Office de la Propriete Canadian CA 2260837 C 2004/10/05

Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 260 837
Un organisme An agency of

d'Industrie Canada Industry Canada 12 BREVET CANADIEN

CANADIAN PATENT
13) C

(86) Date de dépot PCT/PCT Filing Date: 1997/08/01 (51) Cl.Int.%/Int.CI.° GOBT 15/70, GOBT 1/00
(87) Date publication PCT/PCT Publication Date: 1998/02/26 | (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2004/10/05 COREN, MICHAEL F., US;

HE, LI-WEI, US;
(85) Entree phase nationale/National Entry: 1999/01/18 SALESIN, DAVID, US
(86) N” demande PCT/PCT Application No.: US 1997/013655| (73) Propriétaire/Owner:
(87) N° publication PCT/PCT Publication No.: 1998/008192 MICROSOFT CORPORATION, US
(30) Priorite/Priority: 1996/08/02 (08/691,996) US (74) Agent: OYEN WIGGS GREEN & MUTALA

(54) Titre : PROCEDE ET DISPOSITIF DE CINEMATOGRAPHIE VIRTUELLE
(54) Title: METHOD AND SYSTEM FOR VIRTUAL CINEMATOGRAPHY

ACCEPT A ‘/

DESCRIPTION OF
EVENTS

FOR A SPECIFIED|

TIME PERIOD | °®

INTERPRET
ACCEPTED
EVENTS

L

| PRODUCE
VIRTUAL
CAMERA [

tspemncmows 40

’ MANIPULATE

VIRTUAL
ACTORS (IF ™\

I NECESSARY) 42

END

98

_

(57) Abrége/Abstract:

Communication in a three-dimensional virtual environment generated by a computer is achieved by automatically applying rules
of cinematography typically used for motion pictures. A camera view specification Is produced (40) from Interpreted
cinematographic events (38). A real time camera controller, called the virtual cinematographic application module (VC) (50), Is
used In vertual reality and other interactive applications to improve upon the fixed point-of-view shots or celling mounted
cameras. VC (50) Is used In Intelligent agent user interfaces to allow users to see themselves with an agent at camera positions
that appear natural.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification © :

GO6T 1/00

| (21) International Application Number:

(22) International Filing Date:

(30) Priority Data:
08/691,996

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 98052 (US).

CA 02260837 1999-01-18

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureauy

PCT/US97/13655 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG. BR.
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE.
GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, |
LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ.
PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, |
TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH. KE.

1 August 1997 (01.08.97)

2 August 1996 (02.08.96) US

(72) Inventors: COHEN, Michael, F.. 5708 Ist Avenue N.W.,

Seattle, WA 98107 (US). HE, Li-Wei; Apartment 303,

330 Melrose Avenue, Seattle, WA 98102 (US). SALESIN,

David; 1908 N. 48th Street, Seattle, WA 98103 (US).

(74) Agent: CONWELL, William, Y.: Klarquist, Sparkman, Camp-

bell, Leigh & Whinston, LLP, One World Trade Center,
Suite 1600, 121 S.W. Salmon Street, Portland, OR 97204

(US).

— —_—e ____i
' (34) Title: METHOD AND SYSTEM FOR VIRTUAL CINEMATOGRAPHY

(57) Abstract

(43) International Publication Date:

- l (11) International Publication Number: WO 95/08192
Al {

Published
With international search repors.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

Communication in a three-dimensional virtual environment generated
by a computer is achieved by automatically applying rules of cinematography
typically used for motion pictures. A camera view specification is produced
(40) from interpreted cinematographic events (38). A real time camera
controller, called the virtual cinematographic application module (VC) (50),
| 1s used in vertual reality and other interactive applications to improve upon

the fixed point-of-view shots or ceiling mounted cameras. VC (50) is used
in intelligent agent user interfaces to allow users to see themselves with an

agent at camera positions that appear natural.

MAMA Aty --m--w-mmmwnm—ﬂs“nu

PR P YT Sy R 11 00 M-I o S N VAT S A A= A v {

LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, |
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,
MR, NE, SN, TD, TG).

START

ACCEPT A
DESCRIPTION OF
EVENTS
FOR A SPECIFIED
TIME PERIOD

a6

INTERPRET
ACCEPTED
EVENTS

PRODUCE

VIRTUAL
CAMERA
SPECIFICATIONS | 40

MANIPULATE
VIRTUAL
ACTORS (iF
NECESSARY)

26 February 1998 (26.02.98)

i

34

/

10

15

20

25

30

35

CA 02260837 2003-03-19

.-

METHOD AND SYSTEM FOR VIRTUAL CINEMATOGRAPHY

A portion of the disclosure of this patent document contains material which is subject to
copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone
of the patent document or patent disclosure, as it appears in the Canadian Intellectual Property

Office patent files or records, but otherwise reserves all copyright rights whatsoever.

FIELD OF INVENTION
The present invention relates to computer animation. More particularly, the present
invention relates to generating specifications for displaying events in virtual three-dimensional

computer animated environments.

BACKGROUND AND SUMMARY OF THE INVENTION

The explosive growth of the computer networks like the Internet has provided a convenient
way for computer users to obtain from remote sites information in the form of text, graphics, and
audio and video segments. A computer connected to the Internet or other computer network (e.g.,
Internet) can also be utilized by a computer user to interact in real-time with other computer users
connected to the computer network. For example, a computer user may participate in an animated
computer video game with a remote computer user. Some of these animated computer video games
utilize a computer-generated virtual three-dimensional (3D) environment in which the computer user
controls animated virtual characters.

Also of increasing popularity are virtual 3D chat environments, in which computer users
interact with each other through animated 3D virtual actors (sometimes called avatars) that are
controlled by and represent the computer users. In this type of chat environment, for example, each
computer user 1is provided a 3D display of a room in which the virtual actors or avatars are rendered
according to which users are communicating with each other. The arrangement and positioning of
the virtual actors provide the computer users with a 3D display indicating which computer users are
communicating with each other. This type of graphical indication is not possible in a conventional
chat environment that uses text as a communication interface.

This form of communication within a virtual 3D environment, while holding much promise,
also has a number of associated problems. For example, users often have difficulty comprehending
and navigating the virtual 3D environment, locating in the simulated environment virtual actors of
computer users with whom they wish to communicate, and arranging their actors in such a way that
all the users conversing together can see each other's actors.

These types of problems are similar to the problems that have been faced by
cinematographers since filmmaking began a century ago. Over the years, filmmakers have
developed conventions or rules of film that allow actions to be communicated comprehensibly and

effectively. These rules of film, although rarely stated explicitly, are so common that they are taken

CA 02260837 2003-03-19

-1A-

for granted and well understood by audiences. These cinematography conventions or rules of film
utilize camera positions, scene structure, and "inter-shot" consistency rules to convey
cinematographic information. For example, audiences understand well a scene that begins with a
high elevation view of a landscape and passes to a lower elevation view of the landscape dominated

by a roadway and an automobile, and then a close-up of a person in an automobile.

10

15

20

25

30

35

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

i

Cinematography conventions or rules of film for controiling camera positions and scene
structure have received relatively little attention in the computer graphics community. A number of
computer animation systems attempt to apply some cinematographic principles to computer graphics
In limited applications including: an animation planning system using off-line planning of didactic
presentations to explain complex tasks; the creation of semi-autonomous actors who respond to
natural language commands; and the assembling of short sequences of video clips from a library of
video footage. However, these systems typically pay little or no attention to camera placement or
inter-shot consistency rules (e.g., it would appear inconsistent for an actor who exits a scene to the
left of a frame to re-enter it from the right).

Some interactive animation systems have been described for finding the best camera
placement when interactive tasks are performed. But these systems neither attempt to create
sequences ot scenes, nor do they apply rules of cinematography in developing their specifications.

Automating cinematographic principles for a 3D virtual application executed by a computer
presents difficult problems not found in conventional film making. While informal descriptions of
various rules of cinematography are mentioned in a variety of texts, they typically have not been
defined explicitly enough to be expressed in a formal language capable of execution by a computer.
In addition, performing automatic image or “camera” control in real-time on a computer imposes
constraints that are more difficult to overcome than those faced by human directors. Human
directors typically work from a script that is agreed upon in advance and can edit the raw footage
off-line at a later time. This is not possible for an interactive 3D computer application executed in
real-time.

[n accordance with the present invention, the problems with automating cinematographic
principles are overcome. The present invention includes a virtual cinematography method for
capturing or rendering events in virtual 3D environments in accordance with the automated
cinematographic principles. The method includes accepting a description of events that have
occurred within a specified time period (e.g., one computer clock tick). Events are typically in a
selected form such as (subject, verb, object). For example, a (B, talk, A) event means that virtual
actor B 1s talking to virtual actor A. The accepted events are interpreted to produce an appropriate
camera specification which is used to view the virtual actors.

The method uses two main components: camera modules and cinematographic idioms. The
camera modules are responsible for the low level geometric placement of specific cameras in a scene
and for making subtle changes in the positions of virtual actor to best frame each camera shot. The
cinematographic idioms describe the cinematographic logic used for combing camera shots into
sequences (e.g., animation sequences). The camera modules and the cinematographic idioms are
used together to create virtual films and animations.

The method is used to implement a real-time camera controller based on a finite state
machine for automatic virtual cinematography, called a virtual cinematographic application module

(VC). The VC is used in virtual reality and other interactive applications to improve upon the fixed

10

15

20

25

30

35

WO 98/08192

CA 02260837 1999-01-18

/

point-of-view shots or ceiling mounted cameras that such applications typically employ. VC also
helps improve “intelligent-agent” user interfaces by allowing the users to see themselves with an
agent at camera positions that appear natural.

The foregoing and other features and advantages of the present invention will be more
readily apparent from the following detailed description, which proceeds with reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

F1G. 1 1s a block diagram of a computer system used to implement an exemplary embodiment of the
present invention.

FIG. 2 1s a flow diagram illustrating a method for one embodiment of the present invention.

FIG. 3 1s a block diagram of a system for the present invention.

FIG. 4 1s a block diagram illustrating the concept of “the Line.”

FI1G. 5 1s a block diagram illustrating camera positions for film cinematography.

FIG. 6 1s a block diagram illustrating close view and full view camera shot.

FIGS. 7A and 7B are block diagrams illustrating the arrangement of three actors in a camera shot.

FIG. 8 is a block diagram illustrating camera shots used for three conversing actors.

FIG. 9 1s a block diagram illustrating the apex camera module.

F1G. 10 1s a block diagram illustrating the closeapex camera module.

FIG. 11 1s a block diagram illustrating the apex3 camera module.

FIG. 12 1s a block diagram 1llustrating the external camera module.

FIG. 13 1s a block diagram illustrating the external1to2 camera module.

FIG. 14 1s a block diagram illustrating the exclose2 camera module.

FIG. 15 1s a block diagram illustrating the internal camera module.

FIG. 16 1s a block diagram illustrating the full camera module.

FIG. 17 1s a block diagram illustrating the tracking camera module.

FIG. 18 1s a block diagram illustrating the panning camera module.

FIG. 19 1s a block diagram illustrating the follow camera module.

FIG. 20 1s a block diagram 1llustrating the fixed camera module.

FIG. 21 1s a block diagram illustrating the raised camera module.

FIG. 22 is a block diagram illustrating the group camera module.

FIG. 23 is a block diagram illustrating the subjective camera module.

FIG. 24 1s a block diagram illustrating a change in the position of “the Line.”

FIG. 25 1s a block diagram illustrating a finite state machine for an idiom.

FIG. 26 is a block diagram illustrating a finite state machine with a state which contains another finite
state machine.

FIG. 27 1s a block diagram 1llustrating an idiom for a conversation between 2 actors.

FIG. 28 1s a block diagram illustrating an idiom for a conversation between 3 actors.

FIG. 29 is a flow diagram 1llustrating a method to create an individual idiom.

PCT/US97/13655

o snsmnde sn s S o sl aenn sennn ol e EERAS AP *PABRASL PF* RS o AL -

10

I5

20

25

30

35

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

FIG. 30 1s a flow diagram illustrating a method to create a complex 1diom.

FIG. 31 is a flow diagram illustrating a method to create a high level idiom.

FI1G. 32 is a block diagram illustrating one hierarchical idiom structure.

FIG. 33 is flow diagram illustrating a method to create a virtual movie from idioms.
F1G. 34 1s a block diagram illustrating an idiom coordinate display system.

FIG. 35 1s a block diagram illustrating a user interface for a virtual cinematographic application.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

Referring to FIG. 1, an operating environment for an exemplary embodiment of the present
Invention is a computer system 10 with a computer 12 that comprises at least one high speed
processing unit (CPU) 14, in conjunction with a memory system 16, an input device 18, and an
output device 20. These elements are interconnected by a bus structure 22.

The illustrated CPU 14 is of familiar design and includes an ALU 24 for performing
computations, a collection of registers 26 for temporary storage of data and instructions, and a
control unit 28 for controlling operation of the system 10. Any of a variety of processors, including
those from Digital Equipment, Sun, MIPS, IBM, Motorola, NEC, Intel, Cyrix, AMD, Nexgen and
others are equally preferred for CPU 14. Although shown with one CPU 14, computer system 10
may alternatively include multiple processing units.

The memory system 16 includes main memory 30 and secondary storage 32. Illustrated
main memory 30 is high speed random access memory (RAM) and read only memory (ROM). Main
memory 30 can include any additional or alternative high speed memory device or memory circuitry.
Secondary storage 32 takes the form of long term storage, such as ROM, optical or magnetic disks,
organic memory or any other volatile or non-volatile mass storage system. Those skilled in the art
will recognize that memory 16 can comprise a variety and/or combination of alternative components.

The input and output devices 18, 20 are also familiar. The input device 18 can comprise a
keyboard, mouse, pointing device, audio device (e.g., a microphone, etc.), or any other device
providing input to the computer system 10. The output device 20 can comprise a display, a printer,
an audio device (e.g., a speaker, etc.), or other device providing output to the computer system 10.
The input/output devices 18, 20 can also include network connections, modems, or other devices
used for communications with other computer systems or devices.

As 1s familiar to those skilled in the art, the computer system 10 further includes an
operating system and at least one application program. The operating system is a set of software
which controls the computer system's operation and the allocation of resources. The application
program is a set of software that performs a task desired by the user, making use of computer
resources made available through the operating system. Both are resident in the illustrated memory
system 16.

In accordance with the practices of persons skilled in the art of computer programming, the

present invention is described below with reference to acts and symbolic representations of

s s @RS v RO NN PRI AT Fan e, b 2 e, ST DALV U M HE SEC AR b Al v A v vy o

CA 02260837 1999-01-18

) WO 98/08192 PCT/US97/13655

» W

5

operations that are performed by computer system 10, unless indicated otherwise. Such acts and
operations are sometimes referred to as being computer-executed. It will be appreciated that the acts
and symbolically represented operations include the manipulation by the CPU 14 of electrical signals
representing data bits which causes a resulting transformation or reduction of the electrical signal

5 representation, and the maintenance of data bits at memory locations in memory system 16 to thereby
reconfigure or otherwise alter the computer system's operation, as well as other processing of signals.
The memory locations where data bits are maintained are physical locations that have particular
electrical, magnetic, optical, or organic properties corresponding to the data bits.

The data bits may also be maintained on a computer readable medium inciuding magnetic

10 disks, and any other volatile or non-volatile mass storage system readable by the computer 12. The
computer readable medium includes cooperating or interconnected computer readable media. which
exist exclusively on computer system 10 or are distributed among multiple interconnected computer
systems 10 that may be local or remote.

As 1s shown in FIG. 2, an exemplary embodiment of the present invention includes a

15 virtual cinematography method 34 for rendering computer-generated scenes in virtual 3D
environments. Such a virtual 3D environment represents a 3D image space within which display
images of virtual objects or characters are generated by a computer and rendered on a display screen.
The cinematography is “virtual” in that images formed not with cameras but rather according to
computer-generated viewing directions, magnifications, etc.

20 The method 34 includes accepting a description of events that occur in a specified time
pertod 36 (e.g., one computer clock tick). Events are typically represented by a selected form such as
(subject, verb, object). For example, a (B, talk, A) event means that virtual actor B will talk to virtual
actor A. The events are interpreted 38, to produce an appropriate virtual camera specification 40.
Acting hints that are also generated to shift the virtual actors to better frame a short.

25 FIG. 3 1llustrates a system 44 for an exemplary embodiment of the present invention. The
system 44 includes a real-time application module 46 (e.g., a multi-user chat application, a computer
video game, a video conferencing application, a virtual reality application, etc.) which provides a
description of events and other information 48 including static geometric information, material
properties (e.g., texture and shading) and light source placement, to a virtual cinematographic

30 application module 50. The virtual cinematographic application module 50 implements the method
34 for virtual cinematography and sends virtual camera information and virtual actor manipulation
information 52 to a renderer module 54. The virtual cinematographic application module 50 also can
make queries 56 for information (e.g., the position of a virtual actor) from the real-time application
module 46. The renderer module 54 includes graphic and animation software such as Direct3D

35 available from Microsoft Corporation of Redmond, Washington. However, other renderer software
could also be used. The renderer module 54 accepts animation parameters 58 (e.g., static geometry
information, virtual actor models, lighting placement, etc.) from the real-time application module 46.

At designated time intervals (e.g., a clock tick), the real-time application module 46 is also

AL Hrl G0 I T U A At e F UL 4 M S AR S o A1 8 sy by A A Yarwrs A 4300 MMt s SRR AT © I v v, Ml oL A7 - 0 AV Uttt (bt ruli ol | OAMMP A AV e DV -

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

10

15

20

25

30

35

¢

responsible for taking input from a user, moving virtual actors appropriately, and sending the
resulting animation information 60 (e.g., virtual actor positions) back to the renderer module 54. In
addition, at the designated time intervals, the virtual cinematographic application module 50 decides
on the specification of the virtual camera from which the virtual environment is rendered. The
virtual cinematographic application module 50 also makes slight modifications to the arrangement

and actions of the virtual actors if necessary.

Film cinematography

A motion picture or film is typically a sequence of multiple scenes, each of which captures a

generally continuous situation or action. Each scene, in turn, is composed of one or more camera
shots. A camera shot is a motion picture segment formed by continuous operation of the camera.
Typically, a film includes a large number of individual camera shots, with each shot typically lasting
from a second or two to tens of seconds._

FIG. 4 illustrates a cinematography convention or rule of film used in most motion pictures.
In particular, film directors specify camera placements relative to a “Line” 62. which is an Imaginary
vector connecting two interacting actors X 64 and Y 66. The Line 62 is also directed along the line
of an actor's motion 68 or oriented in the direction the actor is facing. Camera placement 70 is
specified relative to the Line 62.

As 1s shown in FIG. 5 with respect to the Line 62, shooting actor Y 66 from camera position
A T2 1s called an “external reverse placement”; the right two-thirds of actor Y 66 are in focus while
the left one-third shows the back side of the head of actor X 64. Shooting actor X 64 from camera
position B 74 is called a “parallel camera placement” which shows only actor X 64. Shooting actor
X 64 from position C 76 yields an “internal reverse placement.” Typically, in camera setup C 76,
actor X 64 occupies only the left two-thirds of the shot. Shooting from position D 78 results in an
"apex placement” shot that shows both actors X 64 and Y 66. Shooting from position E 80 yields an
‘Internal reverse placement” for actor Y 66. Shooting from position F §2 yields a “parallel camera
placement” for actor Y 66. Finally, shooting from 84 is called an “external reverse placement”; the
left two-thirds of the shot shows actor X 64 in focus while the right one-third shows the back side of

the head of actor Y 66. However, more or fewer camera positions could also be used by a film
director.

Cinematographers have identified that certain “cutting heights” make for pleasing
compositions while others yield un-pleasing results (e.g., an image of an actor cut off at the ankles is
not pleasing). There are five useful camera distances typically used in the art: (1) an extreme
closeup view, cut at the neck; (2) a closeup view, cut under the chest or at the waist; (3) a medium
view, cut at the crotch or under the knees; (4) a full view, that shows the entire actor; and (5) a long
view, that provides a distant perspective of the actor.

Using the cutting heights, actor positions that look natural for a particular closeup may
appear too close together when viewed from further back. Individual shots also require subtly

different placement of actors for them to look natural on the screen. For example, as is shown in

ot vt AT TR | PTE et O e s RTA S de

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

10

15

20

25

30

35

3 "L A 7 TEAAD S 8 Pt W« & DAY 1 L VLNV o SR " <MY b S B * A e AR el

7

FIG. 6, a closeup view 86 of actor X 88 and another actor Y 90 with respect to the Line 62 looks
perfectly natural. However, a full view 92 shows actors X 88 and Y 90 are closer together than
expected, and thus, the full view 92 is unpleasing.

Similarly, shots with multiple actors often require shifting the actor positions to properly
frame them. As is shown in FIG. 7A, with respect to the Line 62, a first actor X 94 and a second
actor Y 96 partially hide or obstruct a third actor Z 98. Shifting the position of the third actor Z 98
will properly frame the shot to include the third actor Z 98. As is shown in FIG. 7B, the first actor
X 94 and second actor Y 96 remain in the same positions, however the third actor 7 98’ has been
shifted. However, the positions of the first actor X 94 and second actor Y 96 could have also been
shifted, leaving the third actor Z 98 in her original position to achieve the same result.

Film cinematographic heuristics

Filmmakers have articulated numerous heuristics (i.e., rules) for selecting good shots and
have informally specified constraints to be placed on successive shots to create good scenes. The
more important heuristics include: “Don’t cross the Line:” “Avoid jump cuts;” “Use establishing
shots;” “Let the actor lead;” “Break movement:” and “Maintain continuous movement.” However,
more or fewer heuristics could also be used.

The “Don’t cross the Line” rule ensures that successive shots of a moving actor maintain the
direction of apparent motion. Once an initial shot is taken from one side of the Line 62, as shown in
Fig. 5, subsequent shots should also be made from that side, unless a neutral establishing shot is used
to show the transition to the other side. Motion of actor Y 66 to the right of Fig. 5 would appear to
be to the left for a camera on the other side of the Line 62.

A change in camera shot within a scene (i.e., a cut) should be a marked difference in the
s1ze, view, or number of actors between the two shots to “Avoid jump cuts.” A cut that fails to meet
these conditions is known as a jump cut and generally gives a jerky, sloppy effect.

The rule “Use establishing shots” establishes a background scene before moving to close
shots. If there is a new development in the scene, the altered background situation is re-established.

“Let the actor lead” allows an actor to initiate all movement, with the camera following. The
camera comes to rest a little before the actor.

For the “Break movement” rule, a scene illustrating motion is broken into at least two shots.
Typically, each shot is cut so that the actor appears to move across half the screen area. A change of
the camera-to-subject distance is be made in the switch.

The “Maintain continuous movement” rule states that across a cut the apparent speed of the
object in motion should be constant, and the directions of movement are not opposed.

Seguences of camera shots

Cinematographers use formulas for capturing specific actions as sequences of shots. For
example, in a dialogue among three actors, a filmmaker might begin with an establishing shot of all
three people, before moving to an external reverse shot of two of the actors as they converse,

Interspersing occasional reaction shots of the third actor. Books such as D. Arpon, Grammar of the

F e P N T R B N N N R R T T T o O N P e ——— »

CA 02260837 1999-01-18

) WO 98/08192 PCT/US97/13655

10

15

20

25

30

35

Film Language Hasting House, New York, 1976, pfwide an informal compilation of formulas,
along with a discussion of the situations when a filmmaker might prefer one formula over another.

FIG. 8 illustrates a common formula for depicting a conversation among three actors. The
formula, adapted from Figure 6.29 of D. Arijon's book, provides a method for depicting
conversations among three actors. The first shot is an external reverse shot 100 over the shoulder of
actor A 102 (round head) toward actor B 104 (octagon head) and actor C 106 (triangle head). A
view of the external reverse shot 100 is illustrated in box 108 (actors B 104’ and C 106’ and the back
of actor’s A 102’ head).

Second shot 110 and third shot 112 are external reverse shots of actors B 104 and C 106.
Views of these shots are shown in boxes 116 and 118, respectively. External reverse shot 110 shows
in box 116 the left two-thirds of the back of the head of actor C 106’ (triangle head) and right one-
third of actor B 104’”’ (octagon head). External reverse shot 112 shows in box 118 the right two-
thirds of the head of actor B 104’"" and the left one-third of actor C 106°*’. The fourth shot 120 is an
internal reverse reaction shot of actor A 102°”’. A view of this shot 120 is shown in box 1272 Only
the front of the head of actor A 102°”"” is shown since there are no other actors “behind” actor A
102°""". The back of the head is not shown since this an internal reverse reaction shot).

In his book, Arijon stipulates that an editing order for a typical sequence using this setup
would be to alternate between the first shot 100 (box 108) and fourth shot 120 (box 122) while actors
B 104 and C 106 talk to actor A 102. When actors B 104 and C 106 begin to talk to each other, the
sequence shiﬁs to an alternation between the second shot 110 (box 1 16) and the third shot 112 (box
[18), with an occasional reaction shot 120 (box 122). Shot 100 is introduced periodically (e.g., every
15 seconds) to re-establish the whole group.

While there is a wide variety of formulas for putting shots together in a sequence, each film
director tends to rely on a small subset of the formulas. The particular formulas used by any
individual director lend a certain flavor or style to that director's films. In an exemplary embodiment
of the present invention, director style is dictated by the particular formulas encoded in the virtual

cinematographic application moduie 50 (hereinafter called the VO).

Architecture

The film cinematography expertise described above is encoded in computer software in the
VC 50 as acts and symbolic representations of operations that are performed by computer system 10.
The VC 50 contains two main components: camera modules and idioms. Camera modules
impiement virtual cameras from which computer-generated images are formed using the different
camera placements, which are described above and illustrated in FIG. 5. The camera modules may
also slightly modify the position of virtual actors to compose a better shot and influence virtual
actors' scale of performance. Idioms describe the logic used for combining shots from the camera

modules into sequences, as was also described above for film.

Camera modules

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

10

1[5

20

25

30

35

A e PN D) MU O SISO GO, =) el B - 2w v Tak

4

Each camera module takes as input a number of virtual actors, called primary actors; the
exact number depends on the particular camera module. Each camera module places the virtual
camera at a particular distance from the actors to fit the five cutting heights discussed above.
However, more or fewer cutting heights could also be used. The virtual camera position also places
the actors at particular locations in the shot. In addition, the camera module may reposition the actors
slightly to improve the shot. Finally, the camera placement is automatically chosen to obey the rule
about not crossing the Line 62 explained above.

In an exemplary embodiment of the present invention, 19 different camera modules have
been implemented, as indicated below. However, more or fewer camera modules could also be used.

As 1s shown in FIG. 9, camera module apex(actorl.actor?) 124 takes as Input two actors A
126 and B 128 (corresponding to actor I and actor 2) and places the virtual camera 130 so that the
first actor A 126 is centered on one side of the shot and the second actor B 128 is centered on the
other side with respect to the Line 62. The camera distance is a function of the distance between the
two actors A 126 and B 128 indicated schematically by circles.

As 1s shown in FIG. 10, camera module closeapex(actorl, actor2) 132 also implements an
apex camera placement. However, the closeapex camera module differs from the apex() camera
module in that the latter always uses a close-up camera distance for the virtual camera 134 with
respect to the Line 62. To compose a more pleasing shot, this camera module 132 may move the
actors A 136 and B 138 closer together.

As i1s shown in FIG. 11, camera module apex3(actori, actor2, actor3) 140 puts actors A
142, B 144, and C 146 in an equilateral triangle arrangement. Camera module apex3() puts the
virtual camera 148 in the same relative position as apex() 124 and closeapex() 132, but it will always
pick the side of the Line 62 of interest to the current shot.

As i1s shown in FIG. 12, camera module external (actor] ,actor2)150 takes as input two
actors A 152 and B 154 and places the virtual camera 156 so that the first actor A 152 is seen over
the shoulder of the second actor B 154, with the first actor A 152 occupying two-thirds of the shot
and the second actor B 154 occupying the other third of the shot. Similarly, the camera module
external (actor2,actorl) places the virtual camera 156 so that the second actor B 154 is seen over
the shoulder of the first actor A 152, with the second actor B 154 occupying two-thirds of the shot
and the first actor A 152 occupying the other third of the shot. These external() camera module
views are illustrated in boxes 116,118 of FIG. 8.

The 2shot(actorl,actor2) camera module (not illustrated) is similar to external, but uses a
long view of both actors.

As 1s shown in FIG. 13, camera module externallto2 (actorl, actor2, actor3) 158
implements an external camera placement between one actor A 160 and two other actors B 162 and
C 164. The externallto2() camera module places the virtual camera 166 so that two actors B 162
and C 164 are seen over the shoulder of the actor A 160, with the actors B 162 and C 164 occupying

two-thirds of the shot, and actor A 160 occupying the rest of the shot. This view is illustrated In box

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

10

15

20

25

30

35

/0

108 of FIG. 8. This camera module 166 may also modify the actors' positions to compose a better
shot.

As 1s shown in FIG. 14, camera module exclose2(actor], actor?2, actor3) 168 adjusts the
focus and orientation of virtual camera 170, which is in the same position as the camera 166 in
camera module externallto2() 158, so that only two actors of the three actors appear 1n the shot. For
example, actors B 174 and C 176 appear in the shot, while actor A 172 does not appear 1n the shot.

As 1s shown in FIG. 15, camera module internal (actorl, [actor2]) 178 may consist of
either one or two actors. If two actors A 180 and B 182 are specified, the camera 184 is placed along
the same line of sight as the external() camera module 150, but closer in and with a narrower field of
view, so that the first actor A 180 is seen all alone, occupying two-thirds of the screen. If a single
actor A 180 1s specitied, then the Line 62 is taken to be along the direction the actor A 180 is facin g;
the camera placement 184’ is chosen in the same way relative to this line.

As 1s shown In FIG. 16, the fuli(actor, theta) camera module 186 puts an actor 188 in the
center of the shot. The camera distance to the actor 188 is adjusted so that the full body of the actor
188 1s shown. The angle between the orientation of the camera 190 and the orientation of the actor
188 1s theta 192.

The next three related camera modules tracking(), panning(), and follow(} are used when an
actor 1s moving, They differ from the preceding camera modules just described in that they define a
moving camera that dynamically changes position and/or orientation to hold a desired actor's
placement near the center of the shot with respect to a second actor. In the camera modules

described above the camera position was fixed. The camera modules tracking(), panning(), and

follow() use minimum and maximum distance constraints to determine how far to place the camera

from the Line 62.

As 1s shown in FIG. 17, the tracking (actorl, actor2, mindist maxdist) camera fnodule 194
sets the camera 196 along a line 198 perpendicular to the Line 62. The camera 196’ then moves with
the actor A 200°, maintaining the same orientation 198’ to actor A 200’ as actor A approaches actor
B 202.

As 1s shown in FIG. 18, the panning(actor 1, actor2, mindist, maxdist) camera module 204
sets the camera 206 off the Line 62 ahead of the actor A 208 and then pivots in place 210 to follow
the motion of the actor A 208’ as actor A approaches actor B 212.

As 1s shown in FIG. 19, the follow(actor] ,actorZ, mindist, maxdist) camera module 214
combines the tracking() 194 and the panning() 204 camera module operations. It first behaves like a
panning camera 216, but as actor A 218 passes by a predetermined point 220, the camera 222 begins

to “follow” 222’ the actor A 218 from behind (i.e., tracking) rather than allow actor A 218’ to move

off into the distance as actor A approaches actor B 224.
The remaining camera modules perform miscellaneous functions. As is shown in FIG. 20,
the fixed (cameraspec) camera module 226 is used to specify a particular fixed location, orientation,

and field of view 228 for a camera 230 . It is used to provide an overview shot of a scene 232.

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

10

15

20

25

30

S Y S e L s n T DT U IRV S TR TY, T T PR YRR

As 1s shown in FIG. 21, the raised() camera module 234 provides a placement relative to the
previous camera position. The new camera position 236 is further back L2 and higher H2 than the
old camera position 238 at L1,H1 but has the same orientation 240 to the scene 244 as the previous
camera 238.

As 1s shown in FIG. 22, the group(conversation) camera module 246 covers all actors 248,
250, 252 1n a conversation. The group() shot from the camera 254 is determined by the graphical
mformation 256 (e.g., the bounding box) sent by the real-time application module 46.

As 1s shown in FIG. 23, the subjective(actor, target) camera module 258 synchronizes the
camera 260 to a position on the actor’s head 262. From the actor’s head 262, an orientation is based
on a vector 264 from the actor’s head 262 to a target 266 (e.g., another actor or an object in the
scene).

The following three camera modules are not illustrated with individual figures as the
function of each 1s easily determined. The subjectzoom(actor) camera module is similar to the
subjective() camera module 258, but the focal length of the camera 258 becomes longer as time goes
on and the actor moves around the scene.

The pov(actor) camera module simulates the forehead of an actor. This camera module follows the
position and orientation of the actor’s forehead. The null() camera module leaves the camera in its
previous position. This camera module allows a camera orientation to remain unchanged.

Choosing virtual camera placements with respect to the Line

As was described above and shown in FIG. 4, the Line 62 is defined relative to the two

actors 64,66 1n the shot. Thus, the Line 62 itself will inevitably vary from shot-to-shot. The rules of
film cinematography dictate that when the Line 62 remains constant, the camera 70 should remain on
the same side of the Line 62, With respect to the Line 62, the camera modules for a given
specification (e.g. actor!, actor’) can describe one of two instances that correspond to symmetric
positions on the two sides of the Line 62. If the Line 62 does not change from one shot to the next,
the selection of the particular instance is trivial: choose the camera position 70 on the same side of
the Line 62.

When the Line 62 changes, for example, when one of the two actors in the shot changes.
position, the choice is not easily determined. With respect to FIG. 24, and in accordance with an
exemplary embodiment of the present invention, the particular instance is selected such that a camera
orientation 268 chosen with respect to a new Line 270 is closest to the orientation of the previous
camera 70. The camera modules described above that have a choice of more than one camera
orientation, and chose the new Line closest to the orientation of the previous camera. However, other

camera orientations methods could also be used when the current Line changes.

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

10

15

20

25

30

335

Influencing the acting with camera modules

As ndicated earlier, the camera modules are able to subtly improve the shot by influencing

the positions and scale of performance of the actors in the shot. Since the real-time application 46 is
primarily in charge of manipulating the actors, the changes made by the VC 50 must be subtle
enough to not disturb the continuity between shots.

For example, the closeapex() camera module 132 moves the two primary actors closer
together if the distance between them is greater than some minimum, as is shown in box 86 of FIG.
6. The apex3() camera module 140 adjusts the positions of the three primary actors so that no actor
Is obscured by any other in the shot as is shown in FIG. 7B. Some camera modules can remove
actors from the shot altogether to avoid situations in which an actor appears only part way on screen
or occludes another primary actor in the scene. For example, the internal() camera module 178
removes the second actor B 182 from the shot as is shown in FIG. 15, in much the same way that a
real internal reverse shot is filmed.,

The camera modules also affect the scale of performance of an actor. For example, the
degree to which the actor’s head moves when nodding, or the actor’s legs swing when walking. A
change is applied to all the actors in the shot (not just primary actors) by setting a parameter
associated with each actor that the renderer 54 can use for scaling the actors' movements. A simple
function L (scalequation) is used to set this parameter. The function increases monotonically as the
size of the actor on the screen decreases and is represented as:

L = arctan(distance - D_) e k + 1.0,
where D, 1s the distance to where the actor has a norma! level of performance (e.g., 1.0) and k scales
L to within the range 0.5 to 1.5.

Detecting occlusion with camera modules

Camera modules have one additional responsibility beyond placing the virtual camera.

They are also responsible for detecting when one or more of the primary actors becomes occluded in
the scene (e.g., actor Z 98 in FIG. 7A). In the case of occlusion, the camera module increments an
occlusion counter or resets the counter to zero if the occluded actors become unoccluded. This
counter is used by the idioms for deciding whether to change to a different shot. For example, an
idiom that would typically hold a shot for a predetermined time interval (e. g., 20 time ticks) might
decide to change shots more quickly if an occlusion is detected.
Using the camera modules

With reference to Fig. 3, at some predetermined time interval (i.e., each frame of an
animation sequence, the real-time application 46 sends VC 50 a description of events that occur in
that time interval and are significant to a desired actor. Events are of the form (subject, verb, object).
As examples, a (B, talk, A) event means that actor B is talking to actor A, and a (A, move, Bar) event
means that actor A is going to move to the bar. The subject is an actor, while the object may be an
actor, a current conversion, a fixed object (e.g., the bar), or null. In the exemplary embodiment,

verbs may be one of the set (idle, talk, react, lookat, join, signal, move) as will be explained below.

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

10

15

20

25

30

35

40

/0

However, more or fewer verbs could also be used, and other event forms can also be used.

The VC 50 uses the current events plus an existing state of the animation (e.g., how long the
current shot has lasted) to produce an appropriate virtual camera specification that is delivered to the
renderer module 54. To produce a virtual camera specification, the VC 50 may query 56 the real-
time application 46 for additional information, such as a specific location and a bounding box of
various virtual actors. A bounding box is a box that encloses all or part of a virtual actor and is
known to those in the art. The VC 50 may also make subtle changes in the virtual actors' positions
and motion, called acting hints. Any changes in the virtual actors positions are also delivered 52 to
the renderer 54.

The renderer 54 renders the scene using the current description of the environment, the
animation parameters 58 for the actors sent by the real-time application 46, and the camera
specifications and acting hints 52 sent by the VC 50 to produce a scene in the animation sequence.
Idioms

The VC 50 uses idioms in addition to the camera modules. A single idiom encodes the
expertise to capture a particular type of situation, such as a conversation between two virtual actors
or the motion of a single virtual actor from one point to another. The idiom is responsible for
deciding which shot types are appropriate and under what conditions one shot should transition to
another. The 1diom also decides when the situation has changed enough to have moved outside the
idiom's domain of expertise, for example, when a third person enters a two-person conversation.

As 1s shown in FIG. 25, an idiom in the VC 50 is implemented as a hierarchical finite state
machine (FSM) 272. Each state 274,276 within the FSM 272 invokes one or more camera modules.
Thus, each state corresponds to a separate shot in the animation being generated. Each state also
includes a list of conditions which, when one is satisfied, cause the FSM 272 to exit along one of the
arcs 278-284 to another state. For example, a condition C causes an exit from state 1 274 to state ?
276 along arc 280. As aresult, a cut is implicitly generated whenever an arc in the FSM 272 is
traversed. The FSM's are hierarchical in that each state may itself be an entire FSM, with particular
entry and exit states, which FSM is executed when the state is entered.

FIG. 26 1s an example of a hierarchical FSM where a state is itself a FSM. Idiom A 288 has
two nodes: node |1 290; and node 2 292. The two nodes are connected with arcs 294-300. In this
case, the node labeled 2 292 is called a parent because it is an FSM 302 with four child states 304-
310 and arcs 312-326 as is illustrated in idiom B. Note that the parent state 292 is treated the same as
any other state, regardiess of whether any child states are included.

[dioms are defined with the following syntax:

DEFINE IDIOM IN_ ACTION{(<name>)
<actions>
END_IDIOM IN ACTION

DEFINE IDIOM OUT ACTION(<name>)
<actions>

e, s

CA 02260837 1999-01-18

) WO 98/08192 PCT/US97/13655

10

15

20

25

30

35

40

/5

END_IDIOM OUT ACTION

where <name> is the name of an idiom (e.g., 2Talk, which shows two virtual actors talking), and
<actions> are the actions that take place for an idiom when it is entered (IN_ACTION) and before
the idiom is exited (OUT_ACTION). An example of an action is WHEN(talking(A,B) GOTO(1)),
meaning that when virtual actors A and B are talking, the VC 50 goes to state 1 1n the finite state
machine for this idiom. Actions are written in the specific programming language used to implement
the idioms.
Actions for each state in the finite state machine for an idiom are defined with the following

syntax:

DEFINE STAT E ACTIONS(<name>)
<actions>
END STATE ACTIONS

where <name> is the name of an action (e.g., COMMON for actions common to each state , 1 for
state one), and <actions> are the actions that take place for the state.
A state in the finite state machine for an idiom may have in-actions and out-actions. In-

actions are defined with the following syntax:

DEFINE _STATE IN_ACTIONS(<state>)

<actions>

END STATE IN ACTION
where <state> is the name of the state for which the in-actions will be executed, and <actions> are
the in-action actions. In-actions are used when a particular state in the finite state machine in an
Idiom requires special processing when the state is entered. /n-actions are not required and may be
null for all or most states in the finite state machine of an idiom. Qui-actions are defined with the
following syntax:

DEFINE__STATE_OUT_ACTIONS(<state>)
<actions>
END STATE OUT ACTION

where <state> is the name of the state for which the our-actions will be executed, and <actions> are
the out-action actions. Out-actions are used when a particular state in the finite state machine in an
idiom requires special processing when exiting the state. Quz-actions are not required and may be
null for all or most states in the finite state machine of an idiom.

The camera modules described above (e.g., external() 150) are defined by camera setup

modules. Camera setup modules have the following syntax:

DEFINE_SETUP_CAMERA(<idiom>)
<camera actions>
END SETUP CAMERA MODULES

where <idiom> is the name of an idiom, and <camera actions> are the actions to setup the camera

10

15

20

25

30

35

CA 02260837 2003-03-19

-15-

modules for the idiom. In one embodiment of the present invention, two types of camera setup
modules are used: make modules and link modules.

MAKE MODULE(<module id>, <type>, <parameter lis>) creates a new camera setup
module of the designated type with the specified parameters and gives it a specified identifying
module number. LINK MODULE(<state>, <module id>, <name>) associates the specified
camera module with the specified state.

In one embodiment of the present invention, idiom code i1s written in the C++
programming language as programming macros. Action and other statements defined within the
idioms are written using C/C++ programming syntax. However, other programming languages
could also be used. The keywords written in all-caps (e.g., MAKE MODULE) are programming
macros. However, idioms could also be implemented without using programming macros.

When source code containing the idiom macros is compiled, the macros are expanded by
the C preprocessor (C++ is typically implemented as an extension to the C programming
language) into C/C++ source code. The definition of each idiom macro includes one or more calis
to C++ procedures which actually accomplish the desired actions for the idiom macro. For
example, the macro DEFINE SETUP CAMERA MODULES() is expanded to call a C++
routine SetupCameraModules() to accomplish the camera module setup.

In one embodiment of the present invention, there are several global variables that can be
used in state actions which include: Occluded, the number of consecutive time units that one or
more of the primary actors has been occluded; T, the number of time ticks or units in the current
state, IdiomT, the total number of time units spent so far in this idiom as a whole; D/4,B], the
distance between the actors (measured in units of "head diameters” which is explained below),
and forwardedge[x], rearedge[x], centerline[x], the edges of the bounding box of virtual actor x,
relative to the screen coordinates. However, more or fewer global variables could also be used.

There are also a number of predefined control structures used in one embodiment of the
present invention: STAY, meaning remain in the same state for another time unit; GOTO (x),
meaning transition to state x; RETURN, meaning return to the parent state, and CALL (idiom,
<Parameter List>), meaning execute the specified idiom by passing it the specified list of
parameters. However, more or fewer predefined control structures could also be used.

The concepts involved in constructing idioms are illustrated with examples. In the first
example, an idiom for depicting a conversation between two virtual actors, called 27alk is
Illustrated. In the second example, the 27alk idiom is used as a +primitive in building a more
complex idiom, called 3Talk, for depicting a conversation among three virtual actors.

The 2Talk idiom example

The 2Talk idiom example encodes a method for filming two virtual actors as they talk
and react to each other. It uses only external reverse shots (72,84) (FIG. 5) of the two actors. FIG.
27 shows the 27alk finite state machine 328. The 2Talk procedure takes as parameters two virtual

actors

CA 02260837 1999-01-18

) WO 98/08192 PCT/US97/13655

10

15

20

25

30

35

/¢

A and B who are conversing. It has four states 330-336. The first state 330 uses an external camera
module 150 (Fig.12), which shows A talking to B. The second state 332 is used for the opposite
situation, when B talks to A. The third and fourth states 334,336 use external camera module 150
placements to capture reaction shots of each of the actors.

When the 27alk 1diom 328 is activated, it follows one of two initial arcs 338,340 that
originate at the small circle called an “entry point” 342. The arc to be used (338 or 340) is
determined by the following source code:

DEFINE_IDIOM_IN_ACTION(2Talk)
WHEN (talking(A, B))
DO (GOTO (1);)
WHEN (talking(B, A))
DO (GOTO (2);)
END IDIOM IN ACTION

This 1diom code tests whether A is talking to B, or B is talking to A and transitions (338,
340) immediately to the appropriate state in the 27alk idiom, in this case. either state 1 or 2
(330,332), respectively.

As a state 1s entered, it executes a set of in-actions for the state. The in-actions are often
null, as 1s the case for all of the states in the 2Talk idiom example. Once a state is entered, the state's
camera module (e.g., external() 150) is called to position the virtual camera. The state then executes
a sequence of actions at a predetermined time interval T (e.g., every clock tick). These actions
include execution of C++ procedures as was described above. In addition, the actions can be used to
affect conditional transitions (344-358) to other states. Finally, when the state is exited, it executes a
set of out-actions, again, which are null in the case of the 27alk idiom.

In the 27alk idiom, the camera setup modules are defined as follows:
DEFINE_SETUP_CAMERA MODULES(2Talk)
MAKE_MODULE(I, external, (A, B))
MAKE_MODULE(2, external, (B, A))
LINK_MODULE(1, 1, "A talks")
LINK_MODULE(2, 2, "B talks")
LINK MODULEQ, 1, "A reacts")
LINK MODULEC(4, 2, "B reacts")
END SETUP CAMERA MODULES

For example, MAKE MODULE(1, external, (A,B)) creates a camera module of type external() 150
with two virtual actors A and B, and assigns it the identifying number 1. LINK MODULE(1,1,”A
talks”) means that whenever state 1 is entered an external reverse shot of actor A (1.e., “A talks") over

the shoulder of actor B will be used as is defined by MAKE MODULE(1, external(A,B)).

CA 02260837 1999-01-18

) WO 98/08192 PCT/US97/13655

10

15

20

25

30

35

40

/7

LINK_MODULE(3,1,"A reacts”) means that in state 3. actor A will react (e.g., by nodding) to the
conversation with actor B defined by MAKE MODULE(], external(A,B)).

The first action code to be executed in each state can be specified in a block common to all
states. This 1s primarily a shorthand mechanism to avoid having to re-specify the same
(condition,arc) pairs in each state of the idiom. However, the idioms could also be used without a
block common to all states.

Common actions in the 27alk idiom are:

DEFINE_STATE_ ACTIONS(COMMON)
WHEN (T < 10)
DO (STAY:)
WHEN (!talking(A, B) && 'talking(B, A))

DO (RETURN;)
END STATE ACTIONS

However, more or fewer common actions could also be used. A common block is defined with the
same syntax as any other non-common state.

The first statement (WHEN (T < 10)) initiates a check to see whether the total time T spent
so far in this state is less than 10 time units (e.g., 10 ticks of the clock). If fewer than 10 time units
have expired, the current state remains unchanged. An EXCEPTION mechanism, which will be
explained below, takes precedence over testing for elapsed time and can pre-empt the shot. If the
shot has lasted at least ten ticks, but A and B are no longer conversing, then the idiom returns to the
idiom that called it. The variable T is a global variable that is accessible to any state.

The actions code in the common block makes use of a domain-specific procedure called
talking(A, B), which returns true if and only if the current list of events includes (A,talk,B), (i.e.,
virtual actor A is talking to actor B). In the code shown above, the exclamation mark “!” 1s the
C/C++ NOT operator, and the double ampersand “&&” is the C/C++ AND operator. The action
statements are evaluated sequentially. Thus, earlier statements take precedence over statements listed
later in the code.

State 1 330 of the 27alk idiom 328 is used to depict actor A talking to B. In addition to the
common actions, the list of actions executed at each time unit T when in state 1 330 are:

DEFINE_STATE ACTIONS(1)
WHEN (talking(B, A))
DO (GOTO (2);)
WHEN (T > 30)
DO (GOTO (4);)
END STATE ACTIONS

However, more or fewer actions could also be used. If B is now talking to A, then transition 344 to
state 2 332 is required to capture this situation. If an actor has been in the same shot for more than
30 time units T, there should be a transition 356 to state 4 336 to get a reaction shot from the other

actor.

Wmﬂm. E TIPS I AT SN

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

/8

State 2 332, which addresses the case of actor B talking to actor A, is completely
symmetric: the code is exactly the same for state 1 330 shown above except that A and B are
swapped (e.g., talking(A,B) and states 1 330 and 3 334 are used in place of states 2 332 and 4 336
(e.g., DO(GOTO(1)) and DO(GOTO(3)).

5 DEFINE STATE ACTIONS(2)
WHEN (talking(A,B))
DO (GOTO (1);)
WHEN (T >30)
DO (GOTO (3);)
10 END STATE ACTIONS

The action code for state 3 334 is shown below: However, more or fewer actions can also
be used for state 3 334.

DEFINE STATE ACTIONS(3)
WHEN (talking(A,B))
15 DO (GOTO (1);)
WHEN (talking(B, A)[| T>15)
DO (GOTO (2);)
END STATE ACTIONS

20 If actor A 1s now talking to B, then transition 352 to state 1 330 is required to capture this situation.
If actor B 1s now talking to actor A, or “||"” if an actor has been in the same shot for more than 15 time
units T, there should be a transition 350 to state 2 332.
Note that state 3 334 can make a transition 352 back to state 1 330, which uses the same
camera module as is used here in state 3 334. In this case, the two shots are merged into a single shot
25 without any cut. |
Finally, state 4 336 is symmetric to state 3 334.
DEFINE STATE ACTIONS®4)
WHEN (talking(A, B))
DO (GOTO (1);)
30 WHEN (talking(B, A)|| T>15)

DO (GOTO (2);)
END STATE ACTIONS

Since the out-actions are null for the 2Talk idiom 328, the 27alk idiom 328 has been
35 completely described. More or fewer states, and more, fewer or alternative actions within each state
can also be used to define the 27alk idiom. The 27alk idiom 328 can now be used as a subroutine for
a higher level idioms (e.g., to handle conversations among three actors).
The 3Talk idiom example
The 3Talk idiom example is built from the 2Talk idiom 328. The finite state machine for
40 the 37alk idiom 360, which handles conversations among three virtual actors, is shown in FIG. 28.
This idiom 360 implements the cinematic treatment of three actors described by Arijon and

tHlustrated in FIG. 8. The 37alk FSM has the same types of components as 27Talk 328: it has states

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

10

15

20

25

30

35

/7

362-368 and arcs 370-390 representing transitions between states. In addition, this FSM uses an
EXCEPTION mechanism, as is discussed below.

The 3Talk idiom has four states 362-368. The first state 362, labeled I, 1s an establishing
shot of all three actors, corresponding to the first camera position 100 in FIG. 8. The second state
364, labeled 2AND3, is a parent state that CALLs the 2Talk idiom 328, and corresponds to cameras
2110 and 3 112 in FIG 8. Finally, the last two states, labeled 4A 366 and 4B 368, capture the
reaction shot of the first actor; these two states correspond to camera shot 4 122 of FIG. 8.

All four states have actions that are similar to the ones described in 27alk 328. The two
states 4A 366 and 4B 368 have been implemented as separate states because they function differently
in the 3Talk idiom, even though they both shoot the scene from the same virtual camera. State 4A
366 1s used in the opening sequence, or after a new establishing shot, allowing shots of all three
actors to be alternated with reaction shots of actor A. By contrast, state 4B 368 is only used once a
two way conversation between actor B and C becomes dominant, to get an occasional reaction of
actor A and then quickly return to the two-way conversation between B and C.

The one state that differs from the states considered earlier is the state labeled 2AND3 364
First, unlike the previous states, state 2AND3 364 does have in-actions that are illustrated by the
following macro code:

DEFINE_STATE IN ACTION(2and3)
REGISTER_EXCEPTION(left_conversation, A, LEFT CONVERSATION):
REGISTER_EXCEPTION(too_long, 100, TOO LONG):
REGISTER EXCEPTION(reacts, A, GET REACTION):
CALL(2Talk, (B, C));
END _STATE IN_ACTION

These in-actions register a number of EXCEPTIONS which, when raised, will cause a child idiom to
exit and return control to the parent state.

To register an EXCEPTION, a REGISTER_EXCEPTION() macro is used. Each
REGISTER_EXCEPTION(<procedure>, <parameters> <test>, <exception name>) command takes 3
parameters: <procedure>, the name of a procedure to call to test whether or not the exception should
be raised; <parameters>, an arbitrary set of parameters that are passed to that function; and the
<exception name>, which is an enumerated type. For example,

REGISTER_EXCEPTION(too_long, 100, TOO LONG);
registers EXCEPTION TOO LONG for a call to procedure too_long() with parameter of 100 (i.e.,
the number of time units T to test for a TOO_LONG time period).

The final in-action action (i.e., CALL(2Talk, (B,C)) of state 2AND3 364 calls the 2 Talk
idiom 328, passing it actors B and C as parameters. All of the registered exceptions are implicitly
tested before the actions in every state of the child idiom are executed.

The 2Talk idiom 328 will return either when it executes a RETURN in one of its actions or

when one of the EXCEPTIONS is raised. At that point, control is returned to the parent state and its

1 A A el IO i, dnC b g, P T AL O v v AT A il At il gt rulinin By Afraiiinn

CA 02260837 1999-01-18

WO 98/08192 | PCT/US97/13655

10

15

20

25

30

35

40

L

actions are executed. The actions for state 2AND3 364 are:

DEFINE_STATE ACTIONS(2and3)
WHEN (EXCEPTION_RAISED(LEFT_CONVERSATION))
DO (GOTO(1);)
WHEN (EXCEPTION_RAISED(TOO LONG))
DO (GOTO(1);)
OTHERWISE
DO (GOTO(4b);)
END STATE ACTION

In this case, if either the LEFT_CONVERSATION or TOO LONG EXCEPTION has been raised,
then a transition 378 is made back to state 1 362 to get another establishing shot. Otherwise, a
transition 378 to state 1 362 is made to get a reaction shot.

In addition to in-actions, state 2AND3 has out-actions. The out-actions of state 2and3,
evaluated just before the transition to the new state is made, are used to remove the EXCEPTIONS that

were set up by the in-actions. The out-actions are illustrated by the following macro code:

DEFINE_STATE_OUT ACTION(2and3)
DELETE_EXCEPTION(LEFT CONVERSATION):
DELETE_EXCEPTION(TOO LONG):
DELETE_EXCEPTION(GET REACTION):

END_STATE _OUT ACTION

These out-actions remove the EXCEPTIONS for LEFT CONVERSATION, TOO_LONG,
and GET_REACTION that were registered in the in-actions and potentially executed in the state

actions for state 2and3s.

Idiom hierarchy

In one embodiment of the present invention, an idiom hierarchy is created starting with
individual idioms. As is shown in the flow chart in FIG. 29, a method 392 is used to create an
individual idiom. An individual idiom is created by defining the states in an idiom 394 and selecting
the camera modules which will be used to view the defined states of the idiom 396. Actions are then
defined which include transitions from one defined state to another 398. This method 392 was used
to create the 27alk 1diom 328. The 27alk idiom 328 was created by defining 394 four states 330-336
which represent the 4 camera shots (100,110,112,120) shown in FIG. 8. The four states 330-336
were viewed by selecting 396 the external() camera module 150 to view all four states. Actions were
then defined 398 for the four states which caused transitions from one state to another.

As 1s shown in the flowchart in FIG. 30, another method 400 is used to create a complex
1diom once individual idioms are created with method 392.

The complex idiom is created in a manner similar to creating an individual idiom.
The states of the complex idiom are defined 402. For one or more of the states, an individual idiom
s selected to define the actions of the state 404. Camera modules which will be used to view of the

defined states of the idiom are selected for states for which an individual idiom was not selected (if

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

10

15

20

25

30

35

4

any) 406. Actions are defined which include transitions between the defined states 408. This
method 400, was used to create the 37alk idiom 360. As was described above. 37alk is an idiom that
allows three virtual actors to converse. Since an individual idiom for a conversation for two virtual
actors had already been created (i.e., 27alk 328), the 2Talk idiom was used in the state that required
viewing a conversation between only two of the virtual actors.

As 1s shown in the flowchart in FIG. 31, yet another method 410 is used to create an idiom
hierarchy. This method 410 includes selecting two or more individual idioms 412, combining the
selected individual 1dioms to create a complex idiom 414. One or more complex idioms and one or
more individual idioms are selected 416. The selected complex and individual idioms are combined
to form a verb idiom 418. The verb idioms are the high level idioms in the idiom hierarchy.

For example, the verb “converse” is created with a combination of the individual 27alk idiom and the
combined 37alk idiom. The “converse” verb idiom allows a conversation between two or three
virtual actors using an external() 150 camera shot.

FIG. 32 shows a portion of an idiom hierarchy 420 for the “converse” verb. The “converse”
verb 422 is a combination of the 3Talk idiom 424 and the 2Talk idiom 426. This 3Talk idiom
(unlike the 3Talk idiom 360 described above) uses the external() and internal() camera modules 428,
430 and calls the 2Talk idiom 426. The 2Talk idiom 426 uses only the external() camera module
428. Other 1diom verbs have a similar hierarchy, which includes camera modules at the lowest level,
individual idioms above the camera modules, complex idioms above the individual idioms, and verb
1dioms above the complex idioms.

Individual director style using the idiom hierarchy

Other verb idioms or other high level idioms are created in a similar manner from low level
individual idioms. For example, a “move” verb idiom is a combination of an individual idiom
IMove and complex idiom 2Move. Individual idiom /Move allows one virtual actor to move and
uses the camera modules fracking() 194, panning() 204 and follow() 214. Complex idiom 2Move
was created from individual idiom /Move and allows two virtual actors to move. Methods 392, 400,
and 410 can be used to create a virtually unlimited number of idioms. In one embodiment of the
present invention, verb idioms may be one of the set (idle, converse, react, lookat, join, signal,
move). However, more or fewer verbs could also be used.

As sets or libraries of verb idioms or other higher level idioms are created, a director can
easily manipulate virtual actors to “shoot” a virtual movie. The virtual movie would be “shot” with
techniques and camera angles that are virtually identical to the techniques and camera angles used for
real film. The verb idioms can also be easily customized to fit an individual director’s style. For
example, director A may use the “converse” verb idiom as described above. However, director B,
based on her personal director style may like an internal() camera module 178 to be used in the 2Talk
individual idiom 328 instead of the external() camera module 150. Director B can customize the
2Talk 1diom to use the internal() camera module 178 to fit her personal preferences.

As Is shown in the flowchart in FIG. 33, a method 432 for virtual directing uses the idioms

CA 02260837 1999-01-18

WO 98/08192 PCT/US97/13655

10

15

20

25

30

35

and camera modules described above to “shoot” a virtual movie. The VC automatically selects the
idiom based upon the events (subject, verb, object) and the run time state from a set (e.g., a library)
of verb idioms 434. The selected verb idioms are combined to create virtual scenes 436. The virtual
scenes are combined to create a virtual movie 438. The director is free to create a virtual movie
based on her own style using the VC camera modules and idiom hierarchy.

Screen movement of virtual actors

Capturing motion on a video screen that is used to present the animation with the virtual
actors presents special problems. In particular, it may be desirable to end a shot not only when an
event is triggered by the real-time system, but also when an actor reaches a certain position on the
screen (such as the edge of the screen). The global variables forwardedge(x], rearedge[x],
centerline{x] described above are used to facilitate these kinds of tests.

As 1s shown in FIG. 34, these variables are measured in a screen coordinate system 440 that
1s set up relative to the orientation and position of each actor 442. The edge of the screen that the
actor is facing is defined to be at +1 444, while the edge to the actor's rear is at -1 446. The center
line of the screen is at zero 448. Thus, for example, a state in an idiom can determine if the actor 442
has just reached the edge of the screen by testing whether Jorwardedge[x] is greater than 1. A state
can also test whether the actor has walked completely off the screen by testing whether rearedge/x]
is less than -1. Other methods and coordinate systems could also be used to develop i1dioms to
capture motion on a screen.

Party application
The methods 34, 392, 400, 410, 432 and system 44 have been applied to a simulated “party”

environment. FIG. 35 shows a user interface 450 for a party simulator presented to a participant in a
party. The party takes place in a virtual room populated by two virtual bars with virtual bartenders
and two virtual barstools each, a statue, and other virtual guests. The guests can walk, look around,
converse with each other, go to the bars where they drink or talk to the bartenders, or they can simply
do nothing.

A user controls the actions of one protagonist virtual actor 452 at a high level of abstraction.
The rest of the actors 454 can be controlled automatically as software agents or by other participants
In the party. In particular, the user can invoke (verb, object) pairs, that are translated into (subject,
verb, object) triples in which the protagonist actor 452 is the subject. Current verbs include, talk,
react (which causes the actor to nod), goto, drink (which causes the actor to head for the nearest
empty barstool),lookat (which causes the actor to turn their head, stare at the chosen object for a few
seconds and then turn their head back), and idle. Each invocation of a verb causes a change in the
action of the protagonist shortly after the corresponding button is pushed. The participants of the
party are "polite” in that they wait for one actor in a conversation to stop talking before they begin to
speak themselves.

An additional interface button 456 allows the actors who stand alone or in a conversation to

“vote” whether to accept or reject an actor signaling a desire to join in conversation. The signal verb

CA 02260837 1999-01-18

] WO 98/08192 PCT/US97/13655

N

10

15

20

25

30

35

}-3

1s implicitly generated when an actor has approached within a short distance of the target of the goto.
Other user interface buttons 458,460 permit additional functionality to manipulate the virtual actors.

At each time unit, which is determined with respect to the maximum frame rate and is § Hz
In one implementation, the party simulator sends a list of (subject, verb, object) triples of interest to
the protagonist's private VC. Triples of interest are those involving the protagonist (or others in the
same conversation as the protagonist) as subject or object.

The party simulator is responsible for all low level motion of the actors. This includes
walking, movement of the mouth when talking, as welil as turning the head to face the current
speaker when in a conversation or towards the target of a lookat.

In one embodiment of the present invention, the party simulator, renderer 54. the VC 50,
and real-time application 46 are implemented to run simultaneously on the same Pentium-based
computer system 10. In another embodiment of the present invention, the party simulator and
components of system 44 are implemented as individual remote modules connected by a computer
network (e.g., the Internet, an intranet). The source code for interface 450 is iImplemented as a
combination of Visual C-++ and Visual Basic by Microsoft Corporation of Redmond, Washington.
However, other programming languages could also be used to implement the interface 450. The
renderer 54 uses Direct3D (Rendermorphics) from Microsoft Corporation of Redmond. Washington
to generate each frame. However, other rendering software could also be used. The full system runs
at a rate of approximately 5 time units per second, of which the majority of time is spent in the
renderer 54.

The VC 50 has proven to be quite robust in the real-time setting of the party simulator
without prior information about the events or conversations in the party. There is a good match
between the high level control of the actor's actions and the idiom level controls encoded in the VC
50.

Use of the system 44 is very intuitive. The user need not control the camera with the
automated camera control in this exemplary embiodiment. The shots and cuts provide a very
informative narration of the events. Spectators watching over the shoulder of the user can easily
follow the action as well, without knowing the specific commands issued by the user.

The following principles of cinematography are addressed in the VC 50 as follows: camera
angles and movement, captured in the camera modules; Don't cross the line, choice of proper
Instance in camera module; Avoid jump cuts, idiom structure enforces significant changes (or no
change) in camera module<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>