重量%～50重量%、(メタ)アクリル酸エステル
単量体単位30重量%～70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位0.5重量%
～10重量%を含む共重合体を用いる。

Abstract:
発明の名称:二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法

(54) Title: SECONDARY CELL NEGATIVE ELECTRODE, SECONDARY CELL SLURRY COMPOSITION FOR NEGATIVE ELECTRODE, AND METHOD OF PRODUCING SECONDARY CELL NEGATIVE ELECTRODE

(57) Abstract: A secondary cell negative electrode including a negative electrode active material, a binder, and a water-soluble polymer, wherein the water-soluble polymer includes 15 wt%～50 wt% ethylenically unsaturated carboxylic acid monomer units, 30 wt%～70wt% (meth)acrylic acid ester monomer units, and 0.5 wt%～10 wt% fluorine-containing (meth)acrylic acid ester monomer units.

(57) 要旨: 負極組成物、バインダー及び水溶性重合体を含む二次電池用負極において、前記水溶性重合体として、エチレン性不飽和カルボン酸単体単位15重量%～50重量%、(メタ)アクリル酸エステル単体単位30重量%～70重量%及びフッ素含有(メタ)アクリル酸エステル単体単位0.5重量%～10重量%を含む共重合体を用いる。
明細書

発明の名称:
二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法

技術分野

[0001] 本発明は、例えばリチウムイオン二次電池等の二次電池に設けられる二次電池用負極、当該二次電池用負極を製造するための負極用スラリー組成物、当該二次電池用負極の製造方法、並びに当該二次電池用負極を備えた二次電池に関する。

背景技術

[0002] 近年、ノート型パソコン、携帯電話、PDA（Personal Digital Assistant）などの携帯端末の普及が著しい。これら携帯端末の電源として用いられている二次電池には、例えばニッケル水素二次電池、リチウムイオン二次電池などが多用されている。携帯端末は、より快適な携帯性が求められて小型化、薄型化、軽量化および高性能化が急速に進み、その結果、携帯端末は様々な場で利用されるようになっている。また、二次電池に対しても、携帯端末に対するのと同様に、小型化、薄型化、軽量化および高性能化が要求されている。

[0003] 二次電池の高性能化のために、電極、電解液およびその他の電池部材の改良が検討されている。このうち、電極は、通常、水や有機溶媒等の溶媒にバインダー（結着剂）となる重合体を分散または溶解させた液状の組成物に、電極溶物質および必要に応じて導電性カーボン等の導電剤を混合してスラリー组成物を得、このスラリー組成物を集電体に塗布し、乾燥して製造される。電極については、電極溶物質及び集電体そのものの検討の他、電極溶物質などを集電体に結着するためのバインダー、並びに各種の添加剂の検討も行われている（例えば特許文献1〜4参照）。

[0004] 例えば、特許文献1や特許文献2には、炭素材溶物質及び水分散エマルジ
ヨン樹脂と水溶性高分子から構成される結合剤を含む非水系二次電池の負極用スラリーが記載されている。水溶性高分子としては、ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリル酸ナトリウムなどが記載されている。これによれば、電池の塗膜強度や塗膜密度が良好になる旨記載されている。

特許文献3には、フッ素含有不飽和単量体0.02～1.3重量％、脂肪族共役ジェン単量体0.1～3重量％、エチレン性不飽和カルボン酸単量体0.1～10重量％およびこれらと共重合可能な他の単量体49～88.88重量％から構成される単量体を乳化重合して得られた共重合体ラテックスからなる二次電池電極用バインダーが記載されている。これによれば、配合安定性、耐プロッキング性、耐粉立ち適性、結着力に優れる旨記載されている。

さらに、特許文献4には、（メタ）アクリル酸フッ化アルキルなどのフッ素原子含有単量体由来の単量体単位を有する重合体からなる二次電池電極用バインダーが記載されている。そして、塗布性を向上させたり、充放電特性を向上させるために、セルロース系ポリマー、ポリアクリル酸塩などを加えることができる旨記載されている。これによれば、活物質との結着性が持続的に良好な電極が得られる旨記載されている。

先行技術文献

特許文献

特許文献1 :特開2003_308841号公報
特許文献2 :特開2003_217573号公報
特許文献3 :特開2010_146870号公報
特許文献4 :特開2002_42819号公報

発明の概要

発明が解決しようとする課題

二次電池においては、充放電に伴って、負極に含まれる電極活物質の粒子
が膨張及び収縮することがある。このような膨張及び収縮が繰り返されると、次第に負極が膨らみ、二次電池が変形する可能性がある。そこで、前記のような負極の膨らみを抑制しうる技術の開発が望まれる。

[0009] また、従来の二次電池には、例えば60℃という高温環境で保存すると容量が低下するものがあった。そこで、二次電池を高温環境で保存した場合でも当該二次電池の容量の低下を抑制しうる技術の開発も望まれている。

[0010] 本発明は上述した課題に鑑みて創案されたもので、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量が低下し難い二次電池を実現できる二次電池用負極、前記の二次電池用負極を製造できる負極用スラリー組成物及び二次電池用負極の製造方法、並びに、前記の二次電池用負極を備えた二次電池を提供することを目的とする。

課題を解決するための手段

[0011] 本発明者は前記の課題を解決するべく鋭意検討した結果、二次電池用負極の電極活性物質層に、エチレン性不飽和カルボン酸単量体単位と、（メタ）アクリル酸エステル単量体単位と、フッ素含有（メタ）アクリル酸エステル単量体単位をそれぞれ特定の比率で含む水溶性重合体を含ませることにより、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量を低下し難くできることを見出し、本発明を完成させた。

すなわち、本発明によれば以下の（1）～（10）が提供される。

[0012] （1） 負極活性物質、バインダー及び水溶性重合体を含む二次電池用負極であって、

前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位15重量％～50重量％、（メタ）アクリル酸エステル単量体単位30重量％～70重量％及びフッ素含有（メタ）アクリル酸エステル単量体単位0.5重量％～10重量％を含む共重合体である、二次電池用負極。

（2） 前記負極活性物質が、リチウムを吸収及び放出でき、金属を含む、

（3） 記載の二次電池用負極。

（4） 前記負極活性物質が、Siを含有する化合物である、（1）又は（
2）記載の二次電池用負極。

① 前記バインダーが、脂肪族共役ジェン単量体単位を含む重合体である、（1）～（3）のいずれか一項に記載の二次電池用負極。

② 前記バインダーが、脂肪族共役ジェン単量体単位及び芳香族ビニル単量体単位を含む重合体である、（1）～（3）のいずれか一項に記載の二次電池用負極。

③ 前記バインダーが、脂肪族共役ジェン単量体単位及び芳香族ビニル単量体単位を含む重合体である、（1）～（3）のいずれか一項に記載の二次電池用負極。

④ 前記バインダーが、脂肪族共役ジェン単量体単位及び芳香族ビニル単量体単位を含む重合体である、（1）～（3）のいずれか一項に記載の二次電池用負極。

⑤ 前記バインダーが、脂肪族共役ジェン単量体単位及び芳香族ビニル単量体単位を含む重合体である、（1）～（3）のいずれか一項に記載の二次電池用負極。

⑥ 前記水溶性重合体のエチレン性不飽和カルボン酸単量体が、エチレン性不飽和モノカルボン酸単量体である、（1）～（3）のいずれか一項に記載の二次電池用負極。

⑦ 前記水溶性重合体の1重量％水溶液の粘度が、0.1 mP a・s～2 0 0 0 0 mP a・sである、（1）～（6）のいずれか一項に記載の二次電池用負極。

⑧ 正極、負極、電解液、及びセパレーターを備える二次電池であって、

前記負極が、（1）～（7）のいずれか一項に記載の二次電池用負極である、二次電池。

⑨ 負極活性物質、バインダー、水溶性重合体及び水を含む負極用スラリー組成物であって、

前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位15重量％～50重量％、（メタ）アクリル酸エステル単量体単位30重量％～70重量％及びフッ素含有（メタ）アクリル酸エステル単量体単位0.5重量％～10重量％を含む共重合体である、負極用スラリー組成物。

（10）記載の負極用スラリー組成物を、集電体の表面に塗布し、乾燥させることを含む、二次電池用負極の製造方法。

発明の効果

[0013] 本発明の二次電池用負極によれば、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量を低下し難くしろう二次電池を実現できる。
本発明の二次電池は、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量を低下し難い。
本発明の負極用スラリー組成物を用いれば、本発明の二次電池用負極を製造できる。
本発明の二次電池用負極の製造方法によれば、本発明の二次電池用負極を製造できる。

発明を実施するための形態

以下、本発明について実施形態及び例示物等を示して詳細に説明するが、
本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発
明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変
更して実施してもよい。なお、本発明書において、「（メタ）アクリル」は
「アクリル」又は「メタクリル」を意味する。また、「正極活性物質」とは正
極用の電極活性物質を意味し、「負極活性物質」とは負極用の電極活性物質を意味
する。さらに、「正極活性物質層」とは正極に設けられる電極活性物質層を意味
し、「負極活性物質層」とは負極に設けられる電極活性物質層を意味する。

[0015] [1. 二次電池用負極]

本発明の二次電池用負極（以下、適宜「本発明の負極」という。）は、負
極活性物質、バインダー及び水溶性重合体を含む。通常、本発明の負極は、集
電体と、前記集電体の表面に形成された負極活性物質層とを備え、負極活性物
質層が前記の負極活性物質、バインダー及び水溶性重合体を含む。

[0016] [1-1. 負極活性物質]

負極活性物質は、負極用の電極活性物質であり、二次電池の負極において電子
の受け渡しをする物質である。
例えば本発明の二次電池がリチウムイオン二次電池である場合には、負極
活性物質として、通常は、リチウムを吸収及び放出しうる物質を用いる。この
ようにリチウムを吸収及び放出しうる物質としては、例えば、金属系活性物
質、炭素系活性物質、及びこれらを組み合わせた活性物質などが挙げられる。

[0017] 金属系活性物質とは、金属を含む活性物質であり、通常は、リチウムの押入（
ドープともいう）が可能な元素を構造に含み、リチウムが挿入された場合の重量あたりの理論電気容量が 500 mAh/g 以上である活物質をいう。なお、当該理論電気容量の上限は、特に限定されないが、例えば 5000 mAh/g 以下でもよい。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成する単体金属及びその合金、並びにそれらの酸化物、硫化物、窒化物、珪化物、炭化物、焼結物等が用いられる。

[0018] リチウム合金を形成する単体金属としては、例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、Pb、Sb、Si、Sn、Sr、Zn、Ti 等の単体金属が挙げられる。また、リチウム合金を形成する単体金属の合金としては、例えば、上記単体金属を含有する化合物が挙げられる。これらの中でもケイ素 (Si)、スズ (Sn)、鉛 (Pb) 及びチタン (Ti) が好ましく、ケイ素、スズ及びチタンがより好ましい。したがって、ケイ素 (Si)、スズ (Sn) 又はチタン (Ti) の単体金属若しくはこれら単体金属を含む合金、または、それらの金属の化合物が好ましい。

[0019] 金属系活物質は、さらに、一つ以上の非金属元素を含有していてもよい。例えば、SiC、SiOxCy (0 < x ≤ 3、0 < y ≤ 5)、Si3N4、Si2N2O、SiOx (0 < x ≤ 2)、SnOx (0 < x ≤ 2)、LiSiO、LiSnO 等が挙げられる。中でも、低電位でリチウムの挿入及び脱離（脱ドープともいう）が可能な SiOxCy が好ましい。例えば、SiOxCy は、ケイ素を含む高分子材料を焼成して得ることができる。SiOxCy の中でも、容量とサイクル特性の兼ね合いから、0.8 ≤ x ≤ 3、2 ≤ y ≤ 4 の範囲が好ましく用いられる。

[0020] リチウム金属、リチウム合金を形成する単体金属及びその合金の酸化物、硫化物、窒化物、珪化物、炭化物、焼結物としては、リチウムの挿入可能な元素の酸化物、硫化物、窒化物、珪化物、炭化物、焼結物等が挙げられる。その中でも、酸化物が特に好ましい。例えば、酸化スズ、酸化マンガン、酸化チタン、酸化ニオブ、酸化バナジウム等の酸化物と、Si、Sn、Pb および Ti 原子よりなる群から選ばれる金属元素とを含むリチウム含有金属複
合酸化物が用いられる。

リチウム含有金属複合酸化物としては、更に LiₓTiᵧMₜ₀₄で示されるリチウムチタン複合酸化物 (0.7 ≤ x ≤ 1.5, 1.5 ≤ y ≤ 2.3, 0 ≤ z ≤ 1.6 であり、M は、Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn 及び Nb からなる群より選ばれる元素を表す。), LiₓMₙ₋₁M₀₄ で示されるリチウムマンガン複合酸化物 (x, y, z 及び M は、リチウムチタン複合酸化物における定義と同様である。) が挙げられる。中でも、Li₄/₃Ti₅/₃O₄, Li₁₁Ti₂O₄, Li₄, sTi₁₁, sO₄, Li₄/₃M₅/₃O₄ が好ましい。

これらの中でも、金属系活物質としては、ケイ素を含有する活物質が好ましい。ケイ素を含有する活物質を用いることにより、二次電池の電気容量を大きくすることが可能となる。また、一般にケイ素を含有する活物質は充放電に伴って大きく（例えば5倍程度に）膨張及び収縮するが、本発明の負極においては、ケイ素を含有する活物質の膨張及び収縮による電池性能の低下を、本発明に係る水溶性重合体によって防ぐことができる。

ケイ素を含有する活物質の中でも、SiOₓ, SiC 及び SiOₓCₓ が好ましく、SiOₓCₓ がさらに好ましい。これらの Si 及び C を組み合わせて含む活物質においては、高電位で Si (ケイ素) への Li の挿入及び脱離が起こり、低電位で C (炭素) への Li の挿入及び脱離が起こると推測される。このため、他の金属系活物質よりも膨張及び収縮が抑制されるので、二次電池の充放電サイクル特性を向上させることができる。

炭素系活物質としては、リチウムが挿入可能な炭素を主骨格とする活物質を挙げ、例えば炭素質材料及び黒鉛質材料を挙げられる。

炭素質材料としては、一般的には、炭素前駆体を2000℃以下で熱処理して炭素化させた、黒鉛化の低い（即ち結晶性の低い）炭素材料である。なお、前記の熱処理の下限は特に限定されないが、例えば500℃以上としてもよい。

炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変
える易黒鉛性炭素、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。

易黒鉛性炭素としては、例えば、石油又は石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具具体例を挙げると、コーチ、メソファーマイクロピーズ（M C M B）、メソフェーズビッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。M C M Bとは、ピッチ類を4 0 0 ℃前後で加熱する過程で生成したメソフェーズ小球体を分離抽出した炭素微粒子である。メソフェーズビッチ系炭素繊維とは、前記メソフェーズ小球体が成長、合体して得られるメソフェーズピッチを原料とする炭素繊維である。

熱分解気相成長炭素繊維とは、（1）アクリル高分子繊維などを熱分解する方法、（2）ピッチを紡糸して熱分解する方法、又は（3）鉄などのナノ粒子を触媒として用いて炭化水素を気相熱分解する触媒気相成長（触媒C V D）法により得られた炭素繊維である。

難黒鉛性炭素としては、例えば、フエノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体（P F A）、ハードカーポンなどが挙げられる。

黒鉛質材料とは、易黒鉛性炭素を2 0 0 ℃以上で熱処理することによって得られた黒鉛に近い高い結晶性を有する黒鉛質材料である。なお、前記の熱処理温度の上限は、特に限定されないが、例えば5 0 0 ℃以下としてもよい。

黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛等が挙げられる。人造黒鉛としては、例えば、主に2 8 0 ℃以上で熱処理した人造黒鉛、M C M B を2 0 0 ℃以上で熱処理した黒鉛化M C M B、メソフェーズピッチ系炭素繊維を2 0 0 ℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。

前記の炭素系活物質の中でも、炭素質材料が好ましい。炭素質材料を用いることで、二次電池の抵抗を低減することができ、入出力特性の優れた二次電池を作製することが可能となる。
なお、負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

負極活物質は、粒子状に整粒されたものが好ましい。粒子の形状が球形であると、電極成形時に、より高密度な電極が形成できる。

負極活物質の粒子の体積平均粒子径は、二次電池の他の構成要素との兼ね合いで適宜選択され、通常0.1μm以上、好ましくは1μm以上。よろしけ5μm以上であり、通常100μm以下、好ましくは50μm以下、よろしけ20μm以下である。

負極活物質の粒子の50%累積体積径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1μm以上、好ましくは15μm以上であり、通常50μm以下、好ましくは30μm以下である。なお、50%累積体積径は、レーザー回折法によって粒径分布を測定し、測定された径分布において小径側から計算した累積体積が50%となる粒子径として求めることができる。

負極活物質のタップ密度は、特に制限されないが、0.6g/cm³以上のものが好適に用いられる。

負極活物質の比表面積は、出力密度向上の観点から、通常2 m²/g以上、好ましくは3 m²/g以上。よろしけ5 m²/g以上であり、通常20 m²/g以下、好ましくは15 m²/g以下。よろしけ10 m²/g以下である。なお、負極活物質の比表面積は、例えばBET法により測定できる。

[1-2. バインダー]

バインダーは、負極において電極活物質を集電体の表面に結着させる成分である。本発明の負極では、バインダーが負極活物質を結着することにより、負極活物質層から負極活物質が脱離しないようになっている。また、バインダーは通常は負極活物質層に含まれる負極活物質以外の粒子をも結着し、負極活物質層の強度を維持する役割も果たしている。

バインダーとしては、負極活物質を保持する性能に優れ、集電体に対する
密着性が高いものを用いることが好ましい。通常、バインダーとしては重合体を用いる。この際、前記の重合体は、単独重合体でもよく、共重合体でもよい。中でも、バインダーとしての重合体は、脂肪族共役ジェン單量体単位を含む重合体が好ましい。脂肪族共役ジェン単量体単位は前記の重合体が好ましい。脂肪族共役ジェン単量体単位は通常、バインダーとしての重合体は、芳香族ビニル単量体単位を含むことが好ましい。芳香族ビニル単量体単位は安定であり、当該芳香族ビニル単量体単位を含む重合体を好ましい。芳香族ビニル単量体単位を含む重合体を用いることにより、負極活物質層と集電体との十分な密着性を得ることができる。

脂肪族共役ジェン単量体単位は、脂肪族共役ジェン単量体を重合して得られる繰り返し単位である。脂肪族共役ジェン単量体の例を挙げると、1, 3—ブタジエン、2—メチル—1, 3—ブタジエン、2, 3—ジメチル—1, 3—ブタジエン、2—クロル—1, 3—ブタジエン、置換直鎖共役ベンタジェン類、置換および側鎖共役ヘキサジェン類、などが挙げられる。中でも、1, 3—ブタジエンが好ましい。

なお、脂肪族共役ジェン単量体は１種類を単独で用いてもよく、２種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、脂肪族共役ジェン単量体単位を１種類だけ含んでいてもよく、２種類以上を任意の比率で組み合わせて含んでいてもよい。

バインダーとしての重合体１００重量部において、脂肪族共役ジェン単量体単位の比率は、通常２０重量部以上、好ましくは３０重量部以上であり、通常７０重量部以下、好ましくは６０重量部以下、より好ましくは５５重量部以下である。脂肪族共役ジェン単量体単位の比率を前記範囲の下限値以上にすることによって、負極の柔軟性を高めることができ、また、上限値以下とすることによって負極活物質層と集電体との十分な密着性を得たり、電極の耐電解液性を高めたりすることができる。

バインダーとしての重合体は、芳香族ビニル単量体単位を含むことが好ましい。芳香族ビニル単量体単位は安定であり、当該芳香族ビニル単量体単位を含む重合体の電解液への溶解性を低下させて負極活物質層を安定化させることができる。
芳香族ビニル単量体単位は、芳香族ビニル単量体を重合して得られる繰り返し単位である。芳香族ビニル単量体の例を挙げると、スチレン、α-メチルスチレン、ビニルトルエン、ジビニルペンゼン等が挙げられる。中でも、スチレンが好ましい。したがって、バインダーとしての重合体がブタジエン等の脂肪族共役ジェン単量体単位を含むことが好ましいことと組み合わせると、バインダーとしての重合体は、脂肪族共役ジェン単量体単位および芳香族ビニル単量体単位を含む重合体であることが好ましく、例えばスチレン・ブタジエン共重合体が好ましい。

なお、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、芳香族ビニル単量体を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。

芳香族ビニル単量体を用いる場合、バインダーとしての重合体には、残留単量体として未反応の脂肪族共役ジェン単量体及び未反応の芳香族ビニル単量体が含まれることがある。その場合、バインダーとしての重合体が含む未反応の脂肪族共役ジェン単量体の量は、好ましくは50 ppm以下、より好ましくは10 ppm以下であり、バインダーとしての重合体が含む未反応の芳香族ビニル単量体の量は、好ましくは1000 ppm以下、より好ましくは2000 ppm以下である。バインダーとしての重合体が含む脂肪族共役ジェン単量体の量を前記範囲に抑えると、本発明に係る負極用スラリー組成物を集電体の表面に塗布及び乾燥させて負極を製造する際に、負極の表面に発泡による荒れが生じたり、臭気による環境負荷を引き起こしたりすることを防止できる。また、バインダーとしての重合体が含む芳香族ビニル単量体の量を前記範囲に抑えると、乾燥条件に応じて生じる環境負荷及び負極表面の荒れを抑制でき、更にはバインダーとしての重合体の耐電解液性を高めることができる。

バインダーとしての重合体100重量部において、芳香族ビニル単量体単位の比率は、通常30重量部以上、好ましくは35重量部以上であり、通常
79. 5重量部以下、好ましくは69重量部以下である。芳香族ビニル単量体単位の比率を前記範囲の下限値以上とすることによって、本発明の二次電池用負極の耐電解液性を高めることができ、また、上限値以下とすることによって、本発明に係る負極用スラリー組成物を集電体に塗布した際に負極活物質層と集電体との十分な密着性を得ることができる。

[0045] バインダーとしての重合体は、エチレン性不飽和カルボン酸単量体単位を含むことが好ましい。エチレン性不飽和カルボン酸単量体単位には、負極物質及び集電体への吸着性を高めるカルボキシル基（COOH基）を含み、強度が高い繰り返し単位であるので、負極物質層からの負極物質の脱離を安定して防止でき、また、負極の強度を向上させることができる。

[0046] エチレン性不飽和カルボン酸単量体単位は、エチレン性不飽和カルボン酸単量体を重合して得られる繰り返し単位である。エチレン性不飽和カルボン酸単量体の例を挙げると、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸などのモノカルボン酸及びジカルボン酸並びにその無水物等が挙げられる。中でも、本発明に係る負極用スラリー組成物の安定性の観点から、アクリル酸、メタクリル酸及びイタコン酸からなる群より選ばれる単量体を、単独又は組み合わせて用いることが好ましい。

なお、エチレン性不飽和カルボン酸単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、エチレン性不飽和カルボン酸単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。

[0047] バインダーとしての重合体100重量部において、エチレン性不飽和カルボン酸単量体単位の比率は、通常0.5重量部以上、好ましくは1重量部以上、より好ましくは2重量部以上であり、通常10重量部以下、好ましくは8重量部以下、より好ましくは7重量部以下である。エチレン性不飽和カルボン酸単量体単位の比率を前記範囲の下限値以上とすることによって、本発明に係る負極用スラリー組成物の安定性を高めることができ、また、上限値
以下とすることによって、本発明に係る負極用スラリーの粘度が過度に高くならることを防止して取り扱い易くすることができる。

バインダーとしての重合体は、本発明の効果を著しく損なわない限り、上述した以外にも任意の繰り返し単位を含んでいてもよい。前記の任意の繰り返し単位に対応する単量体としては、例えば、シアン化ビニル系単量体、不飽和カルボン酸アルキルエステル単量体、ヒドロキシアルキル基を含有する不飽和単量体、不飽和カルボン酸アミド単量体等が挙げられる。なお、これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

シアン化ビニル系単量体としては、例えば、アクリロニトリル、メタクリロニトリル、α—クロルアクリロニトリル、α—エチルアクリロニトリルなどが挙げられる。中でも、アクリロニトリル、メタクリロニトリルが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

不飽和カルボン酸アルキルエステル単量体としては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、プチルアクリレート、グリシジルメタクリレート、ジメチルフマレート、ジェチルフマレート、ジメチルマレート、ジェチルマレート、ジメチルイタコネート、モノメチルフマレート、モノエチルフマレート、2—エチルヘキシルアクリレート等が挙げられる。中でも、メチルメタクリレートが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

ヒドロキシアルキル基を含有する不飽和単量体としては、例えば、β—ヒドロキシエチルアクリレート、β—ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシプチルアクリレート、ヒドロキシプチルメタクリレート、3—クロロ2—ヒドロキシプロピルメタクリレート、ジー（エチレンジリコール）マレエート、ジー（エチレンジリコール）イタコネート、2—ヒドロキシエチル
マレート、ビス（2—ヒドロキシエチル）マレート、2—ヒドロキシエチルメチルフマレートなどが挙げられる。中でも、β—ヒドロキシエチルアクリレートが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

不飽和カルボン酸アミド単量体としては、例えば、アクリルアミド、メタクリルアミド、N—メチロールアクリルアミド、N—メチロールメタクリルアミド、N、N—ジメチルアクリルアミド等が挙げられる。中でも、アクリルアミド、メタクリルアミドが好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

さらに、バインダーとしての重合体は、例えば、エチレン、プロピレン、酢酸ビニル、プロピオン酸ビニル、塩化ビニル、塩化ビニリデン等、通常の乳化重合において使用される単量体を用いてもよい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

バインダーとしての重合体の重量平均分子量は、好ましくは1,000,000以上、より好ましくは2,000,000以上であり、好ましくは1,000,000以下、より好ましくは5,000,000以下である。バインダーとしての重合体の重量平均分子量が上記範囲にあると、本発明の負極の強度及び負極活性質の分散性を良好にし易い。なお、バインダーとしての重合体の重量平均分子量は、ゲル浸透クロマトグラフィー（GPC）によって、テトラヒドロフランを展開溶媒としたポリスチン換算の値として求めればよい。

バインダーのガラス転移温度は、好ましくは75℃以上、より好ましくは5℃以上、特に好ましくは35℃以上であり、通常40℃以下、好ましくは30℃以下、より好ましくは20℃以下、特に好ましくは15℃以下である。バインダーのガラス転移温度が上記範囲であることにより、負極の柔軟性、結着性及び捲回性、負極活性質層と集電体との密着性などの特性が高度にバランスされ好適である。

通常、バインダーは、非水溶性の重合体となる。したがって、本発明の負
用スラリー組成物においては、バインダーは溶媒である水には溶解せず、粒子となって分散している。なお、重合体が非水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が90重量%以上となることをいう。一方、重合体が水溶性であるとは、25℃において、その重合体0.5gを100gの水に溶解した際に、不溶分が0.5重量%未満であることをいう。

パインダーが粒子として存在する場合、当該パインダーの粒子の個数平均粒径は、好ましくは50nm以上、より好ましくは70nm以上であり、好ましくは500nm以下、より好ましくは400nm以下である。パインダーの個数平均粒径が上記範囲にあることで、得られる物性の強度および柔軟性を良好にすることができる。なお、粒子の存在は、透過型電子顕微鏡法やコイルターカウンター、レーザー回折散乱法などによって容易に測定することができる。

パインダーは、例えば、上述した単量体を含む単量体組成物を水系溶媒中で重合することにより製造される。

単量体組成物中の各単量体の比率は、通常、パインダーとしての重合体における繰り返し単位（例えば、脂肪族共役ジェン単量体単位、芳香族ビニル単量体単位、エチレノン性不飽和カルボン酸単量体単位等）の比率と同様にする。

水系溶媒としては、パインダーの粒子の分散が可能なものであれば格別限定されることなく、通常、常圧における沸点が通常80℃以上、好ましくは100℃以上であり、通常350℃以下、好ましくは300℃以下の水系溶媒から選ばれる。以下、その水系溶媒の例を挙げる。なお、以下の例示において、溶媒名の後のカッコ内の数字は常圧での沸点（単位℃）であり、少数点以下は四捨五入または切り捨てられた値である。

水系溶媒としては、例えば、水（100）；ダイアセトンアロール（169）、アープチロラクトン（204）等のケトン類；エチルアルコール（78）、イソプロピルアルコール（82）、ノルマルプロピルアルコール（
97) 等のアルコール類；プロピレングリコールモノメチルエーテル（120）、メチルセロソルブ（124）、エチルセロソルブ（136）、エチレングリコールターシャリープチュルエーテル（152）、プチルセロソルブ（171）、3—メトキシ−3メチル−1−プタノール（174）、エチレングリコールモノプロピルエーテル（150）、ジエチレングリコールモノプロピルエーテル（230）、トリエチレングリコールモノブチルエーテル（271）、ジプロピレングリコールモノメチルエーテル（188）等のグリコールエーテル類；1,3−ジオキサン（75）、1,4−ジオキサン（101）、テトラヒドロフラン（66）等のエーテル類；などが挙げられる。中でも水は可燃性がなく、バインダーの粒子の分散体が容易に得られやすいという観点から特に好ましい。なお、主溶媒として水を使用して、バインダーの粒子の分散状態が確保可能な範囲において上記記載の水以外の水系溶媒を混合して用いてもよい。

[0061] 重合方法は、特に限定されず、例えば溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。重合法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。高分子量体が得やすいこと、並びに、重合物がそのまま水に分散した状態で得られるので再分散化の処理が必要であり、そのまま本発明に係る非極性スラリー組成物の製造に供することなど、製造効率の観点から、中でも乳化重合法が特に好ましい。

[0062] 乳化重合法は、通常は常法により行う。例えば、「実験化学講座」第28巻、（発行元：丸善（株）、日本化学会編）に記載された方法で行う。すなわち、攪拌機および加熱装置付きの密閉容器に水と、分散剤、乳化剤、架橋剤などの添加剤と、重合開始剤と、単量体とを所定の組成になるように加え、容器中の組成物を攪拌して単量体等を水に乳化させ、攪拌しながら温度を上昇させて重合を開始する方法である。あるいは、上記組成物を乳化させた後に密閉容器に入れ、同様に反応を開始させる方法である。

[0063] 重合開始剤としては、例えば、過酸化ラウロイル、ジイソプロピルペーオ
キシジカーボネート、ジへキシルベオキシジカーボネート、ジヘキシルベオキシジビラーテート、3,3,5-トリメチルヘキサンイルパクササイト等の有機過酸化物;α、α'アゾビスイソプチロニトリル等のアゾ化合物;過硫酸アンモニウム;過硫酸カリウムなどが挙げられる。なお、重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

乳化剤、分散剤、重合開始剤などは、これらの重合法において一般的に用いられるものであり、通常はその使用量も一般に使用される量とする。また重合に際しては、シート粒子を採用してシート重合を行ってもよい。

重合温度および重合時間は、重合法及び重合開始剤の種類などにより任意に選択できる、通常、重合温度は約30℃以上、重合時間は0.5時間〜30時間程度である。

また、アミン類などの添加剤を重合助剤として用いてもよい。

さらに、これらの方法によって得られるバインダーの粒子の水系分散液を、例えばアルカリ金属（例えば、Li、Na、K、Rb、Cs）の水酸化物、アンモニア、無機アンモニア化合物（例えばNH₄Clなど）、有機アミン化合物（例えばエタノールアミン、ジェチルアミンなど）などを含む塩基性水溶液と混合して、pHを通常5〜10、好ましくは5〜9の範囲になるように調整してもよい。なかでも、アルカリ金属水酸化物によるpH調整は、集電体と負極活性物質との接着性（ビール強度）を向上させるので、好ましい。

上述したバインダーの粒子は、2種類以上の重合体からなる複合重合体粒子であってもよい。複合重合体粒子は、少なくとも1種類の単量体成分を常法により重合し、引き続き他の少なくとも1種の単量体成分を重合し、常法により重合させる方法（二段重合法）などによっても得ることができる。このように単量体を段階的に重合することにより、粒子の内部に存在するコア層と、当該コア層を覆うシェル層とを有するコアシェル構造の粒子を得ることができる。
バインダーの量は、負極活物質100重量部に対して、通常0.3重量部以上、好ましくは0.5重量部以上であり、通常8重量部以下、好ましくは4重量部以下、より好ましくは2重量部以下である。バインダーの量を前記の範囲にすることにより、本発明に係る負極用スラリー組成物の粘度を適正化され、集電体への塗布を円滑に行えるようになる。また、本発明の負極に関して抵抗が高くなることなく、集電体と負極活性物質との十分な密着強度が得られる。その結果、負極活性物質に加圧処理を施す工程における負極活性物質層からのバインダーの剥がれを抑制することができる。

[1-3. 水溶性重合体]

本発明に係る水溶性重合体は、エチレン性不飽和カルボン酸単量体単位と、(メタ) アクリル酸エステル単量体単位と、フッ素含有 (メタ) アクリル酸エステル単量体単位とを、特定の構成比率で含む。本発明の負極が水溶性重合体を含むことにより、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量が低下し難い二次電池を実現できる。また、本発明に係る水溶性重合体を用いたことにより、本発明の二次電池は、通常、本発明の負極用スラリー組成物を集電体に塗布する際の塗布性、負極活性物質層の集電体への密着性、並びに、高温サイクル特性及び低温出力特性にも優れる。

このように優れた効果を奏することができる理由は必ずしも定かではないが、本発明者の検討によれば、以下のような理由によるものと推察される。

本発明に係る水溶性重合体が含む繰り返し単位のうち、エチレン性不飽和カルボン酸単量体単位はカルボキシル基を含むため、本発明に係る水溶性重合体の水への溶解性を高め、また、本発明に係る水溶性重合体の負極活性物質への吸着を促進できる。また、(メタ) アクリル酸エステル単量体単位は強度が高いので、本発明に係る水溶性重合体の分子を安定化させることができ、さらに、フッ素含有 (メタ) アクリル酸エステル単量体単位を含むことにより、本発明に係る水溶性重合体の水への膨満性 (水溶性重合体を水に浸漬した際に、水溶性重合体が水を吸収することにより膨満する度合い) が向
上し、また、水溶性重合体は弾性変形が可能となる。これらの作用が組み合わさって、上述した効果が奏されていると考えられる。

【0071】具体的には、負極において負極活物質が膨張又は収縮した場合、水溶性重合体が負極活物質の膨張又は収縮に追従して弾性変形できるので、充放電に伴う負極の膨らみを抑制できる。

【0072】また、従来は負極活物質が膨張及び収縮を繰り返すと、負極活物質にバイタンダーが密着できなくなったり、負極活物質同士の間又は負極活物質と導電剤との間に間隙が生じて、負極における負極活物質及び導電剤の電気的な接続が損なわれることがあった。前記の電気的な接続が損なわれると、二次電池の電気容量が低下する可能性がある。しかし、水溶性重合体が負極活物質の膨張又は収縮に追従して弾性変形できると、前記の間隙の発生を抑制して電気的な接続を維持できることで、サイクル特性を改善することができる。

【0073】また、負極において水溶性重合体は負極活物質の表面に吸着して負極活物質を覆い、保護層を形成している。この保護層により、高温環境下での電解液の分解、並びに、充放電に伴う電解液の分解を抑制できる。電解液が分解すると負極活物質の周囲に気泡が生じ、この気泡が電子の受け渡しを阻害して、二次電池の電気容量を低下させる可能性がある。しかし、水溶性重合体により電解液の分解を抑制できることで、前記のような電気容量の低下を抑制して、高温保存特性及び高温サイクル特性を改善できる。

【0074】また、本発明に係る水溶性重合体により形成される保護層は、例えばカルボキシメチルセルロース（以下、適宜「CMC」という。）等の従来の添加剤によって形成された保護層よりもイオン伝導度が高い。これは、本発明に係る水溶性重合体が電解液に対して膨潤性を有する（水溶性重合体を電解液に浸漬した際に、水溶性重合体が電解液を吸収することにより膨潤する）ためと推察される。イオン伝導度が高いため拡散抵抗（すなわち、イオンの拡散を妨げる抵抗）が低下するので、本発明の二次電池は出力特性が高く、特に低温出力特性に優れる。なお、このように電解液に対する膨潤性を有していても、電解液の溶媒が保護層を容易に透過できない程度の膨潤であるので
、前記のように電解液の分解を抑制する作用は十分に発揮される。

また、本発明に係る水溶性重合体は水への溶解性が高く、更には負極活物質へ容易に吸着できる。このため、本発明の負極用スラリー組成物の全体において水溶性重合体は負極活物質の粒子の表面を覆い、負極活物質の粒子の分散性を高めることができる。さらに、本発明の負極用スラリー組成物においては、水溶性重合体が有するカルボキシル基の静電反発によっても、負極活物質の粒子の分散性が向上している。したがって、負極用スラリー組成物の塗工時に負極活物質の塊を生し難いので、膜厚及び組成が均一な塗膜を容易に形成できる。また、こうして形成された塗膜から得られる負極活物質層においては、負極活物質が良好に分散しているので、二次電池の電気容量を改善することができる。

さらに、本発明に係る水溶性重合体は可撓性が高く柔軟であるので、集電体の表面及び負極活物質の表面に隙間無く密着し易い。このため、水溶性重合体はバインダーによる集電体及び負極活物質への結着を補って、密着力を高めることができる。したがって、負極活物質層の集電体への密着性を向上させることができる。

エチレン性不飽和カルボン酸単量体単位は、エチレン性不飽和カルボン酸単量体を重合して得られる繰り返し単位である。

エチレン性不飽和カルボン酸単量体としては、例えば、エチレン性不飽和モノカルボン酸及びその誘導体、エチレン性不飽和ジカルボン酸及びその酸無水物並びにそれらの誘導体などが挙げられる。エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アクリロオキシアクリル酸、α-クロロ-β-エメトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アク
リル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等のマレイン酸メチルアリル；マレイン酸ジフニル、マレイン酸ノニル、マレイン酸テシル、マレイン酸トリシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルなどが挙げられる。これらの中でも、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸が好ましい。得られる水溶性重合体の水に対する分散性がより高めることができるからである。

なお、エチレン性不飽和カルボン酸単量体は、1種類を单独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、エチレン性不飽和カルボン酸単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてよい。

本発明に係る水溶性重合体において、エチレン性不飽和カルボン酸単量体単位の比率は、通常15重量％以上、好ましくは20重量％以上、より好ましくは25重量％以上であり、通常50重量％以下、好ましくは45重量％以下、より好ましくは40重量％以下である。エチレン性不飽和カルボン酸単量体単位の量を上記範囲の下限値以上とすることにより、水溶性重合体の負極活物質への吸着性を高めて負極活物質の分散性及び集電体への密着性を高めることができる。また、上限値以下とすることにより、水溶性重合体の柔軟性を高めることができる。負極の柔軟性を向上させて負極が欠けたり割れたりすることを防止して、耐久性を向上させることができる。

（メタ）アクリル酸エステル単量体単位は、（メタ）アクリル酸エステル単量体を重合して得られる繰り返し単位である。ただし、（メタ）アクリル酸エステル単量体の中でもフッ素を含有するものは、フッ素含有（メタ）アクリル酸エステル単量体として（メタ）アクリル酸エステル単量体とは区別する。
(メタ)アクリル酸エステル単量体としては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、ベンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート、ヘキシルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、ベンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等のアクリル酸アルキルエステル、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、ベンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等が挙げられる。

なお、（メタ）アクリル酸エステル単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、（メタ）アクリル酸エステル単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。

本発明に係る水溶性重合体において、（メタ）アクリル酸エステル単量体単位の比率は、通常30重量%以上、好ましくは35重量%以上、より好ましくは40重量%以上であり、また、通常70重量%以下である。なお、アクリル酸エステル単量体単位の量を上記範囲の下限値以上とすることにより負極活性の集電体への密着性を高くすることができ、上記範囲の上限値以下とすることにより負極の柔軟性を高めることができる。

フッ素含有（メタ）アクリル酸エステル単量体単位は、フッ素含有（メタ）アクリル酸エステル単量体単位を重合して得られる繰り返し単位である。
式 (I) で表される単量体が挙げられる。

\[
\begin{align*}
 & R^1 \quad R^2 \\
 & H \quad C=O \\
 & I \quad I \\
 & C=0 \\
 & H \\
\end{align*}
\]

式 (I) において、R^1 は、水素原子またはメチル基を表す。

前記の式 (I) において、R^2 は、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、通常 1 以上であり、通常 18 以下である。また、R^2 が含有するフッ素原子の数は、1 個でもよく、2 個以上でもよい。

式 (I) で表されるフッ素含有 (メタ) アクリル酸エステル単量体の例を挙げると、(メタ) アクリル酸フッ化アルキル、(メタ) アクリル酸フッ化アリール、(メタ) アクリル酸フッ化アラルキルなどが挙げられる。なかでも (メタ) アクリル酸フッ化アルキルが好ましい。このような単量体の具体例としては、(メタ) アクリル酸トリフルオロメチル、(メタ) アクリル酸 2, 2, 2—トリフルオロエチル、(メタ) アクリル酸 2, 3, 3—テトラフルオロプロピル、(メタ) アクリル酸 2, 2, 3, 4, 4, 4—ヘキサフルオロプロピル、(メタ) アクリル酸 1H, 1H, 9H—パーサルオロー—ノニル、(メタ) アクリル酸 1H, 1H, 11H—パーサルオロウネシル、(メタ) アクリル酸パーサルオロオクチル、(メタ) アクリル酸 3 [4 (1—トリフルオロメチル－2, 2, 2, 2, 2, 2 ビス・ビス (トリフルオロメチル) フルオロメチル) エチルオキシ] ベンゾオキシ] 2—ヒドロキシプロピル等の (メタ) アクリル酸パーサルオロオクチルエステルなどが挙げられる。

なお、フッ素含有 (メタ) アクリル酸エステル単量体は 1 種類を単独で用いてもよく、2 種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、フッ素含有 (メタ) アクリル酸エステル単量体単位を、1 種類だけ含んでいてもよく、2 種類以上を任意の比率で組み合わせて含んでいてもよい。
本発明に係る水溶性重合体において、フッ素含有（メタ）アクリル酸エステル単量体単位の比率は、通常0.5重量％以上、好ましくは1重量％以上であり、通常10重量％以下、好ましくは5重量％以下である。フッ素含有（メタ）アクリル酸エステル単量体単位の量を上記範囲の下限値以上とすることにより二次電池の低温出力特性を改善できる。また、上限値以下とすることにより水溶性重合体が過度に柔らかくなって負極の耐久性が低下することを防止できる。

本発明に係る水溶性重合体は、本発明の効果を著しく損なわない限り、上述したエチレン性不飽和カルボン酸単量体単位、（メタ）アクリル酸エステル単量体単位及びフッ素含有（メタ）アクリル酸エステル単量体単位以外の繰り返し単位を含んでいてもよい。このような繰り返し単位は、エチレン性不飽和カルボン酸単量体、（メタ）アクリル酸エステル単量体又はフッ素含有（メタ）アクリル酸エステル単量体と共重合可能な単量体を重合して得られる繰り返し単位である。

前記の共重合可能な単量体としては、例えば、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート等の、2つ以上の炭素—炭素二重結合を有するカルボン酸エステル単量体；ステレン、クロロステレン、ビニルトルエン、ト—ブチルステレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルステレン、ヒドロキシメチルステレン、α—メチルステレン、ジビニルベンゼン等のステレン系単量体；アクリロニトリル、N—メチロールアクリルアミド、アクリルアミド—2—メチルプロパンスルホン酸等のアミド系単量体；アクリロニトリル、メタクリロニトリル等のα,β—不飽和ニトリル化合物単量体；エチレン、プロピレン等のオレフィン類単量体；塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体；酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類単量体；メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類単量体；メチルビニルケトン、エチルビニルケトン、ブ
チルビニルケトン、ヘキシルビニルケトン、イソプロピルビニルケトン等のビニルケトン類単量体；N—ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物单量体などが挙げられる。

なお、前記の共重合可能な単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、本発明に係る水溶性重合体は、エチレン性不飽和カルボン酸单量体単位、（メタ）アクリル酸エステル単量体単位及びフッ素含有（メタ）アクリル酸エステル単量体単位以外の繰り返し単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。

本発明に係る水溶性重合体において、エチレン性不飽和カルボン酸単量体単位、（メタ）アクリル酸エステル単量体単位及びフッ素含有（メタ）アクリル酸エステル単量体単位以外の繰り返し単位の割合は、好ましくは0重量％～10重量％、より好ましくは0重量％～5重量％である。

水溶性重合体の重量平均分子量は、通常はパインダーとなる重合体よりも小さく、好ましくは100以上、より好ましくは500以上、特に好ましくは1000以上であり、好ましくは500000以下、より好ましくは2500000以下、特に好ましくは100000以下である。水溶性重合体の重量平均分子量を上記範囲の下限値以上とすることにより水溶性重合体の強度を高め、肥満物質を覆う安定な保護層を形成できるので、例えば肥満物質の分散性及び二次電池の高温保存特性などを改善できる。また、上記範囲の上限値以下とすることにより水溶性重合体を柔らかくできるので、例えば肥満の膨らみの抑制、肥満物質層の集電体への密着性の改善などが可能となる。なお、水溶性重合体の重量平均分子量は、GPCによって、アセトニトリルの10体積％水溶液に0.85 g/mLの硝酸ナトリウムを溶解させた溶液を展開溶液としたポリエチレンオキサイド換算量として求めればよい。

水溶性重合体のガラス転移温度は、通常0℃以上、好ましくは5℃以上であり、通常100℃以下、好ましくは50℃以下である。水溶性重合体のガ
ラス転移温度が上記範囲であることにより、負極の密着性と柔軟性を両立させることができる。なお、水溶性重合体のガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。

水溶性重合体は、1重量％水溶液とした場合の粘度が、通常0.1 mPa·s以上、好ましくは1 mPa·s以上、より好ましくは10 mPa·s以上であり、通常2000 mPa·s以下、好ましくは10000 mPa·s以下、より好ましくは5000 mPa·s以下である。前記の粘度を上記範囲の下限値以上とすることにより水溶性重合体の強度を高め、負極の耐久性を向上させることができる。また、上限値以下とすることにより負極用スラリー組成物の塗装性を良好にして、集電体と負極間の密着性を向上させることができる。前記の粘度は、例えば、水溶性重合体の分子量によって調整できる。なお、前記の粘度は、E型粘度計を用いて25℃、回転数60 rpmで測定した時の値である。

水溶性重合体の製造方法としては、例えば、上述したエチレン性不飽和カルボン酸単量体、(メタ)アクリル酸エステル単量体及びフッ素含有(メタ)アクリル酸エステル単量体を含む単量体組成物を使用水系溶媒中で重合して製造してもよい。水系溶媒及び重合方法は、例えば、バインダーの製造と同じ様にしてもよい。これにより、通常は水系溶媒に水溶性重合体が溶解した水溶液が得られる。こうして得られた水溶液から水溶性重合体を取り出すしてもよいが、通常は、水系溶媒に溶解した状態の水溶性重合体を用いて負極用スラリー組成物を製造し、その後の負極用スラリー組成物を用いて負極を製造する。

水溶性重合体を水系溶媒中に含む前記の水溶液は通常は酸性であるので、必要に応じて、pH7〜pH13にアルカリ化してもよい。これにより水溶液の取り扱い性を向上させることができ、また、負極用スラリー組成物の塗装性を改善することができる。pH7〜pH13にアルカリ化する方法としては、例えば、水酸化リチウム水溶液、水酸化ナトリウム水溶液、水酸化カルシウム水溶液等のアルカリ金属水溶液；水酸化カルシウム水溶液、水酸化マ
グネシウム水溶液等のアルカリ土類金属水溶液、アンモニア水溶液などのアルカリ水溶液を混合する方法が挙げられる。なお、前記のアルカリ水溶液は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

水溶性重合体の量は、通常はバインダーよりも少なく、負極活物質100重量部に対して、好ましくは0．1重量部以上、より好ましくは0．5重量部以上、特に好ましくは1重量部以上であり、好ましくは10重量部以下、より好ましくは5重量部以下である。水溶性重合体の量を前記の範囲にすることにより、充放電に伴う負極の膨らみの抑制、二次電池の高温保存特性、高温サイクル特性及び低温出力特性の改善、負極用スラリー組成物を集電体に塗布する際の塗工性の改善、並びに、負極活物質層の集電体への密着性の改善などの上述した効果を安定して発揮できる。

1.4. 負極活物質層に含まれていてもよい成分

本発明の負極において、負極活物質層には、上述した負極活物質、バインダー、水溶性重合体以外に他の成分が含まれていてもよい。その成分の例を挙げると、粘度調整剤、導電剤、補強材、レベルング剤、電解液添加剤等が挙げられる。これらは、電池反応に影響を及ぼさないものであれば特に限らない。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

粘度調整剤は、本発明の負極用スラリー組成物の粘度を調整して負極用スラリー組成物の分散性及び塗工性を改善するために用いられる成分である。通常、負極用スラリー組成物に含まれていた粘度調整剤は、負極活物質層に残留することになる。

粘度調整剤としては、水溶性の多糖類を使用することが好ましい。多糖類としては、例えば、天然系高分子、セルロース系半合成系高分子などが挙げられる。なお、粘度調整剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

天然系高分子として、例えば、植物もしくは動物由来の多糖類及びたんぱ
く質等が挙げられる。また、場合により微生物等による発酵処理、熱による処理などがされた天然系高分子も例示できる。これらの天然系高分子は、植物系天然系高分子、動物系天然系高分子及び微生物系天然系高分子等として分類することができる。

植物系天然系高分子としては、例えば、アラビアガム、トラガカントガム、ガラクタン、ヴァガム、キャロプラム、カラガム、カラギーナン、ベクチン、カンナン、クィンスシード（マルメロ）、アルケロイド（ガソウエキス）、澱粉（コメ、トウモロコシ、馬鈴薯、小麦等に由来するもの）、グリチルリチン等が挙げられる。また、動物系天然系高分子としては、例えば、コラーゲン、カゼイン、アルブミン、ゼラチン等が挙げられる。さらに、微生物系天然系高分子としては、キサンタンガム、デキストラン、サクシノグルカン、アルラン等が挙げられる。

セルロース系半合成系高分子は、ノニオン性、アニオン性及びカチオン性に分類することができる。

ノニオン性セルロース系半合成系高分子としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース等のアルキルセルロース；ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシジェータル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロースなどが挙げられる。

アニオン性セルロース系半合成系高分子としては、上記のノニオン性セルロース系半合成系高分子を各種誘導基により置換したアルキルセルロース並びにそのナトリウム塩及びアンモニウム塩などが挙げられる。具体例を挙げると、セルロース硫酸ナトリウム、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース（CMC）及びそれ
らの塩等が挙げられる。

カチオン性セルロース系半合成系高分子としては、例えば、低窒素ヒドロキシエチルセルロースジメチルアンモニウムクロリド（ポリクオタニウム－4）、塩化0—[2－ヒドロキシ－3—（トリメチルアンモニオリプロピル）ヒドロキシエチルセルロース（ポリクオタニウム－10）、塩化0—[2—ヒドロキシ－3—（ラウリルジメチルアンモニオリプロピル）ヒドロキシエチルセルロース（ポリクオタニウム－24）等が挙げられる。

これらの中でも、カチオン性、アニオン性また両性の特性を取りうることから、セルロース系半合成系高分子、そのナトリウム塩及びそのアンモニウム塩が好ましい。さらにその中でも、負極活性質の分散性の観点から、アニオン性のセルロース系半合成系高分子が特に好ましい。

また、セルロース系半合成系高分子のエーテル化度は、好ましくは0.5以上、より好ましくは0.6以上であり、好ましくは1.0以下、より好ましくは0.8以下である。ここで、エーテル化度とは、セルロース中の無水グルコース単位1個当たりの水酸基（3個）の、カルボキシメチル基等への置換体への置換度のことをいう。エーテル化度は、理論的には0～3の値を取りうる。エーテル化度が記録範囲にある場合は、セルロース系半合成系高分子が負極活性質の表面に吸着しつつ水への相溶性を観察されることから分散性に優れ、負極活性質を一次粒子レベルまで微分散できる。

さらに、粘度調整剤として高分子（重合体を含む）を使用する場合、ウベローデ粘度計により求められる極限粘度から算出される粘度調整剤の平均重合度は、好ましくは500以上、より好ましくは1000以上であり、好ましくは2500以下、より好ましくは2000以下、特に好ましくは1500以下である。粘度調整剤の平均重合度は本発明の負極用スラリー組成物の流動性及び負極活性質層の膜均一性、並びに工程上のプロセスへの影響がある。平均重合度を前記の範囲にすることにより、本発明の負極用スラリー組成物の経時の安定性を向上させて、凝集物がなく厚みムラのない塗布が可能になる。
粘度調整剤の量は、負極活物質の量100重量部に対して、好ましくは0重量部以上であり、好ましくは0.5重量部以下である。粘度調整剤の量を前記の範囲にすることにより、本発明の負極用スラリー組成物の粘度を取り扱い易い好適な範囲にすることができる。

導電剤は、負極活物質同士の電気的接触を向上させる成分である。導電剤を含むことにより、本発明の二次電池の放電レート特性を改善することができる。

導電剤としては、例えば、アセチレンブラック、ケッチャーンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、およびカーボンナノチューブ等の導電性カーボンなどを使用することができる。なお、導電剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

導電剤の量は、負極活物質の量100重量部に対して、好ましくは1~20重量部、より好ましくは1~10重量部である。

補強材としては、例えば、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。補強材を用いることにより、強靭で柔軟な負極を得ることができ、優れた長期サイクル特性を示す二次電池を実現できる。

補強材の量は、負極活物質の量100重量部に対して、通常0.01重量部以上、好ましくは1重量部以上であり、通常20重量部以下、好ましくは10重量部以下である。補強剤の量を前記範囲とすることにより、二次電池は高い容量と高い負荷特性を示すことができる。

レベリング剤としては、例えば、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を用いることにより、負極用スラリー組成物の塗布時に発生するはげきを防止したり、負極の平滑性を向上させたりすることができる。

レベリング剤の量は、負極活物質の量100重量部に対して、好ましくは
0.01から10重量部である。レベリング剤が上記範囲であることに
より負極作製時の生産性、平滑性及び電池特性に優れる。また、界面活性剤
を含有させることにより負極用スラリー組成物において負極活物質等の分散
性を向上することができ、さらにそれにより得られる負極の平滑性を向上させ
ることができる。

[0120] 電解液添加剤としては、例えば、ビニレンカーボネートなどが挙げられる。
電解液添加剤を用いることにより、例えば電解液の分解を抑制することが
できる。

電解液添加剤の量は、負極活物質の量100重量部に対して、好ましくは
0.01から10重量部である。電解液添加剤の量を上記範囲にするこ
とにより、サイクル特性及び高温特性に優れた二次電池を実現できる。

[0121] また、負極活物質層は、例えば、フッ素ドシリカやフッ素ドアルミナ
などのナノ微粒子を含んでいる。ナノ微粒子を含む場合には負極用ス
ラリー組成物のチキソ性を調整することができるので、それにより得られる
本発明の負極のレベルリング性を向上させることが可能である。

ナノ微粒子の量は、負極活物質の量100重量部に対して、好ましくは0
.01から10重量部である。ナノ微粒子が上記範囲であることにより
、負極用スラリー組成物の安定性及び生産性を改善し、高い電池特性を実現
できる。

[0122] [1-5. 集電体及び負極活物質層]

本発明の負極は、上記した負極活物質、バインダー及び水溶性重合体、並
びに必要に応じて用いられる他の成分を含む負極活物質層を備える。この負
極活物質層は、通常、集電体の表面に設けられる。この際、負極活物質層は
、集電体の少なくとも片面に設けられていればよいが、両面に設けられてい
ることが好ましい。

[0123] 負極用の集電体は、電気導電性を有し、且つ、電気化学的に耐久性のある
材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましい
。負極用の集電体の材料としては、例えば、鉄、鋼、アルミニウム、ニッケ
ル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、二次電池負極に用いる集電体としては鋼が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

集電体の形状は特に制限されないので、厚さ0.001mm〜0.5mm程度のシート状のものが好ましい。

集電体は、負極活物質層との接着強度を高めるため、表面に予め粗面化処理して使用することが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、通常、研磨剤粒子を固着した研磨布紙、砥石、エメリパフ、鋼線などを備えたワイヤープラシ等が使用される。また、負極活物質層の接着強度や導電性を高めるために、集電体の表面に中間層を形成してもよい。

通常は前記の集電体の表面に、負極活物質層が設けられる。

負極活物質層の厚みは、通常5μm以上、好ましくは30μm以上であり、通常300μm以下、好ましくは250μm以下である。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性を良好にすることができる。

負極活物質層における負極活物質の含有割合は、好ましくは85重量%以上、より好ましくは88重量%以上であり、好ましくは99重量%以下、より好ましくは97重量%以下である。負極活物質の含有割合を上記範囲とすることにより、高い容量を示しながらも柔軟性、結着性を示す負極を実現できる。

[2. 二次電池用負極の製造方法]

本発明の二次電池用負極の製造方法（以下、適宜「本発明の負極の製造方法」という。）は特に制限されないが、例えば、本発明の負極用スラリー組成物を用意し、その負極用スラリー組成物を集電体の表面に塗布し、乾燥させることを含む製造方法によって製造してもよい。

本発明の負極用スラリー組成物は、負極活物質、バインダー、水溶性重合
体及び水を含むスラリー状の組成物である。また、本発明の負極用スラリー組成物は、必要に応じて負極活物質、バインダー、水溶性重合体及び水以外の成分を含んでいてもよい。負極活物質、バインダー及び水溶性重合体、並びに必要に応じて含まれる成分の量は、通常は負極活物質層に含まれる各成分の量と同様にする。このような本発明の負極用スラリー組成物では、通常、一部の水溶性重合体は水に溶解しているが、別の一部の水溶性重合体が負極活物質の表面に吸着することによって、負極活物質が水溶性重合体の安定な層で覆われて、負極活物質の溶媒中での分散性が向上している。このため、本発明の負極用スラリー組成物は、集電体に塗布する際の塗布性が良好である。

水は、負極用スラリー組成物において溶媒又は分散媒として機能し、負極活物質を分散させたり、バインダーを粒子状に分散させたり、水溶性重合体を溶解させたりする。この際、溶媒として水以外の液体を水と組み合わせて用いてもよい。バインダー及び水溶性重合体を溶解する液体を組み合わせると、バインダー及び水溶性重合体が表面に吸着することにより負極活物質の分散が安定化するので、好ましい。

水と組み合わせる液体の種類は、乾燥速度や環境上の観点から選択することが好ましい。好ましい例を挙げると、シクロヘキサン、シクロペンタデカン、トルエン、キシレン等の芳香族炭化水素類、エチルメチルケトン、シクロヘキサン等のケトン類、酢酸エチル、酢酸ブチル、アルコール、カプロラクトン、アセトニトリル、プロピオントリル等のアミド類、トリフルオロエチレン、エチレンジクロールジェチルエーテル等のエーテル類、メタノール、エタノール、イソプロピノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類、メチルビリドン、N，N—ジメチルホルムアミド等のアミド類などが挙げられるが、中でもN—メチルビリドン（NMP）が好ましい。なお、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[0131] 水及び前記の液体の量は、本発明の負極用スラリー組成物の粘度が塗布に好適な粘度になるように調整することが好ましい。具体的には、本発明の負極用スラリー組成物の固形分の濃度が、好ましくは30重量％以上、より好ましくは40重量％以上であり、好ましくは90重量％以下、より好ましくは80重量％以下となる量に調整して用いられる。

[0132] 本発明の負極用スラリー組成物は、上記の負極活物質、バインダー、水溶性重合体及び水並びに必要に応じて用いられる成分を混合して製造してもよい。混合方法は特に限定されないが、例えば、攪拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プランナリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。

[0133] 本発明の負極用スラリー組成物を、集電体の表面に塗布し、乾燥させることにより、集電体の表面に負極活物質層を形成して、本発明の負極を製造することができる。

[0134] 本発明の負極用スラリー組成物を集電体の表面に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラピア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。

[0135] 乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、（遠）赤外線や電子線などの照射による乾燥法などが挙げられる。乾燥時間は通常5分〜30分であり、乾燥温度は通常40℃〜180℃である。

[0136] また、集電体の表面に負極用スラリー組成物を塗布及び乾燥した後で、必要に応じて、例えば金型プレス又はロールプレスなどを用い、負極活物質層に加圧処理を施すことが好ましい。加圧処理により、負極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5％以上、より好ましくは7％以上であり、好ましくは30％以下、より好ましくは20％以下である。

空隙率を前記範囲の下限値以上とすることにより、高い体積容量が得易くなり、負極活物質層を集電体から剥がれ難くすることができ、また、上限値
以下とすることにより高い充電効率及び放電効率が得られる。

さらに、負極活性物質層が硬化性の重合体を含む場合は、負極活性物質層の形成後に前記重合体を硬化させることが好ましい。

[3. 二次電池]

本発明の二次電池は、本発明の負極を備える。通常、本発明の二次電池は、正極、負極、電解液及びセパレーターを備え、前記負極が、本発明の負極となっている。

本発明の負極を備えるので、本発明の二次電池では、充放電に伴う負極の膨らみを抑制できたり、高温環境で保存した場合でも容量を低下し難くしたりできる。また、通常、本発明の二次電池の高温サイクル特性及び低温出力特性を改善したり、負極活性物質層の集電体への密着性を高めたりすることもできる。

[3-1. 正極]

正極は、通常、集電体と、集電体の表面に形成された、正極活性物質及び正極用のバインダーを含む正極活性物質層とを備える。

正極の集電体は、電気導電性を有しつつ電気化学的に耐久性のある材料であれば特に制限されない。正極の集電体としては、例えば、本発明の負極に使用される集電体を用いてもよい。中でも、アルミニウムが特に好ましい。

正極活性物質は、例えば本発明の二次電池がリチウムイオン二次電池である場合には、リチウムイオンの挿入及び脱離が可能な物質が用いられる。このような正極活性物質は、無機化合物からなるものと有機化合物からなるものとに大別される。

無機化合物からなる正極活性物質としては、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。

上記の遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。

遷移金属酸化物としては、例えば、MnO、MnO_2、V_2O_5、V_6O_13、
TiO₂、Cu₂V₂O₅、非晶質V₂O₅—P₂O₅、MoO₃、V₂O₅、V₆O₁₃等が挙げられ、中でもサイクル安定性と容量からMn₅O₇、V₂O₅、V₆O₁₃、TiO₂が好ましい。

遷移金属硫化物としては、例えば、TiS₂、TiS₃、非晶質MoS₂、FeS等が挙げられる。

【0144】リチウム含有複合金属酸化物としては、例えば、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。

層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コーパルト酸化物（LiCoO₂）、リチウム含有ニッケル酸化物（LiNiO₂）、Co—Ni—Mnのリチウム複合酸化物、Ni—Mn—Alのリチウム複合酸化物、Ni—Co—Alのリチウム複合酸化物等が挙げられる。

スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム（LiMn₂O₄）又はMnの一部を他の遷移金属で置換したM₃/₄[Cr₂/₃M₁/₄]O₄（ここでMは、Cr、Fe、Co、Ni、Si等）等が挙げられる。

オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiₓMPO₄（式中、Mは、Mn、Fe、Co、Ni、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B及びMoからなる群より選ばれる少なくとも1種を表し、xは0≤x≤2を満たす数を表す。）で表されるオリビン型亜酸リチウム化合物が挙げられる。

【0145】有機化合物からなる正極活性物質としては、例えば、ポリアセチレン、ポリ－P－フエニレンなどの導電性高分子が挙げられる。

【0146】また、無機化合物及び有機化合物を組み合わせた複合材料からなる正極活性物質を用いてもよい。例えば、鉄系酸化物を炭素源物質の存在下において還元焼成することで、炭素材料で覆われた複合材料を作製し、この複合材料を正極活性物質として用いてもよい。鉄系酸化物は電気伝導性に乏しい傾向があ
るが、前記のような複合材料にすることにより、高性能な正極活物質として使用できる。

さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。また、上記の無機化合物と有機化合物の混合物を正極活物質として用いてもよい。

なお、正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

正極活物質の粒子の体積平均粒子径は、通常1μm以上、好ましくは2μm以上であり、通常50μm以下、好ましくは30μm以下である。正極活物質の粒子の体積平均粒子径を上記範囲にすることにより、正極活物質層を調製する際のバインダーの量を少なくすることができ、二次電池の容量の低下を抑制できる。また、正極活物質層を形成するためには、通常、正極活物質及びバインダーを含む正極用スラリー組成物を用意するが、この正極用スラリー組成物の粘度を塗布し易い適正な粘度に調整することが容易になり、均一な正極を得ることができる。

正極活物質層における正極活物質の含有割合は、好ましくは90重量％以上、より好ましくは95重量％以上であり、好ましくは99.9重量％以下、より好ましくは99重量％以下である。正極活物質の含有量を上記範囲にすることにより、二次電池の容量を高くでき、また、正極の柔軟性並びに集電体と正極活物質層との接着性を向上させることができる。

正極用のバインダーとしては、例えば、ポリエチレン、ポリテトラフルオロエチレン（P T F E）、ポリフッ化ビニリデン（P V D F）、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体（F E P）、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂、アクリル系軟質重合体、ジェン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体などの軟質重合体を用いることができる。なお、バインダーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

また、正極活物質層には、必要に応じて、正極活物質及びバインダー以外
の成分が含まれていてもよい。その例を挙げると、例えば、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剂等が挙げられる。また、これら
の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

正極活物質層の厚みは、通常5μm以上、好ましくは10μm以上であり、通常300μm以下、好ましくは250μm以下である。正極活物質層の
厚みが上記範囲にあることにより、負荷特性及びエネルギー密度の両方で高い特性を実現できる。

正極は、例えば、前述の負極と同様の要領で製造してもよい。

[3-2. 電解液]

電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を
溶解したものを使用してもよい。リチウム塩としては、例えば、LiPF₆、
LiAsF₆、LiBF₄、LiSbF₆、LiAlCl₄、LiClO₄、CF
₃SO₂Li、C₄F₉SO₃Li、CF₃COOLi、(CF₃CO)₂NLi、
(CF₃SO₂)₂NLi、(C₂F₅SO₂)NLiなどのリチウム塩が挙げら
れる。特に溶媒に溶けやすく高い解離度を示すLiPF₆、LiClO₄、CF
₃SO₃Liは好適に用いられる。これらは1種類を単独で用いてもよく、
2種類以上を任意の比率で組み合わせて用いてもよい。

支持電解質の量は、電解液に対して、通常1重量%以上、好ましくは5重
量%以上であり、また、通常3.0重量%以下、好ましくは2.0重量%以下で
ある。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し、二
次電池の充電特性及び放電特性が低下する可能性がある。

電解液に使用する溶媒としては、支持電解質を溶解させるものであれも特
に限定されない。溶媒としては、例えば、ジメチルカーポネート(DMC)
、エチレンカーポネート(ETC)、ジエチルカーポネート(DEC)、ブロ
ビレンカーポネート(PC)、ブチレンカーポネート(BC)、メチルエチ
ルカーポネート(MEC)等のアルキルカーポネート類；アブチロラクトン、
ギ酸メチル等のエステル類；1,2ジメトキシエタン、テトラヒドロ
フラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジェチルカーボネート及びメチルエチルカーボネートが好ましい。なお、溶媒は、1種類を单独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

また、電解液には必要に応じて添加剤を含有させてもよい。添加剤としては、例えばビニレンカーボネート（VC）などのカーボネート系の化合物が好ましい。なお、添加剤は、1種類を单独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。

また、上記以外の電解液としては、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、Li し Li 3 Nなどの無機固体電解質;などを挙げることができる。

セパレーターとしては、通常、気孔部を有する多孔性基材を用いる。セパレーターの例を挙げると、（a）気孔部を有する多孔性セパレーター、（b）片面または両面に高分子コート層が形成された多孔性セパレーター、（c）無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーター、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフッロリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフッロリドへキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレーター;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレーター;などが挙げられる。
本発明の二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口してもよい。さらに、必要に応じてエキスパンドメタル；ヒューズ、P T C素子などの過電流防止素子；リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。

実施例

[0160]以下、実施例を示して本発明について具体的に説明するが、本発明は以下に示す実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して實施してもよい。なお、以下の実施例の説明において、量を表す「％」及び「部」は、別に断らない限り、重量基準である。また、別に断らない限り、「AAA」との略称はメタクリル酸を表し、「AA」との略称はアクリル酸を表す。さらに、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。

[0161]評価方法

1. 密着強度

実施例および比較例で製造した負極を、長さ100 mm、幅10 mmの長方形に切り出して試験片とした。この試験片を、負極活性物質層の表面を下にして、負極活性物質層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z 1522に規定されるものを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50 mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求めて、当該平均値をピール強度とした。

ピール強度が大きいほど、負極活性物質層の集電体への接着力が大きいこと、すなわち、密着強度が大きいことを示す。

[0162]2. 塗工性
実施例および比較例で製造した負極用スラリー組成物を、集電体である厚さ２０μmの銅箔の上に、乾燥後の膜厚が１５０μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を０．５m/分の速度で６０℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極を得た。得られた負極を10×10cmの寸法で切り出し、目視にて直径0.1mm以上のピンホールの個数を測定した。ピンホールの個数が小さいほど、塗工性に優れることを示す。

3. 耐久性

(1) 高温保存特性

実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量C₀を測定した。さらに、4.2Vに充電し、60℃で7日間保存した後、4.2V、0.1Cの充放電レートにて充放電の操作を行い、高温保存後の容量C₁を測定した。高温保存特性は、△C = C₁/C₀×100 (%) にて評価した。この容量変化率△Cの値が高いかほど、高温保存特性に優れることを示す。

(2) 高温サイクル特性

実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量C₀を測定した。さらに、60℃の環境下で充放電を繰り返し、100サイクル後の容量C₂を測定した。高温サイクル特性は、△C = C₂/C₀×100 (%) にて示す容量変化率△Cにて評価した。この容量変化率△Cの値が高いかほど、高温サイクル特性に優れることを示す。

(3) 換板膨らみ特性

前記の「(1) 高温保存特性」の評価の後でリチウムイオン二次電池のセルを解体し、負極の換板の厚みd₁を測定した。リチウムイオン二次電池のセルの作製前における負極の換板の厚みをd₀として、負極の換板膨らみ率 (d₁−d₀)/d₀を算出した。この値が低いほど、換板膨らみ特性に優
4. 低温出力特性

実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行った。その後、25℃の環境下で、充放電の操作を行い、放電開始10秒後の電圧Vを測定した。低温出力特性は、ΔV = 4.2V - Vを示す電圧変化ΔVにて評価した。この電圧変化ΔVの値が小さいほど、低温出力特性に優れることを示す。

5. 水溶性重合体の1%水溶液の粘度

実施例および比較例で製造した水溶性重合体を10%アンモニア水およびイオン交換水により、水溶性重合体の1%水溶液を調製した。この水溶液の粘度を、B型粘度計により測定した。

実施例1

（水溶性重合体の製造）

攪拌機付き5MPa耐圧容器に、（メタ）アクリル酸エスチル単体量とし
てアクリル酸エチル67.5部、エチレン性不飽和カルボン酸単体量として
メタクリル酸30部、フッ素含有（メタ）アクリル酸エスチル単体量として
トリフルオロメチルメタクリレート2.5部、乳化剤としてデシルベンゼ
ンスルホン酸ナトリウム1.0部、イオン交換水150部、及び、重合開始
剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、60℃に加温
して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止
して、水溶性重合体を含む水溶液を得た。こうして得られた水溶性重合体を
含む水溶液に、10%アンモニア水を添加してpH8に調整し、所望の水溶
性重合体を含む水溶液を得た。得られた水溶性重合体の重量平均分子量を測
定したところ、128000であった。

得られた水溶性重合体を含む水溶液を用いて、上述した要領で水溶性重合
体の1%水溶液を調製し、その粘度を測定した。結果を表1に示す。

（バインダーの製造）
攪拌機付き5MPa耐圧容器に、脂肪族共役ジェン単量体である1,3-ブタジエン33部、エチレン性不飽和カルボン酸単量体であるメタクリル酸15部、芳香族ビニル単量体であるスチレン65部、乳化剤としてデジシルベンセン水溶性ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、スチレンブタジエンゴム（以下、適宜「SBR」という。）からなるバインダーを含む水系分散液を得た。こうして得られたバインダーを含む水系分散液に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望のバインダーを含む水系分散液を得た。得られたバインダーの重量平均分子量を測定したところ、1500000であった。

[0170]（負極用スラリー組成物の製造）

上記の水溶性重合体を含む水溶液を水で希釈して濃度を5%に調整した。

ディスパー付きのプラネタリーミキサーに、負極活物質としてSiO2（体積平均粒子径12μm）50部及び比表面積4m2/gの人造黒鉛（体積平均粒子径24.5μm）50部と、上記の水溶性重合体の5%水溶液を固形分相当で1部とをそれぞれ加え、イオン交換水で固形分濃度5.5%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し混合液を得た。

[0171]上記混合液に、上記のバインダーを含む水系分散液を固形分相当で1部、及びイオン交換水を入れ、最終固形分濃度4.2%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用スラリー組成物を得た。

得られた負極用スラリー組成物について、上述した要領で塗工性の評価を行った。結果を表1に示す。

[0172]（負極の製造）

上記の負極用スラリー組成物を、コンマコーダーで、集電体である厚さ2
0 μmの銅箔の上に、乾燥後の膜厚が150 μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5 μm/分の速度で60℃のオープン内で2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、負極活物質層の厚みが80 μmの負極を得た。

得られた負極について、上述した要領で密着強度の評価を行った。結果を表1に示す。

（正極の製造）

正極用のバインダーとして、ガラス転移温度Tgが40℃で、数平均粒子径が0.2 μmのアクリレート重合体の40％水分散体を用意した。前記のアクリレート重合体は、アクリル酸2エチルヘキシル78重量％、アクリロニトリル20重量％、及びメタクリル酸2重量％を含む単量体混合物を乳化重合して得られる共重合体である。

正極活物質として体積平均粒子径0.5 μmでオリビン結晶構造を有するLiFePO₄を100部と、分散剤としてカルボキシメチルセルロースの1％水溶液（第一工業製薬株式会社製「BSH12」）を固形分相当で1部と、バインダーとして上記のアクリレート重合体の40％水分散体を固形分相当で5部とを混合し、これにイオン交換水を全固形分濃度が40％となるように加え、プラネタリーミキサーにより混合し、正極用スラリー組成物を調製した。

上記の正極用スラリー組成物を、コンマコーダーで、集電体である厚さ20 μmの銅箔の上に、乾燥後の膜厚が200 μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5 μm/分の速度で60℃のオープン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極を得た。

（セパレーターの用意）

単層のポリプロピレン製セパレーター（幅65 mm、長さ500 mm、厚さ2.5 μm、乾式法により製造、気孔率55％）を、直径18 mmの円形に
切り抜いた。
[0177]（リチウムイオン二次電池）
電池の外装として、アルミ包材外装を用意した。上記の正極を、集電体の表面がアルミ包材外装に接触するように配置した。正極の正極活性物質層の表面に、セパレーターを配置した。さらに、セパレーター上に、上記の負極を、負極活性物質層の表面がセパレーターに向かうよう配置した。電解液（溶媒：EC/DEC = 1/2、電解質：濃度1MのLiPF₆）を空気が残らないように注入し、さらに、アルミ包材の開口を密閉するために、150℃のヒートシールをしてアルミ外装を閉口し、リチウムイオン二次電池を製造した。

得られた電池について、上述した要領で高温保存特性、高温サイクル特性及び極板膨らみ特性によって耐久性を評価し、更に、低温出力特性を評価した。結果を表1に示す。また、得られたリチウムイオン二次電池を4.2V、0.1Cの充放電レートで最初に充電させたときの容量（初期容量）は50mAhであった。

[0178]実施例2）
攪拌機付き5 MPa耐圧容器に、脂肪族共役ジエン系单量体である1,3－プタジエン33部、エチレン性不飽和カルボン酸单量体であるメタクリル酸1.5部、アクリロニトリリ6.5部、乳化剤としてデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率96%になった時点で冷却し反応を停止して、ニトリルプタジエンゴム（以下、適宜「NBR」という。）からなるバインダーを含む水系分散液を得た。得られたバインダーの重量平均分子量を測定したところ、1380000であった。

[0179]負極用スラリー組成物の製造の際、実施例1で用いたバインダーを含む水系分散液の代わりに、前記のNBRからなるバインダーを含む水系分散液を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し
各評価項目の評価を行った。結果を表1に示す。

実施例3）
攪拌機付き5MPa耐圧容器に、アクリル酸エステルであるアクリル酸2－エチルヘキシル76部、エチレン性不飽和カルボン酸単量体であるメタクリル酸4部、アクリロニトリル20部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、アクリルゴム（以下、適宜「ACR」という。）からなるバインダーを含む水系分散液を得た。得られたバインダーの重量平均分子量を測定したところ、1280000であった。

実施例4）

負極用スラリー組成物の製造の際、実施例1で用いたバインダーを含む水系分散液の代わりに、前記のACRからなるバインダーを含む水系分散液を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表1に示す。

実施例5）

水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を20部に変更し、（メタ）アクリル酸エステル単量体であるアクリル酸エチルの量を77.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表1に示す。

実施例6）
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を40部に変更し、（メタ）アクリル酸エステル単量体であるアクリル酸エチルの量を57.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。

実施例7)
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を45部に変更し、（メタ）アクリル酸エステル単量体であるアクリル酸エチルの量を52.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。

実施例8)
水溶性重合体の製造の際、（メタ）アクリル酸エステル単量体であるアクリル酸エチルの量を69部に変更し、フッ素含有（メタ）アクリル酸エステル単量体であるトリフルオロメチルメタクリレートの量を1部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。

実施例9)
水溶性重合体の製造の際、（メタ）アクリル酸エステル単量体であるアクリル酸エチルの量を65部に変更し、フッ素含有（メタ）アクリル酸エステル単量体であるトリフルオロメチルメタクリレートの量を5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。

実施例10)
水溶性重合体の製造の際、（メタ）アクリル酸エステル単量体であるアクリル酸エチルの量を61部に変更し、フッ素含有（メタ）アクリル酸エステル単量体であるトリフルオロメチルメタクリレートの量を9部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価
項目の評価を行った。結果を表2に示す。

実施例11

水溶性重合体の製造の際、フッ素含有（メタ）アクリル酸エステル単量体として、トリフルオロメチルメタクリレートの代わりにトリフルオロメチルアクリレートを用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。

実施例12

水溶性重合体の製造の際、フッ素含有（メタ）アクリル酸エステル単量体として、トリフルオロメチルメタクリレートの代わりにパークフロオロオクチルメタクリレートを用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。

実施例13

負極用スラリー組成物の製造の際、水溶性重合体の水溶液の量を図形分相当で0.7部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。

実施例14

負極用スラリー組成物の製造の際、水溶性重合体の水溶液の量を図形分相当で0.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。

実施例15

負極用スラリー組成物の製造の際、負極活性質として人造黒鉛を用いないでSiOCを100部用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。また、リチウムイオン二次電池を4.2V、0.1Cの充放電レートで最初に充放電させたときの容量（初期容量）は70mAhであった。

実施例16

負極用スラリー組成物の製造の際、負極活性質としてSiOCを用いないで人造黒鉛を100部用いたこと以外は実施例1と同様にして、リチウムイ
オンニ次電池を製造し、各評価項目の評価を行った。結果を表4に示す。また、リチウムイオンニ次電池を4.2V、0.1Cの充放電レートで最初に充放電させたときの容量（初期容量）は34.8mAhであった。

実施例17)
負極用スラリー組成物の製造の際、負極活性物質としてSiOを20部と人造黒鉛を80部用いたこと以外は実施例1と同様にして、リチウムイオンニ次電池を製造し、各評価項目の評価を行った。結果を表4に示す。

実施例18)
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体として、メタクリル酸の代わりにアクリル酸を用いたこと以外は実施例1と同様にして、リチウムイオンニ次電池を製造し、各評価項目の評価を行った。結果を表4に示す。

実施例19)
負極用スラリー組成物の製造の際、水溶性重合体の水溶液を固形分相当で1部加える代わりに、水溶性重合体の水溶液を固形分で0.5部とセルロース系増粘剤であるカルボキシメチルセルロース0.5部を組み合わせて加えたこと以外は実施例1と同様にして、リチウムイオンニ次電池を製造し、各評価項目の評価を行った。結果を表4に示す。

比較例1)
負極用スラリー組成物の製造の際、水溶性重合体の水溶液を固形分相当で1部加える代わりにカルボキシメチルセルロースを1部加えたこと以外は実施例1と同様にして、リチウムイオンニ次電池を製造し、各評価項目の評価を行った。結果を表5に示す。

比較例2)
水溶性重合体の製造の際、（メタ）アクリル酸エステル単量体であるアクリル酸エチルの量を70部に変更し、フッ素含有（メタ）アクリル酸エステル単量体であるトリフルオロメチルメタクリレートを用いなかったこと以外は実施例1と同様にして、リチウムイオンニ次電池を製造し、各評価項目の
評価を行った。結果を表5に示す。

[0200] 比較例3）
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を10部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を87.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。

[0201] 比較例4）
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を60部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を37.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。

[0202] 比較例5）
負極用スラリー組成物の製造の際、負極活性物質としてSiOCを用いないで人造黒鉛を100部用いたこと、並びに、水溶性重合体の水溶液を固形相当で1部加える代わりにカルボキシメチルセルロースを1部加えたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。
表1 実施例1 - 5の結果

<table>
<thead>
<tr>
<th>バインダー</th>
<th>実施例1</th>
<th>実施例2</th>
<th>実施例3</th>
<th>実施例4</th>
<th>実施例5</th>
</tr>
</thead>
<tbody>
<tr>
<td>脂肪族共役ジエン単量体</td>
<td>SBR</td>
<td>NBR</td>
<td>ACR</td>
<td>SBR</td>
<td>SBR</td>
</tr>
<tr>
<td>種類</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>量（部）</td>
<td>33</td>
<td>33</td>
<td>-</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>エチレン性不飽和カルボン酸単量体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>種類</td>
<td>MAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>量（部）</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>(メタ)アクリル酸エステル単量体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>種類</td>
<td>トリフルオロメチルメタクリレート</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>量（部）</td>
<td>67.5</td>
<td>67.5</td>
<td>67.5</td>
<td>77.5</td>
<td>72.5</td>
</tr>
<tr>
<td>フッ素含有（メタ）アクリル酸エステル単量体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>種類</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>量（部）</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>ガラス転移温度（℃）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>順種物質100部に対する使用量（部）</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1%水溶液の粘度（mPa·s）</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>550</td>
<td>1120</td>
</tr>
<tr>
<td>セルロース表面粘剤の量（部）</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>食塩水物質</td>
<td>SiO/C</td>
<td>SiO/C</td>
<td>SiO/C</td>
<td>SiO/C</td>
<td>SiO/C</td>
</tr>
<tr>
<td>量（部）</td>
<td>50/50</td>
<td>50/50</td>
<td>50/50</td>
<td>50/50</td>
<td>50/50</td>
</tr>
<tr>
<td>密着強度</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>（N/m）</td>
<td>14.5</td>
<td>14.1</td>
<td>13.7</td>
<td>11.5</td>
<td>14.1</td>
</tr>
<tr>
<td>塩化工</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ピンホール発生割数（個）</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>耐久性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高温保存特性（%）</td>
<td>81.6</td>
<td>78.0</td>
<td>75.4</td>
<td>70.1</td>
<td>79.8</td>
</tr>
<tr>
<td>高温サイクル特性（%）</td>
<td>68.5</td>
<td>64.0</td>
<td>61.5</td>
<td>60.1</td>
<td>67.1</td>
</tr>
<tr>
<td>機板破れりみ特性（%）</td>
<td>8.8</td>
<td>9.0</td>
<td>11.8</td>
<td>11.8</td>
<td>9.4</td>
</tr>
<tr>
<td>出力特性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>低速出力特性（mV）</td>
<td>312</td>
<td>412</td>
<td>377</td>
<td>422</td>
<td>325</td>
</tr>
<tr>
<td>バインダー</td>
<td>実施例6</td>
<td>実施例7</td>
<td>実施例8</td>
<td>実施例9</td>
<td>実施例10</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>脂肪族共役ジエン単量体</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
</tr>
<tr>
<td>重合体</td>
<td>100</td>
<td>重合体</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>重量部に対するラジケーション単位の量 (重量部)</td>
<td></td>
<td></td>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>アクリル酸エステル単量体</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
</tr>
<tr>
<td>量 (部)</td>
<td>40</td>
<td>45</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>トリフルオロメチルメタクリレート</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>エチレン性不飽和カルボン酸単量体</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
</tr>
<tr>
<td>量 (部)</td>
<td>57.5</td>
<td>52.5</td>
<td>69</td>
<td>65</td>
<td>61</td>
</tr>
<tr>
<td>フッ素含有 (メタ) アクリル酸エステル単量体</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
</tr>
<tr>
<td>量 (部)</td>
<td>2.5</td>
<td>2.5</td>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>ガラス転移温度 (℃)</td>
<td></td>
<td></td>
<td>43</td>
<td>51</td>
<td>31</td>
</tr>
<tr>
<td>負極（部）</td>
<td></td>
<td></td>
<td>36</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>1%水溶液の粘度 (mPa·s)</td>
<td>2340</td>
<td>2780</td>
<td>1250</td>
<td>1810</td>
<td>2320</td>
</tr>
</tbody>
</table>

セルロース系線材剤の量 (部)					
量 (部)	50/50	50/50	50/50	50/50	50/50
ビール強度 (N/m)	14.8	10.4	13.4	13.1	12.8
ビンホール発生数 (個)	1	4	2	2	2
耐久性					
高温保存特性 (%)	80.4	68.5	80	78.8	78.5
高温サイクル特性 (%)	68	59.5	67.3	64.5	64.5
積層板化特性 (%)	9.1	13.6	11.1	9.7	8.9
出力特性					
低温出力特性 (mV)	331	418	345	310	304

[0205]
表3. 実施例11～15の結果

<table>
<thead>
<tr>
<th>パイダー</th>
<th>固縮圧共役ジェネラス量体</th>
<th>実施例11</th>
<th>実施例12</th>
<th>実施例13</th>
<th>実施例14</th>
<th>実施例15</th>
</tr>
</thead>
<tbody>
<tr>
<td>重合体100重量部に対するブタジェン単位の量（重量）</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td></td>
</tr>
<tr>
<td>エチレン性不飽和カルボン酸単量体</td>
<td>種類</td>
<td>MAA</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>量（部）</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>酸（メタ）アクリル酸エステル単量体</td>
<td>量（部）</td>
<td>67.5</td>
<td>67.5</td>
<td>67.5</td>
<td>67.5</td>
<td>67.5</td>
</tr>
<tr>
<td>トリフルオロメチルアクリレート</td>
<td>種類</td>
<td>パーフィロオロメチルメタクリレート</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>ガラス転移温度（℃）</td>
<td>34</td>
<td>37</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>負荷物質100部に対する使用量（部）</td>
<td>1</td>
<td>1</td>
<td>0.7</td>
<td>0.5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1％水溶液の粘度（mPa・s）</td>
<td>1450</td>
<td>1220</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>セルロース系増粘剤の量（部）</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>応力</td>
<td>SiOC/C</td>
<td>SiOC/C</td>
<td>SiOC/C</td>
<td>SiOC/C</td>
<td>SiOC</td>
<td></td>
</tr>
<tr>
<td>密封性</td>
<td>量（部）</td>
<td>50/50</td>
<td>50/50</td>
<td>50/50</td>
<td>50/50</td>
<td>100</td>
</tr>
<tr>
<td>ピール強度（N/m）</td>
<td>13.5</td>
<td>13.9</td>
<td>11.3</td>
<td>10.4</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>高温保存特性（％）</td>
<td>60.5</td>
<td>80.9</td>
<td>74.1</td>
<td>71.6</td>
<td>62.8</td>
<td></td>
</tr>
<tr>
<td>高温サイクル特性（％）</td>
<td>67.8</td>
<td>68</td>
<td>60.7</td>
<td>59.1</td>
<td>54.3</td>
<td></td>
</tr>
<tr>
<td>耐久性</td>
<td>9.2</td>
<td>10.9</td>
<td>13.4</td>
<td>18.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ピンホール発生数（個）</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>低温出力特性（mV）</td>
<td>340</td>
<td>334</td>
<td>311</td>
<td>301</td>
<td>422</td>
<td></td>
</tr>
</tbody>
</table>
表4 実施例16～19の結果

<table>
<thead>
<tr>
<th>バインダー</th>
<th>種類</th>
<th>実施例16</th>
<th>実施例17</th>
<th>実施例18</th>
<th>実施例19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>重合体100万重量部に対するプラジエン単位の量（重量部）</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
<td>SBR</td>
</tr>
<tr>
<td>脂肪族共役ジエン重合体</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>エチレン性不飽和カルボン酸単量体</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>種類</td>
<td>MAA</td>
<td>AA</td>
<td>MAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>量（部）</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>水溶性重合体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(メタ)アクリル酸エステル単量体</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>量（部）</td>
<td>67.5</td>
<td>67.5</td>
<td>67.5</td>
<td>67.5</td>
</tr>
<tr>
<td>脂肪族含有 (メタ)アクリル酸エステル両重合体</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>種類</td>
<td>トリフルオロメチルメタクリレート</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>量（部）</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>ガラス転移温度（℃）</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>負荷物質100部に対する使用量（部）</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1％水溶液の粘度（mPa・s）</td>
<td>1500</td>
<td>1500</td>
<td>1850</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>セルロース系増粘剤の量（部）</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>負荷物質</td>
<td>種類</td>
<td>C</td>
<td>SiOC/C</td>
<td>SiOC/C</td>
<td>SiOC/C</td>
</tr>
<tr>
<td></td>
<td>量（部）</td>
<td>100</td>
<td>20/80</td>
<td>50/50</td>
<td>50/50</td>
</tr>
<tr>
<td>密着強度</td>
<td>ピール強度（N/m）</td>
<td>14.8</td>
<td>12.7</td>
<td>13.7</td>
<td>11.7</td>
</tr>
<tr>
<td>塗工性</td>
<td>ピンホール発生個数（個）</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>耐久性</td>
<td>高温保存特性（％）</td>
<td>94.5</td>
<td>81.5</td>
<td>78.1</td>
<td>68.9</td>
</tr>
<tr>
<td></td>
<td>高温サイクル特性（％）</td>
<td>91.3</td>
<td>80.9</td>
<td>69.8</td>
<td>57.4</td>
</tr>
<tr>
<td></td>
<td>樹脂融解特性（％）</td>
<td>1.5</td>
<td>4.5</td>
<td>9.5</td>
<td>12.9</td>
</tr>
<tr>
<td>出力特性</td>
<td>低温出力特性（mV）</td>
<td>211</td>
<td>255</td>
<td>356</td>
<td>377</td>
</tr>
</tbody>
</table>

[0207]
<table>
<thead>
<tr>
<th>表5 比較例1～5の結果</th>
<th>比較例1</th>
<th>比較例2</th>
<th>比較例3</th>
<th>比較例4</th>
<th>比較例5</th>
</tr>
</thead>
<tbody>
<tr>
<td>バインダー</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>脂肪族共役ジエン単量体</td>
<td>重合体 100</td>
<td>重合体 100</td>
<td>重合体 100</td>
<td>重合体 100</td>
<td>重合体 100</td>
</tr>
<tr>
<td>量（部）</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>エチレン性不飽和カルボン酸単量体</td>
<td>量（部）</td>
<td>MAA</td>
<td>MAA</td>
<td>MAA</td>
<td>-</td>
</tr>
<tr>
<td>量（部）</td>
<td>-</td>
<td>10</td>
<td>60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(メタ)アクリル酸エステル単量体</td>
<td>量（部）</td>
<td>70</td>
<td>87.5</td>
<td>37.5</td>
<td>-</td>
</tr>
<tr>
<td>フッ素含有(メタ)アクリル酸エステル単量体</td>
<td>量（部）</td>
<td>-</td>
<td>-</td>
<td>トリフルオロメチルメタクリレート</td>
<td>-</td>
</tr>
<tr>
<td>ガラス転移温度(℃)</td>
<td>-</td>
<td>30</td>
<td>-21</td>
<td>63</td>
<td>-</td>
</tr>
<tr>
<td>負極活性物質100部に対する使用量（部）</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1%水溶液の粘度(mPa·s)</td>
<td>1800</td>
<td>15</td>
<td>5400</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>セルロース系塩酸剤の量（部）</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>負極活性物質</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>種類</td>
<td>SiO/C</td>
<td>SiO/C</td>
<td>SiO/C</td>
<td>SiO/C</td>
<td>C</td>
</tr>
<tr>
<td>量（部）</td>
<td>50/50</td>
<td>50/50</td>
<td>50/50</td>
<td>50/50</td>
<td>100</td>
</tr>
<tr>
<td>密着強度</td>
<td>ピール強度(N/㎡)</td>
<td>7.4</td>
<td>7.9</td>
<td>8.1</td>
<td>8.8</td>
</tr>
<tr>
<td>耐久性</td>
<td>ピンホール発生割数（個）</td>
<td>16</td>
<td>16</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>耐熱性</td>
<td>高温保存特性（%）</td>
<td>55.5</td>
<td>59.5</td>
<td>58.8</td>
<td>59.5</td>
</tr>
<tr>
<td>高温サイクル特性（%）</td>
<td>43.9</td>
<td>44.2</td>
<td>44.8</td>
<td>46.1</td>
<td>84.1</td>
</tr>
<tr>
<td>模板割離特性（%）</td>
<td>31.5</td>
<td>20.1</td>
<td>20.1</td>
<td>19.5</td>
<td>4.8</td>
</tr>
<tr>
<td>出力特性</td>
<td>低温出力特性（mV）</td>
<td>558</td>
<td>540</td>
<td>550</td>
<td>515</td>
</tr>
</tbody>
</table>

[0208] [検討]

表1～表5から分かるように、実施例においては、充放電に伴う負極の膨らみを抑制でき、高温環境で保存した場合でも容量が低下し難い二次電池を実現でき、更に高さサイクル特性を向上させられるため、耐久性に優れた二次電池を実現できている。従来検討されていた二次電池では、フッ素を含む重合体を電極に含ませる場合、電極活性物質の密着性向上及びレート特性の改善などを目的とすることが多かったことに鑑みれば、前記のような膨らみの
抑制、並びに高温保存特性及び高温サイクル特性の向上が可能であることは、従来検討されていた効果とは異質な効果であるといえる。

[0209] また、実施例においては、ピール強度が大きいことから負極活物質層の集電体への密着性に優れることが分かる。また、実施例においては、ピンホール発生個数が少ないことから負極用スラリー組成物の塗工性に優れることが分かる。さらに、実施例においては、低温出力特性が優れることから、高出力な二次電池が実現できていることがわかる。

したがって、本発明により得られる二次電池は、実用上優れた性能を発揮する二次電池である。
請求の範囲

[請求項1] 負極活物質、バインダー及び水溶性重合体を含む二次電池用負極であって、
前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位15重量%～50重量%、(メタ)アクリル酸エステル単量体単位30重量%～70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位0.5重量%～10重量%を含む共重合体である、二次電池用負極。

[請求項2] 前記負極活物質が、リチウムを吸蔵及び放出でき、金属を含む、請求項1に記載の二次電池用負極。

[請求項3] 前記負極活物質が、Siを含有する化合物である、請求項1又は2に記載の二次電池用負極。

[請求項4] 前記バインダーが、脂肪族共役ジェン単量体単位を含む重合体である、請求項1～3のいずれか一項に記載の二次電池用負極。

[請求項5] 前記バインダーが、脂肪族共役ジェン単量体単位及び芳香族ビニル単量体単位を含む重合体である、請求項1～4のいずれか一項に記載の二次電池用負極。

[請求項6] 前記水溶性重合体のエチレン性不飽和カルボン酸単量体が、エチレン性不飽和モノカルボン酸単量体である、請求項1～5のいずれか一項に記載の二次電池用負極。

[請求項7] 前記水溶性重合体の1重量%水溶液の粘度が、0.1mPa・s～20000mPa・sである、請求項1～6のいずれか一項に記載の二次電池用負極。

[請求項8] 正極、負極、電解液、及びセパレーターを備える二次電池であって、
前記負極が、請求項1～7のいずれか一項に記載の二次電池用負極である、二次電池。

[請求項9] 負極活物質、バインダー、水溶性重合体及び水を含む負極用スラリ
一組成物であって、
前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位 15
重量%～50重量%、(メタ)アクリル酸エステル単量体単位 30重
量%～70重量%及びフッ素含有(メタ)アクリル酸エステル単量体
単位 0.5重量%～10重量%を含む共重合体である、負極用スラリ
ー組成物。

[請求項10] 請求項9に記載の負極用スラリー組成物を、集電体の表面に塗布し
、乾燥させることを含む、二次電池用負極の製造方法。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
H01M4 /82 (2006.01) i, H01M4 / 134 (2010.01) i, H01M4 / 1395 (2010.01) i, H01M1 0/052 (2010.01) i, H01M1 0/05 66 (2010.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
H01M4 / 62, H01M4 / 134, H01M4 / 1395, H01M1 0/052, H01M1 0/0566

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2012

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Y</td>
<td>JP 2010-146870 A (Nippon A & L Inc.). 01 July 2010 (01.07.2010). claims 1 to 3; paragraphs [0002], [0006] to [0013]; example s; table 1</td>
<td>1, 2, 4-10</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
28 May, 2012 (28.05.12)

Date of mailing of the international search report
05 June, 2012 (05.06.12)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No. Telephone No.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2006-040800 A (Hitachi Chemical Co., Ltd.), 09 February 2006 (09.02.2006), claims; paragraphs [0010] to [0016] (Family: none)</td>
<td>1 to 10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-042819 A (Nippon Zeon Co., Ltd.), 08 February 2002 (08.02.2002), claims; paragraphs [0007] to [0013]; examples (Family: none)</td>
<td>1 to 10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-231251 A (Nippon Zeon Co., Ltd.), 16 August 2002 (16.08.2002), claims; paragraphs [0012] to [0035]; examples (Family: none)</td>
<td>1 to 10</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））
 Int.Cl. H01M4/62 (2006.01) i, H01M4/134 (2010.01) i, H01M4/1395 (2010.01) i, H01M10/052 (2010.01) i, H01M10/0566 (2010.01) i

B. - 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 Int.Cl. H01M4/62, H01M4/134, H01M4/1395, H01M10/052, H01M10/0566

最小限資料以外の資料で調査を行った分野に含まれるもの
 日本国実用新案公報 1922-19
 日本国公開実用新案公報 1971-20
 日本国実用新案登録公報 1996-20
 日本国登録実用新案公報 1994-20

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献のカテゴリ－ラ
引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 関連する 請求項の番号

X JP 2010-146870 A (日本イエノ株式会社) 2010. 07. 01, 請求項 1-3, [0 0 0 2], [0 0 0 6] → [0 0 1 3], 実施例, 表1等 (ファミリーなし)

Y WO 2008/120786 A1 (日本ゼオン株式会社) 2008-10. 09, [0 0 0 9], [0 0 2 8 1], [0 0 4 6], 実施例, 請求の範囲 & US 2010/0112441 A1 & WO 2008/120786 A1 & CN 101652884 A & KR 10-2009-0125782 A

C 欄の続きにも文献が列挙されている。

" 引用文献のカテゴリ－" UA 特に関連のある文献ではなく、一般的技術水準を示すもの TE 国際出願 日前の出願または特許であるが、国際出願 日以後に公表されたもの U 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献 （理由を付す） B 口頭による開示、使用、展示等に営及する文献 IP 国際出願日以前で、かつ優先権の主張の基礎となる出願の日の後に公表された文献 T 国際出願日又は優先日後に公表された文献であって出願と矛盾するものではない、発明の原理又は理論の理解のために引用するもの X 特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの Y 特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの UA 同一パラシトライシー文献

国際調査を完了した日 28.05.2012 国際調査報告の発送日 05.06.2012

国際調査報告書 の名称及びあて先
日本国特許庁 (ISA／JP)
郵便番号 100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官 （権限のある職員） 4X 3122
井上 能宏
電話番号 03-3581-1101 内線 3477

様式 PC7/ISA210（第2ページ）（2009年7月）
関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2006-040800 A（日立化成工業株式会社）2006. 02. 09, 特許請求の範囲、【0 1 0】〜【0 0 1 6】（ファミリーなし）</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-042819 A（日本ゼオン株式会社）2002. 02. 08, 特許請求の範囲、【0 0 7】〜【0 0 1 3】、実施例（ファミリーなし）</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-231251 A（日本ゼオン株式会社）2002. 08. 16, 特許請求の範囲、【0 1 2】〜【0 0 3 5】、実施例（ファミリーなし）</td>
<td>1-10</td>
</tr>
</tbody>
</table>

様式PCT／ISA／210（第2ページの続き）（2009年7月）