(19) **日本国特許庁(JP)**

(12) 特 許 公 報(B2)

(11)特許番号

特許第5750881号 (P5750881)

(45) 発行日 平成27年7月22日(2015.7.22)

(24) 登録日 平成27年5月29日(2015.5.29)

(51) Int.Cl.			FΙ		
F26B	17/14	(2006.01)	F 2 6 B	17/14	В
F26B	<i>2</i> 5/22	(2006.01)	F 2 6 B	25/22	A
F26B	21/04	(2006.01)	F 2 6 B	21/04	A

請求項の数 1 (全 9 頁)

(21) 出願番号 特願2010-281895 (P2010-281895) (22) 出願日 平成22年12月17日 (2010.12.17) (65) 公開番号 特開2012-127621 (P2012-127621A) (43) 公開日 平成24年7月5日 (2012.7.5) 審查請求日 平成25年11月25日 (2013.11.25)

(73)特許権者 000000125

井関農機株式会社

愛媛県松山市馬木町700番地

(72) 発明者 西野 栄治

愛媛県伊予郡砥部町八倉1番地 井関農機

株式会社 技術部内

審査官 長浜 義憲

最終頁に続く

(54) 【発明の名称】穀物乾燥機

(57)【特許請求の範囲】

【請求項1】

乾燥風を熱風室(1)から穀粒の流下する乾燥室(2)を通して排風室(3)へ流しながら、この乾燥室(2)の流下穀粒を燃焼バーナ(13)により乾燥し、水分センサで検出する水分値が設定水分値になると乾燥終了する穀粒乾燥機において、

前記排風室(3)に流出する排風を吸引する吸引ファン(24)と、吸引ファン(24)で吸引されて排出された排風を熱風室(1)へ戻す戻し風ダクト(27)と、戻し風ダクト(27)に戻す排風量を調節する排風調節弁(4)とを設け、

籾を乾燥する籾乾燥モード(B)と豆を乾燥する豆乾燥モード(A)とを選択可能に構成し、

水分センサで検出する籾と豆が同じ水分値の場合に、豆乾燥モード(A)が籾乾燥モード(B)より乾燥中の乾燥室(2)内の絶対湿度が高くなるように排風調節弁(4)を調節制御し、

籾乾燥モード(<u>B</u>)時は、設定水分値近傍になると排風調節弁(4)による制御を停止し、排風調節弁(4)を設定時間毎に排風を機外へ排出する開側への調節を行い、設定水分値に到達すると排風調節弁(4)の全開調節を行い、次いで、燃焼バーナ(13)を停止して冷却するポストパージ工程を経て乾燥運転を終了する制御を行い、

豆乾燥モード(A)時は、設定水分値に到達するまで排風調節弁(4)による制御を行い、設定水分値に到達すると、排風調節弁(4)の全閉調節を行い、次いで、燃焼バーナ(13)を停止して冷却するポストパージ工程を経て乾燥運転を終了する制御を行うこと

を特徴とする穀粒乾燥機。

【発明の詳細な説明】

【技術分野】

[00001]

この発明は、籾類と豆類を乾燥する穀物乾燥機に関する。

【背景技術】

[0002]

特許文献 1 には、乾燥室を通風して穀粒を乾燥して排出される乾燥排風を、再度熱風室に戻して乾燥室へ戻し、水分と熱を同時に穀粒に与えて乾燥する方法が記載されている。

【先行技術文献】

【特許文献】

[0003]

【特許文献1】特開2007-10247号公報(第3頁、図1)。

【発明の概要】

【発明が解決しようとする課題】

[0004]

この乾燥機を籾以外に豆の乾燥にも適用しようとすることを課題とする。

【課題を解決するための手段】

[0005]

請求項1に記載の発明は、乾燥風を熱風室(1)から穀粒の流下する乾燥室(2)を通 して排風室(3)へ流しながら、この乾燥室(2)の流下穀粒を燃焼バーナ(13)によ り乾燥し、水分センサで検出する水分値が設定水分値になると乾燥終了する穀粒乾燥機に おいて、前記排風室(3)に流出する排風を吸引する吸引ファン(24)と、吸引ファン (24)で吸引されて排出された排風を熱風室(1)へ戻す戻し風ダクト(27)と、戻 し風ダクト(27)に戻す排風量を調節する排風調節弁(4)とを設け、籾を乾燥する籾 乾燥モード(B)と豆を乾燥する豆乾燥モード(A)とを選択可能に構成し、水分センサ で検出する籾と豆が同じ水分値の場合に、豆乾燥モード(A)が籾乾燥モード(B)より 乾燥中の乾燥室(2)内の絶対湿度が高くなるように排風調節弁(4)を調節制御し、籾 乾燥モード(B)時は、設定水分値近傍になると排風調節弁(4)による制御を停止し、 排風調節弁(4)を設定時間毎に排風を機外へ排出する開側への調節を行い、設定水分値 に到達すると排風調節弁(4)の全開調節を行い、次いで、燃焼バーナ(13)を停止し て冷却するポストパージ工程を経て乾燥運転を終了する制御を行い、豆乾燥モード(A) 時は、設定水分値に到達するまで排風調節弁(4)による制御を行い、設定水分値に到達 すると、排風調節弁(4)の全閉調節を行い、次いで、燃焼バーナ(13)を停止して冷 却するポストパージ工程を経て乾燥運転を終了する制御を行うことを特徴とする穀粒乾燥 機とする。

[0006]

【発明の効果】

[0007]

請求項1に記載の発明は、豆乾燥モード(A)が籾乾燥モード(B)より乾燥中の乾燥室(2)内の絶対湿度が高くなるように排風調節弁(4)を調節制御する。すなわち、豆・籾の水分値が同じ場合には、豆のほうが水分を多く戻せるように、排風調節弁4によって排風を戻す割合を、籾乾燥モードB時よりも豆乾燥モードA時を多くするように制御する。従って、籾と比較して皺や胴割れのし易い豆類の乾燥の際に比較的多目の水分を乾燥室(3)に戻すことで、胴割れや皺を生じ難くすることができる。

また、乾燥終了後、籾乾燥モード(B)においては、排風調節弁(4)が全開の状態にすることで、乾燥室(2)内の熱気(暖気)を機外に排出し易く、穀温を下げ易くする。 又、豆乾燥モード(A)においては、排風調節弁(4)が全閉の状態にすることで、乾燥室(2)内の熱気(暖気)が機外に排出され難く、穀温が高い状態のため、豆粒同士の水分移行が活発になりやすく、均一な水分値にすることができる。 10

20

30

40

[00008]

【図面の簡単な説明】

[0009]

- 【図1】穀粒乾燥機の平断面図。
- 【図2】排風調節弁の配置側断面図。
- 【図3】乾燥室部の正断面図。
- 【図4】熱風室部の斜視図。
- 【図5】乾燥制御一部の戻し風制御のブロック図。
- 【図6】籾乾燥モードの制御フローを示すフローチャート。
- 【図7】豆乾燥モードの制御フローを示すフローチャート。
- 【図8】乾燥モードと水分値と絶対湿度の関係を示すグラフ
- 【図9】穀粒を乾燥槽に供給する構成を示す図

【発明を実施するための形態】

[0010]

図面に基づいて、略箱形の乾燥槽6は、底部中央部に前後方向に沿って集穀樋7と、オーガ8を設け、この集穀樋7の左右両側に傾斜板9を設けて、上側の乾燥室4、及び繰出バルブ5から繰出される穀粒を受けて、集穀樋7へ流下案内する。

[0011]

この乾燥室2は、正面視V字状の断面形態として、左右両側を多数の通風孔を形成した目抜き形態の網板で形成し、このV字状形態の乾燥室2間の間隔部において乾燥槽6幅の中央部に位置する排風室3を形成し、この左右両側のV字状乾燥室2の外側部において、下側部の傾斜板9との間に熱風室1を設けて、この熱風室1の下端部の集穀樋7上側に前記繰出バルブ5をのぞませて集穀搬送する形態としている。

[0012]

前記左右乾燥室2間の中央部排風室3の前側部にバーナ13を有した熱風供給室29を配置し、この中央部排風室3の後側部に吸引ファン24を有する排風ダクト20を連通して設ける。前記排風室3の前側部の熱風供給室29は左右両側の熱風室1の前端部に連通して、バーナ13で生成される熱風を各左右の熱風室1へ供給する形態である。前記乾燥槽6の後側部に配置の吸引ファン24の駆動によって、前記排風室3の後端部に連通の排風ダクト20の吹出口19から機外へ排風するもので、各乾燥室2を通風して加熱乾燥する乾燥風を吸引して機外へ排風する形態である。

[0013]

前記繰出バルブ 5 は、V字状乾燥室 2 の下端部に沿って設け、繰出バルブ 5 のモータM 3 駆動による回転によって、乾燥室 2 内の穀粒を適宜速度で流下させる。各乾燥室 2 の上端を穀粒の張込貯留される貯留室 1 0 に連通させて、この貯留室 1 0 に収容した穀粒を各乾燥室 2 へ分流させながら乾燥作用を受けさせる。前記乾燥槽 6 の正面側には、バーナ 1 3、コントローラ 1 4、及び昇穀機 1 1 等を設ける。

[0014]

この昇穀機11は、前記集穀樋7の前端から送出される穀粒を揚穀して、上部オーガ15を有する供給樋16へ搬送する構成とし、この供給樋16の終端を、乾燥槽6の中央部に配置の拡散盤18上にのぞませて、搬送供給する穀粒を貯留室2に拡散供給する。昇穀機11の途中には、穀粒の一部を採取しながら穀粒水分値を計測する水分センサ(図示せず)を設ける。この昇穀機11の上部には、駆動用モータM2を設ける。

[0015]

この乾燥機は、前記コントローラ14の入力側に、張込スイッチSW1、乾燥スイッチSW2、排出スイッチSW3、停止スイッチSW4、吸引ファンモータM1を駆動する送風スイッチSW5等を設け、この張込スイッチSW1をONすることにより、昇穀機11モータM2、オーガ8モータM6等を駆動して、前記昇穀機11に供給して、この昇穀機11から搬送供給される穀粒を、供給樋16を経て拡散盤18へ搬送して、貯留室10へ供給して張込む。

10

20

30

40

[0016]

又、前記乾燥スイッチSW1をONすることにより、バーナ13のモータM4を駆動し、吸引ファン24モータM1を駆動して、バーナ13による燃焼風を各乾燥室2を横断するように流して吸引ファン24の排風ダクト20から機外へ排出させる。又、このとき乾燥室4下端の繰出バルブ3モータM3を駆動して、乾燥室2内の流下する穀粒の繰出速度を制御することができる。前記排出スイッチSW3は、穀粒乾燥作用を完了したとき、この排出スイッチSW3のONによって、昇穀機11で揚穀された乾燥完了後の穀粒を機外へ取り出すものである。停止スイッチSW4は、前記各部のモータM1~M6等の駆動を停止させるものである。

[0017]

乾燥機による穀粒乾燥作業は、張込スイッチSW1の操作により穀粒の張込供給を行わせる。穀物種類や、設定水分に基づいて、乾燥スイッチSW2の操作により、バーナ13が燃焼され、吸引ファン24が駆動されて、乾燥室2に熱風が送風され、この乾燥室内の穀粒が繰出バルブ5の駆動によって繰出されながら加温乾燥される。この乾燥によって水分センサで検出する穀粒の水分値が目的の設定値に低下するとバーナ13や、昇穀機1等を停止して、循環乾燥作用を停止する。

[0018]

前記乾燥槽6の背部に配置の吸引ファン24の排風筒20が、排風室3の背面に連通されて、吹出口19を機外へ開口させている。この排風筒20の吹出口19側には第一調節弁26を設けて、吸引ファン24による排風の一部を上側の第一戻しダクト17へ案内し、この第一戻しダクト17に第二調節弁25でさらに戻し風量を調節する。第一調節弁26と第二調節弁25とで構成する排風調節弁4によって戻し排風の風量を調節制御して、左右の熱風室1内に沿って配置の第二戻しダクト27に案内送風する形態である。

[0019]

第二戻しダクト27に戻し風を送らないときは、第一調節弁26を全開にして吸引ファン24による吸引排風を全て吹出口19から機外へ排風させると共に、第二調節弁25を閉鎖して、排風を熱風室1へ戻さないようにする。又、排風を熱風室1へ戻したいときは、前記第一調節弁26を適度に閉じ側の開度に設定し、第二調節弁25を適度の開度に開くことによって、この第一戻しダクト17と第二戻しダクト27を通して熱風室1へ排風を戻しすることができる。これら第二調節弁25と第一調節弁26とによる排風調節弁4の排風調節制御は、予めコントローラ14に設定しているソフトプログラムに従って行わせるもので、乾燥穀物の種類や、乾燥開始時の有する穀粒の内部湿度等によって乾燥方法が決まり、この各乾燥制御に従って適切な排風の戻しを行わせるものである。

[0020]

前記のように乾燥室2を通して乾燥した排風は、吸引ファン20、及び排風筒20を経て機外へ排風されるが、前記排風調節弁4によって、この排風の一部を第二戻しダクト27を介して熱風供給室29へ戻して、バーナ13から供給される熱風と混合して再度熱風室1へ送風することができる。このとき、第二戻しダクト27は熱風室1の内部に敷設するため、この熱風室1の熱風によって加温されて、保温状態に維持されて、効率的な乾燥を行うことができる。又、この第二戻しダクト27を乾燥槽6の機体内部に敷設して外部に露出、乃至突出しない形態として、構成を簡潔化している。

[0021]

この左右の第二戻しダクト27の前端の吹出口28を、前記バーナ13から供給される 乾燥槽6正面部の熱風供給室29に開口連通させている。この吹出口28から熱風供給室 29に戻された排風は、バーナ13から供給される熱風と共に合流されて、左右の各熱風 室1へ案内されて、乾燥室2へ乾燥風として供給される。

[0022]

前記籾乾燥モードBにおける排風調節弁4の制御は、図6のような行程で行われる。通常は排風調節弁4を全開として、吸引ファン24で吸引排風する乾燥風を全て排風筒20の吹出口19から機外へ排出するが、高速乾燥を行うときにように籾粒の胴割れを発生す

10

20

30

40

10

20

30

40

50

るおそれのあるような場合は、高温度と共に水分湿度を付与しながら乾燥することによって、胴割現象の少い乾燥を行わせるもので、排風調節弁4の開閉制御によって、一旦乾燥作用を行った熱と水分を有した排風を利用して乾燥させるものである。このとき、籾粒に供給する排風量は、排風に含まれる湿度から算出される排風絶対湿度に基づいて制御される。前記第一調節弁26、及び排風制御弁4を調節制御して、適正な排風絶対湿度になるように排風量の戻し量をコントローラ14から出力制御して調節する。

[0023]

乾燥開始直後は、第一調節弁26は開いて第二調節弁25は閉じて、排風を吹出口19から機外へ排出させて、塵埃を熱風室1へ戻さないようにする(ステップS1)。このようにして乾燥機の供給張込籾が最初の一循環行程が経過すると、排風絶対湿度に基づく戻し調節弁4等の制御を行わせて乾燥し(S2)、籾粒が設定水分値(例えば14、5%)に近づくと、戻し排風を除々に下げて穀温の急激な低下による胴割れを防止する(S3)。このときの籾乾燥モードBにおける排風量の戻し量QBは約40%程度の割合になるように設定して、前記排風調節弁4を調節制御する。

[0024]

このようにして籾乾燥が設定水分値に到達すると、排風調節弁4の制御を停止したり、 更に開制御して、目標の設定水分値に達すると、排風調節弁4を全開(S4)にして、バーナ13を停止して(S5)、乾燥機全体を停止する。

[0025]

籾粒は、設定水分値に近づく(+1、5%)と、排風調節弁4の制御を終了して、排風調節弁4を少しづつ開方向に移動して、乾燥終了時に全開とする。そして、乾燥終了後に早く籾摺作業を行うために、排風調節弁4を開けて穀温を下げる。

[0026]

豆乾燥モードAにおける排風調節弁4の制御は、図7のような流れで行われる。この場合、前記排風調節弁4によって戻される排風量の戻し量QAは約50%程度として、籾乾燥モードBにおける戻し排風量QBよりも多くするように設定している。

[0027]

又、豆粒の乾燥が設定水分値に到達して(S3)、排風調節弁4に全閉する(S4)ことによって、豆粒の水分移行を促進するための穀温を維持することができるが、豆粒の設定水分値に到達するまでの間、排風調節弁4による制御を行って、乾燥終了後に全閉とする。

[0028]

排風調節弁4は、豆乾燥モードA時、籾乾燥モードB時のいずれにおいても乾燥室2内の絶対湿度(g/m3)が豆・籾の水分センサによる検出水分値と対応するように排風調節弁4を調節制御する。

[0029]

図8に示すように、豆と籾が同じ水分値の場合を比較すると、豆乾燥モードA時の乾燥室2の絶対湿度が籾乾燥モードB時の乾燥室2の絶対湿度が高くなるように排風調節弁4を制御する。すなわち、豆乾燥モードAにおける戻し風量QAを、籾類を乾燥するときの籾乾燥モードBにおける戻し風量QBよりも大きくして豆乾燥モード時Aに多くの水分を戻るように調節制御する。そのため、籾に比べ比較的皺や胴割れのし易い豆類については比較的多くの水分を与えながら乾燥することで皺や胴割れ粒を低減することができる。

[0030]

なお、図8の排風戻し無しの乾燥モードCとは、排風調節弁4の制御を行なわず排風を全て機外に排出する制御である。本実施の形態の豆乾燥モードAと籾乾燥モードBはいずれも排風の熱を再利用して高速で乾燥するモードを指すが、排風戻し無しの乾燥モードCは排風を再利用しない通常速度で乾燥する。A~Cの乾燥モードは作業者がスイッチで所望のモードに選択できるものとする。

[0031]

穀粒乾燥機においては、バーナで加熱した熱風を、熱風室1から乾燥室2を通して排風

室3へ流しながら、この乾燥室2を流下する穀粒を加温させながら乾燥させる。この乾燥室2を流下する穀粒は乾燥風を受けることによって加温されて含有水分の拡散を促進されて乾燥作用を受ける。そして、排風室3へ排出される排風を排風調節弁4によって、熱風室1へ戻して再度乾燥風として乾燥室2へ循環送風することによって、この戻り排風の熱風温度と、この排風に含まれる水分(湿度)とを穀粒の乾燥に再利用して、乾燥の効率化を図る。

[0032]

豆類の乾燥作業時は、この戻し風量QAを、前記籾の乾燥作業時の戻し風量QBよりも同じ水分値においては大きくするように設定しているため、豆類の乾燥では、戻し風量QAによって比較的多い水分と高温度の乾燥風を受けて乾燥作用が行われる。

[0033]

又、水分センサがあらかじめ設定する水分値に到達したことを検出すると、バーナの燃焼を停止し、乾燥終了する。乾燥終了時に、籾乾燥モードBにおいては設定値以上の開度から全開の範囲のいずれかの状態で停止し、豆乾燥モードAにおいては設定値以下を開度から全閉の範囲のいずれかの状態で停止する。

[0034]

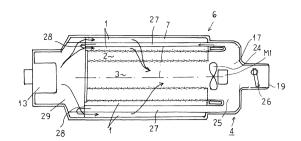
前記のように籾乾燥モードBと豆乾燥モードAでは、排風室3に排風された乾燥風を再度熱風室1へ循環させて乾燥風として再利用させるための排風調節弁4を開度変更制御するが、この開度変更制御のためには予め基準値として一定の設定値を設定しておく。

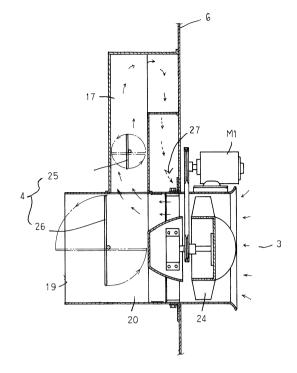
[0035]

乾燥終了後、籾乾燥モードBにおいては、前記設定以上の開度から全開の範域の状態で停止することで、乾燥室2内の熱気(暖気)を機外に排出し易く、穀温を下げ易くする。 又、豆乾燥モードAにおいては、前記設定値以下の開度から全閉の範囲の状態で作動することにより、乾燥室2内の熱気(暖気)が機外に排出され難く、穀温が高い状態のため、豆粒同士の水分移行が活発になりやすく、均一な水分値にすることができる。

【符号の説明】

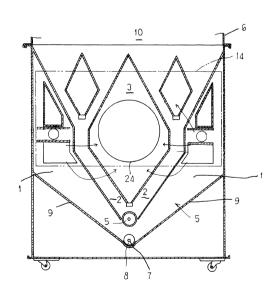
[0036]

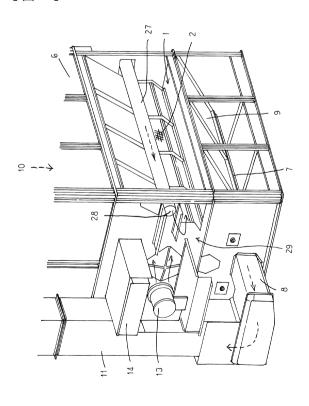

- 1 熱風室
- 2 乾燥室
- 3 排風室
- 4 排風調節弁
- 2.7 第二戻しダクト
- A 豆乾燥モード
- B 籾乾燥モード
- QA 戻し風量
- QB 戻し風量


10

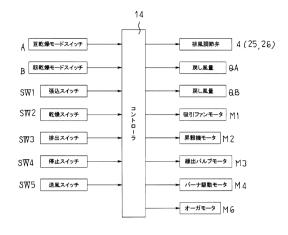
30

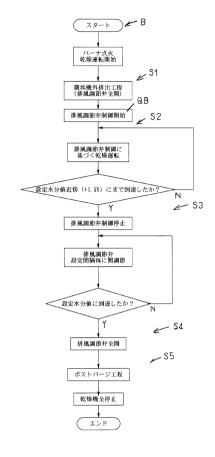
【図1】



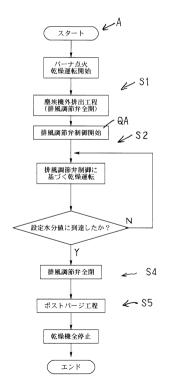


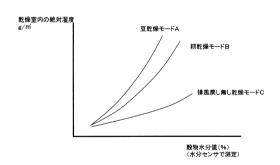
【図3】

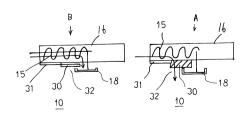

【図4】



【図5】






【図7】

【図8】

【図9】

フロントページの続き

(56)参考文献 特開2007-225224(JP,A)

特開2010-144969(JP,A)

特開2009-047315(JP,A)

特開平03-247263(JP,A)

(58)調査した分野(Int.CI., DB名)

F 2 6 B 1 7 / 1 4

F 2 6 B 2 1 / 0 4

F 2 6 B 2 5 / 2 2