PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/34844
GO6F A2 . Lo

(43) International Publication Date: 15 June 2000 (15.06.00)

(21) International Application Number: PCT/US99/28782 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

(22) International Filing Date: 7 December 1999 (07.12.99)

(30) Priority Data:

09/208,741 Us

8 December 1998 (08.12.98)

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Application
Us
Filed on

09/208,741 (CIP)
8 December 1998 (08.12.98)

(71) Applicant (for all designated States except US): JEDI TECH-
NOLOGIES, INC. [US/US]; 2200 Laurelwood Road, Santa
Clara, CA 95054 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PATEL, Mukesh, K.
[US/US]; 787 Boar Circle, Fremont, CA 94539 (US).
KAMDAR, Jay [US/US]; 22455 Palm Avenue, Cupertino,
CA 95014 (US). RANGANTH, V., R. [US/US]; 1043
Sandalwood Lane, Milpitas, CA 95035 (US).

(74) Agent: KREBS, Robert, E.; Burns, Doane, Swecker & Mathis,
LLP, P.O. Box 1404, Alexandria, VA 22313-1404 (US).

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,
LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: JAVA VIRTUAL MACHINE HARDWARE FOR RISC AND CISC PROCESSORS

20
Vv
24
HRROWALE
TV STRuGTIoN Jqua
CACHE } " 1 AccergRATOR
22

26 40

]

23

cPv

(57) Abstract

A hardware Java accelerator is provided to implement portions of the Java virtual machine in hardware in order to accelerate the
operation of the system on Java bytecodes. The Java hardware accelerator preferably includes Java bytecode translation into native CPU
instructions. The combination of the Java hardware accelerator and a CPU provides an embedded solution which results in an inexpensive

system to run Java programs for use in commercial appliances.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CU

DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI

SK
SN
Sz
™
TG

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/34844 PCT/US99/28782

JAVA VIRTUAL MACHINE HARDWARE FOR RISC AND CISC
PROCESSORS

BACKGROUND OF THE INVENTION

Java ™ is an object orientated programming language developed by Sun
Microsystems. The Java language is small, simple and portable across platforms and
operating systems, both at the source and at the binary level. This makes the Java
programming language very popular on the Internet.

Java’s platform independence and code compaction are the most significant
advantages of Java over conventional programming languages. In conventional
programming languages, the source code of a program is sent to a compiler which
translates the program into machine code or processor instructions. The processor
instructions are native to the system’s processor. If the code is compiled on an Intel-
based system, the resulting program will only run on other Intel-based systems. If it is
desired to run the program on another system, the user must go back to the original
source code, obtain a compiler for the new processor, and recompile the program into
the machine code specific to that other processor.

Java operates differently. The Java compiler takes a Java program and, instead
of generating machine code for a particular processor, generates bytecodes.

Bytecodes are instructions that look like machine code, but aren’t specific to any
processor. To execute a Java program, a bytecode interpreter takes the Java bytecode
converts them to equivalent native processor instructions and executes the Java
program. The Java byte code interpreter is one component of the Java Virtual
Machine.

Having the Java programs in bytecode form means that instead of being
specific to any one system, the programs can run on any platform and any operating
system as long a Java Virtual Machine is available. This allows a binary bytecode file

to be executable across platforms.

10

15

20

25

WO 00/34844 PCT/US99/28782

The disadvantage of using bytecodes is execution speed. System specific
programs that run directly on the hardware from which they are compiled, run
significantly faster that Java bytecodes, which must be processed by the Java Virtual
Machine. The processor must both convert the Java bytecodes into native instructions
in the Java Virtual Machine and execute the native instructions.

One way to speed up the Java Virtual Machine is by techniques such as the
“Just in Time” (JIT) interpreter, and even faster interpreters known as “Hot Spot JITs”
interpreters. The JIT versions all result in a JIT compile overhead to generate native
processor instructions. These JIT interpreters also result in additional memory
overhead.

The slow execution speed of Java and overhead of JIT interpreters have made
it difficult for consumer appliances requiring local-cost solutions with minimal
memory usage and low energy consumption to run Java programs. The performance
requirements for existing processors using the fastest JITs more than double to
support running the Java Virtual Machine in software. The processor performance
requirements could be met by employing superscalar processor architectures or by
increasing the processor clock frequency. In both cases, the power requirements are
dramatically increased. The memory bloat that results from JIT techniques, also goes
against the consumer application requirements of low cost and low power.

It is desired to have an improved system for implementing Java programs that

provides a low-cost solution for running Java programs for consumer appliances.
SUMMARY OF THE INVENTION

The present invention generally relates to a Java hardware accelerator which
can be used to quickly translate Java bytecodes into native instructions for a central
processing unit (CPU). The hardware accelerator speeds up the processing of the Java

bytecodes significantly because it removes the bottleneck which previously occurred

10

1

20

o
i

5

W0700/34844 PCT/US99/28782

when the Java Virtual Machine is run in software on the CPU to translate Java
bytecodes into native instructions.

In the present invention, at least part of the Java Virtual Machine is
implemented in hardware as the Java hardware accelerator. The Java hardware
accelerator and the CPU can be put together on a single semiconductor chip to provide
an embedded system appropriate for use with commercial appliances. Such an
embedded system solution is less expensive than a powerful superscalar CPU and has
a relatively low power consumption.

The hardware Java accelerator can convert the stack-based Java bytecodes into
a register-based native instructions on a CPU. The hardware accelerators of the
present invention are not limited for use with Java language and can be used with any
stack-based language that is to be converted to register-based native instructions.
Also, the present invention can be used with any language that uses instructions, such

as bytecodes, which run on a virtual machine.
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be further understood from the following
description in conjunction with the drawings.

Figure [is a diagram of the system of the present invention including the
hardware Java accelerator. |

Figure 2 is a diagram illustrating the use of the hardware Java accelerator of
the present invention.

Figure 3 is a diagram illustrating some the details of a Java hardware
accelerator of one embodiment of the present invention.

Figure 4 is a diagram illustrating the details of one embodiment of a Java
accelerator instruction translation in the system of the present invention.

Figure 5 is a diagram illustration the instruction translation operation of one

embodiment of the present invention.

10

15

20

25

WO 00/34844 PCT/US99/28782

Figure 6 is a diagram illustrating the instruction translation system of one

embodiment of the present invention using instruction level parallelism.

Figures 7A-7D are a table showing one possible list of bytecodes which can

cause exceptions in a preferred embodiment
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figure | is a diagram of the system 20 showing the use of a hardware Java
accelerator 22 in conjunction with a central processing unit 26. The Java hardware
accelerator 22 allows part of the Java Virtual Machine to be implemented in
hardware. This hardware implementation speeds up the processing of the Java byte
codes. In particular, in a preferred embodiment, the translation of the Java bytecodes
into native processor instructions is at least partially done in the hardware Java
accelerator 22. This translation has been part of a bottleneck in the Java Virtual
Machine when implemented in software. In Figure 1, instructions from the instruction
cache 24 or other memory is supplied to the hardware Java accelerator 22. If these
instruction are Java bytecode, the hardware Java accelerator 22 can convert these
bytecodes into native processor instruction which are supplied through the multiplexer
28 to the CPU. If a non-Java code is used, the hardware accelerator can be by-passed
using the multiplexer 26. |

The Java hardware accelerator can do, some or all of the following tasks:

1. Java bytecode decode;

2. identifying and encoding instruction level parallelism (ILP), wherever
possible;

3. translating bytecodes to native instructions;

4. managing the Java stack on a register file associated with the CPU or as a

separate stack:

10

15

20

25

WO 00/34844 PCT/US99/28782

generating exceptions on instructions on predetermined Java byte codes;
switching to native CPU operation when native CPU code is provided;

performing bounds checking on array instructions; and

P N w

managing the variables on the register file associated with the CPU.

In a preferred embodiment, the Java Virtual Machine functions of bytecode
interpreter, Java register, and Java stack are implemented in the hardware Java
accelerator. The garbage collection heap and constant pool area can be maintained in
normal memory and accessed through normal memory referencing.

The major advantages of the Java hardware accelerator is to increase the speed
in which the Java Virtual Machine operates, and allow existing native language legacy
applications, software base, and development tools to be used. A dedicated
microprocessor in which the Java bytecodes were the native instructions would not
have accesss to those legacy applications.

Although the Java hardware accelerator is shown in Figure 1 as separate from
the central processing unit, the Java hardware accelerator can be incorporated into a
central processing unit. In that case, the central processing unit has a Java hardware
accelerator subunit to translate Java bytecode into the native instructions operated on
by the main portion of the CPU.

Figure 2 is a state machine diagram that shows the operation of one
embodiment of the present invention. Block 32 is the power-on state. During power-
on, the multiplexer 28 is set to bypass the Java hardware accelerator. In block 34, the
native instruction boot-up sequence is run. Block 36 shows the system in the native
mode executing native instructions and by-passing the Java hardware accelerator.

In block 38, the system switches to the Java hardware accelerator mode. In the
Java hardware accelerator mode, Java bytecode is transferred to the Java hardware
accelerator 22, converted into native instructions then sent to the CPU for operation.

The Java accelerator mode can produce exceptions at certain Java bytecodes.

These bytecodes are not processed by the hardware accelerator 22 but are processed in

5

10

15

20

25

WO 00/34844 PCT/US99/28782

the CPU 26. As shown in block 40, the system operates in the native mode but the
Java Virtual Machine is implemented in the CPU which does the bytecode translation
and handles the exception created in the Java accelerator mode.

The longer and more complicated bytecodes that are difficult to handle in
hardware can be selected to produce the exceptions. Figure 7 is a table showing one
possible list of bytecodes which can cause exceptions in a preferred embodiment.

Figure 3 is a diagram illustrating details of one embodiment of the Java
hardware accelerator of the present invention. The Java hardware accelerator includes
Java accelerator instruction translation hardware 42. The instruction translation Unit
42 is used to convert Java bytecodes to native instructions. One embodiment of the
Java accelerator instruction translation hardware 42 is described in more detail below
with respect to Figure 4. This instruction translation hardware 42 uses data stored in
hardware Java registers 44. The hardware Java Registers store the Java Registers
defined in the Java Virtual Machine. The Java Registers contain the state of the Java
Virtual Machine, affect its operation, and are updated after each bytecode is executed.
The Java registers in the Java virtual machine include the PC, the program counter
indicating what bytecode is being executed; Optop, a pointer to the top of the operand
stack; Frame, a pointer to the execution environment of the current method; and Vars,
a pointer to the first local variable available of the currently executing method. The
virtual machine defines these registers to be a single 32-bit word wide. The Java
registers are also stored in the Java stack which can be implemented as the hardware
Java stack 50 or the Java stack can be stored into the CPU associated register file.

In a preferred embodiment, the hardware Java registers 44 can include
additional registers for the use of the instruction translation hardware 42. These
registers can include a register indicating a switch to native instructions and a register
indicating the version number of the system.

The Java PC can be used to obtain bytecode instructions from the instruction
cache 24. In one embodiment the Java PC is multiplexed with the normal program

counter 54 of the central processing unit 26 in multiplexer 52. The normal PC 54 is

6

15

20

25

WO 00/34844 PCT/US99/28782

not used during the operation of the Java hardware bytecode translation. In another
embodiment, the normal program counter 54 is used as the Java program counter.

The Java registers are a part of the Java Virtual Machine and should not be
confused with the general registers 46 or 48 which are operated upon by the central
processing unit 26. In one embodiment, the system uses the traditional CPU register
file 46 as well as a Java CPU register file 48. When native code is being operated
upon the multiplexer 56 connects the conventional register file 46 to the execution
logic 26¢ of the CPU 26. When the Java hardware accelerator is active, the Java CPU
register file 48 substitutes for the conventional CPU register file 46. In another
embodiment, the conventional CPU register file 46 is used.

As described below with respect to Figures 3 and 4, the Java CPU register file
48, or in an alternate embodiment the conventional CPU register file 46, can be used
to store portions of the operand stack and some of the variables. In this way, the
native register-based instructions from the Java accelerator instruction translator 42
can operate upon the operand stack and variable values stored in the Java CPU
register file 48, or the values stored in the conventional CPU register file 46. Data can
be written in and out of the Java CPU register file 48 from the data cache or other
memory 58 through the overflow/underflow line 60 connected to the memory arbiter
62. The overflow/underflow transfer of data to and from the memory to can done
concurrently with the CPU operation. Alternately, the overflow/underflow transfer can
be done explicitly while the CPUbis not operating. The overflow/underflow bus 60
can be implemented as a tri-state bus or as two separate buses to read data in and write
data out of the register file when the Java stack overflows or underflows.

The register files for the CPU could alternately be implemented as a single
register file with native instructions used to manipulate the loading of operand stack
and variable values to and from memory. Alternately, multiple Java CPU register
files could be used: one register file for variable values, another register file for the
operand stack values, and another register file for the Java frame stack holding the

method environment information.

10

15

20

25

WO 00/34844 PCT/US99/28782

The Java accelerator controller (co-processing unit) 64 can be used to control
the hardware Java accelerator, read in and out from the hardware Java registers 44 and
Java stack 50, and flush the Java accelerator instruction translation pipeline upon a
“branch taken” signal from the CPU execute logic 26c.

The CPU 26 is divided into pipeline stages including the instruction fetch 26a,
instruction decode 26b, execute logic 26¢, memory access logic 26d, and writeback
logic 26e. The execute logic 26¢ executes the native instructions and thus can
determine whether a branch instruction is taken and issue the “branch taken” signal.

Figure 4 illustrates an embodiment of a Java accelerator instruction translator
which can be used with the present invention. The instruction buffer 70 stores the
bytecode instructions from the instruction cache. The bytecodes are sent to a parallel
decode unit 72 which decodes multiple bytecodes at the same time. Multiple
bytecodes are processed concurrently in order to allow for instruction level
parallelism. That is, multiple bytecodes may be converted into a lesser number of
native instructions.

The decoded bytecodes are sent to a state machine unit 74 and Arithmetic
Logic Unit (ALU) 76. The ALU 76 is provided to rearrange the bytecode
instructions to make them easier to be operated on by the state machine 74. The state
machine 74 converts the bytecodes into native instructions using the look-up table 78.
Thus, the state machine 74 provides an address which indicates the location of the
desired native instruction in the 1ook-up table 78 . Counters are maintained to keep a
count of how many entries have been placed on the operand stack, as well as to keep
track of the top of the operand stack. In a preferred embodiment, the output of the
look-up table 78 is augmented with indications of the registers to be operated on at
line 80. The register indications are from the counters and interpreted from bytecodes.
Alternately, these register indications can be sent directly to the Java CPU register file
48 shown in Figure 3.

The state machine 74 has access to the Java registers in 44 as well as an

indication of the arrangement of the stack and variables in the Java CPU register file

10

15

20

25

WO 00/34844 PCT/US99/28782

438 or in the conventional CPU register file 46. The buffer 82 supplies the translated
native instructions to the CPU.

The operation of the Java hardware accelerator of one embodiment of the
present invention is illustrated in Figures 5 and 6. Figure 5, section [shows the
instruction translation of the Java bytecode. The Java bytecode corresponding to the
mnemonic /add is interpreted by the Java virtual machine as an integer operation
taking the top two values of the operand stack, adding them together and pushing the
result on top of the operand stack. The Java translating machine translates the Java
bytecode into a native instruction such as the instruction ADD R1, R2. This is an
instruction native to the CPU indicating the adding of value in register R1 to the value
in register R2 and the storing of this result in register R2 . R1 and R2 are the top two
entries in the operand stack.

As shown in Figure 5, section II, the Java register includes a PC value of
“Value A” that is incremented to “Value A+1". The Optop value changes from
“Value B” to “Value B-1" to indicate that the top of the operand stack is at a new
location. The Vars value which points to the top of the variable list is not modified.
In Figure 5, section III, the contents of a Java CPU register file, such as the Java CPU
register file 48 in Figure 3. is shown. The Java CPU register file starts off with
registers RO-RS5 containing operand stack values and registers R6-R7 containing
variable values. Before the operation of the native instruction, register R1 contains the
top value of the operand stack. Register R6 contains the first variable. After the
execution of the native instruction, register R2 now contains the top value of the
operand stack. Register R1 no longer contains a valid operand stack value and is
available to be overwritten by a operand stack value from the memory sent across the
overflow/underflow line 60 or from the bytecode stream.

Figure 5, section IV shows the memory locations of the operand stack and
variables which can be stored in the data cache 58 or in main memory. For
convenience, the memory is illustrated without illustrating any virtual memory

scheme. Before the native instruction executes, the address of the top of the operand

9

15

20

25

WO 00/34844 PCT/US99/28782

stack, Optop, is “Value B”. After the native instruction executes, the address of the
top of the operand stack is “Value B-1" containing the result of the native instruction.
Note that the operand stack value “4427" can be written into register R1 across the
overflow/underflow line 60. Upon a switch back to the native mode, the data in the
Java CPU register file 48 should be written to the data memory.

Consistency must be maintained between the Hardware Java Registers 44, the
Java CPU register file 48 and the data memory. The CPU 26 and Java Accelerator
Instruction Translation Unit 42 are pipelined and any changes to the hardware java
registers 44 and changes to the control information for the Java CPU register file 48
must be able to be undone upon a “branch taken" signal. The system preferably uses
buffers (not shown) to ensure this consistency. Additionally, the Java instruction
translation must be done so as to avoid pipeline hazards in the instruction translation
unit and CPU. |

Figure 6 is a diagram illustrating the operation of instruction level parallelism
with the present invention. In Figure 6 the Java bytecodes iload n and iadd are
converted by the Java bytecode translator to the single native instruction ADD R6,
R1. In the Java Virtual Machine, iload_n pushes the top local variable indicated by
the by the Java register VAR onto the operand stack.

In the present invention the Java hardware translator can combine the iload n
and iadd bytecode into a single native instruction. As shown in figure 6, section II,
the Java Register, PC, is updated}from “Value A” to “Value A+2". The Optop value
remains “value B”. The value Var remains at “value C”.

As shown in Figure 6, section III, after the native instruction ADD R6, R1
executes the value of the first local variable stored in register R6, “1221", is added to
the value of'the top of the operand stack contained in register R1 and the result stored
in register R1. In Figure 6, section IV, the Optop value does not change but the value
in the top of the register contains the result of the ADD instruction, 1371.

The Java hardware accelerator of the present invention is particularly well

suited to a embedded solution in which the hardware accelerator is positioned on the

10

10

15

20

WO 00/34844 PCT/US99/28782

same chip as the existing CPU design. This allows the prior existing software base
and development tools for legacy applications to be used. In addition, the architecture
of the present embodiment is scalable to fit a variety of applications ranging from
smart cards to desktop solutions. This scalability is implemented in the Java
accelerator instruction translation unit of Figure 4. For example, the lookup table 78
and state machine 74 can be modified for a variety of different CPU architectures.
These CPU architectures include reduced instruction set computer (RISC)
architectures as well as complex instruction set computer (CISC) architectures. The
present invention can also be used with superscalar CPUs or very long instruction
word (VLIW) computers.

While the present invention has been described with reference to the above
embodiments, this description of the preferred embodiments and methods is not meant
to be construed in a limiting sense. For example, the term Java in the specification or
claims should be construed to cover successor programming languages or other
programming languages using basic Java concepts (the use of generic instructions,
such as bytecodes, to indicate the operation of a virtual machine). It should also be
understood that all aspects of the present invention are not to be limited to the specific
descriptions, or to configurations set forth herein. Some modifications in form and
detail the various embodiments of the disclosed invention, as well as other variations
in the present invention, will be apparent to a person skilled in the art upon reference
to the present disclosure. It is therefore contemplated that the following claims will
cover any such modifications or variations of the described embodiment as falling

within the true spirit and scope of the present invention.

11

10

15

20

WO 00/34844 PCT/US99/28782

CLAIMS
1. A system comprising:
a central processing unit; and
a hardware accelerator operably connected to the central processing unit, the
hardware accelerator adapted to translate stack-based instructions into register-based

instructions native to the central processing unit.

2. The system of Claim I, wherein the stack-based instructions are associated with a

virtual machine.
3. The system of Claim 1, wherein the stack-based instructions are Java bytecode.

4. The system of Claim I, wherein the hardware accelerator implements at least part

of a Java virtual machine.

5. The system of Claim 1, wherein the hardware accelerator is connected between a

memory and the central processing unit.

6. The system of Claim 5, wherein the hardware accelerator is connected between an

instruction cache and the central processing unit.

7. The system of Claim 1, wherein the hardware accelerator is adapted to manage a

java stack.
8. The system of Claim 1, wherein the hardware accelerator is adapted to store at

least some of a Java operand stack in a register file connected to the central

processing unit.

12

10

15

20

WO 00/34844 PCT/US99/28782

9. The system of Claim 8, wherein the hardware accelerator has access to the data bus

of the central processing unit.

10. The system of Claim 8, wherein the hardware accelerator is adapted to swap parts

of the operand stack are in and out of the register file from a memory.

I1. The system of Claim 8, wherein the central processing unit is operably connected to

a native register file and a register file controlled by the hardware accelerator

12. The system of Claim 11, wherein the at least some of the Java operand stack is

stored in the register file controlled by the hardware accelerator.

13. The system of Claim 8, wherein the central processing unit is operably connected to
a native register file and wherein the at least some of the Java operand stack is stored in

the native register file.

14. The system of Claim 8, wherein the hardware controller is further adapted to store at

least some variables in the register file.

15. The system of Claim 8, wherein the hardware accelerator is incorporated within the

central processing unit.

16. The system of Claim 1, wherein the hardware accelerator has access to at least one

bus of the central processing unit.
17. The system of Claim 1, wherein the hardware accelerator is adapted to examine the

stack-based instructions to determine whether multiple stack-based instructions can be

combined into fewer register-based instructions.

13

10

15

20

WO 00/34844 PCT/US99/28782

18. The system of Claim 17, wherein multiple stack-based instructions pass through the

hardware accelerator concurrently to allow for the operation of the combining logic.

19. The system of Claim I, wherein the hardware accelerator is divided into pipelined

stages.

20. The system of Claim 1, wherein the hardware accelerator is adapted to be flushed

under predetermined conditions.

21. The system of Claim I, wherein the central processing unit and hardware accelerator

are on the same chip.

22. The system of Claim 1, wherein the hardware accelerator produces an exception
upon at least one of the stack-based instructions, and wherein the central processing unit
will, in software, translate the at least one of the stack-based instructions causing the

exception.

23. The system of Claim I, wherein the hardware accelerator is incorporated within the

central processing unit.

24. A system comprising:

a central processing unit; and

a hardware java accelerator operably connected to the central processing unit, the
hardware java accelerator adapted to translate java bytecodes into instructions native to

the central processing unit.

25. A system comprising:

a central processing unit: and

14

wn

10

WO 00/34844 PCT/US99/28782

a hardware accelerator operably connected to the central processing unit, the
hardware accelerator adapted implement at least part of a virtual machine associated
with a computer language, the hardware accelerator adapted to translate instructions for

the virtual machine into native instructions for the central processing unit.

26 . A method comprising:

moving a stack-based instruction from memory to a hardware accelerator;

in the hardware accelerator, converting the stack-based instruction into a register-
based instruction native to a central processing unit; and

in the central processing unit, executing the register-based instruction.

27. The method of Claim 26, wherein the stack-based instructions are associated with a

virtual machine.
28. The method of Claim 26, wherein the stack-based instructions are Java bytecode.

29. The method of Claim 26, wherein the accelerator implements at least part of a Java

virtual machine.

30. The method of Claim 26, further comprising, in the hardware accelerator, managing

a java stack.

31. The method of Claim 26, further comprising storing at least some of a Java operand

stack in a register file connected to the central processing unit.

32. The method of Claim 26, wherein parts of the operand stack are swapped in and out

of the register file from a memory by the hardware accelerator.

15

10

WO 00/34844 PCT/US99/28782

33. The method of Claim 26, wherein the hardware accelerator examines the stack-
based instructions to determine whether multiple stack-based instructions can be

combined into fewer register-based instructions.
34. The method of Claim 26, further comprising producing an exception in the hardware
accelerator upon at least one stack-based instruction, and translating the at least one

stack-based instruction causing the exception in software in the central processing unit.

35. The method of Claim 26, wherein the central processing unit and hardware

accelerator are on the same chip.

36. The method of Claim 26, wherein the hardware accelerator is incorporated within

the central processing unit.

16

PCT/US99/28782

WO 00/34844

1/10

T A¥n3lJ

H (43

da.rcxwaw.do -

3 Hiy?
unyl o yoysa T
eréxS:

82
ae az

WO‘00/34844 PCT/US99/28782

2/10

PCT/US99/28782

WO 00/34844

3/10

AN £ W9y
H18Q
A)
85 Cdan
IJ.(0MN0Yd 7)) |
} 09 ¥3110y10900
Y39 Al VO0LNUCHINY
\NIQ) YOwWaW p .ruzswn r czihL
"
L1l]
‘\ \
- Ind S
ad ¥It193Y b
LEIRIOE R Ad> wruL n/o -
7 T culsioag |
9h | wrels € vang [-
93 vaag | L denoyun [T
” aiieiiey Entatu R N -~ 7] hh
_ 0S
| t '
t
I ! | . I ol oy S YL N
~ LECTN S RS P T] wisd | L _T\ mating 3D
~ P “ R B R potenysng [T _ yarwwaodt \ 101 L7nLS N
I] ! |
\ =) . \ _ . v M b3t I\N
— Az)i 7ot WAV a9t ? 04V | in
U ..o Y |
J
YA

PCT/US99/28782

WO 00/34844

H 2993

4/10

SY3LS193y
bunbg

- - — -

_ ~ |
pera(] [e—] ¥3349

OUIAYLONT

Al

1
1t Ow '

\
i MNQILOICNLNL (101 YN
! JaLvviIdINY wnul

- -~ .."»“ll‘\ll(ltll\ e

—=h~

210v)
LT
WOy

WO 00/34844

5/10
1. INETRuETIOU
TRAM LA TION
Tav4 NATIVE
BYTECcopE _ TNSTRuUCTION
=
1add AOD RAI, R2
I, JAukn REGIER
P = uUaLweR: | Pc = vALue A+
oPToP = VAWEB 7 opp= UALVE B-1
CR1Y (A2)
uaR = VALuw C UAR = VUaLvg C
I, Jaua Chu
REGISTER
FILE
“Ro ocoo| , RO ooo0|
e arvtnin)
::u‘:"'? Ri ©150 %?A:LV:M‘i Ri ©ol50
ofopewd R 1210 o Contay >R 1360
1k N> ooo0? '? value of e R3 000 3
Ry o0°5§ +°€+:£K°NMA R¢ Oocos
R 090 6 RS oo0e
‘*:'::"9& (23! Re 1221
Kanoc b7 | 361 RY 136 |
T, _MemoAy
PTef z| imweBa DIFO - 01%0
woeel) - | 2\ 0 oPoP = UaveB-l - 1300
- ooo? - 0001
~ po00h 7 * 00CK
- 0p0O§ ' . - o0}
- 600 . S 0004
- 44 - 442%
T~ ~——————
N\ A AN~
uﬁ&% VALVg C - 1A | vAM = vRlugC - 172t
- 1% o - |36t
-1}16 | -1\ 0}

fIGURE 5

PCT/US99/28782

WO 00/34844

InTRucTioN

I T A LATION

Thus BYTECOOE

tload _n =
i ada =

JL. JAva REGISTER

Pt = uBrLUE R
oPTOP = VAWVE B
Cay)

URR = VLW C

TI. JavA CPu

REGISTER FILE

Ro o©oo|
cotay > Rl O[BO
Z’?“r‘iéw e 1210
o% of
A Ry 0007

Ry peos

Rs nb06
fontaws @ BG 122 |
FIAST
‘u‘n&maLE Rt 3ol

OPTOP

UMK S UAWEC -

TV, _wmemoRy

s UPLe R - DIBD

- 1210

- o00%

- poob

~ 00056

~ 000}

- 4423
NS —
NS e T

(e 3w N
- 1%0l
- 1] 9

6/10

PEUVE INSTRULTIoN

and Ré, RI

PC= uaLoe A+ 2

= oPTeP= VUnLug B
(R
VAR = VhLug C
Ro ooo {
contady > R) 1231
= o
_; ‘;‘.‘ﬁ' Ry [P
of stk A3 00023
RY oo06%
RN o006
Contwin 5BL \12|
brge R 136l
oPTOP: VAMWER - 1L F!
- 1210
- Ooo}
- p00S
= 000b
- 000 |
- 4423
R P
P e PR
VR s e - 121
- 13 06l
- 1ol

FiguRe &

PCT/US99/28782

WO 00/34844

7/1.0

Opcodes Mnemonic Opcode xHH Excep Gen

nop 0x00
aconst_null x01
iconst_m1 x02
iconst_n(0-5) x03 - x08
lconst_n(0-1) x09 - x0a
fconst_n(0-2) x0c - x0d
dconst_n(0-1) x0e -xOf
bipush x10
sipush x11
lde x12 y
lde_w x13 y
lde2_w x14 y
iload x15
lload x16
fload x17
dload x18
aload x19
iload_n(0-3) x1a - x1d
lload_n(0-3) xle - x21
fload_n(0-3) x22 - x25
dload_n(0-3) x26 - x29
aload_n(0-3) x2a - x2d
iaload x2e
laload x2f
faload x30
daload x31
aaload x32
baload x33
caload x34
saload x35
istore x36
Istore x37
fstore x38
dstroe x39
astroe x3a
istore_n(0-3) x3b - x3e
istore_n(0-3) x3f - x42
fstore_n(0-3) X43 - x46
dstore_n(0-3) x47 - x4a
astore_n(0-3) X4b - xde
jastore x4f
lastore x50
fastroe x51
dastore x52
bastore x53
aastore x54
castroe x55
sastore x56

FloorE TR

PCT/US99/28782

WO 00/34844

8/10
pop x57
pop2 x58
dup x59
dup_x1 x5a
dup_x2 x5b
dup2 x5¢
dup2_x1 x5d
dup2_x2 x5e
swap x5f
iadd x60
ladd x61
fadd x62 y
dadd x63 y
isub x64
Isub x65
fsub x66 y
dsub x67 y
imul x68
imul x69
frmul x6a y
dmul x6b y
idiv x6¢ y
idiv x6d y
fdiv x6e y
ddiv x6f y
irem x70 y
Irem X71 y
frem X72 y
drem x73 y
ineg x74
Ineg X75
fneg x76 y
dneg X77 y
ishl x78
Ishi X79
ishr x7a
Ishr X7b
iushr X7¢C
lushr x7d
iand x7e
land x7f
ior x80
lor x81
ixor x82
Ixor x83
iinc x84
i2l X85 y
i2f x86 y
i2d x87 y
12i x88 y
12f x89 y
l2d x8a y

FIGURE F &

PCT/US99/28782

WO 00/34844

9/10

f2i x8b y
f21 x8¢ y
f2d x8d y
d2i x8e y
d2i x8f y
d2f x90 y
i2b x91
i2c x92
i2s x93
lcmp x94 y
fcmpl x95 y
fcmpg x96 y
dempl x97 y
dcmpg x98 y
ifeq x99
ifne x9a
ifit x39b
ifge x9c
ifgt x9d
ifle x9e
if_icmpeq x9f
if_icmpne xal
if_icmpit xa1l
if_acmpge xa2
if_cmpgt xa3
if_icmple xa4
if_acmpeq xab
if_acmpne Xxab
goto xa7
jsr xa8
ret xa9
tableswitch Xaa y
lookupswitch xab y
ireturn xac
freturn xad
freturn xae
dretumn xaf
aretumn xb0
return xb1
getstatic xb2 y
putstatic xb3 y
getfield xb4 y
putfield xb5 y
invokevirtual xb6 y
invokespecial xb7 y
invokestatic xb8 y
invokeinterface xb9 y
xxunsedxxx xba y
new xbb y
newarray xbc y
anewarray xbd y
arraylength xbe y

Fiture #C

PCT/US99/28782

WO 00/34844

athrow xbf y
checkcast XCo y
instanceof xc1 y
monitcrenter xc2 y
monitorexit xc3 y
wide xc4 y
multianewarray xcS y
ifnull xc6 y
ifnonnui xc7 y
goto_w xc8

jsr_w xc9

ldc_quick xcb y
lde_w_quick Xce y
lde2_w_quick xcd y
getfield_quick xce y
putfield_quick xcf y
getfield2_quick xd0 y
putfield2_quick xd1 y
getstatic_quick xd2 y
putstatic_quick xd3 y
gtestatic2_quick xd4 y
putstatic2_quick xd5 y
invokevirtual_quick xd6 y
invokenonvirtual_quick xd7 y
invokesuper_quick xd8 y
invokestatic_quick xd9 y
invokeinterface_quick xda y
invokevirtualobject_quick xdb" y
new_quick xdc y
anewarray_quick xde y
muitinewarray_quick xdf y
checkecast_quick xe0 y
instanceof quick xe1 y
invokevirtual_quick_w xe2 Yy
getfield_quick_w xe3 y
putfieid_quick_w xed4 Yy
breakpoint xca y
impdep1 xfe y
impden2 xff y

Fiewrg 3 D

10/10

PCT/US99/28782

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

