(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2011205480 B2

(54) Title

Operating system auto-update procedure

(51) International Patent Classification(s)

GOG6F 9/44 (2006.01)

(21) Application No: 2011205480

(87) WIPONo: WO11/088022

(30) Priority Data

(31) Number

61/294,266

(32) Date

(43)
(44)

2011.07.21
2015.02.05

Publication Date:

Accepted Journal Date:
(71) Applicant(s)
Google Inc.

(72) Inventor(s)

De Los Reyes, Andrew

(74) Agent/ Attorney

Pizzeys, PO Box 291, WODEN, ACT, 2606

(56) Related Art
US 6018747 A
US 2005/0022175 A1

US 7676479 B2

2010.01.12

GO6F 15/16 (2006.01)

(22) Date of Filing: 2011.01.11

(33) Country
us

wo 2011/088022 A3 I IMHI 00 000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDE

721D
¥
i

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

R THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2011/088022 A3

21 July 2011 (21.07.2011) PCT
(51) International Patent Classification: (74)
GO6F 9/44 (2006.01) GOG6F 15/16 (2006.01)
(21) International Application Number:
PCT/US2011/020790 (81)
(22) International Filing Datc:
11 January 2011 (11.01.2011)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/294,266 12 January 2010 (12.01.2010) Us
(71) Applicant (for all designated States except US):
GOOGLE INC. [US/US]; 1600 Amphitheatre Parkway,
Mountain View, CA 94043 (US). (84)
(72) Inventor; and
(75) Inventor/Applicant (for US orly): DE LOS REYES,

Andrew [US/US]; 4028 Farm Hill Blvd Apt. 1, Redwood
City, CA 94061 (US).

Agents: ZIDEL, Andrew, T. ct al.; Lerner, David, Lit-
tenberg, Krumholz & Mentlik, LLP, 600 South Avenue
West, Westtield, NJ 07090 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CII, CL, CN, CO, CR, CU, CZ, DT, DK, DM, DO,
DZ, EC, EE, EG, ES, FIL, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, I, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, Gl1,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) litle: OPERATING SYSTEM AUTO-UPDATE PROCEDURE

FIG. 2
200

Cut edge to break cycle;
uses temp block T

$208 ...

 feeddlocks
e i;dm}s?;;w
8210 -

28 i ﬁ i o
Ctadaleka:
Fals Bac

(57) Abstract: The present invention pertains to differen-
tial updating of an operating system in a client device (302,
306, 308, 310, 312). A delta update file (100) includes an
ordered list of operations to be performed on the new in-
stall partition in memory (326) that will port from the old
install partition. A binary ditferential compression algo-
rithm may be used to determine differences for the update
and o compress the data being transmitted to the client de-
vice. Blocks in the partition may cyclically depend from
one another (S202, S204). Edges are cut to break cycles.
During system operation, disk images are scanned (1 in
FIG. 3). File operations are created and a blocks vector is
developed (2 in FIG. 3). A graph is created (3 in FIG. 3)
where the edge weights are set equal to the number of
blocks. Given this, cycles are then broken (4 in FIG. 3) and
a final order resulting from a topological sort is produced
(5 in FIG. 3).

WO 2011/088022 A3 NN HIIEH0 I 0000 A 00

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:
GW, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

Declarations under Rule 4.17: — before the expiration of the time limit for amending the
— as 1o applicant’s entitlement to apply for and be granted claims and (o be republished in the event of receipt of
a patent (Rule 4.17(ii)) amendments (Rule 48.2(h))

— as fto the applicant’s entitlement to claim the priovity of (88) Date of publication of the international search report:
the earlier application (Rule 4.17(iii)) 10 November 2011

WO 2011/088022 PCT/US2011/020790

OPERATING SYSTEM AUTO-UPDATE PROCEDURE

CROSS-REFERENCE TO RELATED APPLICATION

[0001] The ©present application claims priority to United
States Provisional Application No. 61/294,266, filed January
12, 2010, the entire disclosure of which is hereby
incorporated by reference.

BACKGROUND OF THE INVENTION

[0002] Software packages such as operating systems may Dbe
updated from time to time to introduce new features, correct
errors and address security flaws. Due to file sizes for
large applications, it may be inconvenient or inefficient to
send and install an entirely new package with an update. One
solution is to send a differential update to the client, which
covers only the specific changes from the prior software. If
the differential wupdate 1s not performed correctly, the

modified software may operate poorly or not at all.

SUMMARY OF TEE INVENTION

[0003] The present invention relates generally to
operating systems. More particularly, the present invention
relates to updating the version of an operating system.

[0004] In accordance with one embodiment, a method of
generating an update for a computer readable operating system
is provided. The method comprises identifying a version
number of a current version of the operating system; creating,
with a processor, an ordered list of operations for updating
the current version of the operating system to a new version
of the operating system, the processor performing iterations
over each regular file on the new version ©f the operating
system to obtain the ordered 1ist for all data blocks
associated with the new wversion; and assembling, with the
processor, a differential update file including a magic number
indicator showing the differential update file is an actual

update file, a new version number identifying the new version

WO 2011/088022 PCT/US2011/020790

of the operating system, and a protocol buffer including the
ordered list of operations.
[0005] In one example, one or more operations in the

ordered 1list are each associated with a respective data blob

indicating a chunk of data. Here, the differential update
file is assembled to include the respective data blobs. In
another example, each operation in the ordered 1list 1is

applicable to one or more specific data blocks of a partition
of a client device. The operations include one or more of: a
copy operation where at least one of the data blocks in the
partition is to be copied to another block in a new partition
of the c¢lient device for the new version of the operating
system; a difference operation where at least a given one of
the data blocks is read into memory and a difference routine
is performing on the at least one given data block using a
data blob of the differential update file; a replace operation
where a selected data blob of the differential update file 1is
configured to be written to specified blocks in the new
partition; and a replace with uncompression operation where a
compressed data blceb is included in the differential update
file and is configured to be written to selected specified
blocks in the new partition for the new version o0f the
operating system.

[0006] In one alternative, each operation in the ordered
list is associated with a file object, and the method further
comprises creating a vertex in a graph for each file object;
and creating a vector representing each Dblock. In one
variation, the method further comprises setting reader and
writer parameters for the vector of each block; and for each
block with a different reader and writer, creating an edge in
the graph from the writer to the reader. The edge points to a
file operation to be completed before a source file operation
associated with the edge starts. In an example, each edge
has a weighkt, and the weight identifies a number of blocks in

the graph associated with that edge. In another example, if

WO 2011/088022 PCT/US2011/020790

the graph includes c¢ycles, the method further comprises
breaking each of the cycles. In this case, breaking a given
one of the cycles may include finding a lowest-weight edge
associated with the given cycle; and cutting the lowest-weight
edge. Here, cutting the lowest-weight edge may comprise
creating a new node representing an operation of copying an
extent to a scratch space; and making the lowest-weight edge's
source node point to the new node. And a new edge may be made
from a destination node c©f the lowest-weight edge in order to
ensure that a new copy operation occurs before a consumer of
the new copy operation.

[0007] In accordance with another embodiment of the
present invention, a device for generating an update for a
computer readable operating system 1is provided. The device
comprises memory for storing differential update information
associated with the operating system, and a processor coupled
to tlhe memory. The processor is configured to identify a
version number of a current version of the operating system;
create, using the differential update information, an ordered
list of operations for updating the current version of the
operating system to a new version of the operating system,
including performing iterations over each regular file on the
new version of the operating system to obtain the ordered list
for all data blocks associated with the new version; assemble
a differential update file including a magic number indicator
showing the differential update file is an actual update file,
a new version number identifying the new version of the
operating system, and a protocol buffer including the ordered
list of operations; and store the differential update file in
the memory.

[0008] In one example, each operation in the ordered 1list
is associated with a file object, and the processor is further
configured to create a vertex in a graph for each file object,
and create a vector —representing each Dblock. In an

alternative, the processor is further configured to set reader

WO 2011/088022 PCT/US2011/020790

and writer parameters for the wvector of each block; and for
each block with a different reader and writer, create an edge
in the graph from the writer to the reader. The edge points
to a file operation to be completed before a source file
operation associated with the edge starts. In this case, 1if
the graph includes c¢ycles, the processor 1s optionally
operable to break each of the cycles. Here, breaking a given
one of the cycles may include finding a lowest-weight edge
associated with the given cycle, and cutting the lowest-weight
edge. In this case, the processor may be operable to cut the
lowest-weight edge by creating a new node representing an
operation of copying an extent to a scratch space; and making
the lowest-weight edge's source node point to the new node.
And a new edge may be made from a destination node of the
lowest-weight edge 1in order tc ensure that a new copy
operation occurs before a consumer of the new copy operation.

[0009] In a further embodiment, a tangible computer-
readable storage medium stores computer readable instructions
of a computer program. The instructions, when executed by a
computer, cause the computer to perform a method of generating
an update for a computer readable operating system. The
method comprises identifying a wversion number of a current
version of the operating system; creating, with a processor,
an ordered list of operations for updating the current version
0f the operating system to a new version of the operating
system, the processor performing iterations over each regular
file on the new version of the operating system to obtain the
ordered 1list for all data blocks associated with the new
version; and assembling, with the processor, a differential
update file including a magic number indicator showing the
differential wupdate file 1is an actual update file, a new
version number identifying the new version of the operating
system, and a protocol buffer including the ordered list of

operations.

WO 2011/088022 PCT/US2011/020790

[0010] In one example, each operation in the ordered list
is associated with a file object, and the method further
comprises creating a vertex in a graph for each file object;
and creating a vector representing each block. In this case,
the method may further comprise setting reader and writer
parameters for the wvector of each block; and for each block
with a different reader and writer, creating an edge in the
graph from the writer to the reader. The edge points to a
file operation to be completed before a source file operation
associated with the edge starts. Here, 1f the graph includes
cycles, the method may further comprise breaking each of the
cycles by finding a lowest-weight edge associated with each
given <c¢ycle; and cutting the lowest-weight edge for each
cycle. Cutting the lowest-weight edge may include creating a
new node representing an operation of copying an extent to a
scratch space; and making the lowest-weight edge's source node
point to the new node. And a new edge may be made from a
destination node of the lowest-weight edge in order to ensure
that a new copy operation occurs before a consumer of the new
copy operation.

[0011] In a further embodiment, a client device comprises
memory for storing a current version o©f an operating system
and a processor coupled to the memory. The processor 1is
configured to transmit a request to a remote device regarding
an update for the current version of the operating system, the
request including a version number identifying the current
version of the operating system; receive a differential update
file from the remote device, the differential update file
including a magic number indicator showing the differential
update file 1s an actual update file, a new version number
identifying the new version of the operating system, and a
protocol buffer including an ordered list of operations;
verify the magic number; extract the ordered 1list of
operations from tlre protocol buffer; and perform a

differential update by executing the ordered 1list of

WO 2011/088022 PCT/US2011/020790

operations 1in order to update the current version of the
operating system to the new version of the operating system.

[0012] In one example, the processor 1s operable to
perform the differential update of the operating system to the
new version of the operating system without saving the
differential update file in the memory while the differential

update file is being streamed to the client device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 1illustrates a file format in accordance
with aspects of the invention.

[0014] FIG. 2 1s a process of for cutting edges to break
cycles in accordance with aspects of the present invention.
[0015] FIG. 3 1illustrates a differential update process
in accordance with aspects of the present invention.

[0016] FIGS. 4A-B illustrate computer systems for use in
the invention.

CETATLED DESCRIPTION

[0017] The aspects, features and advantages of the
present invention will be appreciated when considered with
reference to the following description of preferred
embodiments and accompanying figures. The same reference

numbers in different drawings may identify the same or similar

elements.
[0018] From time to time different features of an
operating system are updated. Trhose updates may be sent to

client computers that perform a predefined update process.
This may involve deleting, changing and/or adding files to the
client. In one process, an update 1is prepared by the
operating system provider. This may 1include creating a
differential update file, which indicates to the client what
changes need to be made. The differential update file is then
sent to each client to be updated. The clients desirably
sequentially execute the operations in the file to perform the

update.

WO 2011/088022 PCT/US2011/020790

[0019] A partition containing an operating system may be
configured as one or more blocks, withh each block containing
file information or bockkeeping information. Each Dblock may
be, e.g., 4 kbytes, although the invention is not limited to
this or any particular Dblock size. The operating system
itself comprises programs (e.g., instructions) as well as data
that run on a computer processor and manages computer hardware
resources and provides common services for efficient execution
of various application software. When updating the operating
system, a new partition may be created. The new partition is
pre-populated with the old version of the operating system.
FEach disk block on the resultant install partiticon (which will
contain the root file system) 1is desirably exactly (bit for
bit) specified by the operating system vendor so that it can
be signed on the server (e.g., for a verified boot).

[0020] It is desirable for updates to be as small as
possible. In one scenario, the updates are applied in place,
so that many delta (differential) updates can be installed
without rebooting. Thus, 1f a user is booted into wversion N,
and N+1 is released, the user (client) downloads the N=2N+1
updated and installs it. Then the user is still booted into N
when N+2 comes out. The user then downloads the N+12N+2
update and installs it in-place over N+1.

[0021] In one example, the client contacts the update
server and provides the version number of the system installed
on the present install partition. The server provides the
client with an incremental (delta) update that is downloaded
to the client. The delta update file contains an cordered list
of operations to perform on the install partition that will

take it from the o0ld (existing) version to the new version.

[0022] Desirably, the update file is an ordered 1list of
operations to be performed by the client. Each operation
operates on specific blocks of the partition. Each operation

may contain an optional data "blob" inside the delta file.

The term "blob"™ indicates a large chunk of data that may have

WO 2011/088022 PCT/US2011/020790

an arbitrary collection of bytes. There are several types of
install operations, including "Copy," "Diff", "Replace" and
"Replace with Uncompression.™ In Copy, some of the blocks in

the current install partition are copied over to other blocks
in the new install partition. For Diff, some blocks are read
into memory, and a binary difference routine 1s performed
using an attached data blob. The results are written into
specified blocks in the new install partition. For Replace,
the attached data blob is written to specified blocks in the
new 1install partition. A compression process may also be
performed, where a compressed data blob is sent to the client,
uncompressed, and the results are written to specified blocks
in the new install partition. Here, Gzip, BzipZ or another
compression algorithm may be employed.

[0023] In one scenario, a patch program is instructed
that the old file is the 1install partition. Rather than
having the program read the entire partition into memory, it
is instructed which blocks to read to get the file in memory.
Then, a patch operation is performed in memory. Finally, the
result 1is written directly to the new install partition, but
not at the beginning of the device. Instead, the program is
told which blocks to write the results to.

[0024] A delta/differential update file may be generated
according to the following discussion. The update file format
may be as shown in file format 100 of FIG. 1. Specifically,
the format preferably includes a "magic number" indicator or
sanity check to show the file is actually an update file. In
one instance, the magic number includes four bytes containing
the binary version of a short phrase, such as "CrAU." Next is

a version number, followed by a protocol buffer offset and

lengtlh, each of which may be 8 bytes. The protocol buffer
itself follows. Tke protocol Dbuffer is a series of
instructions that the client is to perform in order. Next,

one or more data blobs are provided, followed by an end of

file (EOF) indicator. While the ordering may be as shown in

WO 2011/088022 PCT/US2011/020790

this figure, the different components may be ordered
differently if desired.

[0025] In one scenario, the concept of an "extent" is
employed. An extent 1is a contiguous range of disk Dblocks.
For example, rather than specify blocks {10, 11, 12, 13, 14,
15, 17, 18} it can be simpler to specify { (10, 6), (17, 2) 1}
(a list of extents). An exemplary process for generating
delta updates is as follows.

message Manifest {
message InstallOperation {
enum CompressionType {
NO CHANGE = 0, // file is unchanged; Jjust move data
blocks
BSDIFF = 1, // Read source data blocks as old file,
included binary blob is diff, output to new blocks
FULL = 2, // Output included binary blob to new
blocks
FULL_BZIP = 3 // Bunzip binary blob into new blocks

uint 64 blob_offset; // if present, the offset in the
update image of the binary blob for this file

uinté4 blob_length; // if present, binary blob length
message extent {
uint64 offset; // in blocksize
uint64 length; // in blocksize

repeated extent input_extents;
repeated extent output_extents;
}

repeated InstallOperation install operations;

}
[0026] The manifest indicates a list of install

operations. Input extents indicate blocks to be read. Output
extents indicate blocks to be written.

[0027] To generate a delta update, iterations are
performed over each regular file on the new file system to
obtain an ordered 1list of all data blocks it has. This 1is
stored in a file structure having the following format:

struct Extent {
uint64 start;
uint64 length;
t
struct File {
string path; // path within the filesystem

WO 2011/088022 PCT/US2011/020790

vector<kExtent> dst_extents; // ordered 1list of all
extents on the new filesystem
vector<Extent> src_extents; // Applies only for
NO_CHANGE and BSDIFF
enum CompressionType; // one of: NO_CHANGE, BSDIFF,
FULL, FULL_BZIP

}

[0028] Eventually, each file object will be converted
into an InstallOperation message in the protocol buffer. For

each file, it 1is desirable to determine the optimal way to

compress it. There are four cases. In one case, the file
hasn't changed. In the other three cases, the file has
changed. In one scenario, the changed file can be compressed

to the smallest size using Bzip2 or another compression

algorithm. In another scenario, the file has changed and it
is smallest uncompressed. In the third scenario, the file has
changed and it binary-diffs the smallest. If a file is new,

meaning that it was not present in the old version of the
operating system, then only two of the cases apply. The data
may be sent down in full, or sent down in full with
compression.

[0029] In accordance with one aspect of the invention, a
vertex 1s created in a graph for each file object. Along side
the graph, a vector is created to represent each block in the
install partition.

struct Block {
InstallOperation* reader;
InstallOperation* writer;

}
vector<Block> blocks; // length 1is the size of the
install partition
[0030] The process then goes through each block in each

file object. For each block, reader and writer parameters are
set for the block's vector.

[0031] Next, iterations are performed through the block's
array. For each block with a different reader and writer
(which are both non-null), an edge (arrow) 1is created in the
graph from the writer to the reader. An edge in the

(directed) graph points to a file operation that must complete

,10,

WO 2011/088022 PCT/US2011/020790

before the edge's source file operation starts. Thus, this
process tries to ensure that 1f a Dblock 1is both read and
written by different file operations, the block is read before
it 1s written. The edge represents blocks in the graph, so the
edge's weight is the number of blocks.

[0032] At this point, the result is 1likely to have a
graph with cycles. The cycles should be Dbroken. The cycles
may be found wusing Donald B. Johnson's circuit finding
algorithm as set forth in "Finding &ll the Elementary Circuits
of a Directed Graph," SIAM J. Comput., vol.4 no.l, March 1975,
the entire disclosure of which 1s incorporated by reference
herein. Tre c¢ycles may also be found using Tarjan's
Algorithm, as set forth in "Tarjan's Strongly Connected
Components Algorithm,"™ David LEppstein, Ed., Wikipedia, the
entire disclosure o©f which is 1incorporated by reference
herein. For each cycle, the lowest-weight edge 1is found and
cut. An edge may be cut as follows. First, create a new node
that represents an operation of copying some extents to
scratch space. Then, make the edge's source node point to the
new node. Here, an edge may be made from the cut edge's
destination node to the new node to enforce that the new copy
operation occurs before the consumer of the copy. Preferably,
modify the cut edge's destination node to read from the
scratch space rather than from the blocks represented by the
edge being cut.

[0033] An example of cutting an edge to break a cycle is
shown in process 200 of FIG. 2. Arrows indicate thkat an
operation pointed to needs to occur Dbefore the operation
that's doing the pointing, and needs to happen in that order
because the pointing operation will overwrite data needed by
the pointee. As shown in this figure, at 5202 operation A
reads block 3 to write block 4. And at 5204 operation B reads
block 4 to write block 10. The cycle is broken by cutting the
edge (arrow 206) between A and B; this may be done by using
temp block T. Thus, as shown, at $208 operation A reads block

,11,

WO 2011/088022 PCT/US2011/020790

3 and writes block 4. At 5210, operation C reads block 4 and
writes block T. And at 8212, operation B' reads block T and
writes block 10. Once the cycles are broken, a topological
sort may be wused to order all the nodes. That covers
installation of all file-data blocks.

[0034] In one example, i1t would be possible to pick an
edge and cut it, such as B'->C->A->Temp. In this case, the
Temp operation would copy the block A to a temp area. B would
be modified to B', which would then read from the temp area.
However, if a second edge (e.g., C->A) is cut, then the result
would be: B'->C->Temp2, and A'->Temp. This would result in
two completely independent graphs, and the final order of
operations could be arranged as follows:

TempZ2 (the client executes this first)

C

B!

Temp

A' (the client executes this last)
[0035] However, 1in this case B' would read the data
written by the Temp operation, but Temp occurs after B'. This

may happen because the graph transform done when the A->B was
cut edge did not specifically state that Temp must occur
before B'. In order to avoid this situation, another edge 1is
added to make this explicit. The result is:
A->B->C->A (original)
cut A->B to obtain:
B'->C—>A—>Temp<-B'
Then, cut C->A to obtain:
B'->C'->Temp2<-A->Temp<-B'
Now, when a final order of operation is chosen based on the

graph, the operations will occur in the correct order.

[0036] An exemplary process 1s shown in FIG. 3. At stage
1, disk images are scanned. Block indices (0-7) may be
associated with different images (e.g., "sh," "foo," "bar,"
and "dog"}). New images may be associated with the same or

,12,

WO 2011/088022 PCT/US2011/020790

different blocks. Thus, "foo" may now be associated with
blocks 2-3 1instead of block 4. "Sh" may be associlated with
blocks 4-5 instead of blocks 2-3. "Bar" may be associated
with block 6 instead of bock 5. And new image "cat" may be

associated with block 7.

[0037] At stage 2, file operations are created. This
corresponds to a file on the new partition. This 1is followed
by a blocks vector. A blocks vector is an ordered list, where
each element includes a file operation for &a given block.
Fach image may have one or more source blocks and one or more
destination blocks. Thus, the source block for "foo" is block
4, and its destination blocks are shown as "dst: (2,2y",
indicating that the first Dblock 1s Dblock 2 and there are 2
blocks allocated. This portion also shows how each image may
be provided to the client. Thus, foo and bar may be provided
using a binary difference algorithm such as bsdiff, sh may
merely copied, and cat may Dbe sent in full without
compression. Bsdiff is a known algorithm that computes the
different between two files.

[0038] As shown at stage 3, a graph is created where the
edge weight (e.g., 1 or 2) 1is equal to the number of blocks.
At stage 4, the cycles are broken. Desirably, cycle(s) are
cut by cutting the least weilght edge in each cycle. Thus, in
this example, the cycle including the arrow from sh to foo
(having a weight of 1) is broken and a modified foo (foo') 1is

obtained. And at stage 5, the final order resulting from the

topological sort is shown. This is the order as executed on
the client.

[0039] After setting the file data, the c¢lient will
overwrite the non-file-data blocks with a final

InstallOperation that unzips the remaining data into all non-—
file-data Dblocks. In a typical example, this is about 2
megabytes of data compressed. It may be feasible to perform a

delta compression process on this data.

WO 2011/088022 PCT/US2011/020790

[0040] Because the protocol buffer (which lists all
operations) occurs at the beginning of the file, the update
doesn't need to be saved to disk. It can be applied while
streaming from the server. It is desirable to make sure that
the update is signed by the 0S wvendor. The system can begin
to apply the update and not mark it bootable until after the
delta update signature 1is verified.

[0041] The embodiments presented here have been found to
give the best compression ratio in practice. It also allows
the operating system vendor employ alternative compression
schemes in the future. For instance, one process developed by
Google i1s Courgette, which may replace bsdiff.

[0042] Another possible solution is to delta-compress the
entire partition. However, bsdiff would be unworkable in this
scenario because its memory reguirements are too high. During
patching, bsdiff needs enough memory to store the original and
new files, whick may exceed 1 gigabyte. Another delta
compression program, Xdelta, uses a sliding window. In
testing, this resulted in poor compression (e.g., hundreds of
megabytes) . A further alternative 1s to use rdiff, which
works by storing only changed blocks in the delta file. It
uses a sliding window so that blocks don't need to be aligned.
When tested, an rdiff delta of the entire partition was 104
megabytes. This 1is well above the roughly 10 megabytes that
may be used in accordance with the aforementioned procedure.
[0043] In the future, 1t may be possible to use rdiff-
(i.e., rsync-) style delta compression at the file 1level.
This could be used alongside bsdiff in the future.

[0044] The updating procedures according to aspects of
the invention may be implemented with the following exemplary
computer system. FIG. 4A presents a schematic diagram of a
computer system depicting wvarious computing devices that can
be used alone or 1in a networked configuration in the
invention. For example, this figure illustrates a computer

network 300 having a plurality of computers 302, 304, 306 and

7147

WO 2011/088022 PCT/US2011/020790

308 as well as other types of devices such as portable
electronic devices such as a mobile phone 310 and a PDA 312.
However, the invention 1is no so limited, and other devices
including netbooks and pad-type handheld computers (not shown)
may also be used. Such devices may be interconnected via a
local or direct connection 314 and/or may be coupled via a
communications network 316 such as a LAN, WAN, the Internet,
etc., and which may be wired or wireless.

[0045] Fach device may include, for example, one or more
processing devices and have user inputs such as a keyboard 318
and mouse 320 and/or various other types of input devices such
as pen-inputs, Joysticks, buttons, touch screens, etc., as
well as a display 322, which could include, for instance, a
CRT, LCD, plasma screen monitor, TV, projector, etc. Each
computer 302, 304, 306 and 308 may be a perscnal computer,
server, etc. By way of example only, computers 302 and 306
may Dbe personal computers while computer 304 may be a server
and computer 308 may be a laptop.

[0046] As shown in FIG. 4B, each computer such as computers
302 and 304 contains a processor 324, memory/storage 326 and
other components typically present in a computer. For
instance, memory/storage 326 stores information accessible by
processor 324, including instructions 328 that may be executed
by the processor 324 and data 330 that may be retrieved,
manipulated or stored by the processor. Trhe instructions 328
at the server may include operations for creating a
differential update to be 1installed by one or more client
devices. And the instructions at the <client device may
include operations for performing the differential update.
[0047] The data may i1nclude one or more differential
updates maintained 1in a database for service to c¢lient
devices. The memory/storage may be of any type or any device
capable of storing information accessible by the processor,
such as a hard-drive, ROM, RAM, CD-ROM, flash memories, write-—

capable or read-only memories. The processor 324 may comprise

WO 2011/088022 PCT/US2011/020790

any number of well known processors, such as processors from
Intel Corporation or Advanced Micro Devices. Alternatively,
the processor may be a dedicated controller for executing
operations, such as an ASIC or other processing device.

[0048] The instructions 328 may comprise any set of

instructions to be executed directly (such as machine code) or

indirectly (such as scripts) by the processor(s). In that
regard, the terms "instructions,” "steps" and "programs" may
be used interchangeably herein. The instructions may be

stored in any computer language or format, such as in object
code or modules of source code. The functions, methods and
routines of instructions in accordance with the present

invention are explained in more detail below.

[0049] Data 330 may be retrieved, stored or modified by
processor 324 in accordance with the instructions 328. The
data may be stored as a collection of data. For instance,

although the invention is not limited by any particular data
structure, the data may be stored in computer registers, in a
relational database as a table having a plurality of different
fields and records, in a web page cache, as XML documents,
etc.

[0050] The data may also be formatted in any computer
readable format such as, but not limited to, binary wvalues,
ASCII or Unicode. Moreover, the data may include any
information sufficient to identify the relevant information,
such as descriptive text, proprietary codes, pointers,
references to data stored in other memories (including other
network locations) or information which is used by a function
to calculate the relevant data. Furthermore, a given item may
comprise one or more files, a data set stored in a database, a
web cache, etc. Depending on the size and content of the
data, parts thereof may be stored or otherwise maintained
separately.

[0051] Although the processor 324 and memory 326 are

functionally illustrated in FIG. 4B as being within the same

,16,

WO 2011/088022 PCT/US2011/020790

block, it will be understood that the processor and memory may
actually comprise multiple processors and memories that may or
may not be stored within the same physical housing or
location. For example, some or all of the instructions and
data may be stored on a removable CD-ROM, DVD-ROM or flash
drive, and others within a read-only computer chip. Some or
all of the instructions and data may be stored in a location
physically remote from, yet still accessible Dby, the
processor. Similarly, the processor may actually comprise a
collection of processors which may or may not operate in
parallel. Data may be distributed and stored across multiple
memories 326 such as hard drives or the like.

[0052] In one aspect, server 304 may communicate with one
or more client computers 302, 306 and/or 308, as well as
devices such as mobile phone 310 and PDA 312. Fach client
computer or other client device may be configured similarly to
the server 304, with a processor, memory and instructions, as
well as one or more user input devices 318, 320 and a user
output device, such as display 322. Each client computer may
be a general purpose computer, intended for use by a person,
having all the components normally found in & personal
computer such as a central processing unit ("CPU"), display,
CD-ROM or DVD drive, hard-drive, mouse, keyboard, touch-
sensitive screen, speakers, microphone, modem and/or router
(telephone, cable or otherwise) and all of the components used
for connecting these elements to one another.

[0053] The server 304, user computers and other devices are
capable of direct and indirect communication with other
computers, such as over network 316. Although only a few
computing devices are depicted in FIGS. 4A-B, it should be
appreciated that a typical system can include a large number
0f connected servers and clients, with each different computer
being at a different node of the network. The network 3156,
and intervening nodes, may comprise various configurations and

protocols including the Internet, intranets, virtual private

7177

WO 2011/088022 PCT/US2011/020790

networks, wide area networks, local networks, private networks
using communication protocols proprietary to one or more
companies, Ethernet, WiFi, Bluetooth or TCP/IP.

[0054] Communication across the network, including any
intervening nodes, may be facilitated by any device capable of
transmitting data to and from other computers, such as modems
(e.g., dial-up or cable), network 1interfaces and wireless
interfaces. Server 304 may be a web server. Althougl certain
advantages are obtained when information 1s transmitted or
received as noted above, other aspects of the invention are
not limited to any particular manner of transmission of
information. For example, in some aspects, the information
may be sent via a medium such as a disk, tape, CD-ROM, or
directly between two computer systems via a dial-up modem. In
other aspects, certain information may be transmitted in a
non-electronic format and manually entered into the system.
[0055] Moreover, computers and user devices 1in accordance
with the systems and methods described herein may comprise any
device capable of processing instructions and transmitting
data to and from humans and other computers, including network
computers lacking local storage capability, PDA's with modems
such as PDA 312, Internet-capable wireless phlones such as
mobile phone 310, netbooks and pad-type handheld computers.
[0056] As stown in FIG. 4A, the network 300 may also
include an wupdate database 332 for serving differential
updates to client devices. Trhe update database may be
directly or indirectly coupled to server 304. In an
alternative, the update database 332 may be part of or
otherwise logically associated with the server 304.

[0057] Although the invention herein has been described
with reference to particular embodiments, it 1s to Dbe
understood that these embodiments are merely illustrative of
the principles and applications of the present invention. It
is therefore to be understood that numerous modifications may

be made to the illustrative embodiments and that other

,18,

WO 2011/088022 PCT/US2011/020790

arrangements may be devised without departing from the spirit
and scope o0f the present invention as defined by the appended
claims. For instance, while certain embodiments are shown
with regard to operating systems, differential updates
according to aspects of the invention may be employed with
other software packages, applications and services.
Furthermore, while particular processes are shown 1n a
specific order in the appended drawings, such processes are
not limited to any particular order wunless such order 1is
expressly set forth herein, and may be performed 1in a
different order or in parallel. And additional processes may
be added or other processes omitted unless it 1s specifically
stated otherwise.

INDUSTRIAL APPLICABILITY
[0058] The ©present invention enjoys wide 1industrial

applicability including, but not limited to, computer system
operation and wupdates of applications for such computer

systems.

,19,

2011205480 02 Jan 2015

IN THE CLAIMS

1. A method of generating an update for an operating
system of a computer, the method comprising:
identifying a version number of a current version
of the operating system;
creating, with a processor, an ordered 1list of
operations for updating the current version of the operating
system to a new version of the operating system, the
processor performing iterations over each regular file on the
new version of the operating system to obtain the ordered
list for all data blocks associated with the new version;
creating an ordered set of data blobs, each data
blob of the ordered set of data blobs indicating a chunk of
data for a corresponding operation of the ordered 1list of
operations, and wherein each data blob of the ordered set of
data blobs is compressed or not compressed based on the
corresponding operation of the ordered list of operations for
that data blob; and
assembling, with the processor, a differential
update file including:
a magic number indicator showing the
differential update file is an actual update file;
immediately after the magic number, a new
version number identifying the new version of the
operating system;
immediately after the new version number, a
protocol buffer including the ordered list of
operations;
immediately after the protocol buffer, a block
of the ordered set of data blobs; and
immediately after the block of respective data
blobs of the one or more operations in the ordered 1list,
an end of file indicator.

20

2011205480 02 Jan 2015

2. A method of generating an update for an operating
system of a computer, the method comprising:
identifying a version number of a current version
of the operating system;
creating, with a processor, an ordered 1list of
operations for updating the current version of the operating
system to a new version of the operating system, the
processor performing iterations over each regular file on the
new version of the operating system to obtain the ordered
list for all data blocks associated with the new version;
creating an ordered set of data blobs, each data
blob of the ordered set of data blobs indicating a chunk of
data for a corresponding operation of the ordered 1list of
operations, and wherein each data blob of the ordered set of
data blobs is compressed or not compressed based on the
corresponding operation of the ordered list of operations for
that data blob; and
assembling, with the processor, a differential
update file including a magic number indicator showing the
differential update file 1s an actual update file, a new
version number identifying the new version of the operating
system, a protocol buffer including the ordered 1list of
operations, and a block including the ordered set of data
blobs,
wherein each operation in the ordered 1list is
applicable to one or more specific data blocks of a partition
of a client device, the ordered 1list of operations including
a difference operation where at least a given one of the data
blocks 1is read into memory and a difference routine is
performed on the at least one given data block using a data

blob of the differential update file.

21

2011205480 02 Jan 2015

3. A method of generating an update for an operating

system of a computer, the method comprising:

identifying a version number of a current version
of the operating system;

creating, with a processor, an ordered 1list of
operations for updating the current version of the operating
system to a new version of the operating system, the
processor performing iterations over each regular file on the
new version of the operating system to obtain the ordered
list for all data blocks associated with the new version,
wherein each operation in the ordered list is applicable to
one or more specific data blocks of a partition of a client
device;

creating an ordered set of data blobs, each data
blob of the ordered set of data blobs indicating a chunk of
data for a corresponding operation of the ordered 1list of
operations, and wherein each data blob of the ordered set of
data blobs is compressed or not compressed based on the
corresponding operation of the ordered list of operations for
that data blob; and

assembling, with the processor, a differential
update file including a magic number indicator showing the
differential update file 1s an actual update file, a new
version number identifying the new version of the operating
system, a protocol buffer including the ordered 1list of
operations, and a block including the ordered set of data
blobs;

wherein the ordered list of operations includes at
least one difference operation having a corresponding data
blob, where at least a given one of the data blocks is read
into memory and a difference routine is performed on the at
least one given data block using the corresponding data blob

for the at 1least one difference operation, wherein each

22

2011205480 02 Jan 2015

operation 1in the ordered 1list 1s associated with a file
object, and the method further comprises:

creating a wvertex 1in a graph for each file
object; and

creating a vector representing each block.

4. The method of claim 3, further comprising:
setting reader and writer parameters for the vector
of each block; and
for each block with a different reader and writer,
creating an edge in the graph from the writer to the reader,
the edge pointing to a file operation to be completed before

a source file operation associated with the edge starts.

5. The method of c¢laim 4, wherein each edge has a
welght, and the weight identifies a number of blocks in the

graph associated with that edge.

6. The method of c¢laim 4, wherein if the graph
includes cycles, the method further comprises breaking each

of the cycles.

7. The method of claim 6, wherein breaking a given one
of the cycles includes:
finding a lowest-weight edge associated with the
given cycle; and

cutting the lowest-weight edge.

8. The method of claim 7, wherein cutting the lowest-
weight edge comprises:
creating a new node representing an operation of
copying an extent to a scratch space; and
making the lowest-weight edge's source node point
to the new node.

23

2011205480 02 Jan 2015

9. The method of claim 8, wherein making the lowest-
welght edge's source node point to the new node includes
making a new edge from a destination node of the lowest-
welght edge in order to ensure that the operation of copying

occurs in a correct order for the ordered list of operations.

10. A device for generating an update for an operating
system of a computer, the device comprising:
memory for storing differential update information
associated with the operating system; and
a processor coupled to the memory, the processor
being configured to:
identify a version number of a current version
of the operating system;
create, using the differential update
information, an ordered list of operations for updating the
current version of the operating system to a new version of
the operating system, including performing iterations over
each regular file on the new version of the operating system
to obtain the ordered 1list for all data blocks associated
with the new version, wherein each operation in the ordered
list is applicable to one or more specific data blocks of a
partition of a client device;
create an ordered set of data blobs, each data
blob of the ordered set of data blobs indicating a chunk of
data for a corresponding operation of the ordered 1list of
operations, and wherein each data blob of the ordered set of
data blobs is compressed or not compressed based on the
corresponding operation of the ordered list of operations for
that data blob;
assemble a differential update file including a
magic number indicator showing the differential update file
is an actual update file, a new version number identifying

24

2011205480 02 Jan 2015

the new version of the operating system, and a protocol
buffer including the ordered list of operations; and
store the differential update file in the
memory,
wherein the ordered list of operations includes at least
one difference operation having a corresponding data blob,
where at least a given one of the data blocks 1s read into
memory and a difference routine is performed on the at least
one given data block using the corresponding data blob for
the at least one difference operation, and each operation in
the ordered list is associated with a file object, and the
processor is further configured to:
create a vertex in a dgraph for each file object;
and

create a vector representing each block.

11. The device of claim 10, wherein the processor is
further configured to:
set reader and writer parameters for the vector of
each block; and
for each block with a different reader and writer,
create an edge in the graph from the writer to the reader,
the edge pointing to a file operation to be completed before

a source file operation associated with the edge starts.

12. The device of c¢laim 11, wherein if the graph
includes cycles, the processor is further operable to break

each of the cycles.

13. The device of claim 12, wherein breaking a given
one of the cycles includes:
finding a lowest-weight edge associated with the
given cycle; and
cutting the lowest-weight edge.
25

2011205480 02 Jan 2015

14. A non-transitory, tangible computer-readable
storage medium on which computer readable instructions of a
computer program are stored, the instructions, when executed
by a computer, cause the computer to perform a method of
generating an update for an operating system of a computer,
the method comprising:

identifying a version number of a current version
of the operating system;

creating, with a processor, an ordered 1list of
operations for updating the current version of the operating
system to a new version of the operating system, the
processor performing iterations over each regular file on the
new version of the operating system to obtain the ordered
list for all data blocks associated with the new version,
wherein each operation in the ordered list is applicable to
one or more specific data blocks of a partition of a client
device;

creating an ordered set of data blobs, each data
blob of the ordered set of data blobs indicating a chunk of
data for a corresponding operation of the ordered 1list of
operations, and wherein each data blob of the ordered set of
data blobs is compressed or not compressed based on the
corresponding operation of the ordered list of operations for
that data blob; and

assembling, with the processor, a differential
update file including a magic number indicator showing the
differential update file 1is an actual update file, a new
version number identifying the new version of the operating
system, and a protocol buffer including the ordered list of
operations,

wherein the ordered list of operations includes at least
one difference operation having a corresponding data blob,
where at least a given one of the data blocks 1s read into

26

2011205480 02 Jan 2015

memory and a difference routine is performed on the at least
one given data block using the corresponding data blob for
the at least one difference operation, and each operation in
the ordered list is associated with a file object, and the
method further comprises:

creating a vertex in a graph for each file object;
and

creating a vector representing each block.

15. The storage medium of claim 14, wherein the method
further comprises:
setting reader and writer parameters for the vector
of each block; and
for each block with a different reader and writer,
creating an edge in the graph from the writer to the reader,
the edge pointing to a file operation to be completed before

a source file operation associated with the edge starts.

16. The storage medium of c¢laim 15, wherein 1f the
graph includes cycles, the method further comprises breaking
each of the cycles by:

finding a lowest-weight edge associated with each
given cycle; and

cutting the lowest-weight edge for each cycle.

17. A client device, comprising:

memory for storing a current version of an
operating system; and

a processor coupled to the memory, the processor
being configured to:

transmit a request to a remote device

regarding an update for the current version of the operating
system, the request including a version number identifying
the current version of the operating system;

277

2011205480 02 Jan 2015

receive a differential update file from the
remote device, the differential update file including a magic
number indicator showing the differential update file is an
actual update file, a new version number identifying the new
version of the operating system, and a protocol buffer
including an ordered list of operations, and a block of data
including an ordered set of data blobs, each data blob of the
ordered set of data blobs indicating a chunk of data for a
corresponding operation of the ordered 1list of operations,
and wherein each data blob of the ordered set of data blobs
is compressed or not compressed based on the corresponding
operation of the ordered 1list of operations for that data
blob, wherein the ordered 1list of operations includes at
least one difference operation having a corresponding data
blob of the set of data blobs, where at least a given one of
the data blocks is read into memory and a difference routine
is performed on the at least one given data block using the
corresponding data blob of the difference operation;

verify the magic number;

extract the ordered 1list of operations from
the protocol buffer; and

perform a differential update by executing the
ordered 1list of operations, including the at least one
difference operation, in order to update the current version
of the operating system to the new version of the operating
system,

wherein the processor is operable to perform
the differential update of the operating system to the new
version of the operating system without saving the
differential update file in the memory while the differential

update file is being streamed to the client device.

18. The method of c¢laim 2, wherein the operations
further include at least one copy operation where at least

28

2011205480 02 Jan 2015

one of the data blocks in the partition is to be copied to
another block in a new partition of the client device for the

new version of the operating system.

19. The method of c¢laim 2, wherein the operations
further include at least one replace operation where a
selected data blob of the differential wupdate file 1is
configured to be written to specified blocks 1in the new

partition.

20. The method of c¢laim 2, wherein the operations
further include at least one replace with uncompression
operation where a compressed data blob is included in the
differential update file and is configured to be written to
selected specified blocks in the new partition for the new

version of the operating system.

29

PCT/US2011/020790

WO 2011/088022

1/5

403

sqoid eled

layng |000}01d

ybus Jeyng
|000)04d

188)0O
layng 1000)0.4d

JOQUUNN UOCISIBA

lagquinp o1bepw

0}

} i

WO 2011/088022 PCT/US2011/020790
2/5

FIG. 2

200

Cut sdge to break cycle,
usestemp block T

PCT/US2011/020790
3/5

WO 2011/088022

{123 WUSUES QU I3 |JE3E U
BT TR MBLAS JUI D04 [JEISLE
{7 3 WAE GUIYS (IS
T U} ¢ A0 Adas

§1 'B7 W 1A BT IE B
1206

LS UO PRINJeXE SB U0S 12o1Boodo] Wl Jepio Buld (g)

(532014 Jo JBquInU == Blem abps)
udeis ageads (5

§91242 Xesig (p)

AT S
gl —

lo}38A $)2014
syl ‘suoneisdo gy eeels (7)

AEEUN 2B

sfinul o -

sabew) ysip ueas (|

BS B R0 : o

(O]
':T
o%
N}
o}

PCT/US2011/020790

WO 2011/088022

4/5

slepdn

]
Q|
o)

Vv 'Old

PCT/US2011/020790

WO 2011/088022

5/5

8z€
9zg
0gE -

suononsUy

slep

dn

sjepdn

elepdn A

eleq

/

SUOHONASUY

N

AT MIOMISN
ejeq \,\

glg —
Aowspy
nduj feydsiq 108880014 |
/ / L (4

walshAg Jesn

P

oze ~“glg e

ay Old

Kowsiy

1085882014

JBnieg slepdn

— p0g

e gZE

e QZE

0ee

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

