetylglucosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose (e.g., in Vibrio cholerae); polysaccharide intercellular adhesion (PIA) (e.g., in Staphylococcus); glucose and mannose rich component (e.g., in Bacillus subtilis); mannose polysaccharide (e.g., in Prevotella intermedia, Capnocytophaga ockracea, or Prevotella nigrescens).

In one embodiment, the biofilm is associated with actin and/or DNA released from bacteria or cells such as neutrophils.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the derivatized chitosan.
In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.999% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the kit further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same derivatized chitosan or dosage form).

In one embodiment, the kit further comprises administering an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the derivatized chitosan.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the respiratory system (e.g., airways, lung, throat, nose).

In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the derivatized chitosan reduces the viability of planktonic bacteria.

In one embodiment, the derivatized chitosan reduces colonization of the planktonic bacteria.

In one embodiment, the planktonic bacteria are clumped, e.g., to facilitate removal by expectoration, lavage, or chest percussion.

In one embodiment, the derivatized chitosan is administered by inhalation (e.g., nebulizer, nasal spray, nasal swab, or sinus spray).

In one embodiment, the kit comprises an effective amount (e.g., therapeutically effective amount) of derivatized chitosan.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.
In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{formula (I)}
\end{align*}
\]

wherein:

- \(n \) is an integer between 20 and 6000; and
- each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{align*}
\text{formula (II)}
\end{align*}
\]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

\(R^3 \) is amino, guanidino, \(C_1-C_6 \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(R^1 \) substituents are \(H \), at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 25-95% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 55-90% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 1-50% of \(R^1 \) substituents are acetyl.

In one embodiment, between 4-20% of \(R^1 \) substituents are acetyl.

In one embodiment, between 2-50% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 4-30% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, 55-90% of \(R^1 \) substituents are hydrogen, 4-20% of \(R^1 \) substituents are acetyl, 4-30% of \(R^1 \) substituents are a group of formula (II).
In one embodiment, R^2 is amino and R^3 is an arginine side chain.

In one embodiment, R^1 is selected from one of the following:

```
\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
\end{center}
```

In one embodiment, R^2 is amino and R^3 is a lysine side chain.

In one embodiment, R^1 is selected from one of the following:

```
\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
```

In one embodiment, R^2 is amino and R^3 is a histidine side chain.

In one embodiment, R^1 is selected from one of the following:

```
\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
```

In one embodiment, at least 1% of R^1 substituents are selected from one of the following:

```
\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
```

and at least 1% of R^1 substituents are selected from the following:
In one embodiment, R[3] is C[1-6] alkyl substituted with an amino group.

In one embodiment, R[1] is selected from one of the following:

In one embodiment, R[3] is C[1-6] alkyl substituted with a guanidino group.

In one embodiment, R[1] is selected from one of the following:
In one embodiment, R^2 is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is tert-butyloxycarbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R^2 is amino.
In one embodiment, R^2 is hydrogen and R^3 is amino.
In one embodiment, R^2 is hydrogen and R^3 is guanidino.
In one embodiment, R^3 is a substituted C_1-C_6 alkyl.
In one embodiment, R^3 is C_1-C_6 alkyl substituted with an amino group.
In one embodiment, R^3 is C_1-C_6 alkyl substituted with an amino group.
In one embodiment, R^3 is C_2 alkyl substituted with an amino group.
In one embodiment, R^3 is C_3 alkyl substituted with an amino group.
In one embodiment, R^3 is C_4 alkyl substituted with an amino group.
In one embodiment, R^3 is C_5 alkyl substituted with an amino group.
In one embodiment, R^3 is C_6 alkyl substituted with an amino group.
In one embodiment, R^3 is selected from one of the following:

In one embodiment, R^3 is a substituted C_1-C_6 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_1 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_2 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C_3 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C_4 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C_5 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C_6 alkyl substituted with a guanidino group.

In one embodiment, R^1 is selected from one of the following:

\[
\begin{align*}
&\text{O} - \text{NH} - \text{HN} - \text{NH} - \text{H}_2 \text{N} - \text{NH} - \text{HN} - \text{H}_2 \\
&\text{O} - \text{NH} - \text{HN} - \text{NH} - \text{H}_2 \text{N} - \text{NH} - \text{HN} - \text{H}_2
\end{align*}
\]

In one embodiment, at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.
In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the kit has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargin, triargin, etc).

In one embodiment, the kit has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a kit comprising:

a soluble derivatized chitosan described herein; and

instructions to prevent or treat a gastrointestinal tract infection in a subject.

In one embodiment, the gastrointestinal tract infection is noninflammatory gastroenteritis, inflammatory gastroenteritis, invasive gastroenteritis, or necrotic or necrotizing enteritis.

In one embodiment, the subject is infected with *Staphylococcus aureus*, *Bacillus cereus*, *Clostridium perfringens*, *Clostridium hotulimim*, *Vibrio cholerae*, *Escherichia coli*, *Clostridium difficile*, *Vibrio parahemolyticus*, *Bacillus anthracis*, *Shigella sp.*, *Salmonella sp.*, *Campylobacter jejuni*, *Vibrio vulnificus*, *Yersinia sp.*, *Francisella tularensis*, or *Helicobacter pylori*.

In one embodiment, the subject is infected with bacteria listed in Table 2.

In one embodiment, the subject comprises at least one biofilm.

In one embodiment, exopolysaccharides (EPS) of the biofilm comprises alginate and/or polysaccharide synthesis locus (Psl) (e.g., in *Pseudomonas aeruginosa*); acidic polysaccharide (e.g., in *Burkholderia cepacia*); collanic acid,
poly-β-1,6-GlcNAc (PGA) or cellulose (e.g., in *Escherichia coli*); cellulose (e.g., in *Salmonella*); N-acetylg glucosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose (e.g., in *Vibrio cholerae*); polysaccharide intercellular adhesion (PIA) (e.g., in *Staphylococcus*); glucose and mannose rich component (e.g., in *Bacillus subtilis*); mannose polysaccharide (e.g., in *Prevotella intermedia, Capnocytophaga ochracea*, or *Prevotella nigrescens*).

In one embodiment, the biofilm is associated with actin and/or DNA released from bacteria or cells such as neutrophils.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.999% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the kit further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same derivatized chitosan or dosage form).

In one embodiment, the kit further comprises an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the derivatized chitosan.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the gastrointestinal tract.

In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the derivatized chitosan reduces the viability of planktonic bacteria.
In one embodiment, the derivatized chitosan reduces colonization of the planktonic bacteria.

In one embodiment, the planktonic bacteria are clumped.

In one embodiment, the derivatized chitosan is administered orally, or enterally.

In one embodiment, the kit comprises an effective amount (e.g., therapeutically effective amount) of derivatized chitosan.

In one embodiment, the derivatized chitosan is administered orally, or enterally.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in duodenum.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 2.0 to about pH 4.0, e.g., in stomach.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 8.0 to about pH 8.5, e.g., in lower part of the gastrointestinal tract.

In one embodiment, the derivatized chitosan is active below pH 6 (e.g., in stomach and duodenum) or near or above pH 8 (e.g., in colon).

In one embodiment, the derivatized chitosan is active between pH 6 and pH 8.

In one embodiment, the derivatized chitosan is delivered e.g., by capsule, time release capsule, pH release capsule, as a powder dissolved in the digestive tract, or lozenge.

In one embodiment, the derivatized chitosan is delivered by mixing in food, or dissolved in any liquid, e.g., in a liquid formulation, e.g., daily or multiple times daily.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[\text{formula (I)} \]

wherein:

n is an integer between 20 and 6000; and
each R is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{align*}
&\text{O} \\
&\text{R}^2 \\
&\text{R}^3
\end{align*}
\]

formula (II)

or R, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R is hydrogen or amino; and

R is amino, guanidino, C1-C5 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R substituents are H, at least 1% of R substituents are acetyl, and at least 2% of R substituents are a group of formula (II).

In one embodiment, between 25-95% of R substituents are hydrogen.

In one embodiment, between 55-90% of R substituents are hydrogen.

In one embodiment, between 1-50% of R substituents are acetyl.

In one embodiment, between 4-20% of R substituents are acetyl.

In one embodiment, between 2-50% of R substituents are a group of formula (II).

In one embodiment, between 4-30% of R substituents are a group of formula (II).

In one embodiment, 55-90% of R substituents are hydrogen, 4-20% of R substituents are acetyl, 4-30% of R substituents are a group of formula (II).

In one embodiment, R is amino and R is an arginine side chain.

In one embodiment, R is selected from one of the following:

\[
\begin{align*}
&\text{O} \\
&\text{NH}_2 \\
&\text{NH}_2 \\
&\text{NH}_2 \\
&\text{HN} \\
&\text{NH} \\
&\text{HN} \\
&\text{NH}_2
\end{align*}
\]

and

\[
\begin{align*}
&\text{O} \\
&\text{NH}_2 \\
&\text{NH}_2 \\
&\text{NH}_2 \\
&\text{HN} \\
&\text{NH} \\
&\text{HN} \\
&\text{NH}_2
\end{align*}
\]

In one embodiment, R is amino and R is a lysine side chain.

In one embodiment, R is selected from one of the following:
In one embodiment, R^2 is amino and R^3 is a histidine side chain.

In one embodiment, R^1 is selected from one of the following:

- O\(\text{---N=CH}_2\)
 - and
 - O\(\text{---N=CH}_2\)

In one embodiment, at least 1% of R^1 substituents are selected from one of the following:

- O\(\text{---N=CH}_2\)
 - and
 - O\(\text{---N=CH}_2\)

and at least 1% of R^1 substituents are selected from the following:

- O\(\text{---N=CH}_2\)
 - and
 - O\(\text{---N=CH}_2\)

In one embodiment, R^2 is amino and R^3 is a substituted C_i-C_6 alkyl.

In one embodiment, R^3 is C_1-C_6 alkyl substituted with an amino group.

In one embodiment, R^3 is C_1 alkyl substituted with an amino group.

In one embodiment, R^1 is C_2 alkyl substituted with an amino group.

In one embodiment, R^3 is C_3 alkyl substituted with an amino group.

In one embodiment, R^1 is C_4 alkyl substituted with an amino group.
In one embodiment, R is C₆ alkyl substituted with an amino group.
In one embodiment, R is C₅ alkyl substituted with an amino group.
In one embodiment, R is selected from one of the following:

In one embodiment, R is C₆ alkyl substituted with a guanidino group.
In one embodiment, R is C₅ alkyl substituted with a guanidino group.
In one embodiment, R is C₄ alkyl substituted with a guanidino group.
In one embodiment, R is C₃ alkyl substituted with a guanidino group.
In one embodiment, R is C₆ alkyl substituted with a guanidino group.
In one embodiment, R is C₅ alkyl substituted with a guanidino group.
In one embodiment, R is C₄ alkyl substituted with a guanidino group.
In one embodiment, R is C₃ alkyl substituted with a guanidino group.

In one embodiment, R² is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is tert-butyloxycarbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.
In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, \(R^2 \) is amino.
In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is amino.
In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is guanidino.
In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is a substituted \(C_{1-6} \) alkyl.
In one embodiment, \(R^3 \) is \(C_{1-6} \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_1 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_2 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_3 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_4 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_5 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.
In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the kit has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargin, triargine, etc).

In one embodiment, the kit has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a medical device constructed to fit into the respiratory system of a subject, e.g., to contact nose or throat, the medical device comprising a soluble derivatized chitosan described herein. In one embodiment, the surface of the device is coated with a soluble derivarzed chitosan.

In one embodiment, the subject has a bacterial infection, e.g., bacteria list in Table 3, e.g., Pseudomonas aeruginosa.

In one embodiment, the subject comprises at least one biofilm.

In one embodiment, exopolysaccharides (EPS) of the biolim comprises alginate and/or polysaccharide synthesis locus (Psl) (e.g., in Pseudomonas aeruginosa); acidic polysaccharide (e.g., in Barkhoferdia cepacia); collanic acid, poly-P-1,6-GlcNAc (PGA) or cellulose (e.g., in Escherichia coli); cellulose (e.g., in Salmonella); N-acetylglucosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose (e.g., in Vibrio cholerae); polysaccharide intercellular adhesion (PIA) (e.g., in Staphylococcus); glucose and mannose rich component (e.g., in Bacillus subtilis); mannose polysaccharide (e.g., in Prevotella intermedia, Capncytophaga ochracea, or Prevotella nigrescens).

In one embodiment, the biofilm is associated with actin and/or DNA released from bacteria or cells such as neutrophils.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the derivatized chitosan.
In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.999% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the medical device further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same derivatized chitosan or dosage form).

In one embodiment, the medical device further comprises an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the derivatized chitosan.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the respiratory system (e.g., airways, lung, throat, nose).

In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the derivatized chitosan reduces the viability of planktonic bacteria.

In one embodiment, the derivatized chitosan reduces colonization of the planktonic bacteria.

In one embodiment, the planktonic bacteria are clumped, e.g., to facilitate removal by expectoration, lavage, or chest percussion.

In one embodiment, the derivatized chitosan is administered by inhalation (e.g., nebulizer, nasal spray, nasal swab, or sinus spray).

In one embodiment, the medical device comprises an effective amount (e.g., therapeutically effective amount) of derivatized chitosan.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.
In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[\text{formula (I)} \]

wherein:

- \(n \) is an integer between 20 and 6000; and
- each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[\text{formula (II)} \]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

- \(R^3 \) is amino, guamdino, C1-C6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 25-95% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 55-90% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 1-50% of \(R^1 \) substituents are acetyl.

In one embodiment, between 4-29% of \(R^1 \) substituents are acetyl.

In one embodiment, between 2-25% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 4-30% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, 55-90% of \(R^1 \) substituents are hydrogen, 4-29% of \(R^1 \) substituents are acetyl, 4-30% of \(R^1 \) substituents are a group of formula (II).
In one embodiment, R_2 is amino and R_3 is an arginine side chain.

In one embodiment, R_1 is selected from one of the following:

\[
\text{and}
\]

In one embodiment, R_2 is amino and R_3 is a lysine side chain.

In one embodiment, R_1 is selected from one of the following:

\[
\text{and}
\]

In one embodiment, R_2 is amino and R_3 is a histidine side chain.

In one embodiment, R_1 is selected from one of the following:

\[
\text{and}
\]

In one embodiment, at least 1% of R_1 substituents are selected from one of the following:

\[
\text{and}
\]

and at least 1% of R_1 substituents are selected from the following:
In one embodiment, R₂ is amino and R₃ is a substituted C₁-C₆ alkyl.

In one embodiment, R₃ is C₁-C₆ alkyl substituted with an amino group.

In one embodiment, R₃ is C₁ alkyl substituted with an amino group.

In one embodiment, R₃ is C₂ alkyl substituted with an amino group.

In one embodiment, R₃ is C₃ alkyl substituted with an amino group.

In one embodiment, R₃ is C₄ alkyl substituted with an amino group.

In one embodiment, R₃ is C₅ alkyl substituted with an amino group.

In one embodiment, R₃ is C₆ alkyl substituted with an amino group.

In one embodiment, R₁ is selected from one of the following:

In one embodiment, R₃ is C₁-C₆ alkyl substituted with a guanidino group.

In one embodiment, R₃ is C₁ alkyl substituted with a guanidino group.

In one embodiment, R₃ is C₂ alkyl substituted with a guanidino group.

In one embodiment, R₃ is C₃ alkyl substituted with a guanidino group.

In one embodiment, R₃ is C₄ alkyl substituted with a guanidino group.

In one embodiment, R₃ is C₅ alkyl substituted with a guanidino group.

In one embodiment, R₃ is C₆ alkyl substituted with a guanidino group.

In one embodiment, R₁ is selected from one of the following:
In one embodiment, R² is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is ieri-butyloxycarbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R¹ is amino.
In one embodiment, R² is hydrogen and R³ is amino.
In one embodiment, R² is hydrogen and R³ is guanidino.
In one embodiment, R² is hydrogen and R³ is a substituted C₁-C₆ alkyl.
In one embodiment, R³ is C₁-C₆ alkyl substituted with an amino group.
In one embodiment, R³ is C₁ alkyl substituted with an amino group.
In one embodiment, R³ is C₂ alkyl substituted with an amino group.
In one embodiment, R³ is C₃ alkyl substituted with an amino group.
In one embodiment, R³ is C₄ alkyl substituted with an amino group.
In one embodiment, R³ is C₅ alkyl substituted with an amino group.
In one embodiment, R³ is C₆ alkyl substituted with an amino group.
In one embodiment, R¹ is selected from one of the following:

\[
\begin{align*}
\text{C}&\text{H}_2 \\
\text{C}&\text{H}_2 \\
\text{C}&\text{H}_2 \\
\text{C}&\text{H}_2 \\
\end{align*}
\]

In one embodiment, R² is C₁-C₆ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₁ alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_2 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_3 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_4 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_5 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^1 \) is selected from one of the following:

\[\text{Chemical structures} \]

In one embodiment, at least 25\% of \(R^1 \) substituents are H, at least 1\% of \(R^1 \) substituents are acetyl, and at least 2\% of \(R^1 \) substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5\% and 50\%.
In a preferred embodiment claim, the chitosan is functionalized at between 20\% and 30\%.
In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the medical device has less than about 20%, 5%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diarginine, triarginine, etc).

In one embodiment, the medical device has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a nebulizer comprising a solution or powder of soluble derivatized chitosan described herein.

In one embodiment, the subject has a bacterial infection, e.g., bacteria list in Table 3, e.g., Pseudomonas aeruginosa.

In one embodiment, the subject comprises at least one biofilm.

In one embodiment, exopolysaccharides (EPS) of the biolim comprises alginate and/or polysaccharide synthesis locus (Psl) (e.g., in Pseudomonas aeruginosa); acidic polysaccharide (e.g., in Biurkholderia cepacia); collanic acid, poly-β-1,6-GlcNAc (PGA) or cellulose (e.g., in Escherichia coli); cellulose (e.g., in Salmonella); N-acetylglicosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose (e.g., in Vibrio cholerae); polysaccharide intercellular adhesion (PIA) (e.g., in Staphylococcus); glucose and mannos rich component (e.g., in Bacillus subtilis); mannos polysaccharide (e.g., in Prevotella intermedia, Capnocytophaga ochracea, or Prevotella nigrescens).

In one embodiment, the biofilm is associated with actin and/or DNA released from bacteria or cells such as neutrophils.
In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.999% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the nebulizer further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant).

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same derivatized chitosan or dosage form).

In one embodiment, the nebulizer further comprises an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the derivatized chitosan.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the respiratory system (e.g., airways, lung, throat, nose).

In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the derivatized chitosan reduces the viability of planktonic bacteria.

In one embodiment, the derivatized chitosan reduces colonization of the planktonic bacteria.

In one embodiment, the planktonic bacteria are clumped, e.g., to facilitate removal by expectoration, lavage, or chest percussion.

In one embodiment, the derivatized chitosan is administered by inhalation (e.g., nebulizer, nasal spray, nasal swab, or sinus spray).

In one embodiment, the nebulizer comprises an effective amount (e.g., therapeutically effective amount) of derivatized chitosan.
In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

```
    O
   /\/
  O\/
 R1\ /
   O
 /\/
 O
 /\/
 O
```

(formula (I))

wherein:

n is an integer between 20 and 6000; and

each R1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

```
   O
  /\/
 R2
```

(or R1, when taken together with the nitrogen to which it is attached, forms a guanidinc moiety,

wherein R2 is hydrogen or amino; and

R3 is amino, guanidino, C1-C 6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R1 substituents are H, at least 1% of R1 substituents are acetyl, and at least 2% of R1 substituents are a group of formula (II).

In one embodiment, between 25-95% of R1 substituents are hydrogen.

In one embodiment, between 55-90% of R1 substituents are hydrogen.

In one embodiment, between 1-50% of R1 substituents are acetyl.

In one embodiment, between 4-20% of R1 substituents are acetyl.

In one embodiment, between 2-50% of R1 substituents are a group of formula (II).

In one embodiment, between 4-30% of R1 substituents are a group of formula (II).
In one embodiment, 55-90% of R^1 substituents are hydrogen, 4-20% of R^1 substituents are acetyl, 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, R^2 is amino and R^3 is an arginine side chain.

In one embodiment, R^1 is selected from one of the following:

\[
\begin{align*}
&\text{and} \\
&\text{and}
\end{align*}
\]

In one embodiment, R^2 is amino and R^3 is a lysine side chain.

In one embodiment, R^1 is selected from one of the following:

\[
\begin{align*}
&\text{and} \\
&\text{and}
\end{align*}
\]

In one embodiment, R^2 is amino and R^3 is a histidine side chain.

In one embodiment, R^1 is selected from one of the following:

\[
\begin{align*}
&\text{and} \\
&\text{and}
\end{align*}
\]

In one embodiment, at least 1% of R^1 substituents are selected from one of the following:

\[
\begin{align*}
&\text{and} \\
&\text{and}
\end{align*}
\]

and at least 1% of R^1 substituents are selected from the following:
In one embodiment, R_2 is amino and R_3 is a substituted C_1-C_6 alkyl.
In one embodiment, R_3 is C_1-C_6 alkyl substituted with an amino group.
In one embodiment, R_3 is C_1 alkyl substituted with an amino group.
In one embodiment, R_3 is C_2 alkyl substituted with an amino group.
In one embodiment, R_3 is C_3 alkyl substituted with an amino group.
In one embodiment, R_3 is C_4 alkyl substituted with an amino group.
In one embodiment, R_3 is C_5 alkyl substituted with an amino group.
In one embodiment, R_1 is selected from one of the following:

In one embodiment, R_3 is C_1-C_6 alkyl substituted with a guanidino group.
In one embodiment, R_3 is C_1 alkyl substituted with a guanidino group.
In one embodiment, R_3 is C_2 alkyl substituted with a guanidino group.
In one embodiment, R_3 is C_3 alkyl substituted with a guanidino group.
In one embodiment, R_3 is C_4 alkyl substituted with a guanidino group.
In one embodiment, R_3 is C_5 alkyl substituted with a guanidino group.
In one embodiment, R_3 is C_6 alkyl substituted with a guanidino group.
In one embodiment, R_1 is selected from one of the following:
In one embodiment, \(R^2 \) is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is \(\text{fcri-butylxycarbonyl} \) (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of \(\text{pH} < 3 \), after the synthesis.

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, \(R^2 \) is amino.

In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is amino.

In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is guanidino.

In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is a substituted \(C_1-C_6 \) alkyl.

In one embodiment, \(R^3 \) is \(C_1-C_6 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_1 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_2 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_3 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_4 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_5 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is selected from one of the following:

\[
\begin{align*}
\text{(A)} & \quad \text{NH}_2 \\
\text{(B)} & \quad \text{NH}_2 \\
\text{(C)} & \quad \text{NH}_2 \\
\text{(D)} & \quad \text{NH}_2
\end{align*}
\]

In one embodiment, \(R^2 \) is \(C_1-C_6 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^2 \) is \(C_1 \) alkyl substituted with a guanidino group.
In one embodiment, R^1 is selected from one of the following:

In one embodiment, at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.
In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the nebulizer has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargine, triargine, etc).

In one embodiment, the nebulizer has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a medical device constaicted to contact a wound of a subject, the medical device comprising a soluble derivatized chitosan described herein. In one embodiment, the surface of the device is coated with a soluble derivatized chitosan. Exemplary wounds include wounds on the skin of a subject, such as a wound that damages and/or penetrates the skin of a subject.

In one embodiment, the subject has a bacterial infection, e.g., bacteria list in Table 4.

In one embodiment, the subject comprises at least one biofilm.

In one embodiment, exopolysaccharides (EPS) of the biolim comprises alginate and/or polysaccharide synthesis locus (Psl) (e.g., in *Pseudomonas aeruginosa*); acidic polysaccharide (e.g., in *Burkholderia cepacia*); collanic acid, poly-p-l,6-GlcNAc (PGA) or cellulose (e.g., in *Escherichia coli*); cellulose (e.g., in *Salmonella*); N-acetylglucosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose (e.g., in *Vibrio cholerae*); polysaccharide intercellular adhesion (PIA) (e.g., in *Staphylococcus*); glucose and mannose rich component (e.g., in *Bacillus*).
subtilis); mannose polysaccharide (e.g., in *Prevotella intermedia, Capnocytophaga ochracea, or Prevotella nigrescens*).

In one embodiment, the biofilm is associated with actin and/or DNA released from bacteria or cells such as neutrophils.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.999% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the medical device further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant).

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same derivatized chitosan or dosage form).

In one embodiment, the medical device further comprises an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the derivatized chitosan.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the wound.

In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the derivatized chitosan reduces the viability of planktonic bacteria.

In one embodiment, the derivatized chitosan reduces colonization of the planktonic bacteria.

In one embodiment, the derivatized chitosan is administered topically.

In one embodiment, the medical device comprises an effective amount (e.g., therapeutically effective amount) of derivatized chitosan.
In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in the wound.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{formula (I)}
\end{align*}
\]

wherein:

n is an integer between 20 and 6000; and
each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{align*}
\text{formula (II)}
\end{align*}
\]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

\(R^3 \) is amino, guanidino, \(C_1-C_6 \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(R^1 \) substituents are \(H \), at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 25-95% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 55-90% of \(R^1 \) substituents are hydrogen.

In one embodiment, between 1-50% of \(R^1 \) substituents are acetyl.

In one embodiment, between 4-20% of \(R^1 \) substituents are acetyl.

In one embodiment, between 2-50% of \(R^1 \) substituents are a group of formula (II).
In one embodiment, between 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, 55-90% of R^1 substituents are hydrogen, 4-20% of R^1 substituents are acetyl, 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, R^2 is amino and R^3 is an arginine side chain.

In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^2 is amino and R^3 is a lysine side chain.

In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^2 is amino and R^3 is a histidine side chain.

In one embodiment, R^1 is selected from one of the following:

In one embodiment, at least 1% of R^1 substituents are selected from one of the following:
and at least 1% of R^1 substituents are selected from the following:

In one embodiment, R^2 is amino and R^3 is a substituted C_1-C_6 alkyl.
In one embodiment, R^3 is C_1-Ce alkyl substituted with an amino group.
In one embodiment, R^3 is C_1 alkyl substituted with an amino group.
In one embodiment, R^3 is C_2 alkyl substituted with an amino group.
In one embodiment, R^3 is C_3 alkyl substituted with an amino group.
In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^3 is C_1-C_6 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_1 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_2 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_3 alkyl substituted with a guanidino group.
In one embodiment, R^1 is selected from one of the following:
In one embodiment, R² is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is tert-butyloxycarbonyl (Boc).

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R² is amino.
In one embodiment, R² is hydrogen and R³ is amino.
In one embodiment, R² is hydrogen and R³ is guanidino.
In one embodiment, R² is a substituted C₁-C₆ alkyl.
In one embodiment, R² is C₁-C₆ alkyl substituted with an amino group.
In one embodiment, R³ is C₁ alkyl substituted with an amino group.
In one embodiment, R³ is C₂ alkyl substituted with an amino group.
In one embodiment, R³ is C₃ alkyl substituted with an amino group.
In one embodiment, R³ is C₄ alkyl substituted with an amino group.
In one embodiment, R³ is C₅ alkyl substituted with an amino group.
In one embodiment, R¹ is selected from one of the following:

In one embodiment, R³ is C₁-C₆ alkyl substituted with a guanidino group.

In one embodiment, R³ is C₁ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₂ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₃ alkyl substituted with a guanidino group.
In one embodiment, R¹ is selected from one of the following:
In one embodiment, at least 25% of \(\text{R}^1 \) substituents are acetyl, and at least 2% of \(\text{R}^1 \) substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.
In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In another aspect, the invention features a surface skin decontaminant comprising a derivatized chitosan described herein, e.g., used prior to surgery in a subject.

In one embodiment, the subject has a bacterial infection, e.g., bacteria list in Table 4.

In one embodiment, the subject comprises at least one biofilm.

In one embodiment, exopolysaccharides (EPS) of the biofilm comprises alginate and/or polysaccharide synthesis locus (Psl) (e.g., in Pseudomonas aeruginosa); acidic polysaccharide (e.g., in Burkholderia cepacia); collanic acid, poly-β-1,6-GlcNAc (PGA) or cellulose (e.g., in Escherichia coli); cellulose (e.g., in Salmonella); N-acetylgalactosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose (e.g., in Vibrio cholerae); polysaccharide intercellular adhesion (PIA) (e.g., in Staphylococcus); glucose and mannose rich component (e.g., in Bacillus subtilis); mannosyl polysaccharide (e.g., in Prevotella intermedia, Capnocytophaga ochracea, or Prevotella nigrescens).

In one embodiment, the biofilm is associated with actin and/or DNA released from bacteria or cells such as neutrophils.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.99% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the decontaminant further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic
surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same derivatized chitosan or dosage form).

In one embodiment, the decontaminant further comprises an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the derivatized chitosan.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the wound.

In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the derivatized chitosan reduces the viability of planktonic bacteria.

In one embodiment, the derivatized chitosan reduces colonization of the planktonic bacteria.

In one embodiment, the derivatized chitosan is administered topically.

In one embodiment, the decontaminant comprises an effective amount (e.g., therapeutically effective amount) of derivatized chitosan.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in the wound.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{formula (I)}
\end{align*}
\]

wherein:
n is an integer between 20 and 6000; and

each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

```
\begin{align*}
\text{formula (II)}
\end{align*}
```

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II).

In one embodiment, between 25-95% of R^1 substituents are hydrogen.

In one embodiment, between 55-90% of R^1 substituents are hydrogen.

In one embodiment, between 1-50% of R^1 substituents are acetyl.

In one embodiment, between 4-20% of R^1 substituents are acetyl.

In one embodiment, between 2-50% of R^1 substituents are a group of formula (II).

In one embodiment, between 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, 55-90% of R^1 substituents are hydrogen, 4-20% of R^1 substituents are acetyl, 4-30% of R^1 substituents are a group of formula (II).

In one embodiment, R^2 is amino and R^3 is an arginine side chain.

In one embodiment, R^1 is selected from one of the following:

```
\begin{align*}
\text{and}
\end{align*}
```

In one embodiment, R^2 is amino and R^3 is a lysine side chain.
In one embodiment, R^1 is selected from one of the following:

- NH_2 and NH_2.

In one embodiment, R^2 is amino and R^3 is a histidine side chain.

In one embodiment, R^1 is selected from one of the following:

- NH_2 and NH_2.

In one embodiment, at least 1% of R^1 substituents are selected from one of the following:

- NH_2 and NH_2.

and at least 1% of R^1 substituents are selected from the following:

- NH_2 and NH_2.

In one embodiment, R^2 is amino and R^3 is a substituted C_1-C_6 alkyl.

In one embodiment, R^3 is C_1-C_6 alkyl substituted with an amino group.

In one embodiment, R^3 is C_1 alkyl substituted with an amino group.

In one embodiment, R^3 is C_2 alkyl substituted with an amino group.

In one embodiment, R^3 is C_3 alkyl substituted with an amino group.
In one embodiment, \(R^3 \) is \(C_4 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_5 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with an amino group.

In one embodiment, \(R^1 \) is selected from one of the following:

\[
\begin{array}{c}
\text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \\
\text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \\
\text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \\
\text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N}
\end{array}
\]

In one embodiment, \(R^3 \) is \(C_1 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_2 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_3 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_4 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_5 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^1 \) is selected from one of the following:

\[
\begin{array}{c}
\text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \\
\text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \\
\text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \\
\text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N} \quad \text{H}_2\text{N}
\end{array}
\]

In one embodiment, \(R^2 \) is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is \text{fcrt-butyloxycarbonyl} (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.
In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R² is amino.
In one embodiment, R² is hydrogen and R³ is amino.
In one embodiment, R² is hydrogen and R³ is guanidino.
In one embodiment, R² is a substituted C₁-C₆ alkyl.
In one embodiment, R³ is C₁-C₆ alkyl substituted with an amino group.
In one embodiment, R³ is C₁ alkyl substituted with an amino group.
In one embodiment, R³ is C₄ alkyl substituted with an amino group.
In one embodiment, R³ is C₅ alkyl substituted with an amino group.
In one embodiment, R³ is C₆ alkyl substituted with an amino group.
In one embodiment, R³ is a substituted C₇-alkyl.
In one embodiment, R³ is C₄ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₅ alkyl substituted with a guanidino group.
In one embodiment, R³ is a substituted C₆ alkyl.
In one embodiment, R³ is C₇ alkyl substituted with a guanidino group.
In one embodiment, R¹ is selected from one of the following:

In one embodiment, R³ is C₁-C₆ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₁ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₂ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₃ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₄ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₅ alkyl substituted with a guanidino group.
In one embodiment, R³ is C₆ alkyl substituted with a guanidino group.
In one embodiment, R¹ is selected from one of the following:
In one embodiment, at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.
In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the decontaminant has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diarginine, triarginine, etc).

In one embodiment, the decontaminant has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a residual surface skin decontaminant comprising a derivatized chitosan described herein, e.g., used post surgery in a subject.

In one embodiment, the subject has a bacterial infection, e.g., bacteria list in Table 4.

In one embodiment, the subject comprises at least one biofilm.

In one embodiment, exopolysaccharides (EPS) of the biolim comprises alginate and/or polysaccharide synthesis locus (Psl) (e.g., in Pseudomonas aeruginosa); acidic polysaccharide (e.g., in Burkohieria cepacia); collanic acid, poly-p-l,6-GlcNAc (PGA) or cellulose (e.g., in Escherichia coli); cellulose (e.g., in Salmonella); N-acetylglucosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose (e.g., in Vibrio cholerae); polysaccharide intercellular adhesion (PIA) (e.g., in Staphylococcus); glucose and mannose rich component (e.g., in Bacillus subtilis); mannose polysaccharide (e.g., in Prevotella intermedia, Capnocytophaga ochracea, or Prevotella nigrescens).

In one embodiment, the biofilm is associated with actin and/or DNA released from bacteria or cells such as neutrophils.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the derivatized chitosan.
In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.999% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the decontaminant further comprises an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same derivatized chitosan or dosage form).

In one embodiment, the decontaminant further comprises an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the derivatized chitosan.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the wound.

In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the derivatized chitosan reduces the viability of planktonic bacteria.

In one embodiment, the derivatized chitosan reduces colonization of the planktonic bacteria.

In one embodiment, the derivatized chitosan is administered topically.

In one embodiment, the decontaminant comprises an effective amount (e.g., therapeutically effective amount) of derivatized chitosan.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in the wound.
In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{array}{c}
\text{OH} \\
\text{HO} \\
\text{NH} \\
\text{R}^1 \\
\end{array}
\quad \begin{array}{c}
\text{OH} \\
\text{HO} \\
\text{NH} \\
\text{R}^1 \\
\end{array}
\quad \begin{array}{c}
\text{OH} \\
\text{HO} \\
\text{NH} \\
\text{R}^1 \\
\end{array}
\]

formula (I)

wherein:

- \(n \) is an integer between 20 and 6000; and
- each \(\text{R}^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{array}{c}
\text{O} \\
\text{R}^2 \\
\text{R}^3 \\
\end{array}
\]

formula (II)

or \(\text{R}^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(\text{R}^2 \) is hydrogen or amino; and

- \(\text{R}^1 \) is amino, guanidino, C1-C4 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(\text{R}^1 \) substituents are H, at least 1% of \(\text{R}^1 \) substituents are acetyl, and at least 2% of \(\text{R}^1 \) substituents are a group of formula (II).

In one embodiment, between 25-95% of \(\text{R}^1 \) substituents are hydrogen.

In one embodiment, between 55-90% of \(\text{R}^1 \) substituents are hydrogen.

In one embodiment, between 1-50% of \(\text{R}^1 \) substituents are acetyl.

In one embodiment, between 4-20% of \(\text{R}^1 \) substituents are acetyl.

In one embodiment, between 2-50% of \(\text{R}^1 \) substituents are a group of formula (II).

In one embodiment, between 4-30% of \(\text{R}^1 \) substituents are a group of formula (II).

In one embodiment, 55-90% of \(\text{R}^1 \) substituents are hydrogen, 4-20% of \(\text{R}^1 \) substituents are acetyl, 4-30% of \(\text{R}^1 \) substituents are a group of formula (II).

In one embodiment, \(\text{R}^2 \) is amino and \(\text{R}^3 \) is an arginine side chain.

In one embodiment, \(\text{R}^1 \) is selected from one of the following:
In one embodiment, R_2 is amino and R_3 is a lysine side chain.

In one embodiment, R_1 is selected from one of the following:

\[
\begin{align*}
\text{O} & \text{-NH}_2 \\
\text{NH} & \text{-NH}_2 \\
\text{HN} & \text{-NH}_2 \\
\text{HN} & \text{-NH}_2
\end{align*}
\]

and

\[
\begin{align*}
\text{O} & \text{-NH}_2 \\
\text{NH} & \text{-NH}_2 \\
\text{HN} & \text{-NH}_2 \\
\text{HN} & \text{-NH}_2
\end{align*}
\]

In one embodiment, R_2 is amino and R_3 is a histidine side chain.

In one embodiment, R_1 is selected from one of the following:

\[
\begin{align*}
\text{O} & \text{-NH}_2 \\
\text{NH} & \text{-NH}_2 \\
\text{HN} & \text{-NH}_2 \\
\text{HN} & \text{-NH}_2
\end{align*}
\]

and

\[
\begin{align*}
\text{O} & \text{-NH}_2 \\
\text{NH} & \text{-NH}_2 \\
\text{HN} & \text{-NH}_2 \\
\text{HN} & \text{-NH}_2
\end{align*}
\]

In one embodiment, at least 1% of R_1 substituents are selected from one of the following:

\[
\begin{align*}
\text{O} & \text{-NH}_2 \\
\text{NH} & \text{-NH}_2 \\
\text{HN} & \text{-NH}_2 \\
\text{HN} & \text{-NH}_2
\end{align*}
\]

and at least 1% of R_1 substituents are selected from the following:
In one embodiment, R^2 is amino and R^3 is a substituted C1-C6 alkyl.

In one embodiment, R^2 is C1-C6 alkyl substituted with an amino group.

In one embodiment, R^3 is C1 alkyl substituted with an amino group.

In one embodiment, R^3 is C2 alkyl substituted with an amino group.

In one embodiment, R^3 is C3 alkyl substituted with an amino group.

In one embodiment, R^3 is C4 alkyl substituted with an amino group.

In one embodiment, R^3 is C5 alkyl substituted with an amino group.

In one embodiment, R^3 is C6 alkyl substituted with an amino group.

In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^3 is C1-C6 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C1 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C2 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C3 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C4 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C5 alkyl substituted with a guanidino group.

In one embodiment, R^3 is C6 alkyl substituted with a guanidino group.

In one embodiment, R^1 is selected from one of the following:
In one embodiment, \(R^2 \) is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the nitrogen protecting group is ieri-butyloxy carbonyl (Boc).

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of \(pH < 3 \), after the synthesis.

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, \(R^2 \) is amino.

In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is amino.

In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is guanidino.

In one embodiment, \(R^2 \) is hydrogen and \(R^3 \) is a substituted \(C_1-C_6 \) alkyl.

In one embodiment, \(R^3 \) is \(C_1 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_2 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_3 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_4 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_5 \) alkyl substituted with an amino group.

In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with an amino group.

In one embodiment, \(R^4 \) is selected from one of the following:

\[
\begin{align*}
\text{O} & \quad \text{O} & \quad \text{O} & \quad \text{O} \\
\text{NH}_2 & \quad \text{NH}_2 & \quad \text{NH}_2 & \quad \text{NH}_2
\end{align*}
\]

In one embodiment, \(R^3 \) is \(C_1-C_6 \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_1 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_2 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_3 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_4 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_5 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is \(C_6 \) alkyl substituted with a guanidino group.
In one embodiment, \(R^3 \) is selected from one of the following:

\[
\begin{array}{ccc}
\text{O} & \text{O} & \text{O} \\
\text{NH} & \text{NH} & \text{NH} \\
\text{H}_2\text{N} & \text{NH} & \text{NH}_2 \\
\end{array}
\]

In one embodiment, at least 25% of \(R^1 \) substituents are \(H \), at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.
In one embodiment, the chitosan is functionalized at between 5% and 50%.
In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.
In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the decontaminant has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargine, triargine, etc).

In one embodiment, the decontaminant has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

In another aspect, the invention features a method of treating a surface skin in a subject, the method comprising:

administering to the subject an effective amount of a composition comprising a soluble derivatized chitosan, thereby treating the surface skin.

In one embodiment, the skin is treated before a surgery.

In one embodiment, the skin is treated after a surgery.

In one embodiment, the subject has a bacterial infection, e.g., bacteria list in Table 4.

In one embodiment, the subject comprises at least one biofilm.

In one embodiment, exopolysaccharides (EPS) of the biofilm comprises alginate and/or polysaccharide synthesis locus (Psl) (e.g., in Pseudomonas aeruginosa); acidic polysaccharide (e.g., in Bkholderia cepacia); collanic acid, poly-P-1,6-GlcNAc (PGA) or cellulose (e.g., in Escherichia coli); cellulose (e.g., in Salmonella); N-acetylglucosamine (GlcNAc), D-mannose, 6-deoxy-D-galactose and D-galactose (e.g., in Vibrio choiærae); polysaccharide intercellular adhesion (PIA) (e.g., in Staphyllococcus); glucose and mannose rich component (e.g., in Bacillus
subtilis); mannose polysaccharide (e.g., in Prevotella intermedia, Capnocytophaga ochracea, or Prevotella nigrescens).

In one embodiment, the biofilm is associated with actin and/or DNA released from bacteria or cells such as neutrophils.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, or 99%, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the viscosity (e.g., apparent viscosity) of the biofilm is reduced by at least 1, 2, 5, 10, 50, 100, 200, 500, or 1000 fold, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the biofilm is partially dissolved, e.g., at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, or 99.999% of the biofilm is dissolved, compared to the biofilm that has not been contacted with the derivatized chitosan.

In one embodiment, the method further comprises administering an additional agent, e.g., a pharmaceutical agent, or a non-pharmaceutical agent (e.g., a non-toxic surfactant). In one embodiment, the second agent comprises another chitosan derivative, e.g., another chitosan derivative described herein.

In one embodiment, the second agent is administered in a dosage to achieve a synergistic effect.

In one embodiment, the second agent is administered together with the soluble derivatized chitosan (e.g., in the same derivatized chitosan or dosage form).

In one embodiment, the method further comprises administering an antibiotic, anti-inflammatory, or mucolytic (expectorant) compound to a subject in conjunction with, prior to or subsequent to the administration of the derivatized chitosan.

In one embodiment, the antibiotic, anti-inflammatory, or mucolytic (expectorant) compound is administered in a dosage to achieve a synergistic effect.

In one embodiment, the biofilm is in the wound.

In one embodiment, the subject is infected with planktonic bacteria.

In one embodiment, the derivatized chitosan reduces the viability of planktonic bacteria.

In one embodiment, the derivatized chitosan reduces colonization of the planktonic bacteria.

In one embodiment, the derivatized chitosan is administered topically.

In one embodiment, the effective amount is therapeutically effective amount.
In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

In one embodiment, the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0, e.g., in the wound.

In one embodiment, the derivatized chitosan comprises a chitosan of the following formula (I):

\[\text{formula (I)} \]

wherein:
- \(n \) is an integer between 20 and 6000; and
- each \(R' \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[\text{formula (II)} \]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and
- \(R^3 \) is amino, guanidino, \(C_1-C_6 \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, between 25-95% of \(R^1 \) substituents are hydrogen.
In one embodiment, between 55-90% of \(R^1 \) substituents are hydrogen.
In one embodiment, between 1-50% of \(R^1 \) substituents are acetyl.
In one embodiment, between 4-20% of \(R^1 \) substituents are acetyl.
In one embodiment, between 2-50% of \(R^1 \) substituents are a group of formula (II).
In one embodiment, between 4-30% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, 55-90% of \(R^1 \) substituents are hydrogen, 4-20% of \(R^1 \) substituents are acetyl, 4-30% of \(R^1 \) substituents are a group of formula (II).

In one embodiment, \(R^2 \) is amino and \(R^3 \) is an arginine side chain.

In one embodiment, \(R^1 \) is selected from one of the following:

In one embodiment, \(R^2 \) is amino and \(R^3 \) is a lysine side chain.

In one embodiment, \(R^1 \) is selected from one of the following:

In one embodiment, \(R^2 \) is amino and \(R^3 \) is a histidine side chain.

In one embodiment, \(R^1 \) is selected from one of the following:

In one embodiment, at least 1% of \(R^1 \) substituents are selected from one of the following:
and at least 1% of R^1 substituents are selected from the following:

In one embodiment, R^2 is amino and R^3 is a substituted C_1-C_6 alkyl.
In one embodiment, R^3 is C_1-C_6 alkyl substituted with an amino group.
In one embodiment, R^3 is C_2 alkyl substituted with an amino group.
In one embodiment, R^3 is C_3 alkyl substituted with an amino group.
In one embodiment, R^3 is C_4 alkyl substituted with an amino group.
In one embodiment, R^3 is C_5 alkyl substituted with an amino group.
In one embodiment, R^3 is C_6 alkyl substituted with an amino group.
In one embodiment, R^1 is selected from one of the following:

In one embodiment, R^2 is C_1-C_6 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_1 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_2 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_3 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_4 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_5 alkyl substituted with a guanidino group.
In one embodiment, R^3 is C_6 alkyl substituted with a guanidino group.
In one embodiment, R^1 is selected from one of the following:

\[\text{Diagram of structures} \]

In one embodiment, R^2 is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

In one embodiment, the derivatized chitosan is made by reacting a chitosan (e.g., a free amino group of one or more of glucosamine monomers of the chitosan) with an amino acid (e.g., a carboxylic acid moiety of the amino acid) wherein the amino group of the amino acid is protected by a protecting group (e.g., Boc). The protecting group can be removed, e.g., by exposure to acid of pH < 3, after the synthesis.

In one embodiment, the nitrogen protecting group is iodo/-butyloxy carbonyl (Boc).

In one embodiment, in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group such as Boc.

In one embodiment, R^2 is amino.

In one embodiment, R^2 is hydrogen and R^3 is amino.

In one embodiment, R^2 is hydrogen and R^3 is guanidino.

In one embodiment, R^2 is hydrogen and R^3 is a substituted C$_1$-C$_6$ alkyl.

In one embodiment, R^3 is Ci-C$_6$ alkyl substituted with an amino group.

In one embodiment, R^3 is C$_1$ alkyl substituted with an amino group.

In one embodiment, R^3 is C$_2$ alkyl substituted with an amino group.

In one embodiment, R^3 is C$_3$ alkyl substituted with an amino group.

In one embodiment, R^3 is C$_4$ alkyl substituted with an amino group.

In one embodiment, R^3 is C$_5$ alkyl substituted with an amino group.

In one embodiment, R^3 is C$_6$ alkyl substituted with an amino group.

In one embodiment, R^1 is selected from one of the following:
In one embodiment, \(R^3 \) is \(C_{1-6} \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_{1} \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_{2} \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_{3} \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_{4} \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_{5} \) alkyl substituted with a guanidino group.

In one embodiment, \(R^3 \) is \(C_{6} \) alkyl substituted with a guanidino group.

In one embodiment, \(R^1 \) is selected from one of the following:

In one embodiment, at least 25\% of \(R^1 \) substituents are H, at least 1\% of \(R^1 \) substituents are acetyl, and at least 2\% of \(R^1 \) substituents independently selected from any of the formulae specifically shown above.

In one embodiment, the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.
In one embodiment, the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da.

In one embodiment, the molecular weight of the derivatized chitosan is between 20,000 and 40,000 Da.

In one embodiment, the chitosan is functionalized at between 5% and 50%.

In a preferred embodiment, the chitosan is functionalized at between 20% and 30%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

In one embodiment, the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

In one embodiment, the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

In one embodiment, the derivatized chitosan is substantially free of other impurities, e.g., salt, e.g., NaCl.

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diargin, triargin, etc).

In one embodiment, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

Brief Description of the Drawings

Figure 1A shows Gram negative *Pseiidomonas aeruginosa* strain PA01 in ultra-pure water at 200x magnification.

Figure 1B shows the clumping of Gram negative *Pseiidomonas aeruginosa* strain PA01 after 1 minute of exposure to chitosan-arginine (24 kDa, 28% functionalized, 83% DDA, 1.54 PDI) at 200x magnification.

Figure 2A shows Gram positive *Streptococcus mitans* (ATCC 35668) in ultra-pure water at 200x magnification.
Figure 2B shows the clumping of Gram positive Streptococcus mutatis (ATCC 35668) after 1 minute of exposure to chitosan-arginine (24 kDa, 28% functionalized, 83% DDA, 1.54 PDI) at 200x magnification.

Figure 3 shows the clumping of Gram negative Pseudomonas aeruginosa strain PA01 with chitosan-acid amine (29 kDa, 39% functionalization) in ultra-pure water at 200x magnification.

Figure 4A shows Gram positive methicillin resistant Staphylococcus aureus strain MW-2 (clinical isolate from blood/CSF of community acquired disseminating infection) in ultra-pure water at 200x magnification.

Figure 4B shows Gram positive methicillin resistant Staphylococcus aureus strain MW-2 (clinical isolate from blood/CSF of community acquired disseminating infection) after 1 minute of exposure to chitosan-acid amine (29 kDa, 38% functionalized) at 200x magnification.

Figure 5 shows Gram negative Pseudomonas aeruginosa strain PA01, after 24 hours exposure to (A) 100 µg/ml chitosan-lactobionic acid (125 kDa), (B) 100 µg/ml chitosan-arginine (28 kDa, 37% functionalization, 89% DDA, 1.95 PDI), (C) 100 µg/ml chitosan-arginine (40 kDa, 37% functionalization, 89% DDA, 2.454 PDI), and (D) water.

Figure 6 shows quantification of the reduction of Gram negative Pseudomonas aeruginosa strain PA01 in solution after 24 hours exposure to 100µg/ml chitosan-arginine (40 kDa, 37% functionalization, 89% DDA, 2.454 PDI), 100µg/ml chitosan-arginine (28 kDa, 37% functionalization, 89% DDA, 1.95 PDI), and 100µg/ml chitosan-lactobionic acid (125 kDa) shown visually in Figure 5.

Figure 7A shows clumping of Streptococcus mutans (ATCC 35668) by 2µg/ml of chitosan-arginine (32 kDa, 29% functionalization, 83% DDA, 1.5 PDI) after five minutes incubation at 200x magnification.

Figure 7B shows clumping of Streptococcus mutans (ATCC 35668) by 10µg/ml of chitosan-arginine (32 kDa, 29% functionalization, 83% DDA, 1.5 PDI) after five minutes incubation at 200x magnification.

Figure 7C shows clumping of Streptococcus mutans (ATCC 35668) by 20µg/ml of chitosan-arginine (32 kDa, 29% functionalization, 83% DDA, 1.5 PDI) after five minutes incubation at 200x magnification.
Figure 8A shows methicillin resistant *Staphylococcus aureus* strain MW-2 (clinical isolate from blood/CSF of community acquired disseminating infection) in ultra pure water (400x magnification).

Figure 8B shows the ability of chitosan-arginine (24 kDa, 28% functionalized, 83% DDA, 1.5 PDI) to clump methicillin resistant *Staphylococcus aureus* strain MW-2 (clinical isolate from blood/CSF of community acquired disseminating infection) after 1-minute exposure (400x magnification).

Figure 9A shows optical microscope images taken at 20x of THP-1 human monocyte cell line exposed to 100µg/ml of 40 kDa chitosan-arginine 37% functionalized for 24 hours at high cell density.

Figure 9B shows optical microscope images taken at 20x of THP-1 human monocyte cell line exposed to 10(µg/ml of 40 kDa chitosan-arginine 37% functionalized for 24 hours at lower cell density.

Figure 10 shows reduction in the viscosity of 1% sodium alginate biofilm model treated with 100µg/ml chitosan-arginine (18 kDa, 25% functionalization, 88% DDA, 1.47 PDI) compared to an equal volume of water 6 minutes, 1 hour, and 4 hours after addition. * or ** indicates significant difference p=0.01.

Figure 11 shows reduction in the viscosity of *Pseudomonas aeruginosa* strain PA01 biofilm/spent media after 1-minute treatment with 100µg/ml chitosan-arginine (18 kDa, 25% functionalization, 88 %DDA, 1.47 PDI).

Figure 12 shows the pourability of cystic fibrosis patient sputum samples treated with 100µg/ml chitosan-arginine (43 kDa, 25% functionalization, 88 %DDA, 2.28 PDI).

Figure 13A shows Gram negative *Salmonella enterica* serotype Typhimurium (ATCC 700720) in ultra-pure water at 200x magnification.

Figure 13B shows clumping of Gram negative *Salmonella enterica* serotype Typhimurium (ATCC 700720) after 1 minute exposure to chitosan-lactobionic acid (100 kDa) in ultra-pure water at 200x magnification.

Figure 14A shows Gram positive *Clostridium perfringens* (ATCC 12919) in ultra-pure water at 200x magnification.

Figure 14B shows clumping of Gram positive *Clostridium perfringens* (ATCC 12919) after 1 minute exposure to chitosan-lactobionic acid (100 kDa) in ultra-pure water at 200x magnification.

Figure 15A shows Gram negative *Escherichia coli* (ATCC 700728) in ultra-pure water at 200x magnification.
Figure 15B shows clumping of Gram negative *Escherichia coli* (ATCC 700728) after 1 minute exposure to chitosan-lactobionic acid (100 kDa) in ultra-pure water at 200x magnification.

Figure 16A shows Gram positive *Streptococcus pyogenes* (ATCC 700294D-5) in ultra-pure water at 200x magnification.

Figure 16B shows clumping of Gram positive *Streptococcus pyogenes* (ATCC 700294D-5) after 1 minute exposure to chitosan-lactobionic acid (100 kDa) in ultra-pure water at 200x magnification.

Figure 17A shows Gram negative *Shigella flexneri* (ATCC 29903) in ultra-pure water at 200x magnification.

Figure 17B shows clumping of Gram negative *Shigella flexneri* (ATCC 29903) after 1 minute exposure to chitosan-lactobionic acid (100 kDa) in ultra-pure water at 200x magnification.

Figure 18A shows Gram positive *Streptococcus mutans* (ATCC 35668) in ultra-pure water at 200x magnification.

Figure 18B shows clumping of Gram positive *Streptococcus mutans* (ATCC 35668) after 1 minute exposure to chitosan-lactobionic acid (100 kDa) in ultra-pure water at 200x magnification.

Figure 19A shows Gram positive *Staphylococcus aureus* strain MW-2 (clinical isolate from blood/CSF of community acquired disseminating infection) in ultra-pure water at 200x magnification.

Figure 19B shows clumping of Gram positive *Staphylococcus aureus* strain MW-2 (clinical isolate from blood/CSF of community acquired disseminating infection) after 1 minute exposure to chitosan-lactobionic acid (277 kDa) in ultra-pure water at 200x magnification.

Figure 20 shows clumping of Gram negative *Pseudomonas aeruginosa* strain PA01 after 1 minute exposure to chitosan-lactobionic acid (100 kDa) in ultra-pure water at 200x magnification.

Figure 21 shows the reduction of *Staphylococcus aureus* strain MW-2 (clinical isolate from blood/CSF of community acquired disseminating infection) biofilms by chitosan-arginine (24 kDa, 28% functionalized, 18% DDA, 1.5 PDI).

Figure 22 shows the reduction of Gram negative *Pseudomonas aeruginosa* strain PA01 biofilms by chitosan-arginine (24 kDa, 28% functionalized, 18% DDA, 1.5 PDI).
Figure 23 shows the diffusion of chitosan-arginine from 2% and 20% gelatin formulations in disc diffusion assay. + Auto = autoclaved material.

Figure 24 shows chitosan-arginine (21 kDa, 29% functionalized, 88% DDA, 1.49 PDI) prophylactic activity against MRSA MW-2 (ATCC BAA-1707) compared to other skin decontamination solutions after 1-hour on pigskin. Data is qualitative CFU recovered after 1-hour on the treated skin surface.

Figure 25 shows chitosan-arginine (43 kDa, 25% functionalized, 88% DDA, 2.28 PDI) wound rinse activity against MRSA MW-2 (ATCC BAA-1707) contaminated abraded pigskin. Data is CFU recovered 30 minutes after two 5mL rinses.

Figure 26 shows chitosan-arginine (43 kDa, 25% functionalized, 88% DDA, 2.28 PDI) wound rinse activity against *Psitdomonas aeruginosa* PA01 (ATCC BAA-47) contaminated abraded pigskin. Data is CFU recovered 30 minutes after two 5mL rinses.

Figure 27 shows chitosan-arginine (43 kDa, 25% functionalized, 88% DDA, 2.28 PDI) dose response against stationary MRSA MW-2 (ATCC BAA-1707) 2 day-old biofilms. Data is CFU recovered after 4-hour treatment.

Figure 28 shows chitosan-arginine (43 kDa, 25% functionalized, 88% DDA, 2.28 PDI) dose response against *Klebsiella pneumoniae* (ATCC 13883) 2 day-old biofilms grown on pegs. Data is CFU recovered after 5-hour treatment. The * indicates sterilization.

Figure 29 shows chitosan-arginine (43 kDa, 25% functionalized, 88% DDA, 2.28 PDI) dose response against *Acinetobacter baumannii* (ATCC 19606) 2 day-old biofilms grown on pegs. Data is CFU recovered after 3-hour treatment.

Figure 30 shows chitosan-arginine (43 kDa, 25% functionalized, 88% DDA, 2.28 PDI) dose response against *Psitdomonas aeruginosa* (ATCC BAA-47) 2 day-old biofilms grown on pegs. Data is CFU recovered after 3-hour treatment.

Figure 31 depicts mixed wound biofilms (MRSA MW-2 ATCC BAA-1707, *Psitdomonas aeruginosa* ATCC BAA-47, and Vancomycin-resistant *Enterococcus faecalis* ATCC 51299) grown in a flow cell overnight then treated with either water or 200 µg/mL chitosan-arginine (43kDa, 25% functionalized, 88% DDA, 2.28 PDI) twice daily for two days and finally rinsed and sonicated for 30 seconds and stained with crystal violet.
Figure 32 depicts the amount and consistency of material removed following the final rinse from flow cells treated with either water or chitosan-arginine (43kDa, 25% functionalized, 88% DDA, 2.28 PDI) in Figure 32.

Figure 33 depicts the immediate dispersal of *Acinetobacter baumannii* (ATCC 19606) 2-day old stationary biofilms treated with 100 μg/ml chitosan-arginine (43kDa, 25% functionalized, 88% DDA, 2.28 PDI). The biofilms were rinsed, stained with crystal violet and treated with either water or chitosan-arginine for 5 minutes and rinsed.

Detailed Description

Described here are methods and compositions that contain a soluble chitosan or chitosan derivative. The compositions can be used, for example, for reducing preformed biofilms, preventing formation of biofilms, treating or preventing complications of cystic fibrosis, or treating or preventing gastrointestinal infections. In some embodiments, a composition described herein can result in the clumping of bacteria, for example, to a soluble chitosan or chitosan derivative. The clumped bacteria can be discarded, for example, expired by a subject, or can be ingested.

In some embodiments, the soluble chitosans or derivatized chitosans exhibit one or more of the following characteristics: for example, long shelf lives, ability to be stored as a dry powder, or ability to dissolve in water, saline, or other neutral solution (e.g., in the human body) and to be dispersed as needed (e.g., as a solid, semisolid, or liquid composition). Exemplary compounds include, but are not limited to soluble chitosan compounds, chitosan-arginine compounds, chitosan-guanidine compounds, chitosan-unnatural amino acid compounds, chitosan-acid-amine compounds, chitosan-natural amino acid compounds, and co-derivatives of the just described compounds and the salts thereof. These compounds and their antimicrobial activity are disclosed in US Patent applications 11/657,382 and 11/985,057, which is herein incorporated by reference. Exemplary compounds also include neutral chitosan compounds (e.g., monosaccharide-containing chitosan compounds, chitosan-lactobionic acid compounds, and chitosan-glycolic acid compounds), and co-derivatives of these compounds and the salts thereof.

Biofilm
Methods and compositions described herein can be used to disrupt (e.g., reduce the viscosity of, or dissolve) a preformed biofilm in a subject. As used herein, the term "dissolve" or "dissolving" means breaking up cohesion in a preformed biofilm such that some or all can be rinsed, flushed or washed away.

A biofilm is a structured community of microorganisms encapsulated within a self-developed polymeric matrix and adherent to a living or inert surface. Biofilms are also often characterized by surface attachment, structural heterogeneity, genetic diversity, complex community interactions, and an extracellular matrix of polymeric substances.

Formation of a biofilm begins with the attachment of free-floating microorganisms to a surface. Colonization begins with adherence to the surface initially through weak, reversible van der Waals forces. If the colonizing bacteria are not immediately separated from the surface, they can anchor themselves more permanently using cell adhesion structures such as pili. The first colonizing bacteria facilitate the arrival of other cells by providing more diverse adhesion sites and beginning to build the matrix that holds the biofilm together. Once colonization has begun, the biofilm grows through a combination of cell division and recruitment. The final stage of biofilm formation is known as development, and is the stage in which the biofilm is established and may only change in shape and size. This development of biofilm environment and communication pathway allows for the cells to become more antibiotic resistant.

Biofilms can contain many different types of microorganisms, e.g. bacteria, archaea, protozoa, fungi and algae; each group performing specialized metabolic functions. Microorganisms can also form monospecies films.

The biofilm is held together and protected by a matrix of excreted polymeric compounds called Extracellular polymeric substance (EPS). This matrix protects the cells within it and facilitates communication among them through biochemical signals.

Bacteria living in a biofilm have different properties from free-floating bacteria of the same species, as the dense and protected environment of the film allows them to cooperate and interact in various ways. One benefit of this environment to the bacteria is increased resistance to detergents and antibiotics, as the dense extracellular matrix and the outer layer of cells protect the interior of the community.
Exemplary bacteria associated with biofilm include Gram-positive (e.g., *Staphylococcus aureus* (e.g., strain MW-2), *Streptococcus mutans*, *Clostridium perfringens*, *Streptococcus pyogenes* (GAS), *Clostridium difficile* and *Streptococcus sanguis*) and Gram-negative bacteria (*E. coli* (e.g., strain 0:157 H:7), *Shigella flexneri*, *Salmonella typhimurium*, *Acinetobacter haemorrhagicus*, *Pseudomonas aeruginosa* and *Legionella* bacteria (e.g., *L. pneumophila*)).

Exemplary oral, gastro and pulmonary bacteria are listed in Tables 1-3, respectively.

Table 1. Exemplary oral bacteria strains

<table>
<thead>
<tr>
<th>Strain (oral)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus mutans</td>
<td>Causes cavities</td>
</tr>
<tr>
<td>Streptococcus sanguis</td>
<td>Causes cavities</td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>Causes cavities</td>
</tr>
<tr>
<td>Actinomyces viscosus</td>
<td>Causes actinomysis/oral infection</td>
</tr>
</tbody>
</table>

Table 2. Exemplary gastro bacteria strains

<table>
<thead>
<tr>
<th>Strain (gastro)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>Shiga-like toxin producer, such as 0157: H7</td>
</tr>
<tr>
<td>Shigella flexneri</td>
<td>Shiga toxin producer</td>
</tr>
<tr>
<td>Salmonella typhimurium</td>
<td>Causes gastroenteritis, food poisoning</td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td>Causes food poisoning, forms spores</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>Vancomycin resistant, gastrointestinal</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>Gastrointestinal ulcers</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>Spore former</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>Intracellular pathogen</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>Causes food poisoning, non-spore former</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Gastroenteritis</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>Causes pneumonia, many drug resistant strains</td>
</tr>
</tbody>
</table>

Table 3. Exemplary pulmonary bacteria strains

<table>
<thead>
<tr>
<th>Strain (Pulmonary)</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>Broadly infective, wounds, body fluids, tissue, pulmonary, highly multi-drug resistant strains including MRSA and mupirocin resistant MRSA</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Causes pneumonia, primary pathogen in patients with cystic fibrosis, many MDR strains, forms thick biofilms</td>
</tr>
<tr>
<td>Burkholderia cepacia genomovar cenocepacia</td>
<td>Virulent pathogen in lungs of patients with cystic fibrosis</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>Slow-growing, colonization, causes pneumonia</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>Aquatic bacterium, colonizes breathing and feeding tubes</td>
</tr>
</tbody>
</table>
Stenotrophomonas maltophilia Similar to *pseudomonas*, pulmonary infections
Burkholdaria cepacia genomvar dolsa Virulent pathogen in lungs of patients with cystic fibrosis
Klebsiella pneumoniae Causes pneumonia and wound infections, many MDR strains
Burkholdaria cepacia complex Virulent pathogen in lungs of patients with cystic fibrosis

Table 4. Exemplary wound strains

<table>
<thead>
<tr>
<th>Strain (wound)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>Sensitive and MDR strains, can produce toxin, found on skin, in wounds, in tissue</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Many resistant strains, found in wounds</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>Wound and tissue infections, slow growing, many MDR strains (including calcoaceticus complex)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>Nosocomial and independent wound infections, many MDR strains</td>
</tr>
<tr>
<td>Vancomycin resistant enterococcus</td>
<td>Highly resistant, thrives in wounds</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>Causes wound infections, colonizes medical devices, many MDR strains</td>
</tr>
</tbody>
</table>

In some embodiments, bacteria associated with biofilm can include antibiotic resistant bacteria such as Methicillin resistant *Staphylococcus aureus*, Mupirocin resistant *Staphylococcus aureus*, Mupirocin and Methicillin resistant *Staphylococcus aureus*, Fluoroquinolone resistant *Staphylococcus aureus*, Vancomycin intermediate resistant *Staphylococcus aureus*, Linezolid resistant *Staphylococcus aureus*, Penicillin resistant *Streptococcus pneumoniae*, Macrolide resistant *Streptococcus pneumoniae*, Fluoroquinolone resistant *Streptococcus pneumoniae*. Vancomycin resistant *Enterococcus faecalis*, Linezolid resistant *Enterococcus faecalis*, Fluoroquinolone resistant *Enterococcus faecalis*, Vancomycin resistant *Enterococcus faecium*, Linezolid resistant *Enterococcus faecium*.

Glycopeptide intermediate resistant *Staphylococcus aureus*, Vancomycin resistant *Staphylococcus aureus*, Hetero vancomycin intermediate resistant *Staphylococcus aureus*, Hetero vancomycin resistant *Staphylococcus aureus*, Macrolide-Lincosamide-Streptogramin resistant *Staphylococcus*, β-lactam resistant *Enterococciis faecalis*, β-lactam resistant *Enterococciis faecium*, Ketolide resistant *Streptococcus pneumoniae*, Ketolide resistant *Streptococcus pyogenes*, Macrolide resistant *Streptococcus pyogenes*, Vancomycin resistant *Staphylococcus epidermidis*, multidrug resistant *Clostridium difficile*, multidrug resistant *Acinetobacter baumannii*, multidrug resistant *Kelbsiella pneumoniae*, or multidrug resistant *Escherichia coli*.

As used herein resistant microorganism or bacterium means, an organism which has become resistant to an antibacterial agent. Also, resistant microorganism or bacterium sneans its effective MIC has exceeded the effective dosage according to Clinical Laboratory Standards Institute (CLSI) resistance breakpoints, predefined national or internationally accepted limits, at or above which administration of an effective dose of antibiotic produces undesirable side effects. In some embodiments, the minimum inhibitory concentration of an antibacterial agent for a resistant bacterium will be at least, 2, 5, 10, or 100 fold greater than that seen with a sensitive bacterium for a selected antibacterial agent.

In an embodiment, bacteria associated with biofilm can include, e.g., *Salmonella choleraesuis, Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter aerogenes, Pseudomonas aeruginosa, MRSA, E. coli, vancomycin resistant Enterococciis faecalis, Acinetobacter baumannii, MDR Acinetobacter baumannii, or MDR Klebsiella pneumoniae*.

Biofilms can be associated with a variety of diseases or conditions, e.g., urinary tract infections, catheter infections, middle-ear infections, throat infection, formation of dental plaque, gingivitis, dental caries, halitosis, gastrointestinal tract infections, respiratory tract infections (e.g., airway infections, lung infections, pneumonia and chronic sinusitis), complications of contact lenses, eye infections, conjunctivitis, endocarditis, complications (e.g., infections) of cystic fibrosis, complications (e.g., infections) in immunocompromised patient, impairing cutaneous wound healing, chronic wounds, infections due to burns, reducing topical antibacterial efficacy in infected skin wounds, or infections of permanent indwelling devices such as joint prostheses, intrauterine devices or heart valves.
Exemplary bacteria associated with biofilm also include bacteria causing urinary tract infections, catheter infections, middle-ear infections, throat infection, formation of dental plaque, gingivitis, dental caries, halitosis, gastrointestinal tract infections, respiratory tract infections (e.g., airway infections, lung infections, pneumonia and chronic sinusitis), complications of contact lenses, endocarditis, complications (e.g., infections) of cystic fibrosis, complications (e.g., infections) in immunocompromised patient, impairing cutaneous wound healing, infections due to burns, reducing topical antibacterial efficacy in infected skin wounds, or infections of permanent indwelling devices such as joint prostheses, intrauterine devices or heart valves.

Exemplary diseases and conditions associated with biofilm can also include diseases characterized by the presence of one or more of the bacteria that cause resistant bacterial infections as described herein.

Bacterial clumping

Bacterial population, e.g., in a body cavity or epithelial/mucosal surfaces in a subject, can be reduced (e.g., to a level closer to the normal microbial level) by clumping using compounds and compositions described herein. Described herein are also methods of treatment for the colonization of e.g., the ear, nose, throat, sinus, respiratory system, skin, wounds, or gastrointestinal tract by harmful bacteria. This clumping can, in some embodiments, act as a "barrier," for example, when a composition described herein is used to contact a bacterial population so as to result in clumping of the bacteria onto the soluble chitosan derivative, and the resulting composition is discarded by the subject (e.g., spit out, for example, as an oral rinse).

The method of clumping (e.g., barrier clumping) includes the step of contacting compositions or compounds described herein (e.g., soluble chitosans or derivatized chitosans) with bacteria, e.g., in a body cavity or epithelial/mucosal surfaces. The soluble chitosan or chitosan derivatives described herein can interact with more than one bacterium simultaneously, linking them via contact with a part of the polymer chain. Thus, the contact causes the bacteria to aggregate with one another. These bacterial clumps are limited in their ability to bind to other surfaces, thereby creating a barrier to colonization by the bacteria. This barrier is also a result of the decreased bacterial surface area available for colonization, the bacterial trapping within the aggregate as well as limitation of the exposure of bacterial surface...
receptors that are often used by bacteria to associate with biological or inert surfaces, thereby preventing the colonizing of pathogenic bacteria. In some preferred embodiments, the derivatized chitosan has a molecular weight of at least about 15 kDa.

The positively charged characteristic of chitosan derivatives, e.g., chitosan-arginine, can allow the composition described herein to be effective in clumping and aggregating bacteria. The positively charged polymer can interact with the negatively charged cell wall of the bacteria electrostatically. This, in turn, can allow the long polymer chains of chitosan derivatives, e.g., chitosan-arginine, to interact with the bacterial cell surface and bridge between bacteria cells. This interaction can allow for clumping and aggregation of the bacteria cells and prevents them from adhering to mucosal or tissue surfaces. This mechanical action can allow for easy removal of the bacteria from the surface of a body orifice, wound, gastrointestinal tract or pulmonary surface.

The neutral soluble chitosan derivatives, e.g. chitosan lactobionic acid, can allow the composition described herein to be effective in clumping and aggregating bacteria. The long polymer chains of chitosan derivatives, e.g., chitosan-arginine, interact with the bacterial cell surface and bridge between bacteria cells. This interaction can allow for clumping and aggregation of the bacteria cells and prevents them from adhering to mucosal or tissue surfaces. This mechanical action can allow for easy removal of the bacteria from the surface of a body orifice, wound, gastrointestinal tract or pulmonary surface.

Treatment

The compositions and compounds described herein (e.g., a soluble chitosan or a derivatized chitosan) can be administered to planktonic cells in culture or in biofilms, e.g. in vitro or ex vivo, or to a subject, e.g., in vivo, to treat, prevent, and/or diagnose a variety of disorders, including those described herein below.

As used herein, the term "treat" or "treatment" is defined as the application or administration of a composition or compound (e.g., a compound described herein (e.g., a soluble derivatized chitosan) to a subject, e.g., a patient, or application or administration of the composition or compound to an isolated tissue or cell, e.g., cell line, from a subject, e.g., a patient, who has a disorder (e.g., a disorder as described herein), a symptom of a disorder, or a predisposition toward a disorder, with the
purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disorder, one or more symptoms of the disorder or the predisposition toward the disorder (e.g., to prevent at least one symptom of the disorder or to delay onset of at least one symptom of the disorder).

As used herein, the term "prevent" or "prevention" is defined as the application or administration of a composition or compound (e.g., a compound described herein (e.g., a soluble derivatized cbitosan)) to a subject, e.g., a subject who is at risk for a disorder (e.g., a disorder described herein), or has a disposition toward a disorder, or application or administration of the compound to an isolated tissue or cell, e.g., cell line, from a subject, e.g., a subject who is at risk for a disorder (e.g., a disorder as described herein), or has a predisposition toward a disorder, with the purpose to avoid or preclude the disorder, or affect the predisposition toward the disorder (e.g., to prevent at least one symptom of the disorder or to delay onset of at least one symptom of the disorder).

As used herein, an amount of a composition or compound effective to treat a disorder, or a "therapeutically effective amount" refers to an amount of the composition or compound which is effective, upon single or multiple dose administration to a subject, in treating a cell, or in curing, alleviating, relieving or improving a subject with a disorder beyond that expected in the absence of such treatment.

As used herein, an amount of a composition or compound effective to prevent a disorder, or "a prophylactically effective amount" of the composition or compound refers to an amount effective, upon single- or multiple-dose administration to the subject, in preventing or delaying the occurrence of the onset or recurrence of a disorder or a symptom of the disorder.

As used herein, the term "subject" is intended to include human and non-human animals. Exemplary human subjects include a human patient having a disorder, e.g., a disorder described herein or a normal subject. The term "non-human animals" of the invention includes all vertebrates, e.g., non-mammals (such as chickens, amphibians, reptiles) and mammals, such as non-human primates, domesticated and/or agriculturally useful animals, e.g., sheep, dog, cat, cow, pig, etc.

As used herein, "administered in combination" or a combined administration of two agents means that two or more agents (e.g., compounds described herein) are administered to a subject at the same time or within an interval such that there is
overlap of an effect of each agent on the patient. Preferably they are administered within 15, 10, 5, or 1 minute of one another. Preferably the administrations of the agents are spaced sufficiently close together such that a combinatorial (e.g., a synergistic) effect is achieved. Exemplary combinations of a derivatized chitosan described herein and one or more of anti-microbial agent(s) such as an antibiotic are described, e.g., in US Patent Application 61/1 13904, which is incorporated by reference herein by its entirety. The combinations can have synergistic effect when used to treat a subject having a bacterial infection. The agents can be administered simultaneously, for example in a combined unit dose (providing simultaneous delivery of both agents). Alternatively, the agents can be administered at a specified time interval, for example, an interval of minutes, hours, days or weeks. Generally, the agents are concurrently bioavailable, e.g., detectable, in the subject.

In a preferred embodiment, the agents are administered essentially simultaneously, for example two unit dosages administered at the same time, or a combined unit dosage of the two agents. In another preferred embodiment, the agents are delivered in separate unit dosages. The agents can be administered in any order, or as one or more preparations that includes two or more agents. In a preferred embodiment, at least one administration of one of the agents, e.g., the first agent, is made within minutes, one, two, three, or four hours, or even within one or two days of the other agent, e.g., the second agent. In some cases, combinations can achieve synergistic results, e.g., greater than additive results, e.g., at least 1.25, 1.5, 2, 4, 10, 20, 40, or 100 times greater than additive.

Subject

The subject can be a human or an animal. Suitable animal subjects include: but are not limited to, pet, wild, zoo, laboratory, and farm animals. Suitable animal subjects include primates, mammals, rodents, and birds. Examples of said animals include, but not limited to, guinea pigs, hamsters, gerbils, rat, mice, rabbits, dogs, cats, horses, pigs, sheep, cows, goats, deer, rhesus monkeys, monkeys, tamarinds, apes, baboons, gorillas, chimpanzees, orangutans, gibbons, fowl, e.g., pheasant, quail (or other gamebirds), a waterfowl, ostriches, chickens, turkeys, ducks, and geese or free flying bird.

In some embodiments, the subject has urinary tract infections, catheter infections, middle-ear infections, throat infections, eye infections, dental plaque,
gingivitis, dental caries, halitosis, gastrointestinal tract infections, oral infections, respiratory tract infections (e.g., airway infections, lung infections, pneumonia, and chronic sinusitis), complications of contact lenses, endocarditis, complications (e.g., infections or increased pulmonary mucosal viscosity) of cystic fibrosis, gastrointestinal infections (e.g. gastroenteritis), complications (e.g., infections) in immunocompromised patient creating impaired cutaneous wound healing, infections due to burns, acute wounds, sub-acute wounds, post-surgical sites, chronic wounds or reduced topical antibacterial efficacy in infected skin wounds, or infections of permanent or temporary indwelling devices such as joint prostheses, ET tubes, catheters, intrauterine devices or heart valves.

In some embodiments, the subject has diseases or conditions characterized by the presence of one or more of the bacteria that cause resistant bacterial infection as described herein.

Cystic Fibrosis

The compositions described herein can be used to treat or prevent complications of cystic fibrosis in a subject. For example, liquid or solid particulate compositions comprising soluble chitosans or derivatized chitosans described herein can be used to treat or prevent complications of cystic fibrosis, e.g., lung infections or respiratory tract congestion, in a subject. Treatment or prevention includes administration of soluble chitosans or derivatized chitosans alone or in combination with drugs or treatments described below.

Cystic Fibrosis (also known as CF, mucovoidosis, or mucoviscidosis) is a hereditary disease affecting the exocrine (mucous) glands of the lungs, liver, pancreas, and intestines, causing progressive disability due to multisystem failure. CF is caused by a mutation in the gene cystic fibrosis transmembrane conductance regulator (CFTR). The product of this gene is a chloride ion channel important in creating sweat, digestive juices and mucus. CF is considered an autosomal recessive disease.

Symptomatic diseases and complications associated with CF include, e.g., lung and sinus diseases; gastrointestinal, liver and pancreatic diseases; endocrine diseases; and infertility. For example, lung disease results from clogging the airways due to mucosa buildup and resulting inflammation. Some of these symptoms occur when bacteria that normally inhabit the thick mucus grow out of control and cause pneumonia. In later stages of CF, changes in the architecture of the lung further
exacerbate chronic difficulties in breathing. Other symptoms include coughing up blood (hemoptysis), changes in the major airways in the lungs (bronchiectasis), high blood pressure in the lung (pulmonary hypertension), heart failure, difficulties getting enough oxygen to the body (hypoxia), respiratory failure requiring support with breathing masks such as bilevel positive airway pressure machines or ventilators, allergic bronchopulmonary aspergillosis, and infection with Mycobacterium avium complex (MAC). Mucus in the paranasal sinuses is equally thick and may also cause blockage of the sinus passages, leading to infection. This may cause facial pain, fever, nasal drainage, and headaches. Individuals with CF may develop overgrowth of the nasal tissue (nasal polyps) due to inflammation from chronic sinus infections. These polyps can block the nasal passages and increase breathing difficulties.

Complications of CF, e.g., lung diseases, can be treated or prevented using soluble chitosans or derivatized chitosans described herein, in combination with one or more of agents or therapeutics. Exemplary agents to treat complications of CF, e.g., lung diseases include antibiotics such as xylitol, vancomycin, tobramycin, meropenem, ciprofloxacin, or piperacillin, administered e.g., intravenously. Inhaled therapy with antibiotics such as tobramycin, colistin or aztreonam can also be given to improve lung function by impeding the growth of colonized bacteria. Oral antibiotics such as ciprofloxacin or azithromycin can be given to help prevent infection or to control ongoing infection. Other methods to treat lung disease include, e.g., chest physiotherapy (CPT), Biphasic Cuirass Ventilation, or aerosolized medications (e.g., DNase (e.g., domase (Pulmozyme®)), hypertonic saline, N-acetylcysteine, albuterol, or ipratropium). In some embodiments, the administrations of a combination of agents and therapeutics are spaced sufficiently close together such that a synergistic effect is achieved.

In one embodiment, a soluble chitosan or derivatized chitosan (e.g., a soluble chitosan or derivatized chitosan described herein) is used in combination with a DNase (e.g., Pulmozyme®) to treat a complication of cystic fibrosis, e.g., a lung disease. For example, the DNase (e.g., Pulmozyme®) can be administered at a dosage of less than about 2.5 mg twice a day, 2.0 mg twice a day, 1.5 mg twice a day, 1.0 mg twice a day, 0.5 mg twice a day, 2.5 mg once daily, 2.0 mg once daily, 1.5 mg once daily, 1.0 mg once daily, or 0.5 mg once daily.

Respiratory tract infections
The compositions described herein can be used to treat or prevent respiratory tract infections in a subject. For example, liquid or solid particulate compositions comprising soluble chitosans or derivatized chitosans described herein can be used to treat or prevent respiratory tract infections, e.g., respiratory tract bacterial infections, in a subject. Treatment or prevention includes administration of soluble chitosans or derivatized chitosans alone or in combination with drugs or treatments described below.

Respiratory tract infections can be caused by e.g., bacteria, viruses, parasites or fungi. Exemplary respiratory tract bacterial infections include upper respiratory tract infections such as sinusitis, pharygitis, epiglottitis, laryngitis, tracheitis, and rhinitis; and lower respiratory tract infections such as bronchitis and pneumonia.

Symptoms of respiratory tract infections include, e.g., pain, inflammation, fever, fatigue, lack of breath, nausea, diarrhea, cough, and death.

Respiratory tract infections can be treated or prevented using soluble chitosans or derivatized chitosans described herein, in combination with one or more of agents or therapeutics. Exemplary agents and therapeutics to treat respiratory tract infections includes systemic antibiotics, inhaled antibiotics, anti-inflammatory agents and steroids, mucolytic agents, and supplemental oxygen. In some embodiments, the administrations of a combination of agents and therapeutics are spaced sufficiently close together such that a synergistic effect is achieved.

Gastrointestinal tract infections

The compositions described herein can be used to treat or prevent gastrointestinal tract infections in a subject. For example, liquid or solid particulate compositions comprising soluble chitosans or derivatized chitosans described herein can be used to treat or prevent gastrointestinal tract infections, e.g., gastrointestinal tract bacterial infections, in a subject. Treatment or prevention includes administration of soluble chitosans or derivatized chitosans alone or in combination with drugs or treatments described below.

Gastrointestinal tract infections can be caused by e.g., bacteria (e.g., enteric bacteria), viruses, parasites or fungi. Exemplary gastrointestinal tract bacterial infections include noninflammatory gastroenteritis caused by e.g., Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Clostridium difficile or Clostridium botidimin; inflammatory gastroenteritis caused by e.g., Vibrio cholerae,
Enterotoxigenic (ETEC) *Escherichia coli*, Enteropathogenic (EPEC) *Escherichia coli*, Enteroaggregative (EAggEC) *Escherichia coli*, *Clostridium difficile*, *Vibrio parahemolyticus*, or *Bacillus anthracis*; or invasive gastroenteritis caused by e.g., *Shigella* sp., *Salmonella* sp., *Campylobacter jejuni*, Enteroinvasive (EIEC) *Escherichia coli*, Enterohemorrhagic (EHEC) *Escherichia coli*, *Vibrio vulnificus*, *Yersinia* sp., *Francisella tularensis*, or *Helicobacter pylori*.

Symptoms of gastrointestinal tract infections include, e.g., diarrhea, vomiting, abdominal pain, cramps, fecal leukocytes, fever, dysentery, and/or blood in stool.

Gastrointestinal tract infections can be treated or prevented using soluble chitosans or derivatized chitosans described herein, in combination with one or more of agents or therapeutics. Exemplary agents and therapeutics to treat gastrointestinal tract infections includes rehydration, dietary therapy, probiotics, zinc, pharmacologic therapy (e.g., antibiotics (e.g., fluoroquinolone, metronidazole or vancomycin), anti-diarrheal agents (e.g., loperamide or bismuth subsalicylate (BSS)), or antiemetic drugs (e.g., ondansetron or metoclopramide)). In some embodiments, the administrations of a combination of agents and therapeutics are spaced sufficiently close together such that a synergistic effect is achieved.

Antibacterials

The compositions and compounds described herein (e.g., soluble chitosans or derivatized chitosans) can be used in combination with one or more of antibiotics, to treat one or more diseases and conditions described herein. General classes of antibiotics include, e.g., aminoglycosides, bacitracin, beta-lactam antibiotics, cephalosporins, chloramphenicol, glycopeptides, macrolides, lincosamides, penicillins, quinolones, rifampin, glycopeptide, tetracyclines, trimethoprim and sulfonamides. In some embodiments, the administrations of a combination of agents and therapeutics are spaced sufficiently close together such that a synergistic effect is achieved.

Exemplary antibiotics within the classes recited above are provided as follows. Exemplary aminoglycosides include *Streptomycin*, *Neomycin*, *Framycetin*, *Paromycin*, *Ribostamycin*, *Kanamycin*, *Amikacin*, *DibeKacin*, *Tobramycin*, *Hygromycin B*, *Spectinomycin*, *Gentamicin*, *Netilmicin*, *Sisomicin*, *Isepamicm*, *Verdamicin*, *Amikin*, *Garamycin*, *Kantrex*, *Netromycin*, *Nebcin*, and *Humatin*. Exemplary carbacephem includes *Loracarbef* (Lorabid). Exemplary carbapenems include *Ertapenem*, *Invanz*, *Doripenem*, *Finibax*, *Imipenem/Cilastatin*.
Primaxin, Meropenem, and Merrem. Exemplary cephalosporins include Cefadroxil, Durisef, Cefazolin, Ancef, Cefalotin, Cefalothin, Keflin, Cefalexin, Keflex, Cefaclor, Ceclor, Cefamandole, Mandole, Cefoxitin, Mefoxin, Cefprozil, Cefzil!, Cefuroxime, Ceftin, Zinnat, Cefixime, Suprax, Cefdinir, Omnicef, Cefditoren, Spectracef, Cefoperazone, Cefobid, Cefotaxime, Claforan, Cefpodoxime, Fortaz, Ceftobuten, Cedax, Ceftizoxime, Ceftriaxone, Rocephin, Cefepime, Maxipime, and Ceftrubriprole. Exemplary glycopeptides include Dalbavancin, Oritavancin, Teicoplanin, Vancomycin, and Vancocin. Exemplary macrolides include Azithromycin, Sithromax, Sumamed, Zitrocin, Clarithromycin, Biaxin, Dirithromycin, Erythromycin, Erythocin, Erythroped, Roxithromycin, Telithromycin, Ketek, and Spectinomycin. Exemplary monobactams include Aztreonam. Exemplary penicillins include Amoxicillin, Novamox, Aoxil, Ampicillin, Alocillin, Carbenicillin, Coxacillin, Diloxacillin, Flucloxacillin Floxapen, Mezlocillin, Methicillin, Nafcillin, Oxacillin, Penicillin, and Ticarcillin. Exemplary polypeptides include Bacitracin, Colistin, and Polymyxin B. Exemplary quinolones include Ciproflaxin, Cipro, Ciproxin, Ciprobay, Enoxacin, Gatifloxacin, Tequin, Levofloxacin, Levaquin, Lomefloxacin, Moxifloxacin, Avelox, Norfloxacin, Noroxin, Ofloxacin, Ocuflox, Trovaflaxacin, and Trovan. Exemplary sulfonamides include Mefenide, Prontosil (archaic), Sulfacetamide, Sulfamethizole, Sulfanilamide (archaic). Sulfasalazine, Sulfisoxazole, Trimethoprim, Trimethoprim-Sulfamethoxazole (co-trimoxazole), and Bactrim. Exemplary tetracyclines include Demeclocycline, Doxycycline, Vibramycin, Minocycline, Minocin, Oxytetracycline, Terracin, Tetracycline, and Sumycin. Other exemplary antibiotics include Salvarsan, Chloamphenicol, Chloromycetin, Clindamycin, Cleocin, Linomycin, Ethambutol, Fosfomycin, Fusidic Acid, Fucidin, Furazolidone, Isoniazid, Linezolid, Zyvox, Metronidazole, Flagyl, Mupirocin, Bactroban, Nitrofurantion, Macrodantin, Macrobid, Platensimycin, Pyrazinamide, Quinupristin/Dalfopristin (Syncerid), Rifampin (Rifampicin), and Tinidazole. Exemplary antibiotics also include xylitol.

Anti-inflammatory

The compositions and compounds described herein (e.g., soluble chitosans and derivatized chitosans) can be used in combination with one or more anti-inflammatory drugs, e.g., steroidal anti-inflammatory drugs and non-steroidal anti-inflammatory drugs (NSAIDs), to treat one or more diseases or conditions described herein. In
some embodiments, the administrations of a combination of agents and therapeutics are spaced sufficiently close together such that a synergistic effect is achieved.

Exemplary steroidal anti-inflammatory drugs include glucocorticoids (corticosteroids), e.g., Hydrocortisone (Cortisol), Cortisone acetate, Prednisone, Prednisolone, Methylprednisolone, Dexamethasone, Betamethasone, Triamcinolone, Beclometasone, Fludrocortisone acetate, Deoxycorticosterone acetate (DOCA), and Aldosterone. Exemplary non-steroidal anti-inflammatory drugs include Aspirin, Choline and magnesium salicylates, Choline salicylate, Celecoxib, Diclofenac potassium, Diclofenac sodium, Diclofenac sodium with Isoprostol, Diflunisal, Etodolac, Fenoprofen calcium, Flurbiprofen, Ibuprofen, Indomethacin, Ketoprofen, Magnesium salicylate, Meclofenamate sodium, Mefenamic acid, Meloxicam, Nabumetone, Naproxen, Naproxen sodium, Oxaprozin, Piroxicam, Rofecoxib, Salsalate, Sodium salicylate, Sulindac, Toflunix sodium, and Valdecoxib. Exemplary non-steroidal anti-inflammatory agents (e.g., peptides) include regulatory cytokines, such as interleukins, e.g., IL-1, IL-4, IL-6, IL-10, IL-11, and IL-13.

Mucolytic agent (expectorant)

The compositions and compounds described herein (e.g., soluble chitosans and derivatized chitosans) can be used in combination with one or more mucolytic agents, to treat one or more diseases and conditions described herein. A mucolytic agent or expectorant is an agent which dissolves thick mucus and is used to help relieve respiratory difficulties. It does so by hydrolyzing glycosaminoglycans, tending to break down/lower the viscosity of mucin-containing body secretions/components. The viscosity of mucous secretions in the lungs is dependent upon the concentrations of mucoprotein, the presence of disulfide bonds between these macromolecules and DNA.

An expectorant can reduce the thickness or viscosity of bronchial secretions and help bring up mucus and other material from the lungs, bronchi, and trachea. An example of an expectorant is guaifenesin which promotes drainage of mucus from the lungs by thinning the mucus and also lubricates the irritated respiratory tract. Other exemplary mucolytic agents or expectorants include Althea root, Antimony pentasulfide, Creosote, Guaiacolsulfonate, Guaifenesin, Ipecacuanha (Syrup of ipecac), Levoverbenone, Potassium iodide, Senega, Tyloxapol, Acetylcysteine,
Ambroxol, Bromhexine, Carbocisteine, Domiodol, Dornase alfa, Eprazinone, Erdosteine, Letosteine, Mesna, Neltexine, Sobrerol, Stepronin, and Tiopronin.

Soluble chitosans and chitosan derivatives

The compositions described herein include a soluble chitosan or a functionalized chitosan derivative.

Chitosan is an insoluble polymer derived from chitin, which is a polymer of N-acetylglucosamine that is the main component of the exoskeletons of crustaceans (e.g. shrimp, crab, lobster). Chitosan is formed from chitin by deacetylation, and as such is not a single polymeric molecule, but a class of molecules having various molecular weights and various degrees of deacetylation. The percent deacetylation in commercial chitosans is typically between 50-100%. The chitosan derivatives described herein are generated by functionalizing the resulting free amino groups with positively charged or neutral moieties, as described herein. The degrees of deacetylation and functionalization impart a specific charge density to the functionalized chitosan derivative. The resulting charge density affects solubility, and the strength of interaction with bacterial cell walls and membranes. The molecular weight is also an important factor in the tenacity of bacterial wall interaction and thus bactericidal activity. Thus, in accordance with the present invention, the degree of deacetylation, the functionalization and the molecular weight must be optimized for optimal efficacy. The derivatized chitosans described herein have a number of properties which are advantageous including solubility at physiologic pH and antimicrobial activity when in solution or dry at any pH less than about 9.

A soluble chitosan as described herein, refers to a water soluble chitosan that is not derivatized on the hydroxyl or amine moieties. A soluble chitosan is comprised of glucosamine and acetylglucosamine monomers. Generally a water soluble chitosan has a molecular weight of less than or equal to about 10 kDa and a degree of deacetylation equal or greater than 80%. Water soluble is defined as being fully dissolvable in water at pH 7.

The chitosan derivatives described herein are generated by functionalizing the resulting free amino groups with positively charged or neutral moieties, as described herein.

Chitosans with any degree of deacetylation (DDA) greater than 50% are used in the present invention, with functionalization between 2% and 50% of the available
amines. The degree of deacetylation determines the relative content of free amino
groups to total monomers in the chitosan polymer. Methods that can be used for
determination of the degree of deacetylation of chitosan include, e.g., ninhydrin test,
linear potentiometric titration, near-infrared spectroscopy, nuclear magnetic resonance
spectroscopy, hydrogen bromide titrimetry, infrared spectroscopy, and first derivative
UV-spectrophotometry. Preferably, the degree of deacetylation of a soluble chitosan
or a derivatized chitosan described herein is determined by quantitative infrared
spectroscopy. Percent functionalization is determined as the % of derivatized amines
relative to the total number of available amino moieties prior to reaction on the
chitosan polymer. Preferably, the percent functionalization of a derivatized chitosan
described herein is determined by H-NMR or quantitative elemental analysis. The
degrees of deacetylation and functionalization impart a specific charge density to the
functionalized chitosan derivative. The resulting charge density affects solubility, and
strength of interaction with bacterial cell walls and membranes. The molecular weight
is important in controlling the size of the bacterial clumps. Thus, in accordance with
the present invention, these properties must be optimized for optimal efficacy.
Exemplary chitosan derivatives are described in Baker et al: 11/657,382 filed on
January 24, 2007, which is incorporated herein by reference.

The chitosan derivatives described herein have a range of polydispersity index
(PDI) between about 1.0 to about 2.5. As used herein, the polydispersity index (PDI),
is a measure of the distribution of molecular weights in a given polymer sample. The
PDI calculated is the weight averaged molecular weight divided by the number
averaged molecular weight. This calculation indicates the distribution of individual
molecular weights in a batch of polymers. The PDI has a value always greater than 1,
but as the polymer chains approach uniform chain length, the PDI approaches unity
(1). The PDI of a polymer derived from a natural source depends on the natural source
(e.g. chitin or chitosan from crab vs. shrimp vs. fungi) and can be affected by a variety
of reaction, production, processing, handling, storage and purifying conditions.
Methods to determine the polydispersity include, e.g., gel permeation chromatography
(also known as size exclusion chromatography); light scattering measurements; and
direct calculation from MALDI or from electrospray mass spectrometry. Preferably,
the PDI of a soluble chitosan or a derivatized chitosan described herein is determined
by HPLC and multi angle light scattering methods.
The chitosan derivatives described herein have a variety of selected molecular weights that are soluble at neutral and physiological pH, and include for the purposes of this invention molecular weights ranging from 5 - 1,000 kDa. Embodiments described herein are feature medium range molecular weight of derivatized chitosans (25 kDa, e.g., from about 15 to about 300 kDa) which can have clumping, diffusible and biofilm disruption properties.

The functionalized chitosan derivatives described herein include the following:
(A) Chitosan-arginine compounds;
(B) Chitosan-natural amino acid derivative compounds;
(C) Chitosan-unnatural amino acid compounds;
(D) Chitosan-acid amine compounds;
(E) Chitosan-guanidine compounds; and
(F) Neutral chitosan derivative compounds.

(A) Chitosan-arginine compounds
In some embodiments, the present invention is directed to chitosan-arginine compounds, where the arginine is bound through a peptide (amide) bond via its carbonyl to the primary amine on the glucosamines of chitosan:

\[
\begin{align*}
\text{OH} & \quad \text{OH} & \quad \text{OH} \\
\text{NH} & \quad \text{O} & \quad \text{O} \\
R^1 & \quad R^1 & \quad R^1
\end{align*}
\]

wherein each R\(^1\) is independently selected from hydrogen, acetyl, and a group of the following formula:

\[
\begin{align*}
\text{O} & \quad \text{NH} & \quad \text{NH}_2 \\
\text{HN} & \quad \text{HN} & \quad \text{NH}_2
\end{align*}
\] and

\[
\begin{align*}
\text{O} & \quad \text{NH}_2 \\
\text{HN} & \quad \text{NH}_2
\end{align*}
\]

or a racemic mixture thereof,
wherein at least 25\% of R\(^1\) substituents are H, at least 1\% are acetyl, and at least 2\% are a group of the formula shown above.
(B) Chitosan-natural amino acid derivative compounds

In some embodiments, the present invention is directed to chitosan-natural amino acid derivative compounds, wherein the natural amino acid may be histidine or lysine. The amino is bound through a peptide (amide) bond via its carbonyl to the primary amine on the glucosamines of chitosan:

wherein each R^1 is independently selected from hydrogen, acetyl, and a group of the following formula:

or a racemic mixture thereof, wherein at least 25% of R^1 substituents are H, at least 1% are acetyl, and at least 2% are a group of the formula shown above; OR a group of the following formula:

or a racemic mixture thereof, wherein at least 25% of R^1 substituents are H, at least 1% are acetyl, and at least 2% are a group of the formula shown above.

(C) Chitosan-unnatural amino acid compounds

In some embodiments, the present invention is directed to chitosan-unnatural amino acid compounds, where the unnatural amino acid is bound through a peptide (amide) bond via its carbonyl to the primary amine on the glucosamines of chitosan:
wherein each R^1 is independently selected from hydrogen, acetyl, and a group of the following formula:

\[
\begin{align*}
\text{R}^3 & \text{NH}_2 \\
\text{R}^3 & \end{align*}
\]

wherein R^3 is an unnatural amino acid side chain, and wherein at least 25% of R^1 substituents are H, at least 1% are acetyl, and at least 2% are a group of the formula shown above.

Unnatural amino acids are those with side chains not normally found in biological systems, such as ornithine (2,5-diaminopentanoic acid). Any unnatural amino acid may be used in accordance with the invention. In some embodiments, the unnatural amino acids coupled to chitosan have the following formulae:

(D) Chitosan-acid amine and guanidine compounds

In some embodiments, the present invention is directed to chitosan-acid amine compounds, or their guanidylated counterparts. The acid amine is bound through a peptide (amide) bond via its carbonyl to the primary amine on the glucosamines of chitosan:
wherein each \(R^1 \) is independently selected from hydrogen, acetyl, and a group of the following formula:

\[
\begin{align*}
\text{R}^3, \\
\end{align*}
\]

wherein \(R^3 \) is selected from amino, guanidino, and \(\text{Ci-C}_x \text{alkyl} \) substituted with an amino or a guanidino group, wherein at least 25% of \(R^1 \) substituents are \(H \), at least 1% are acetyl, and at least 2% are a group of the formula shown above.

In some embodiments, \(R^1 \) is selected from one of the following:

\(\text{Chitosan-guanidine compounds} \)

In some embodiments, the present invention is directed to chitosan-guanidine compounds.
wherein each R^1 is independently selected from hydrogen, acetyl, and or together with the nitrogen to which it is attached, forms a guanidine moiety; wherein at least 25% of R^1 substituents are H, at least 1% are acetyl, and at least 2% are a group of the formula shown above.

(F) Neutral chitosan derivative compounds

In some embodiments, the present invention is directed to neutral chitosan derivative compounds. Exemplary neutral chitosan derivative compounds include those where one or more amine nitrogens of the chitosan has been covalently attached to a neutral moiety such as a sugar:

wherein each R^1 is independently selected from hydrogen, acetyl, and a sugar (e.g., a naturally occurring or modified sugar) or an cc-hydroxy acid. Sugars can be monosaccharides, disaccharides or polysaccharides such as glucose, mannose, lactose, maltose, cellulbiose, sucrose, amylose, glycogen, cellulose, gluconate, or pyruvate. Sugars can be covalently attached via a apacer or via the carboxylic acid, ketone or aldehyde group of the terminal sugar. Examples of ct-hydroxy acids include glycolic acid, lactic acid, and citric acid. In some preferred embodiments, the neutral chitosan derivative is chitosan-lactobionic acid compound or chitosan-glycolic acid compound. Exemplary salts and coderivatives include those known in the art, for example, those described in US 20070281 904, the contents of which is incorporated by reference in its entirety.

Compositions

Described herein are also compositions comprising a soluble chitosan or a functionalized chitosan derivative, e.g., a soluble or derivatized chitosan described
herein. In some embodiments, the composition is a liquid, solid, or semisolid composition. In some embodiments, the composition is a pharmaceutical composition. In some embodiments, the composition is a reaction mixture.

In some embodiments, the composition further comprises one or more additional compound or agent. In some embodiments, the second compound or agent is another chitosan derivative, e.g., a soluble or derivatized chitosan described herein.

In some embodiments, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid, e.g., polyarginine (e.g., diarginine, triarginine, etc).

In some embodiments, the composition has less than about 20%, 15%, 10%, 5%, 2%, or 1%, or is substantially free, of a chitosan polymer having a molecular weight of less than 15,000 Da, 10,000 Da, or 5,000 Da.

The composition described herein can be used to disrupt a preformed biofilm or prevent the formation of a biofilm in a subject. The composition described herein can also be used to treat or prevent a disease or a symptom of a disease described herein.

Formulations and routes of administration

The compounds described herein can be formulated in a variety of manners, including for oral or topical delivery (e.g., administered orally (e.g., oral rinse, throat gargle), by inhalation spray (e.g., nasal spray, nasal mists, or sinus spray), nebulizer, topically, rectally, nasally, buccally. In some embodiments, inhalation sprays (e.g., nasal spray, nasal mists, or sinus spray), are used for the nasal delivery of a compound described herein, to locally treat or prevent an infection or disorder described herein, e.g., a nosocomial infection or MRSA infection. Inclusion in feed, water or an inhaled formulation is particularly desirable for use with animals. In some embodiments, a compound is formulated so as to allow the soluble chitosan or soluble chitosan derivative thereof to diffuse into a subject (e.g., into the wound, body cavities, or skin of a subject) upon administration to the subject or to be ingested, inhaled or swabbed while incorporated into a time release formulation.

The compound described herein (e.g., a soluble chitosan or a derivatized chitosan) can be administered before or after the onset of the disorder described herein. The methods herein contemplate administration of an effective amount of
compound or compound composition to achieve the desired or stated effect. Typically, the compositions of this invention will be administered from about 1 to about 6 times per day. Alternatively, the compounds can be administered as a continuous time-release. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. A typical solution preparation will contain from about 1 µg/mL to 1000 µg/mL, about 5 µg/mL to 500 µg/mL, about 10 µg/mL to about 250 µg/mL, about 20 µg/mL to about 100 µg/mL, or about 40 µg/mL to about 60 µg/mL. A typical solid diffusible preparation will contain from about 1% to about 20%, about 2% to about 15%, or about 5% to about 10% by weight. A typical solid dissolvable preparation will contain from about 2% to about 95% by weight.

Lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, condition or symptoms, the type and nature of the bacteria, the patient's disposition to the disease, condition or symptoms, and the judgment of the treating physician.

In an embodiment, the compounds described herein (e.g., a soluble chitosan or a derivatized chitosan) can be formulated, e.g., as a solution, gel, or dressing, e.g., for treating a wound. In an embodiment, the dosage (e.g., solution dosage) is from about 10 µg/mL to about 1000 µg/mL, about 100 µg/mL to about 750 µg/mL, or about 250 µg/mL to about 500 µg/mL, applied e.g., sufficiently to rinse a wound area. In an embodiment, the dosage (e.g., solution dosage) is about 10 to about 1000µg/mL, about 100 µg/mL to about 750 µg/mL, or about 250 µg/mL to about 500 µg/mL, applied to coat the wound at least 1, 2, 3, or 4 times daily. In an embodiment, the solid diffusible composition (dressing) is from about 1% to about 10%, about 3% to about 8%, or about 5% to about 6%, by weight applied to cover the wound at least 1, 2, 3, or 4 times daily. In an embodiment, the composition is applied to a thickness of at least about 1/128, 1/64, 1/32, or 1/16 inch.

In an embodiment, the compounds described herein (e.g., a soluble chitosan or a derivatized chitosan) can be formulated, e.g., as a solution, encapsulated time release, gel, or enema, e.g., for treating gastrointestinal disorder or condition. In an
embodiment, the dosage is from about 10 µg/mL to about 5000 µg/mL, about 20 µg/mL to about 4000 µg/mL, about 100 µg/mL to about 3000 µg/mL, about 200 µg/mL to about 2000 µg/mL, or about 500 to about 1000 µg/mL in solution, e.g., ad libitum, e.g., in water or fluid. In an embodiment, the composition is administered at least 1, 2, 3, or 4 times daily. In an embodiment, the dosage is from about 1 mg/kg to about 100 mg/kg, about 2 mg/kg to about 75 mg/kg, about 5 mg/kg to about 50 mg/kg, or about 10 mg/kg to about 25 mg/kg body weight in an encapsulated time release, gel, capsule or enema. In an embodiment, the composition is administered at least 1, 2, 3, or 4 times daily.

In an embodiment, the compounds described herein (e.g., a soluble chitosan or a derivatized chitosan) can be formulated as a nebulized solution or powder, or lavage, e.g., for treating a pulmonary disorder or condition. In a preferred embodiment, the dosage is from about 500 µg to about 50000 µg, about 1000 µg to about 25000 µg, about 2000 µg to about 10000 µg, or about 4000 µg to about 6000 µg, every 2, 4, 6, 8, 10, 12, or 24 hours. In an embodiment, the composition is administered at least 1, 2, 3, or 4 times daily.

In an embodiment, the compounds described herein (e.g., a soluble chitosan or a derivatized chitosan) can be formulated, e.g., as a spray, ointment, gel or inhalant, e.g., for treating a disorder or condition or ear, nose or throat. In a preferred embodiment, the dosage is from about 10 to 1000 µg/mL, about 100 µg/mL to about 750 µg/mL, or about 250 µg/mL to about 500 µg/mL in solution, or from about 0.1% to about 10%, about 0.5% to about 5%, or about 1% to about 2% by weight in an ointment or gel. In an embodiment, the composition is administered at least 1, 2, 3, or 4 times daily.

In an embodiment, the compounds described herein (e.g., a soluble chitosan or a derivatized chitosan) can be formulated as an ointment, solution, gel, or dressing, e.g., for skin decontamination or treating a skin condition. The dosage (e.g., solution dosage) is from about 10 µg/mL to about 1000 µg/mL, about 100 µg/mL to about 750 µg/mL, or about 250 µg/mL to about 500 µg/mL, applied e.g., sufficiently to rinse a skin area. In an embodiment, the dosage (e.g., solution dosage) is from about 10 to about 1000 µg/mL, about 100 µg/mL to about 750 µg/mL, or about 250 µg/mL to about 500 µg/mL applied to coat the skin at least 1, 2, 3, or 4 times daily. In an embodiment, the solid diffusible composition (dressing) is from about 1% to about 10%, about 3% to about 8%, or about 5% to about 6% by weight applied to coat the
skin at least 1, 2, 3, or 4 times daily. In an embodiment, the composition is applied to
a thickness of at least about 1/128, 1/64, 1/32, or 1/16 inch.

Upon improvement of a patient's condition, a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.

Pharmaceutical compositions of this invention comprise a compound of the formulae described herein or a pharmaceutically acceptable salt thereof; an additional compound including for example, a steroid or an analgesic; and any pharmaceutically acceptable carrier, adjuvant or vehicle. Alternate compositions of this invention comprise a compound described herein or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier, adjuvant or vehicle. The compositions delineated herein include the compounds described herein, as well as additional therapeutic compounds if present, in amounts effective for achieving a modulation of disease or disease symptoms.

The compositions are generally made by methods including the steps of combining a compound described herein with one or more carriers and, optionally, one or more additional therapeutic compounds delineated herein.

The term "pharmaceutically acceptable carrier or adjuvant" refers to a carrier or adjuvant that may be administered to a patient, together with a compound of this invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.

The pharmaceutical compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, emulsions and aqueous suspensions, dispersions and solutions. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions and/or emulsions are administered orally, the active ingredient may be suspended or dissolved in an oily phase which can be combined
with emulsifying and/or suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.

The compounds of this invention may be administered by aerosol, nebulizer, or inhalation. In some embodiments, the composition is in the form of a dry powder, a suspension, or a solution. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art. Exemplary methods and devices for aerosol or inhalation include those described in US Patent No. 6,962,151, which is incorporated herein by reference in its entirety.

Compositions formulated for inhaled delivery generally include particles having a mean diameter of from about 0.1 \(\mu m \) to about 50 \(\mu m \) (e.g., from about 0.1 \(\mu m \) to about 10 \(\mu m \), or from about 0.2 \(\mu m \) to about 5 \(\mu m \)). In some embodiments, the composition includes a dispersion of suitably-sized dry particles, for example, precipitants or crystals) or a dispersion of a solution (e.g., droplets) of a suitable size.

The pharmaceutical compositions of this invention may also be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.

Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as \(\alpha \)-tocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block
polymers, polyethylene glycol and wool fat. Cyclodextrins such as α-, β-, and γ-cyclodextrin, may also be advantageously used to enhance delivery of compounds of the formulae described herein.

In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form for delivery in particular regions of the body, such as the colon.

The pharmaceutical compositions of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.

When the compositions of this invention comprise a combination of compounds described herein, both the compounds are generally present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen. Additionally, combinations of a plurality of compounds described herein are also envisioned. The compounds may be administered separately, as part of a multiple dose regimen, from the compounds of this invention. The compounds may be administered in a manner and dose where they act synergistically as describe e.g., in US Patent Application 61/113904, which is incorporated herein by reference in its entirety. Alternatively, those compounds may be part of a single dosage form, mixed together with the compounds of this invention in a single composition.

In some embodiments, the pharmaceutical compositions described herein can be administered topically, e.g., via liquid, semi-solid, gel, or time release, by irrigation, or by incorporation into a dressing.

Kits

A compound described herein (e.g., a soluble chitosan or a derivatized chitosan) can be provided in a kit. The kit includes (a) a composition that includes a compound described herein, and, optionally (b) informational material. The informational material can be descriptive, instructional, marketing or other material
that relates to the methods described herein and/or the use of the compound described herein for the methods described herein.

The informational material of the kits is not limited in its form. In one embodiment, the informational material can include information about production of the compound, molecular weight of the compound, concentration, date of expiration, batch or production site information, and so forth. In one embodiment, the informational material relates to use of the compound described herein to treat a disorder described herein.

In one embodiment, the informational material can include instructions to administer the compound described herein in a suitable manner to perform the methods described herein, e.g., in a suitable dose, dosage form, or mode of administration (e.g., a dose, dosage form, or mode of administration described herein). In another embodiment, the informational material can include instructions to administer the compound described herein to a suitable subject, e.g., a human, e.g., a human having or at risk for a disorder described herein. For example, the material can include instructions to administer the compound described herein to such a subject.

The informational material of the kits is not limited in its form. In many cases, the informational material, e.g., instructions, is provided in printed matter, e.g., a printed text, drawing, and/or photograph, e.g., a label or printed sheet. However, the informational material can also be provided in other formats, such as computer readable material, video recording, or audio recording. In another embodiment, the informational material of the kit is contact information, e.g., a physical address, email address, website, or telephone number, where a user of the kit can obtain substantive information about a compound described herein and/or its use in the methods described herein. Of course, the informational material can also be provided in any combination of formats.

In addition to a compound described herein, the composition of the kit can include other ingredients, such as a solvent or buffer, a stabilizer, a preservative, and/or a second compound for treating a condition or disorder described herein. Alternatively, the other ingredients can be included in the kit, but in different compositions or containers than the compound described herein. In such embodiments, the kit can include instructions for admixing the compound described
herein and the other ingredients, or for using a compound described herein together with the other ingredients.

The compound described herein can be provided in any form, e.g., liquid, dried or lyophilized form. It is preferred that the compound described herein be substantially pure and/or sterile. When the compound described herein is provided in a liquid solution, the liquid solution preferably is an aqueous solution, with a sterile aqueous solution being preferred. When the compound described herein is provided as a dried form, reconstitution generally is by the addition of a suitable solvent. The solvent, e.g., sterile water or buffer, can optionally be provided in the kit.

The kit can include one or more containers for the composition containing the compound described herein. In some embodiments, the kit contains separate containers, dividers or compartments for the composition and informational material. For example, the composition can be contained in a bottle, vial, or syringe, and the informational material can be contained in a plastic sleeve or packet. In other embodiments, the separate elements of the kit are contained within a single, undivided container. For example, the composition is contained in a bottle, vial or syringe that has attached thereto the informational material in the form of a label. In some embodiments, the kit includes a plurality (e.g., a pack) of individual containers, each containing one or more unit dosage forms (e.g., a dosage form described herein) of a compound described herein. For example, the kit includes a plurality of syringes, ampules, foil packets, or blister packs, each containing a single unit dose of a compound described herein. The containers of the kits can be air tight, waterproof (e.g., impermeable to changes in moisture or evaporation), and/or light-tight.

The kit optionally includes a device suitable for administration of the composition, e.g., a syringe, inhalant, pipette, forceps, measured spoon, dropper (e.g., eye dropper), swab (e.g., a cotton swab or wooden swab), or any such delivery device. In a preferred embodiment, the device is an implantable delivery device.

Examples

Example 1. Chitosan-arginine clumps both Gram positive and Gram negative bacteria under planktonic conditions.

Planktonic conditions are defined for bacteria that are in solution, as opposed to conditions where bacteria are already attached to a surface. Clumping of the bacteria by chitosan-arginine occurs very rapidly in solution as shown in the SYTOX
green/propidium iodide stained fluorescent images at 200x magnification. Figure 1A shows a solution of Gram negative *Pseudomonas aeruginosa* strain PA01 (ATCC BAA-47) in ultra-pure water. Note that the bacteria in the images are very small as they are independent cells. Figure 1B shows clumped *Pseudomonas aeruginosa* after 1 minute of exposure to 100μg/ml of chitosan-arginine (24kDa, 28% functionalized, 83 %DDA, 1.54 PDI). Note that this Gram negative bacteria clumps dramatically into very large agglomerates in a very short time.

Chitosan derivatives also clump Gram positive bacteria. Figure 2A shows a solution of Gram positive *Streptococcus mutans* (strain) in ultra-pure water. Note that by their nature, *Streptococci* grow in chains or pairs. As seen in Figure 2A, the bacteria exist as very small clumps. However, the dramatic clumping of *S. mutans* after 1 minute of exposure to 10(μg/ml of chitosan-arginine (24kDa, 28% functionalized, 83 %DDA, 1.54 PDI) is seen in Figure 2B. The chitosan-arginine provides a mechanism for very tight clumping of the bacteria.

Example 2. Chitosan-acid amines clump both Gram positive and Gram negative bacteria under planktonic conditions.

Chitosan derivatives known as chitosan-acid amines, derived from 6-amino-hexanoic acid were observed to clump both Gram positive and Gram negative bacteria under planktonic conditions. Clumping occurs very rapidly, in solution, as shown in the SYTOX green/propidium iodide stained fluorescent images at 200x magnification. Figure 3 shows the clumping of the *Pseudomonas aeruginosa* strain PA01 (ATCC BAA-47) after 1 minute of exposure to 100μg/ml of chitosan-acid amine (29 kDa, 39% functionalized with 6-amino-hexanoic acid) compare to the untreated control (See Figure 1A). Figure 4A shows Gram positive methicillin resistant *Staphylococcus aureus* strain MW-2 in ultra-pure water. Note that *Staphylococcus* can make very small clusters by their natural growth cycle. Figure 4B shows the same *Staphylococcus aureus* strain MW-2 being clumped after 1 minute of exposure to 100μg/ml of chitosan-acid amine (29 kDa, 39% functionalized with 6-amino-hexanoic acid). Note that the morphology of the clumping is different than with *Pseudomonas aeruginosa*, but that clumping nonetheless occurs. The morphology of the clumping is dependent on the strain of the bacteria, the molecular weight and chain length of the derivative and the nature of the chitosan derivative moiety.
Example 3. Higher molecular weight chitosan derivatives aggregate bacteria into larger clumps than lower molecular weight chitosan derivatives.

While chitosan derivatives can clump a broad spectrum of bacteria, the molecular weight of the derivative is an important parameter because different molecular weights provide different clumping morphologies, regardless of the nature of the chitosan derivative. As shown in Figures 5 and 6, higher molecular weight chitosan derivatives aggregate bacteria into larger clumps than lower molecular weight chitosan derivatives. Specifically in Figure 5, Gram negative Pseudomonas aeruginosa strain PA01 shows visible evidence of clumping after 24 hours treatment with 100μg/ml chitosan-lactobionic acid the neutral chitosan derivative (125 kDa) (Tube A), 100μg/ml chitosan-arginine (28 kDa, 37% functionalization, 83 %DDA, 1.95 PDI) (TubeB), 100μg/ml chitosan-arginine (40 kDa, 37% functionalization, 83 %DDA, 2.454 PDI) (Tube C), and compared to water alone (Tube D). The difference between the 28 kDa chitosan derivative (Tube B) and the 125 kDa chitosan derivative (Tube A) shows that greater clumping occurs following treatment with the larger molecule. This data is quantified in Figure 6. The derivatives as described above, were added to the Gram negative Pseudomonas aeruginosa strain PA01 suspension (total volume 5 mL). Following 24 hours treatment, three samples of each treatment in a volume of 100 μl was obtained from the middle (to avoid misrepresentation of the observation because of natural bacterial settling due to gravity) of each bacterial suspension. The OD 595 was measured. A decrease in the OD 595 with respect to the PA01 in water alone indicated the bacteria were aggregating and precipitating out of the suspension, corresponding to visible observations in Figure 5.

Example 4. Reduction of the carrier state of Staphylococcus aureus and/or Acinetobacter baumanmi in the nose (anterior nares).

It has been shown that the reduction of the carrier state of bacteria in the anterior nares is sufficient to reduce nosocomial infections. A chitosan derivative nasal spray in hypotonic, neutral solution is sufficient to clump over 10⁸ bacteria/ml. Chitosan derivatives clump Acinetobacter baumanmi and multiple strains of MRSA as shown above. Figures 7A-7C shows that Streptococcus mutans is clumped by various doses of chitosan-arginine after five minutes incubation at 200x magnification. Figures 7A through 7C show clumping of Streptococcus mutans by 2μg/ml, 10 μg/ml, and 20 μg/ml of chitosan-arginine, respectively, at 200x
magnification. It is important to note that the lowest of these doses is sufficient to cause significant aggregation of the bacteria. Furthermore, clumping is also observed in known resistant bacteria such as MRSA as shown in Figures 8A and 8B. Figure 8A shows *Staphylococcus aureus* strain MW-2, a blood/CSF isolate that is methicillin resistant after a 1-minute exposure to water. It is important to note that *Staphylococci* tend to exist naturally in very small clusters. However, after the addition of chitosan-arginine as shown in Figure 8B, clumping dramatically increases.

Table 5. Exemplary bacteria clumped by positive and neutral chitosan derivatives

<table>
<thead>
<tr>
<th>Gram positive</th>
<th>Gram negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus MW-2</td>
<td>Escherichia coli O:157 H:7</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>Shigella flexneri</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>Salmonella typhimurium</td>
</tr>
<tr>
<td>Streptococcus pyogenes (GAS)</td>
<td>Acinetobacter baumannii</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
</tr>
</tbody>
</table>

Example 5. Mammalian cells are not clumped by these chitosan derivatives.

A number of human cells have been treated with up to 1 mg/ml of chitosan-arginine with no change in viability nor any indication of clumping. Figures 9A and 9B shows optical microscope images taken at 20x of THP-1 human monocyte cell line exposed to 100µg/ml of 40kDa chitosan-arginine 37% functionalized for 24 hours at high (A) and lower (B) cell density (10⁶ cells/ml and 10⁵ cells/ml, respectively). The viability and structure of mammalian cells is not affected by the presence of the chitosan derivatives up to doses that are highly effective at clumping bacteria. These positively charged, soluble polymer chitosan derivatives are very broadly effective at clumping bacteria, with somewhat higher efficiency of clumping Gram positive relative to Gram-negative bacteria. As will be understood by one of ordinary skill, selection of an appropriate MW and functionalization depends on the strain and species of the bacteria.

Example 6. The ability of chitosan derivatives to clump and reduce viable *Clostridium difficile*

The ability of chitosan derivatives to treat enteric infection by reducing the effective bacterial load via clumping and reducing viable *Clostridium difficile* is tested. *Clostridium difficile* is closely related to *Clostridium perfringens*, having
similar etiology in the gut. *Clostridium difficile* is mostly found in humans, and *Clostridium perfringens* is mostly found in poultry. Efficacious doses of chitosan derivatives are determined *in vitro* for significant reduction of *Clostridium difficile* viability alone and in synergistic combinations with current antibiotic therapies. Additional information about the potential role for chitosan-lactobionic acid can complement these studies and provide a neutral control aiding in elucidating the role of the positive charge versus the chitosan backbone itself in bacterial interaction. A treatment formulation to be tested in animal models can be developed. Oral therapies of chitosan-arginine can be tested in well-established *in vivo* models of *Clostridium difficile* infections to ascertain the feasibility and effectiveness of this antimicrobial polysaccharide. Potential applications, although focused here on *Clostridium difficile* infections, extend broadly to enteric infections.

Example 7. Viscosity studies

1% Sodium alginate biofilm model treated with chitosan-arginine

Homogeneous 1% sodium alginate solutions (35mL each) were prepared in water. Viscosity was immediately (0.1 hours) measured on a Brookfield digital viscometer (Model DV-E) using spindle 62 at speed 30 rpm, after adding either 100 µg/mL chitosan-arginine (in 2 mL, 25% functionalized, 18kDa, 88 %DDA, PDI 1.47) or an equivalent amount of water (control). Viscosity was also measured 1 and 4 hours following treatment.

As shown in **Figure 10**, after 1 and 4 hours, chitosan-arginine showed a significant (p=0.01) reduction in the viscosity of the sodium alginate solution compared to water treatment alone.

Pseudomonas aeruginosa biofilm/spent media viscosity study

Pseudomonas aeruginosa biofilms were grown in polystyrene plates for 2.5 days at 37 °C. The biofilm supernatant/spent media is very viscous due to alginate production and DNA sequestration. We tested the ability of chitosan-arginine to reduce the viscosity of *P. aeruginosa* biofilm supernatants/spent media following a 1-minute treatment with 100 µg/mL chitosan-arginine. First, a dramatic visual reduction in viscosity was observed upon addition of the chitosan-arginine to the gelatinous material. Subsequently, a Brookfield spinning viscometer was used to measure the viscosity of biofilm supernatants that were removed from the polystyrene plates and
placed in 1.5 ml tubes. Four samples each were tested before chitosan-arginine treatment and 1-minute after 100 μg/mL chitosan-arginine (28% functionalized, 24kDa, 83 %DDA, PDI 1.54) treatment. Viscosity readings in centipoises (cP) were obtained with spindle number 64 at a speed of 50 rpm. As shown in Figure 11, the average viscosity before chitosan-arginine treatment was 950 ± 280 cP. Following the 1-minute chitosan-arginine treatment, this measurement was reduced to 270 ± 80 cP and the material appeared visually less opaque than untreated biofilm supernatant.

CF patient sputum study: Pourability

Two sputum samples were obtained from cystic fibrosis patients during routine clinical practice and collected immediately from the hospital. The each sample was briefly vortexed and a volume of 200 μL was placed in two microfuge tubes. The controls were treated with 10 μL of water only. The others were treated with 100 μg/mL of chitsan-arginine (25% functionalized, 43kDa, 88 %DDA, PDI 2.28) in 10 μL of water. After a brief mixing step the tubes were incubated at 37 °C for 1 hour to simulate conditions in the patient. The tubes were removed and tested for pourability.

Both control sputum samples were unable to pour, however the chitosan-arginine treated sputum was pourable as shown in Figure 12. This qualitatively demonstrates the ability of chitosan-argmine to reduce the viscosity of viscous sputum associated with cystic fibrosis.

Example 8. Tobramycin synergy experiment

Chronic antibacterial treatment of *Pseudomonas aeruginosa* infections in the lungs of cystic fibrosis patients is thought to facilitate antibacterial resistance (Speert *et al.*, 1990; Govan & Deretic, 1996). Recently, sub-inhibitor' aminoglycoside concentrations have been associated with induction of biofilm formation by *P. aeruginosa* (Hoffman et al., 2005).

A checkerboard assay was used to screen 64 unique combinations of antimicrobial concentrations in triplicate. For each study, approximately 10⁷ cells per mL were treated with chitosan-arginine (64-0.5 μg/mL) and/or tobramycin (4-0.03 1 μg/mL). Bacteria were incubated at 37 °C for 20 hours. The fluorescent pigment pyocyanin produced by *Pseudomonas aeruginosa* can be correlated with bacterial growth. The Minimum Inhibitory Concentration (MIC) values obtained with this
protocol (fluorescence was measured 485nm excitation, 535nm emission) are the same as those obtained using optical density (Hoffman et al., 2005).

Three independent checkerboard assays were completed in triplicate using different lots of chitosan-arginine and tobramycin with the MIC of each antimicrobial alone reported in Table 6 (column 1). The amounts of chitosan-arginine $\text{(}\mu\text{g/ml})$ co-administered are in bold. The tobramycin MIC reported in response to co-administered C/A is noted above the bolded values. It is clear that the addition of 0.5 $\mu\text{g/ml}$ chitosan-arginine caused the MIC of tobramycin to be reduced 4 to 8-fold. The MIC of tobramycin is reduced 8 to 32-fold upon the addition of 4 $\mu\text{g/ml}$ of chitosan-arginine (Table 6).

Table 6. Summary of the MIC data and FIC calculations to determine synergy

<table>
<thead>
<tr>
<th>MIC Antimicrobial Alone ($\mu\text{g/ml}$)</th>
<th>Tobramycin MIC ($\mu\text{g/ml}$)</th>
<th>FIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/A1 (16) Tobramycin (1)</td>
<td>C/A</td>
<td>0.5</td>
</tr>
<tr>
<td>C/A2 (32) Tobramycin (0.5) Treatment ($\mu\text{g/ml}$)</td>
<td>0.5</td>
<td>2 4</td>
</tr>
<tr>
<td>C/A3 (32) Tobramycin (0.5)</td>
<td>0.5</td>
<td>4</td>
</tr>
</tbody>
</table>

1 27%, 32kDa; 2 31%, 54kDa; 3 25%, 40kDa; 4 (S)=Synergistic

All of the treatment concentrations shown in Table 6 were shown to exhibit synergistic relationships as defined by the Fractional Inhibitory Concentration (FIC). The FIC is an interaction coefficient indicating whether the combined inhibitory/bacteriostatic effect of drugs is synergistic, additive or antagonistic (FIC = A + B) where: A = (MIC of X with Y) / (MIC of drag X alone) and, B = (MIC of Y with X) / (MIC of drag Y alone). If the FIC ≤ 0.5 the relationship is synergistic, additive if the FIC = 1, or antagonistic if the FIC ≥ 4.

These analyses determined that co-administration of tobramycin and chitosan-arginine is synergistic. Specifically, chitosan-arginine lowers the MIC of tobramycin and works synergistically to eliminate *Pseudomonas aeruginosa.*

Example 9. Neutral soluble chitosan derivative clumping

The ability of chitosan-lactobionic acid (LOT 007; about 100kDa), a neutral charge chitosan derivative, to clump various bacterial species was evaluated using SYTOX green/propidium iodide staining after a 1-minute incubation with either treatment. As shown in Figures 13-20 (magnification 200x), chitosan-lactobionic acid is able to clump these bacteria within a minute of exposure, similar to chitosan-
arginine. Bacteria tested were Salmonella enterica serotype Typhimurium (Figure 13),
Clostridium perfringens (Figure 14), Escherichia coli strain 0157 :H7 (Figure 15),
Streptococcus pyogenes also know as Group A Strep (Figure 16), Shigella flexneri
(Figure 17), Streptococcus mutans (Figure 18), methicillin resistant Staphylococcus
aureus strain MW-2 (Figure 19), and Pseudomonas aeruginosa strain PA01 (Figure
20, see Figure 1A for untreated control). Figures 13-19A depict the bacteria before
treatment (control) compared to Figures 13-19B after 1-minute treatment with
10C^g/ml of chitosan-lactobionic acid. This observation demonstrates that innate
properties of the chitosan backbone, in addition to or instead of the positive charge
provided by positivie derivatives, is a critical component of the clumping mechanism.
This observation also demonstrates that neutral derivatives can be effectively used for
clumping in addition to positively charge derivatives.

Example 10. Wound biofilms

Bacteria associated with wound biofilms were also tested for sensitivity to
chitosan-arginine. Meticillin resistant Staphylococcus aureus strain MW-2 biofilms
were grown up in THB stationary at 37 °C for 2.5 days. The biofilms were rinsed and
treated with 0, 10, 50, or 100 µg/ml of chitosan-arginine (24 kDa, 28%
fractionalization, 83 %DDA, 1.5 PDI), in triplicate for 4 hours. Then the biofilms
were scraped from the wells, diluted and plated to obtain CFU. Figure 21 shows a 3-
reduction with 10 µg/ml after 4-hours and 4-log reduction at 50 and 100 µg/ml.

Chitosan-arginine efficacy against wound pathogen Pseudomonas aeruginosa
strain PA01 biofilms was also tested. Biofilms were grown for 3 days in 12 well
plates in yeast extract and treated with 25, 50, or 100 µg/ml chitosan-arginine for 6-
hours. The virtual CFU were enumerated following the technique of Brewster
(Brewster, 2003). Pseudomonas aeruginosa strain PA01 biofilms are significantly
reduced after 6-hour incubation with chitosan-arginine as seen in Figure 22. A
marked dose response was also observed as the concentration of chitosan-arginine
was increased from 25-100 µg/ml. The highest dose (100µg/ml) reduced the virtual
CFU by 4 logs with a decrease in efficacy as seen in the figure at lower doses. It is
notable that almost half of the data points for the replicates of the 100µg/ml chitosan-
arginine treatment did not show any growth at all.

Example 11. Disc diffusion assay

179
To test the ability of chitosan-arginine to diffuse from 2% or 20% gelatin formulation, antibiotic test wafers were impregnated with 50 mM silver nitrate (positive control), gelatin alone (negative control), or chitosan-arginine (31%, 9kDa). Following 18h incubation at 37°C, diffusion was evident by the observation of a zone of inhibition that occurred around the discs (either autoclave or not) that contained the 9 kDa chitosan-arginine delivered in 2 or 20% gelatin, as shown in Figure 23. In this instance, autoclaving did not have an effect on activity.

This example suggests that the ability of chitosan-arginine to be delivered in a viscous or gel-like substance facilitates the slow release of chitosan-arginine into the local area of treatment. Maintaining a higher concentration of chitosan-arginine over an extended period of time can extend the spectrum of antibacterial activity and reduces the need for re-application.

Example 12. The prophylactic activity of chitosan-arginine against MRSA on pigskin

Pigskin was obtained from Sinclair Research Center, Inc. (Colombia, MO) shaved, cleaned, and divided into 1-inch square sections. Each skin used was placed in sterile Petri dishes and UV sterilized on both sides for 1-hour each to prepare for testing. In triplicate each skin was treated with 3% hydrogen peroxide, 70% ethanol, Chloroprep (commercial product consisting of 2% chlorohexidine in 70% ethanol), and 60 µg/cm² chitosan-arginine in 70% ethanol, or no treatment and allowed to dry for 1-hour. Approximately 10³ CFU of MRSA MW-2 was placed onto the pigskins and left at room temperature to adhere for 1-hour. Three pieces were excluded from treatment for controls to indicate sterilization of the skin occurred. The skin surface was pressed onto a BHI agar plate to obtain a qualitative indication of the amount of bacteria remaining on the skin surface. As shown in Figure 24, chitosan-arginine and Chloroprep maintained good prophylactic activity while hydrogen peroxide and 70% ethanol had no prophylactic activity.

Example 13. The wound rinse activity of chitosan-arginine against bacteria contaminated abraded pigskin.

Pigskin was obtained from Sinclair Research Center, Inc. (Colombia, MO) shaved, cleaned, and divided into 1-inch square sections. Each skin used was placed in sterile Petri dishes and UV sterilized on both sides for 1-hour each to prepare for testing. Then pigskins were abraded repeatedly with a hypodermic needle and
approximately 10^5 CFU of MRSA (Figure 25) or P. aeruginosa (Figure 26) was placed in triplicate onto the pigskins and left at room temperature to adhere for 30 minutes. Controls consisted of abraded skin only and abraded skin with bacterial contamination left untreated. The skins were irrigated with syringes twice with 5 mL of chitosan-arginine (43kDa, 25% functionalized, 88% DDA, 2.28 PDI) and left at room temperature for 30 minutes. Following treatment the pigskin were placed in 10 ml of PBS, sonicated and the remaining CFU were enumerated by plate counts. Chitosan-arginine was shown to rinse away more bacteria than the standard of care (saline).

Example 14. Chitosan-arginine dose response against stationary MRSA biofilms

The MRSA MW-2 biofilms were grown in 12-well untreated tissue culture plates containing BHI media for approximately 3 days. The biofilms were rinsed with water three times and treated with increasing doses of chitosan-arginine for 4-hours. Following treatment the biofilms were rinsed three times and the chitosan-arginine treated biofilms were resuspended, sonicated, diluted and plated to obtain CFU remaining. As shown in Figure 27, a 4-log reduction was achieved with 50 µg/ml treatment.

Example 15. Chitosan-arginine dose response against KlebsieUa pneumoniae biofilms

Chitosan-arginine was analyzed with respect to reduction of mature K. pneumoniae biofilms with previously established methods (Harrison, J.J. et al. (2005) High-throughput metal susceptibility testing of microbial biofilms Environ Microbiol 7, 981-994). The biofilms were grown according to MBEC™ for High-throughput Screening (Innovotech, Edmonton, AB Canada) methods on a peg lid placed in trough containing LB media for 36 hours. The pegs were rinsed and placed into a 96-well plate with serial dilutions of the chitosan derivative or controls and exposed for 5-hours at room temperature. The biofilms were rinsed, and the pegs removed and placed into microfuge tubes in 200µl of water. The tubes were sonicated to remove the peg biofilm. Aliquots of recovered biofilms were diluted and plated onto LB agar to quantify growth. Testing was done in duplicate and representative assays are depicted. The K. pneumoniae biofilms showed that the bacterial CFU were significantly reduced by chitosan-arginine. As shown in Figure 28, a 3-log reduction was observed with 125 µg/ml treatment.
Example 16. Chitosan-arginine dose response against *Acinetobacter baumannii* biofilms

Chitosan-arginine was analyzed with respect to reduction of mature *A. baumannii* biofilms with previously established methods (Harrison, J.J. et al. (2005) High-throughput metal susceptibility testing of microbial biofilms Environ Microbiol 7, 981-994). The biofilms were grown according to MBEC™ for High-throughput Screening (Innovotech, Edmonton, AB Canada) methods on a peg lid placed in trough containing LB media for 36 hours. The pegs were rinsed and placed into a 96-well plate with serial dilutions of the chitosan derivative or controls and exposed for 3-hours at room temperature. The biofilms were rinsed, and the pegs removed and placed into microfuge tubes in 200 µl of water. The tubes were sonicated to remove the peg biofilm. Aliquots of recovered biofilms were diluted and plated onto LB agar to quantify growth. Testing was done in duplicate and representative assays are depicted. The *A. baumannii* biofilms showed that the bacterial CFU were significantly reduced by chitosan-arginine. As shown in Figure 29, a 4-log reduction was observed with 250 µg/ml treatment.

Example 17. Chitosan-arginine dose response against *Psiidomonas aeruginosa* biofilms

Chitosan-arginine was analyzed with respect to reduction of mature *P. aeruginosa* biofilms with previously established methods (Harrison, J.J. et al. (2005) High-throughput metal susceptibility testing of microbial biofilms Environ Microbiol 7, 981-994). The biofilms were grown according to MBEC™ for High-throughput Screening (Innovotech, Edmonton, AB Canada) methods on a peg lid placed in trough containing LB media for 36 hours. The pegs were rinsed and placed into a 96-well plate with serial dilutions of the chitosan derivative or controls and exposed for 3-hours at room temperature. The biofilms were rinsed, and the pegs removed and placed into microfuge tubes in 200 µl of water. The tubes were sonicated to remove the peg biofilm. Aliquots of recovered biofilms were diluted and plated onto LB agar to quantify growth. Testing was done in duplicate and representative assays are depicted. The *A. baumannii* biofilms showed that the bacterial CFU were significantly reduced by chitosan-arginine. As shown in Figure 30, a 3-log reduction in CFU was observed with 125 µg/ml chitosan-arginine treatment.
Example 18. The ability of chitosan-arginine to reduce the cohesion of mixed biofilms

The interactions of chitosan derivatives with biofilms were evaluated in more detail in order to determine the effect of mixed wound infections. In these experiments mixed bacterial populations consisting of MRSA MW-2, P. aeruginosa PA01, and Vancomycin-resistant E. faecalis were use to initiate biofilm growth in a flow cell to examine biofilm cohesion and in an artificial model. This experiment examined the ability of chitosan-arginine to reduce the cohesion of mixed biofilms. Each convertible flow cell slide chamber (Stovall Life Science Inc., CFCAS0003) was assembled into the convertible flow cell apparatus (Stovall Life Science Inc., CFCAS0001) including a bubble trap (Stovall Life Science Inc., ACCFL0002). The bacteria were grown overnight in LB media at 37°C under anaerobic conditions, centrifuged and resuspended approximately 10^8 cfu/ml of each in LB media. Each flow cell was primed with approximately 10 ml of the bacterial suspension. An initial attachment phase was carried out for 1-hour with a flow rate of 1.5 ml/min facilitated by an IsmaTec Low Flow, High Accuracy Multichannel Peristaltic Pump (Stovall Life Science Inc., ACCFL0013). Following the attachment phase the flow cells were rinsed and LB media was pumped in at a flow rate of 0.24 ml/min for 8-hours. The flow cells were rinsed for 2 minutes at approximately 29 ml/min with either water or chitosan-arginine at 200 µg/ml then media pumping was resumed overnight. Rinses were repeated at 22 and 26 hours post attachment. For the final rinse the flow cells were disconnected and place in a Petri dish full of water for 5 minutes. Excess water was wiped or drained from the slide careful not to disrupt the biofilm, then dried in a humid chamber 37 °C for 10 minutes. Cohesion was examined by submerging each slide in a beaker of water then sonicating for 30 seconds at amplitude 18 µm at the liquid surface. The slides were removed and excess water was wiped or drained from the slide careful not to disrupt the biofilm, then dried in a humid chamber 37 °C for 10 minutes. The slides were stained with crystal violet for 2-minutes, rinsed and qualitative assessment of biofilm remaining following mechanical disruption to simulate debridement was completed. As shown in Figure 31, Mixed biofilms treated with chitosan-arginine were less cohesive and were more easily dispersed than untreated biofilms. Further, as shown in Figure 32, the material removed from the chitosan-arginine treated flow cell during the final rinse was more aggregated and dense and in a larger amount than the untreated mixed biofilm.
Example 19. The effect of chitosan-arginine on *Acinetobacter baumannii* biofilms

The *Acinetobacter baumannii* biofilms were grown in 12-well untreated tissue culture plates containing LB media for approximately 3 days. The biofilms were rinsed with water three times and stained with crystal violet for 2 minutes. The biofilms were then rinsed with water three times then treated with 100 μg/ml of chitosan-arginine or water for 5-minutes. Following treatment the biofilms were rinsed three times. As shown in Figure 33, chitosan-arginine treated biofilms were removed from the surface while the water only treated biofilm was unaffected.
What is claimed is:

1. A method of disrupting a preformed biofilm in a subject, the method comprising:
 administering to the subject an effective amount of a composition comprising a soluble derivatized chitosan wherein the soluble derivatized chitosan when administered contacts the preformed biofilm, thereby disrupting the preformed biofilm;
 wherein the derivatized chitosan comprises a chitosan of the following formula (I):
 \[
 \text{formula (I)}
 \]
 wherein:
 \(n\) is an integer between 20 and 6000; and
 each \(R^1\) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):
 \[
 \text{formula (II)}
 \]
 or \(R^1\), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,
 wherein \(R^2\) is hydrogen or amino; and
 \(R^3\) is amino, guanidino, \(C_1-C_8\) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,
 wherein at least 25% of \(R^1\) substituents are \(H\), at least 1% of \(R^1\) substituents are acetyl, and at least 2% of \(R^1\) substituents are a group of formula (II).

2. The method of claim 1, wherein the viscosity of the biofilm is reduced by at least 50%, compared to the biofilm that has not been contacted with the composition.
3. The method of claim 1, wherein the viscosity of the biofilm is reduced by at least two-fold, compared to the biofilm that has not been contacted with the composition.

4. The method of claim 1, wherein the biofilm is partially dissolved compared to the biofilm that has not been contacted with the composition.

5. The method of claim 1, further comprising administering an additional agent.

6. The method of claim 5, wherein the second agent is administered in a dosage to achieve a synergistic effect.

7. The method of claim 5, wherein the second agent is administered together with the soluble derivatized chitosan.

8. The method of claim 1, further comprising administering an antibiotic, anti-inflammatory, or mucolytic compound to a subject in conjunction with, prior to, or subsequent to the administration of the composition.

9. The method of claim 8, wherein the antibiotic, anti-inflammatory, or mucolytic compound is administered in a dosage to achieve a synergistic effect.

10. The method of claim 1, wherein the biofilm is in the respiratory system.

11. The method of claim 1, wherein the subject has a complication of cystic fibrosis, upper or lower respiratory tract infection, pneumonia, bronchitis, dental plaque, oral disease, ear infection, throat infection, a complication in immunocompromised patient, gastrointestinal infection, enteritis, or a symptom thereof.

12. The method of claim 1, wherein the subject is infected with bacteria listed in Table 1, 2, 3, or 4.
13. The method of claim 1, wherein the composition is administered topically, orally, or enterally.

14. The method of claim 1, wherein the composition is administered by inhalation.

15. The method of claim 1, wherein the effective amount is therapeutically effective amount.

16. The method of claim 1, wherein the derivatized chitosan is soluble in aqueous solution from about pH 6.8 to about pH 7.4.

17. The method of claim 1, wherein the derivatized chitosan is soluble in aqueous solution from about pH 3 to about pH 9.

18. The method of claim 1, wherein the derivatized chitosan is soluble in aqueous solution from about pH 5.0 to about pH 6.0.

19. The method of claim 1, wherein the derivatized chitosan is soluble in aqueous solution from about pH 2.0 to about pH 4.0.

20. The method of claim 1, wherein the derivatized chitosan is soluble in aqueous solution from about pH 8.0 to about pH 8.5.

21. The method of claim 1, wherein between 25-95% of R1 substituents are hydrogen.

22. The method of claim 1, wherein between 55-90% of R1 substituents are hydrogen.

23. The method of claim 1, wherein between 1-50% of R1 substituents are acetyl.

24. The method of claim 1, wherein between 4-20% of R1 substituents are acetyl.
25. The method of claim 1, wherein between 2-50% of R1 substituents are a group of formula (II).

26. The method of claim 1, wherein between 4-30% of R1 substituents are a group of formula (II).

27. The method of claim 1, wherein 55-90% of R1 substituents are hydrogen, 4-20% of R1 substituents are acetyl, 4-30% of R1 substituents are a group of formula (II).

28. The method of claim 1, wherein R2 is amino and R3 is an arginine side chain.

29. The method of claim 1, wherein R1 is selected from one of the following:

\[\text{and} \]

30. The method of claim 1, wherein R2 is amino and R3 is a lysine side chain.

31. The method of claim 1, wherein R1 is selected from one of the following:

\[\text{and} \]

32. The method of claim 1, wherein R2 is amino and R3 is a histidine side chain.

33. The method of claim 1, wherein R1 is selected from one of the following:
34. The method of claim 1, wherein at least 1% of R^1 substituents are selected from one of the following:

\[
\begin{align*}
\text{and} \\
O-\text{NH}_2 \\
\text{and} \\
O-\text{NH}_2 \\
\end{align*}
\]

AND at least 1% of R^1 substituents are selected from the following:

\[
\begin{align*}
\text{and} \\
\text{and} \\
\end{align*}
\]

35. The method of claim 1, wherein R^2 is amino and R^3 is a substituted C_1-C_6 alkyl.

36. The method of claim 1, wherein R^3 is C_1-C_6 alkyl substituted with an amino group.

37. The method of claim 36, wherein R^3 is C_1 alkyl substituted with an amino group.

38. The method of claim 36, wherein R^3 is C_2 alkyl substituted with an amino group.
39. The method of claim 36, wherein R₃ is C₃ alkyl substituted with an amino group.

40. The method of claim 36, wherein R₃ is C₄ alkyl substituted with an amino group.

41. The method of claim 36, wherein R₃ is C₅ alkyl substituted with an amino group.

42. The method of claim 36, wherein R₃ is C₆ alkyl substituted with an amino group.

43. The method of claim 1, wherein R¹ is selected from one of the following:

44. The method of claim 1, wherein R³ is C₃₋₆ alkyl substituted with a guanidino group.

45. The method of claim 44, wherein R³ is C₁ alkyl substituted with a guanidino group.

46. The method of claim 44, wherein R³ is C₂ alkyl substituted with a guanidino group.

47. The method of claim 44, wherein R³ is C₃ alkyl substituted with a guanidino group.

48. The method of claim 44, wherein R³ is C₄ alkyl substituted with a guanidino group.
49. The method of claim 44, wherein R^3 is C$_5$ alkyl substituted with a guanidino group.

50. The method of claim 44, wherein R^3 is C$_6$ alkyl substituted with a guanidino group.

51. The method of claim 1, wherein R^1 is selected from one of the following:

52. The method of any one of claims 1 and 21-51, wherein R^2 is amino that is substituted with a nitrogen protecting group prior to substitution on chitosan and removed subsequent to substitution on chitosan.

53. The method of claim 1, wherein the derivatized chitosan is made by reacting a chitosan with an amino acid wherein the amino group of the amino acid is protected by a protecting group.

54. The method of claim 53, wherein in the synthetic process a nitrogen protecting group is used, which can provide an intermediate polymer having a nitrogen protecting group.

55. The method of claims 52 or 54, wherein the nitrogen protecting group is tert-butyloxycarbonyl (Boc).

56. The method of any one of claims 1 and 21-52, wherein R^2 is amino.

57. The method of claim 1, wherein R^2 is hydrogen and R^3 is amino.
58. The method of claim 1, wherein R^2 is hydrogen and R^3 is guanidino.

59. The method of claim 1, wherein R^2 is hydrogen and R^3 is a substituted C_1-C_6 alkyl.

60. The method of claim 1, wherein R^3 is C_1-C_6 alkyl substituted with an amino group.

61. The method of claim 60, wherein R^3 is C_1 alkyl substituted with an amino group.

62. The method of claim 60, wherein R^3 is C_2 alkyl substituted with an amino group.

63. The method of claim 60, wherein R^3 is C_3 alkyl substituted with an amino group.

64. The method of claim 60, wherein R^3 is C_4 alkyl substituted with an amino group.

65. The method of claim 60, wherein R^3 is C_5 alkyl substituted with an amino group.

66. The method of claim 60, wherein R^3 is C_n alkyl substituted with an amino group.

67. The method of claim 1, wherein R^1 is selected from one of the following:

\[
\begin{align*}
\text{NH}_2 & \quad \text{NH}_2 \\
\text{NH}_2 & \quad \text{NH}_2
\end{align*}
\]
68. The method of claim 1, wherein R^3 is C_1-C_6 alkyl substituted with a guanidino group.

69. The method of claim 68, wherein R^3 is C_1 alkyl substituted with a guanidino group.

70. The method of claim 68, wherein R^3 is C_2 alkyl substituted with a guanidino group.

71. The method of claim 68, wherein R^3 is C_3 alkyl substituted with a guanidino group.

72. The method of claim 68, wherein R^3 is C_4 alkyl substituted with a guanidino group.

73. The method of claim 68, wherein R^3 is C_5 alkyl substituted with a guanidino group.

74. The method of claim 68, wherein R^3 is C_6 alkyl substituted with a guanidino group.

75. The method of claim 1, wherein R^1 is selected from one of the following:

![Chemical Structures]
76. The method of claim 1, wherein at least 25% of R1 substituents are H, at least 1% of R1 substituents are acetyl, and at least 2% of R1 substituents independently selected from any of the formulae specifically shown above.

77. The method of claim 1, wherein the chitosan of formula (I) may be further derivatized on the free hydroxyl moieties.

78. The method of claim 1, wherein the molecular weight of the derivatized chitosan is between 5,000 and 1,000,000 Da.

79. The method of claim 1, wherein the molecular weight of the derivatized chitosan is between 5,000 and 350,000 Da.

80. The method of claim 1, wherein the molecular weight of the derivatized chitosan is between 10,000 and 150,000 Da.

81. The method of claim 1, wherein the molecular weight of the derivatized chitosan is between 15,000 and 100,000 Da.

82. The method of claim 1, wherein the molecular weight of the derivatized chitosan is between 15,000 and 50,000 Da, e.g., between 20,000 and 40,000 Da.

83. The method of claim 1, wherein the chitosan is functionalized at between 5% and 50%.

84. The method of claim 1, wherein the chitosan is functionalized at between 20% and 30%.

85. The method of claim 1, wherein the degree of deacetylation (%DDA) of the derivatized chitosan is between 75% and 95%.

86. The method of claim 1, wherein the degree of deacetylation (%DDA) of the derivatized chitosan is between 80% and 90%.
87. The method of claim 1, wherein the polydispersity index (PDI) of the derivatized chitosan is between 1.0 and 2.5.

88. The method of claim 1, wherein the polydispersity index (PDI) of the derivatized chitosan is between 1.5 and 2.0.

89. The method of claim 1, wherein the functionalized chitosan is substantially free of other impurities.

90. The method of claim 1, wherein the composition is substantially free of a chitosan polymer wherein one or more of the nitrogen-containing groups of the glucosamine monomer is substituted with a polymerized amino acid.

91. The method of claim 1, wherein the composition is substantially free of a chitosan polymer having a molecular weight of less than 15,000 Da.

92. A method of preventing the formation of a biofilm in the respiratory system of a subject, the method comprising:

 administering to the respiratory system of the subject an effective amount of a composition comprising a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

 \[
 \text{formula (I)}
 \]

 wherein:

 \(n \) is an integer between 20 and 6000; and

 each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

 \[
 \text{formula (II)}
 \]
or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,
wherein R^2 is hydrogen or amino; and
R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,
wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II),
thereby preventing or treating the formation of a biofilm in the respiratory system of the subject.

93. A method of preventing the formation of a biofilm in the mouth, nose, ear, eye, skin, or digestive tract of a subject, the method comprising:
administering to the mouth, nose, ear or digestive tract of the subject an effective amount of a composition comprising a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\text{formula (I)}
\]

wherein:
n is an integer between 20 and 6000; and
each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\text{formula (II)}
\]

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,
wherein R^2 is hydrogen or amino; and
R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,
wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II), thereby preventing the formation of a biofilm in the mouth, nose, ear, skin, or digestive tract of the subject.

94. A method of treating or preventing a complication of cystic fibrosis in a subject, the method comprising:

administering to the subject an effective amount of a composition comprising a soluble chitosan or denaturated chitosan, wherein the denaturated chitosan comprises a chitosan of the following formula (I):

$$\text{formula (I)}$$

wherein:

n is an integer between 20 and 6000; and

each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

$$\text{formula (II)}$$

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C$_1$-C$_6$ alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II), thereby treating or preventing a complication of cystic fibrosis.

95. A method of treating or preventing a gastrointestinal tract infection in a subject, the method comprising:
administering to the subject an effective amount of a composition comprising a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{formula (I)} \\
\end{align*}
\]

wherein:
- \(n \) is an integer between 20 and 6000; and
- each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{align*}
\text{formula (II)} \\
\end{align*}
\]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety.

wherein \(R^2 \) is hydrogen or amino; and
- \(R^3 \) is amino, guanidino, \(\text{C}_n\text{C}_m \text{alkyl} \) substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain.

wherein at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II), thereby treating or preventing the gastrointestinal tract infection.

96. A liquid composition comprising a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{formula (I)} \\
\end{align*}
\]

wherein:
- \(n \) is an integer between 20 and 6000; and
each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\text{formula (II)}
\]

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II).

97. A solid particulate composition comprising a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\text{formula (I)}
\]

wherein:

n is an integer between 20 and 6000; and

each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\text{formula (II)}
\]

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,
wherein at least 25% of R_1 substituents are H, at least 1% of R_1 substituents are acetyl, and at least 2% of R_1 substituents are a group of formula (II).

98. A semisolid composition comprising a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

$$\begin{align*}
\text{OH} & \quad \text{OH} & \quad \text{OH} \\
\text{HO} & \quad \text{HO} & \quad \text{HO} \\
\text{NH} & \quad \text{NH} & \quad \text{NH} \\
\text{R}^1 & \quad \text{R}^1 & \quad \text{R}^1
\end{align*}$$

formula (I)

wherein:

- n is an integer between 20 and 6000; and
- each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

$$\begin{align*}
\text{O} & \quad \text{R}^2 \\
\text{R}^3
\end{align*}$$

formula (II)

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^3 substituents are a group of formula (II).

99. A dressing or an ointment comprising soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

$$\begin{align*}
\text{OH} & \quad \text{OH} & \quad \text{OH} \\
\text{HO} & \quad \text{HO} & \quad \text{HO} \\
\text{NH} & \quad \text{NH} & \quad \text{NH} \\
\text{R}^1 & \quad \text{R}^1 & \quad \text{R}^1
\end{align*}$$

formula (I)

wherein:

- at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II).
n is an integer between 20 and 6000; and
each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

$$\begin{align*}
\text{O} - \text{R}^2 \\
\text{R}^3
\end{align*}$$

formula (II)

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_8 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II),

wherein the dressing or ointment is formulated such that the soluble derivatized chitosan is diffusible into a subject upon administration to the subject.

100. A kit comprising:

a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

$$\begin{align*}
\text{O} - \text{OH} \\
\text{R}^1
\end{align*}$$

formula (I)

wherein:

n is an integer between 20 and 6000; and

each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

$$\begin{align*}
\text{O} - \text{R}^2 \\
\text{R}^3
\end{align*}$$

formula (II)
or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

\(R^3 \) is amino, guanidino, \(C_1-C_6 \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II); and

instructions to disrupt a performed biofilm in a subject.

101. A kit comprising:

a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\text{formula (I)}
\]

wherein:

\(n \) is an integer between 20 and 6000; and

each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\text{formula (II)}
\]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

\(R^3 \) is amino, guanidino, \(C_1-C_6 \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II); and

instructions to prevent the formation of a biofilm in the respiratory system of a subject.
102. A kit comprising:

a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

\[\text{formula (I)} \]

wherein:

n is an integer between 20 and 6000; and

each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[\text{formula (II)} \]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

\(R^3 \) is amino, guanidino, \(\text{Ci-C}_6 \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II); and

instructions to prevent or treat a complication of cystic fibrosis in a subject.

103. A kit comprising:

a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

\[\text{formula (I)} \]
wherein:

n is an integer between 20 and 6000; and
each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

$$\text{formula (II)}$$

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II); and

instructions to prevent or treat a gastrointestinal tract infection in a subject.

104. A medical device constructed to fit into the respiratory system of a subject, wherein the surface of the medical device is coated with a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

$$\text{formula (I)}$$

wherein:

n is an integer between 20 and 6000; and
each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

$$\text{formula (II)}$$
or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II).

105. A nebulizer comprising a solution or powder of soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

![formula (I)]

wherein:

n is an integer between 20 and 6000; and

each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

![formula (II)]

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II).

106. A surface skin decontaminant comprising a derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):
formula (1)

wherein:

- n is an integer between 20 and 6000; and

- each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{align*}
\text{formula (II)} \\
\text{or } R^1, \text{ when taken together with the nitrogen to which it is attached, forms a guanidine moiety,}
\end{align*}
\]

wherein R^2 is hydrogen or amino; and

- R^3 is amino, guanidino, C_1-C_n alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^3 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^3 substituents are a group of formula (II).

107. A residual surface skin decontaminant comprising a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{formula (I)} \\
\end{align*}
\]

wherein:

- n is an integer between 20 and 6000; and

- each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):
or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

\(R^3 \) is amino, guanidino, \(C_1-C_6 \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25\% of \(R^1 \) substituents are H, at least 1\% of \(R^1 \) substituents are acetyl, and at least 2\% of \(R^1 \) substituents are a group of formula (II).

108. A method of treating a surface skin in a subject, the method comprising:

administering to the subject an effective amount of a composition comprising a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{formula (I)}
\end{align*}
\]

wherein:

\(n \) is an integer between 20 and 6000; and

each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{align*}
\text{formula (II)}
\end{align*}
\]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and

\(R^3 \) is amino, guanidino, \(C_1-C_6 \) alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,
wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II), thereby treating the surface skin.

109. A method of treating or preventing a wound infection in a subject, the method comprising

administering to the wound of the subject an effective amount of a composition comprising a soluble derivatized chitosan, wherein the derivatized chitosan comprises a chitosan of the following formula (I):

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{NH} & \quad \text{NH} \\
\text{R}^1 & \quad \text{R}^1 \\
\text{R}^1 & \quad \text{R}^1 \\
\text{R}^1 & \quad \text{R}^1
\end{align*}
\]

formula (I)

wherein:

n is an integer between 20 and 6000; and

each R^1 is independently selected for each occurrence from hydrogen, acetyl, and a group of formula (II):

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{R}^2 & \quad \text{R}^2 \\
\text{R}^3 & \quad \text{R}^3
\end{align*}
\]

formula (II)

or R^1, when taken together with the nitrogen to which it is attached, forms a guanidine moiety,

wherein R^2 is hydrogen or amino; and

R^3 is amino, guanidino, C_1-C_6 alkyl substituted with an amino or guanidino moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of R^1 substituents are H, at least 1% of R^1 substituents are acetyl, and at least 2% of R^1 substituents are a group of formula (II), thereby treating or preventing the wound infection.

110. The method of claim 109, wherein the wound damages or penetrates the skin of a subject.
111. A medical device constructed to contact a wound of a subject, wherein the
wound damages or penetrates the skin of the subject, wherein the surface of the
medical device is coated with a soluble derivatized chitosan, wherein the derivatized
chitosan comprises a chitosan of the following formula (I):

\[
\text{formula (I)}
\]

wherein:

- \(n \) is an integer between 20 and 6000; and
- each \(R^1 \) is independently selected for each occurrence from hydrogen, acetyl,
 and a group of formula (II):

\[
\text{formula (II)}
\]

or \(R^1 \), when taken together with the nitrogen to which it is attached, forms a
guanidine moiety,

wherein \(R^2 \) is hydrogen or amino; and
\(R^3 \) is amino, guanidino, \(\text{C}_1\text{-C}_6 \) alkyl substituted with an amino or guanidino
moiety, or a natural or unnatural amino acid side chain,

wherein at least 25% of \(R^1 \) substituents are H, at least 1% of \(R^1 \) substituents
are acetyl, and at least 2% of \(R^1 \) substituents are a group of formula (II).
Figure 9A

1.0 x 10^6 cells/ml

Figure 9B

5.0 x 10^5 cells/ml

Treatment: 100 ppm chitosan-arginine.

THP-1 human monocytes do not clump.

Time after challenge: 24 hours.
Figure 19A

MW-2 no C/LBA 1 min (200x)
Figure 25
Figure 29
Figure 31

Water

Chitosan-arginine
Untreated Treated

Water Chitosan-arginine

Figure 33
INTERNATIONAL SEARCH REPORT

International application No. PCT/US 10/47758

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - A01 N 43/04 \((201 \ 0.01) \)
USPC - 514/55

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC: 514/55

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 424/401, 463; 516/77; 536/20 (text search) Find search terms below

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWEST (PGPB.USPT.EPAB.JPAB), Google Scholar, Patentscope
chitosan, chitin, N-acetyl chitosan, chitosan-arginine, amino acid, respiratory tract, infectS, cystic fibrosis, bronchitis, gastroenteritis

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 2003/0181416 A1 (COMPER) 25 September 2003 (25.09.2003) para [0061], [0086], [0089], [0093]-[0097], [0106], [0112], [0120], [0123]</td>
<td>1-54, 57-91, 95-111</td>
</tr>
<tr>
<td>Y</td>
<td>US 2007/0281904 A1 (BAKER et al.) 06 December 2007 (06.12.2007) Table 1: para [0065], [0129], [0131], [0134], [0136]-[0140], [0152]-[0154], [0162], [0174], [0178], [0180]-[0184], [0207]-[0208], [0219]</td>
<td>1-54, 57-111</td>
</tr>
<tr>
<td>Y</td>
<td>US 2006/014091 1 A1 (SHARP et al.) 29 June 2006 (29.06.2006) para [0019], [0044]-[0047], [0062], [0097]</td>
<td>2-4, 92-94</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
24 October 2010 (24.10.2010)

Date of mailing of the international search report
01 NOV 2010

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3281

Authorized officer: Lee W. Young
PCT/US/571-273-4900
PCT/USP: 571-272-7774

Form PCT/ISA \(10 \) (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 10/47758

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: 55-56
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

□ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
□ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
□ No protest accompanied the payment of additional search fees.

Form PCT/ISA/2/10 (continuation of first sheet (2)) (July 2009)