wo 2019/079319 A1 | NI 000 0000 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
25 April 2019 (25.04.2019)

‘O 00000200 0 A
(10) International Publication Number

WO 2019/079319 Al

WIPO I PCT

(51) International Patent Classification:

(US). SIRASAO, Ashish; 2100 Logic Drive, San Jose, CA

GO6N 3/063 (2006.01) GO6N 3/04 (2006.01) 95124 (US).
(21) International Application Number: (74) Agent: PARANDOOSH, David, A. etal.; Xilinx, Inc., Att;
PCT/US2018/056112 Legal Dept., 2100 Logic Drive, San Jose, CA 95124 (US).
(22) International Filing Date: (81) Designated States (unless otherwise indicated, for every
16 October 2018 (16.10.2018) kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
’ CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
(26) Publication Language: English Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
.. HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
(30) Priority Data: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
15/785,800 17 October 2017 (17.10.2017) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI NO, NZ.
(71) Applicant: XILINX, INC. [US/US]; Attn: Legal Dept., OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
2100 Logic Drive, San Jose, CA 95124 (US). SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

.) TR, TT, TZ, UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors: NG, Aaron; 2100 Logic Drive, San Jose, CA

95124 (US). DELAYE, Elliott, 2100 Logic Drive, San (84) Designated States (unless otherwise indicated, for every

Jose, CA 95124 (US). GHASEMI, Ehsan; 2100 Log-
ic Drive, San Jose, CA 95124 (US). TENG, Xiao; 2100
Logic Drive, San Jose, CA 95124 (US). ZEJDA, Jin-
drich; 2100 Logic Drive, San Jose, CA 95124 (US). WU,
Yongjun; 2100 Logic Drive, San Jose, CA 95124 (US).
SETTLE, Sean; 2100 Logic Drive, San Jose, CA 95124

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, [E, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: MULTI-LAYER NEURAL NETWORK PROCESSING BY A NEURAL NETWORK ACCELERATOR USING HOST
COMMUNICATED MERGED WEIGHTS AND A PACKAGE OF PER-LAYER INSTRUCTIONS

602 Gather weight matrices and write
merged weight matrices to shared RAM
in contiguous address space

]

604 Determine size of B/C huffer |

|

606 Configure kernel accelerator with
base addresses of instruction package,
weight matrices, and B/C buffer

I

808 Receive a command to initiate
neural network processing of an input
data set

610 Assemble per-layer instructions for
kernel accelerator

]

612 Write the package of per-layer
instructions to shared RAM

I

‘M Write input data to the B/C buffer in

shared RAM

616 Signal kernel accelerator to
commence processing

l

6818 Read output from B/C buffer in
shared RAM

FIG. 6

(57) Abstract: In the disclosed methods and systems for processing in a neural network system, a host
computer system (402) writes (602) a plurality of weight matrices associated with a plurality of layers of
a neural network to a memory (226) shared with a neural network accelerator (238). The host computer
system further assembles (610) a plurality of per-layer instructions into an instruction package. Each per-
layer instruction specifies processing of a respective layer of the plurality of layers of the neural network,
and respective offsets of weight matrices in a shared memory. The host computer system writes (612,
614) input data and the instruction package to the shared memory. The neural network accelerator reads
(702) the instruction package from the shared memory and processes (702-712) the plurality of per-layer
instructions of the instruction package.

[Continued on next page]

WO 2019/079319 A [I 0000800 000 00O

TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

MULTI-LAYER NEURAL NETWORK PROCESSING BY A
NEURAL NETWORK ACCELERATOR USING HOST COMMUNICATED
MERGED WEIGHTS AND A PACKAGE OF PER-LAYER INSTRUCTIONS

TECHNICAL FIELD

The disclosure generally relates to neural network processing.

BACKGROUND

Machine learning is the science of inducing computing systems o act
without being explicitly programmed. Classical machine leaming includes
various clustering and classification techniques, including K-means clustering,
linear and iogistic regressions, stochastic gradient decent, association rule
fearmning, and the like. Deep leaming is a newer frontier in machine leaming.
Deep leaming is a class of machine learning algorithms that uses mudtiple layers
of nonlinear processing units for featurs exiraction and transformation. Deep
learning algorithms can be unsupenvised {e.g., pattern analysis) or supervised
{2.g., classification). The deep learning algorithm can be implemenied using
layers of an artificial neural network (ANN) (referred 10 herein as a "neural
network”™.

in general, a neural network is a collection of nodes (Le., the “neurons™)
that are connected in a graph. A node in a neural network computes a sum of
weighted inpuis and adds an optional bias (o the sum. The output of the node is
a function of the final sum (referred {0 as an “aclivation funclion”). Example
activation functions include the sigmoid function, the hyperbolic tangent (anh)
function, the Rectified Linear Unit {(RelU) function, and the identity function.
Neural network models are often organized into layers of nodes, which define a
specific lopology, and corresponding weights and biases. The weights and
biases are refarred {0 as network parameters.

It general, a neural network includes an input layer and an oulput layer
and can optionally include one or more hidden layers between the input and
outpul lavers. A neural networlk used in deep leaming applications typically
includes many hidden layers, which gives rise {o the term deep neural network
{(DNN)Y. The lavers of a neural network can be densely connected {e.q¢., sach

node in a layer is fully connected to all nodes in a previous layer) or sparsely

1

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

connectad {e.g., each node in a layer is connacted o only a portion of the nodes
in a previous laver}. A convolutional neural network (CNN) is a type of DNN that
includes one or more sparsely connected layers, referred to as convolutional
layers. A CNN is well-suited for processing image or video data. Other types of
DNNs include recurrent neural network (RNNs), which are well-suited for
processing speech and {ext data.

Field programmable gate arrays (FPGASs) have been used to implement
circuits that accelerate functions called from software. Circuits that accelerate
functions called from software are referred to as hardware accelerators.
Examples of hardware accelerators include various image filters implemented as
FPGA circuits that can be called from image processing software.

An FPGA-based implementation involves the transfer of the weights and
input data to FPGA-accessible memory by a host computer system, and the
transfer of output data to host computer system. The transfer of data between
the host computer system and an FPGA accelerator can degrade performance.
Compared to other commonly used neural network (NN) implementations such
as on a CPU or a GPU, an FPGA-based implementation can be advantageous
because an FPGA circuit can process data faster than a GPU and consume less

power in the process.

SUMMARY

A disclosed method of processing in a neural network system includes
writing by a host computer system, a plurality of weight matrices associated with
a plurality of layers of a neural network to a memory shared with a neural
network accelerator. The host computer system further assembles a plurality of
per-layer instructions into an instruction package. Each per-layer instruction
specifies processing of a respective layer of the plurality of layers of the neural
network, and respective offsets of weight matrices in a shared memory. The
host computer system writes input data and the instruction package to the
shared memory. The neural network accelerator reads the instruction package
from the shared memory and processes the plurality of per-layer instructions of
the instruction package.

A disclosed neural network processing system includes a shared memory,

a host computer system coupled to the shared memory, and a neural network

2

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

accelerator coupled to the shared memory. The host computer system is
configured with instructions that when executed cause the host computer system
to write a plurality of weight matrices associated with a plurality of layers of a
neural network to the shared memory. The host computer system is also
programmed to assemble a plurality of per-layer instructions into an instruction
package. Each per-layer instruction specifies processing of a respective layer of
the plurality of layers of the neural network, and respective offsets of weight
matrices in the shared memory. The host computer system writes input data
and the instruction package to the shared memory. The neural network
accelerator is configured to read the instruction package from the shared
memory and process the plurality of per-layer instructions of the instruction
package.

Other features will be recognized from consideration of the Detailed

Description and Claims, which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and features of the method and system will become
apparent upon review of the following detailed description and upon reference to
the drawings in which:

FIG. 1 is a block diagram depicting a system for implementing neural
networks according to an example;

FIG. 2 is a block diagram depicting a computing system according to an
example;

FIG. 3 is a block diagram depicting an acceleration circuit according to an
example;

FIG. 4 shows an exemplary neural network processing system according
to one implementation;

FIG. 5 shows another view of the exemplary neural network accelerator
shown in FIG. 3;

FIG. 6 shows a flowchart of a process performed by the KA interface in
configuring the neural network accelerator for processing a package of per-layer
instructions and providing the weights, input data, and package of per-layer

instructions to the neural network accelerator for processing;

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

FIG. 7 shows a flowchart of a process performed by the neural network
accelerator in processing a package of neural network instructions;

FIG. 8 shows the addressing of exemplary weight matrices and the
addressing of an exemplary input/output buffer (“B/C buffer”) for five neural
network layers;

FIG. 9 is a block diagram depicting a programmable IC according to an
example; and

FIG. 10 illustrates an FPGA implementation of a programmable IC.

DETAILED DESCRIPTION

In the following description, numerous specific details are set forth to
describe specific examples presented herein. It should be apparent, however, to
one skilled in the art, that one or more other examples and/or variations of these
examples may be practiced without all the specific details given below. In other
instances, well known features have not been described in detail so as not to
obscure the description of the examples herein. For ease of illustration, the
same reference numerals may be used in different diagrams to refer to the same
elements or additional instances of the same element.

The disclosed implementations reduce the overhead and latency
associated with a neural network processing system that includes a host
computer system and a neural network accelerator. The systems and methods
minimize the number of direct memory access (DMA) operations involved in
transferring data to and from a memory shared between the host computer
system and the neural network accelerator. The host computer system
assembles all of the input data and parameters required by all the layers of the
neural network for processing and establishes the collection of data and
parameters in the shared memory prior to initiation of processing by the neural
network accelerator. With a few DMA operations, the neural network accelerator
has the data and configuration parameters needed for a complete pass through
the neural network, thereby reducing overhead and latency.

The disclosed methods and systems are applicable to convolutional
neural networks (CNNs), recurrent neural networks (RNNs) and other neural
networks involving operations such as matrix multiplication or convolution. For

brevity, the host computer system may also be referred to as a “host,” and a

4

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

neural network accelerator may also or alternatively be referred to as an
“acceleration circuit,” a “kernel accelerator” or “kernel accelerator circuit.”

An exemplary application of the disclosed systems and methods is a
convolutional neural network (CNN). A CNN can be represented as a directed
graph having layers of operations. Each layer can entail one or more operations,
such as CONV (Convolution), or image-to-column conversion ("im2col"), general
matrix multiplication ("GEMM"), activation (e.g., a rectified linear unit, "ReLU"
function), pooling (e.g., "maxpool"), local response normalization (LRN layer),
and inner product (e.g., "fully connected" (FC) layer). The inputs to each layer
are data, such as images or voice samples, and trained weights, all represented
as matrices. In the disclosed systems and methods, all the weight matrices,
configuration parameters, and input data to be processed per all the layers of the
neural network are provided from the host to the neural network accelerator prior
to the neural network accelerator initiating neural network processing of the input
data.

In one feature of the disclosed systems and methods, the separate weight
matrices, which are used in convolution or matrix multiplication in the different
layers of the neural network, are merged into a single block of data and stored in
a contiguous address space of the shared memory. The combined weight
matrices allow the neural network accelerator to sequentially access the required
weights, which is more efficient than accessing non-contiguous addresses. The
contiguous address space also allows access without having to wait for a new
weight matrix to be loaded as the kernel processor transitions from the
processing of one layer of the neural network to the processing of the next layer.

In another feature, the host computer system creates a package of
multiple per-layer instructions to control processing by the neural network
accelerator. The processing by the neural network accelerator can thereby be
customized according to the neural network application. In addition, the package
of per-layer instructions reduces the number of interactions between the host
and the neural network accelerator in processing input data through the layers of
the neural network. The package of per-layer instructions further specifies
offsets into the block of weight matrices in order to provide quick reference to the

proper weight matrix by each per-layer instruction.

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

A buffer is shared between layers of the neural network for storing input
data (“B matrix”) and output data (“C matrix”). The shared “B/C buffer” reduces
memory requirements and improves efficiency of the neural network accelerator
by avoiding need to copy results of one layer to the input buffer of the next layer.
The neural network accelerator alternates between the portion of the B/C buffer
that is used for the B matrix and the portion of the B/C buffer that is used for the
C matrix as processing transitions from one layer to the next layer.

Turning now to the drawings, FIG. 1 is a block diagram depicting a system
100 for implementing neural networks according to an example. The system 100
includes a computer system 102 and one or more computer systems 108. The
computer system 102 includes conventional computing components configured
to execute software that provides one or more design tools 104. Each computer
system 108 implements one or more neural networks 110. The neural
network(s) 110 are implemented using applications 112, acceleration libraries
114, and one or more hardware accelerators 116.

In an example, the hardware accelerator(s) 116 include programmable
integrated circuits (ICs), such as field programmable gate arrays (FPGAs). The
acceleration libraries 114 provide application programming interfaces (APIs) to
interface with the hardware accelerator(s) 116. The acceleration libraries 114
can also include libraries that provide neural network functions, including
predefined and optimized implementations of neural network layers and other
types of neural network structures. Thus, the neural network(s) 110 can include
both hardware portions implemented in the hardware accelerator(s) 116, as well
as software portions implemented in the acceleration libraries 114. The
applications 112 invoke the APIs of the acceleration libraries 114 to program and
control the hardware accelerator(s) 116 to implement the neural network(s) 116.

A designer interacts with the design tool(s) 104 to define the neural
network(s) 110. The design tool(s) 104 can generate files for programming the
hardware accelerator(s) 116 (e.g., configuration bitstreams for FPGAs), files that
provide the acceleration libraries 114, and files that provide the applications 112.
The designer can define the hardware portions of the neural network(s) 110
using a register transfer language (RTL) or using a programming language, such
as C, C++, OpenCL, and the like, or a combination of RTL and programmable

language(s). The user can define the software portions of the neural network(s)

6

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

110 using a programming language, such as C, C++, OpenCL, etc. The design
tool(s) 104 compile the software-defined neural networks to generate files for
programming the hardware accelerator(s) 116 and library files for the
acceleration libraries 114. The designer can make use of libraries 106 that
provide class libraries, template libraries, and the like to assist in developing the
hardware and software portions of the neural network(s) 110.

A user can define the applications 112 using a programming language
(e.g., C, C++, Python, etc.). The user can make use of neural network
frameworks and libraries, such as Caffe, TensorFlow, MXNet, and the like.

FIG. 2 is a block diagram depicting a computing system 108 according to
an example. The computing system 108 includes hardware 204 and software
206 executing on the hardware 204. The hardware 204 includes a processing
system 210, system memory 216, storage devices (“storage 218”), and a
hardware accelerator 116. The software 206 includes an operating system (OS)
244 the acceleration libraries 114, and the applications 112. The processing
system 210, system memory 216, and storage 218 comprise a host computer
system as referenced herein.

The processing system 210 includes a microprocessor 212, support
circuits 214, and a peripheral bus 215. The microprocessor 212 can be any type
of general-purpose central processing unit (CPU), such as an x86-based
processor, ARM®-based processor, or the like. The microprocessor 212 can
include one or more cores and associated circuitry (e.g., cache memories,
memory management units (MMUS), interrupt controllers, etc.). The
microprocessor 212 is configured to execute program code that perform one or
more operations described herein and which can be stored in the system
memory 216 and/or the storage 218. The support circuits 214 include various
devices that cooperate with the microprocessor 212 to manage data flow
between the microprocessor 212, the system memory 216, the storage 218, the
hardware accelerator 116, or any other peripheral device. For example, the
support circuits 214 can include a chipset (e.g., a north bridge, south bridge,
platform host controller, etc.), voltage regulators, firmware (e.g., a BIOS), and
the like. The support circuits 214 manage data flow between the microprocessor
212 and the peripheral bus 215, to which various peripherals, such as the

hardware accelerator 116, are connected. In some examples, the

7

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

microprocessor 212 can be a System-in-Package (SiP), System-on-Chip (SoC),
or the like, which absorbs all or a substantial portion of the functionality of the
chipset (e.g., north bridge, south bridge, etc.). The peripheral bus 215 can
implement an expansion bus standard, such as Peripheral Component
Interconnect Express (PCle). In the example, the processing system 210 is
shown separate from the hardware accelerator 116. In other examples
discussed further below, the processing system 210 and the hardware
accelerator 116 can be implemented on the same integrated circuit (IC) using a
System-On-Chip (SoC).

The system memory 216 is a device allowing information, such as
executable instructions and data, to be stored and retrieved. The system
memory 216 can include, for example, one or more random access memory
(RAM) modules, such as double-data rate (DDR) dynamic RAM (DRAM). The
storage device 218 includes local storage devices (e.g., one or more hard disks,
flash memory modules, solid state disks, and optical disks) and/or a storage
interface that enables the computing system 108 to communicate with one or
more network data storage systems. The hardware 204 can include various
other conventional devices and peripherals of a computing system, such as
graphics cards, universal serial bus (USB) interfaces, and the like.

The hardware accelerator 116 includes a programmable IC 228, a non-
volatile memory 224, and RAM 226. The programmable IC 228 can be an FPGA
or the like or an SoC having an FPGA or the like. The NVM 224 can include any
type of non-volatile memory, such as flash memory or the like. The RAM 226
can include DDR DRAM or the like. The programmable IC 228 is coupled to the
NVM 224 and the RAM 226. The programmable |C 228 is also coupled to the
peripheral bus 215 of the processing system 210.

The OS 244 can be any commodity operating system known in the art,
such as such as Linux®, Microsoft Windows®, Mac OS®, or the like. The
acceleration libraries 114 includes drivers and libraries that provide APIs for
command and control of the hardware accelerator 116. The applications 112
include software executing on the microprocessor 212 that invokes the APIs of
the acceleration libraries 114 to implement neural network(s).

In operation, the programmable IC 228 is configured with an acceleration

circuit 230. The acceleration circuit 230 generally includes a base platform 230A

8

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

and a neural network accelerator 230B. For example, the acceleration circuit
230 can be implemented using a static region 234 and a programmable region
236. The static region 234 includes support circuits 240 for providing an
interface to the peripheral bus 215, the NVM 224, and the RAM 226. The
programmable region 236 can include one or more neural network accelerators
(“kernel(s) 238”). The base platform 230A is implemented using the static region
234, and the neural network accelerator 230B is implemented using the
programmable region 236. In another example, the base platform 230A can also
be implemented using a portion of the programmable region 236. Thus, in some
examples, the programmable region 236 also includes some interface circuits.

In some examples, the acceleration circuit 230 can include more than one
programmable region 236, each of which can be individually configured with
neural network accelerator(s) 238.

The static region 234 is “static” in that the circuitry thereof remains
constant across reconfigurations of the programmable region 236. In an
example, the support circuits 240 include PCle endpoint circuits, a direct
memory access (DMA) controller, interconnects, a memory controller, a memory
interface circuit (e.g., a DDR interface), decoupler circuits (to support partial
reconfiguration), a flash programmer, debug circuits, and the like. In some
examples, the programmable region 236 does not include any of the support
circuits 240. In other examples, some support circuits are implemented in the
programmable region 236. In such case, the programmable region 236 can be
referred to as an “expanded programmable region.” In either case, in one
example, some support circuits 240 are always present in the static region 234,
such as the PCle circuits and the DMA circuits.

FIG. 3 is a block diagram depicting an acceleration circuit 230, according
to an example. The acceleration circuit 230 includes the support circuits 240
and a neural network accelerator 238. In the example, the support circuits 240
include a PCle endpoint circuit (“PCle endpoint 302”), a PCle DMA controller
304, interconnect circuits (“interconnect 306”), memory controllers 310, and
memory interfaces 312. The support circuits 240 can include other circuits,
which are omitted for clarity (e.g., decoupler circuits, debug circuits, etc.). The
PCle endpoint 302 provides a physical interface to the peripheral bus 215. The
PCle DMA controller 304 facilitates DMA operations to the RAM 226 and the

9

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

neural network accelerator 238. The interconnect 306 couples the PCle DMA
controller 304 to the memory controllers 310 and to the neural network
accelerator 238. The memory controllers 310 are coupled to the memory
interfaces 312. The memory interfaces 312 are coupled to the RAM 226.

In operation, the acceleration libraries 114 can access the RAM 226
directly through the PCle DMA controller 304. The acceleration libraries 114 can
also access the neural network accelerator 238 through the PCle DMA controller
304. The neural network accelerator 238 can access the RAM 226 through the
memory controllers 310. Data can be exchanged between the software 206 and
the neural network accelerator 238 using DMA operations between the system
memory 216 and the RAM 226.

In the example, the neural network accelerator 238 uses interfaces 330,
331, and 332 to communicate with the interconnect 306. In particular, these
interfaces include a first read interface 330, a second read interface 331, and a
read/write interface 332. For example, the read interface 330 can be used as a
control interface for controlling the neural network accelerator 238. The read
interface 331 can be used to read from the RAM 226 through a first one of the
memory interfaces 312. The read/write interface 332 can be used to read and
write from the RAM 226 through a second one of the memory interfaces 312.

The neural network accelerator 238 includes an interconnect interface
304, control logic 342, and processing circuits 341. The processing circuits 341
include a formatter circuit 344 circuit (e.g., IM2COL), a read control circuit (“read
control 346”), a multiplexer 356, first-in-first-out circuits (“FIFOs 358”), matrix
multiplier array 362, a RelLU-scaler circuit 364, a pooling circuit 366 (e.qg.,
maxpool), a multiplexer 368, FIFOs 354, write control circuit (“write control 352”),
a cache 348, a read control circuit (“read control 350”), and FIFOs 360. The
interconnect interface 340 is coupled to the interfaces 330, 331, and 332, the
control logic 342, and the processing circuits 341. The interconnect interface
340 can include switches, clock converters, and the like to facilitate
communication between the control logic 342 and the interface 330, as well as
between the processing circuits 341 and the interfaces 331 and 332.

In the example, the interconnect interface 340 is coupled to inputs of the
formatter circuit 344, the read control circuit 346, the cache 348, and the write

control circuit 352. Outputs of the formatter circuit 344 and the read control

10

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

circuit 346 are coupled to inputs of the multiplexer 356. An output of the
multiplexer 356 is coupled to an input of the FIFOs 358. An output of the FIFOs
358 is coupled to a first input of the matrix multiplier array 362. An output of the
cache 348 is coupled to an input of the read control circuit 350. An output of the
read control circuit 350 is coupled to an input of the FIFOs 360. An output of the
FIFOs 360 is coupled to a second input of the matrix multiplier array 362. An
output of the matrix multiplier array 362 is coupled to an input of the ReLU-scaler
364. An output of the ReLU-scaler 364 is coupled to an input of the pooling
circuit 366 and an input of the multiplexer 368. An output of the pooling circuit
366 is coupled to another input of the multiplexer 368. An output of the
multiplexer 368 is coupled to an input of the FIFOs 354. An output of the FIFOs
354 is coupled to the write control circuit 352.

In operation, the matrix multiplier array 362 performs matrix multiplication
operations for implementing a neural network. The inputs of the matrix multiplier
array 362 receive input activation matrices from the FIFOs 358 and weight
matrices from the FIFOs 360. The input activation matrices can be read directly
from the RAM 226 using the read control circuit 346. Alternatively, the input
activations can be read from the RAM 226 and processed by the formatter circuit
344 for input to the matrix multiplier array 362. Weight matrices can be read
from the RAM 226 by the read control circuit 350 and cached in cache 348. The
RelLU-scaler 364 performs an activation function and can scale the output of the
matrix multiplier array 362. The pooling circuit 366 can implement a max pooling
function on the scaled output of the matrix multiplier array 362. In one example,
the pooling circuit 366 is implemented using CLBs or other configurable logic.
Either the output of the pooling circuit 366 or the RelL.U-scaler 364 can be stored
in the FIFOs 354. The write control circuit 352 writes data in the FIFOs to the
RAM 226. The control logic 342 controls the various circuits in the processing
circuits 341, such as the formatter circuit 344, the read control circuit 346, the
multiplexers 356 and 368, the read control circuit 350, the ReLU-scaler 364, the
pooling circuit 366, and the write control circuit 352.

FIG. 4 shows an exemplary neural network processing system 400
according to one implementation. The system includes a host computer system
402 communicatively coupled to neural network accelerator 238. The host

computer system 402 can include the processing system 210, system memory

11

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

216, and storage 218 as shown in FIG. 2. The host computer system 402 is
specifically programmed by a machine learning (ML) framework 410 and a
neural network accelerator (KA) interface 412. The ML framework program,
which corresponds to the applications 112 of FIG. 1, specifies a particular neural
network application, for example, image or speech processing, and the KA
interface, which can be implemented as acceleration libraries as in FIG. 1,
initiates neural network operations on the neural network accelerators in
response to requests for neural network processing from the ML framework.
The neural network accelerator 238 is coupled to RAM 406, through which the
host and neural network accelerator communicate. The neural network
accelerator has a set of configuration registers 408. The configuration registers
are accessible to the KA interface 412 for storing addresses of memory buffers
in the RAM 226 and configuration parameters for neural network operations,
such as matrix dimensions for general matrix multiplication (GEMM) and the
stride/window for convolution.

The disclosed approaches are not limited to any specific hardware
platforms. However, for purposes of providing a frame of reference to those
skilled in the art, the neural network accelerator can be implemented on a
KINTEX® ULTRASCALE™ 115 device, which is available from Xilinx, Inc. The
RAM 226 is a DDR SDRAM mounted on a printed circuit board along with the
neural network accelerator. The interface between host 402 and the RAM, and
between the host and the neural network accelerator is Peripheral Component
Interconnect Express (PCIE). The neural network accelerator uses direct
memory access (DMA) channels to map some of the host memory to the RAM
and to configuration registers 408. The host computer system 402 can be any
computer system or combination or network of computer systems suitable for
executing an ML framework 410 and KA interface 412. ML frameworks can be
specified using programming packages such as TensorFlow™, Caffe, and
MXNet.

The KA interface 412 receives neural network requests from the ML
framework 410 for processing by the neural network accelerator 238. Prior to
submitting neural network requests to the neural network accelerator for
processing, the KA interface writes the weight matrices associated with the

layers of the neural network to the RAM 226 that is shared with the neural

12

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

network accelerator. All of the weight matrices are written to the shared memory
as a contiguous block, which reduces the number of DMA operations and
overhead and ensures that the weights are available to the neural network
accelerator when the weights are needed for the convolutions or matrix
multiplications in the layers of the neural network.

In response to receiving a neural network request from the ML framework
410, the KA interface 412 assembles a group of per-layer instructions into an
instruction package and writes the instruction package to the RAM 226. Each
per-layer instruction specifies processing of a respective layer of the neural
network. In addition, each per-layer instruction specifies a respective offset of a
weight matrix from the base address of the combined weight matrices in a
shared memory. The processing of each layer of the neural network will access
a respective one of the weight matrices. The per-layer instructions also specify
configuration parameters for different neural network operations in different
layers. For example, the configuration parameters can specify a scaling factor,
convolution window and stride, matrix dimensions for maxpool processing, and
an activation function. The configuration parameters further include the base
address of the instruction package in the RAM. Different layers of the neural
network can entail different sets of neural network operations.

The KA accelerator further establishes configuration parameters in the
configuration registers 408 of the neural network accelerator. The configuration
parameters include the base address of the weight matrices, the base address of
the input/output data matrices, and an offset from the base address of the
input/output data matrices. A weight matrix is sometimes referred to as "A," an
input data matrix is sometimes referred to as "B," and the output data matrix is
sometimes referred to as "C."

In response to a signal from the KA interface 412 indicating that a
package of instructions is ready to be processed, the neural network accelerator
238 serially processes the per-layer instructions from the instruction package.
The package of instructions effectively specifies a program or a state machine
according to which the neural network accelerator performs the specified
processing of the layers of the neural network.

FIG. 5 shows another view of the exemplary neural network accelerator

238 of FIG. 3. The merged weight matrices 520 are written by the host and

13

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

stored in contiguous addresses of the RAM 226. |In an exemplary application,
the per-layer instructions in the instruction package 516 specify sets of neural
network operations to be performed in the layers of the neural network and
configuration parameters for scaling, maxpool dimensions, and an activation
function. Different sets of neural network operations can be specified in different
ones of the per-layer instructions in the instruction package to direct specific per-
layer processing by the neural network accelerator.

In processing the per-layer instructions from the instruction package 516,
the neural network accelerator processes the instructions serially. For example,
a first per-layer instruction is processed followed in succession by processing a
second per-layer instruction of the instruction package. In processing the first
per-layer instruction, the neural network accelerator 238 reads input data from a
first portion of the B/C buffer 518 in the RAM 226 and writes output data to a
second portion of the B/C buffer in the RAM. In processing the second per-layer
instruction, the neural network accelerator reads input data from the second
portion of the B/C buffer and writes the output data to the first portion of the B/C
buffer. The neural network accelerator thereafter alternates between portions of
the B/C buffer used for input and output data with each successive per-layer
instruction.

The neural network accelerator 238 includes configuration registers 408,
dispatching and addressing logic circuitry 502 (that implement the read and write
controls of FIG. 3), formatter circuit 344, convolution or matrix multiplier circuitry
362, rectifier liner unit (ReLU) and scaling circuit 364, and pooling circuitry 366.
Multiplexers 356 and 368 are controlled by the dispatch and addressing logic
according to the specified neural network operations. The configuration data in
the configuration registers provide configuration parameters for the formatter
circuit, matrix multiplier circuitry, ReLU-scaling circuit, and pooling circuitry.

The dispatch and addressing circuit 502 reads a per-layer instruction from
the instruction package 516 and initiates the specified neural network operations
with the data referenced in the work request. The dispatch and addressing
circuit controls multiplexer 356 to select between input data read from the RAM
226 and formatted data from formatter circuit 344, according to the parameters
specified in the per-layer instruction. The formatter circuit 344 translates input

data from a format provided by the ML framework to a format suitable for the

14

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

convolution or matrix multiplier circuit 362. For example, in one implementation,
the formatter circuit converts image data into column data (im2col). In another
implementation, the formatter circuit translates row-major or column-major
format to a custom hybrid row/column major format that matches the compute
array geometry. The convolution or matrix multiplier circuitry 362 performs
matrix multiplication between the input data and a selected weight matrix from
the weight matrices 520. In one implementation, the matrix multiplication circuit
362 is a systolic array of multiplier-accumulator circuits. RelLU circuit 364
implements an activation function and a scaling function for the neural network.
In an exemplary application, the pooling circuit 366 reduces the spatial size of
the data between convolution layers in order to reduce the computational
requirements imposed on succeeding layers. Reduction of the spatial size also
aids in avoiding overfitting. In an exemplary application, the pooling circuit
implements the maxpool function. The dispatch and addressing circuit controls
multiplexer 368 to select between data from the ReLU and scaling circuit 364
and data from the pooling circuit 366 for storing as the output matrix in the B/C
buffer 518.

FIG. 6 shows a flowchart of a process performed by the KA interface in
configuring the neural network accelerator for processing a package of per-layer
instructions and providing the weights, input data, and package of per-layer
instructions to the neural network accelerator for processing.

At block 602, the KA interface gathers the weight matrices needed for
performing the operations of the layers of the neural network. The weight
matrices can be obtained from the specification of the neural network in the ML
framework 410. Each layer of the neural network has an associated weight
matrix. The KA interface writes the collection of weight matrices in a block of
contiguous address space of the RAM 226.

The KA interface 412 determines the size of the B/C buffer at block 604.
In an exemplary implementation, the KA interface scans the specification of the
neural network as set forth by the ML framework 410. In scanning the
specification, the KA interface searches for definitions of the B and C matrices in
the different layers of the neural network and determines the maximum size of
the B and C matrices. The size of the B/C buffer is computed to be twice the

maximum size of the B and C matrices. In an application in which the neural

15

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

network accelerator processes multiple sets of input data, such as a batch of
images, the size of the B/C buffer can be:

2 *max (B, C) * num-sets

where max (B, C) is the maximum size of the B and C matrices, and num-
sets is the number of sets of input data such as RGB channels of an image.

At block 606, the KA interface configures the neural network accelerator
with the base addresses in the RAM 226 of the weight matrices, the instruction
package, and the B/C buffer. The neural network accelerator can be configured
by writing the base addresses to the configuration registers 408.

The KA interface at block 608 receives a command from the ML
framework to run input data set(s) through the layers of neural network. In
response to the command, at block 610, the KA interface assembles per-layer
instructions into a package of instructions, and the per-layer instructions are
generated based on the specification of the neural network defined by the ML
framework. For example, in a particular application, the ML framework defines
the neural network operations in the layers as follows:

Convolution 1
RelLu 1
MaxPool 1
Convolution 2
RelLu 2
MaxPool 2
Convolution 3
RelLu 3
Convolution 4
RelLu 4
Convolution 5
RelLu 5
MaxPool 5
FC6
FC7
FC 8

where each integer indicates the layer in the neural network. Layers can

be numbered from 1 in algorithmic description, and from 0 in a specific

16

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

implementation. Both descriptions are interchangeable. Based on the definition
of the neural network layers, the KA interface prepares the per-layer instructions
to include in the instruction package. For example, the per-layer instruction for
layer 2 of an Alexnet convolutional neural network based on the foregoing

exemplary neural network definition is as follows:

M: 192

N: 5832

K: 1600

scaleFPGAC: 26

A_offset: 24567

do im2col: 2

batch size: 8

img ch:64 w:27 w_padded:32 h:27

outw:27 w_padded:32

maxpool: 2

relu: true
In the exemplary per-layer instruction, the value associated with M specifies the
number of rows in the weight matrix A and the number of rows in the output
matrix C. The value associated with N specifies the number of columns of the
image matrix B and output matrix C. The value associated with K specifies
columns of A and rows of B. The value associated with scaleFPGAC specifies a
scaling factor used to scale the computed values from layer 2 for use in layer 3.
The value associated with A_offset specifies the offset from the base address of
the weight matrices 520 at which the weight matrix for layer 2 is found.

The parameter, "do im2col: 2" specifies that layer 2 geometry image-to-
column formatting should be performed. The parameter, "batch size: 8"
specifies that 8 sets of input data are to be processed. The parameters, "img
ch:64 w:27 w_padded:32 h:27" specifies the number of channels in the input
data set at layer 2. The parameters, "out w:27 w_padded:32" specify padding of
input data to align with data sizes needed by the compute array. The parameter,
"maxpool: 2" specifies that the layer 2 maxpool operation should be performed.
The parameter, "relu: true” specifies that the layer 1 relu operation should be

performed.

17

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

Once the per-layer instructions have been assembled for all the layers of
the neural network, at block 612, the KA interface writes the package of per-layer
instructions to the RAM 226. At block 614, the KA interface writes the input data
to the B/C buffer in the RAM, and once the instruction package and input data
have been written to the RAM, at block 616 the KA interface signals the neural
network accelerator to commence processing the input data through the neural
network. In response to the neural network accelerator signaling completion of
processing, at block 618, the KA interface reads the output data from the B/C
buffer in the RAM.

FIG. 7 shows a flowchart of a process performed by the neural network
accelerator in processing a package of neural network instructions. At block
702, the neural network accelerator 238 reads a per-layer instruction from the
instruction package 516. The addressing of the specified weight matrix and the
addresses into the B/C buffer for input and output data are established by the
neural network accelerator at block 704. The address of the weight matrix is
determined as the base address of the merged weight matrices 520 and the
offset specified by the per-layer instruction.

The B/C buffer is used to store both input data and output data, and the
output data from one layer of the neural network is the input data to the next
successive layer. A base input address references the base address of the input
data in the B/C buffer for the current layer, and the base output address
references the base address of the output data in the B/C buffer for the current
layer. As processing transitions from one layer to the next successive layer, the
addresses used for the base input address and base output address are
swapped. The address swapping scheme eliminates the copying of data when
transitioning the neural network accelerator from the processing of one layer to
the processing of the next layer.

At block 706, the neural network accelerator performs the neural network
operations specified in the per-layer instruction using the specified parameters.
In the exemplary per-layer instruction shown above, the convolution, matrix
multiplication, im2col, maxpool, and relu operations are performed. The neural
network accelerator determines at decision block 708 whether or not there are
more per-layer instructions to be processed. If so, at block 710 the neural

network accelerator reads the next instruction from the instruction package and

18

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

returns to block 704 to setup for the next instruction. Otherwise, neural network
accelerator processing of the input data is complete, and at block 712 the neural
network accelerator signals completion to the host.

FIG. 8 shows the addressing of exemplary weight matrices 802 and the
addressing of an exemplary input/output buffer (“B/C buffer”) 804 for five neural
network layers, numbered 0-4. The base address of the weight matrices 802 is
labeled “weights base,” and the layer O weights are stored beginning at weights
base. The weight matrices for layers 1-4 are stored beginning at respective
offsets from weights base. The layer 1 offset is “L10offset,” the layer 2 offset is
“L20ffset” etc. The base address of the B/C buffer is labeled “B/C base,” which
is used as a base address of a first portion of the B/C buffer, and the address of
a second portion of the B/C buffer is at B/C base + BCoffset.

Blocks 806, 808, 810, 812, and 814 represent the processing performed
by the neural network accelerator 238 in performing the specified neural network
operations in layers 0-4, respectively. A, B, and C show the address inputs to
each layer. A is the base address of the weight matrix, B is the base address of
the input data matrix, and C is the base address of the output data matrix.

For layer 0, the base address of the weight matrix is weights base, the
base address of the input matrix is B/C base, and the base address of the output
matrix is B/C base + BCoffset. Moving to layer 1, the layer 1 instruction would
specify L1offset as the offset of the weight matrix for layer 1, and the base
address of the weight matrix for layer 1 would be weights base + L1offset. The
base address of the weight matrix is adjusted for input at each layer according to
the specified offset in the per-layer instruction.

The addresses of the B and C matrices are swapped in transitioning from
layer O to layer 1, and the output from layer O becomes the input to layer 1. The
portion of the B/C buffer used for input to layer 0 becomes the portion for output
from layer 1. Specifically, the base address of the input matrix changes to B/C
base + BCoffset, and the base address of the output matrix changes to B/C
base. In the example, even numbered layers input data from the portion of the
B/C buffer based at B/C base and output data to the portion of the B/C buffer
based at B/C base + BCoffset. Odd numbered layers input data from the portion
of the B/C buffer based at B/C base + BC offset and output data to the portion of
the B/C buffer based at B/C base.

19

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

FIG. 9 is a block diagram depicting a programmable IC 228 according to
an example. The programmable IC 228 includes programmable logic 3,
configuration logic 25, and configuration memory 26. The programmable IC 228
can be coupled to external circuits, such as the NVM 224, the RAM 226, and
other circuits 29. The programmable logic 3 includes logic cells 30, support
circuits 31, and programmable interconnect 32. The logic cells 30 include
circuits that can be configured to implement general logic functions of a plurality
of inputs. The support circuits 31 include dedicated circuits, such as
transceivers, input/output blocks, digital signal processors, memories, and the
like. The logic cells and the support circuits 31 can be interconnected using the
programmable interconnect 32. Information for programming the logic cells 30,
for setting parameters of the support circuits 31, and for programming the
programmable interconnect 32 is stored in the configuration memory 26 by the
configuration logic 25. The configuration logic 25 can obtain the configuration
data from the nonvolatile memory 224 or any other source (e.g., the DRAM 226
or from the other circuits 29). In some examples, the programmable IC 228
includes a processing system 2. The processing system 2 can include
microprocessor(s), memory, support circuits, 1O circuits, and the like. For
example, the processing system 2 can include circuits similar to the processing
system 210. In some examples, the processing system 2 can be used in place
of the processing system 210. In such case, the entire computing system 108
can be implemented using the programmable IC 228, where the software 206
executes on the processing system 2.

FIG. 10 illustrates an FPGA implementation of the programmable I1C 228
that includes a large number of different programmabile tiles including
transceivers 37, configurable logic blocks (“CLBs”) 33, random access memory
blocks (“BRAMS”) 34, input/output blocks (“IOBs”) 36, configuration and clocking
logic (*CONFIG/CLOCKS”) 42, digital signal processing blocks (“DSPs”) 35,
specialized input/output blocks (“I/O”) 41 (e.g., configuration ports and clock
ports), and other programmable logic 39 such as digital clock managers, analog-
to-digital converters, system monitoring logic, and so forth. The FPGA can also
include PCle interfaces 40, analog-to-digital converters (ADC) 38, and the like.

In some FPGAs, each programmable tile can include at least one

programmable interconnect element (“INT”) 43 having connections to input and

20

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

output terminals 48 of a programmable logic element within the same tile, as
shown by examples included at the top of FIG. 10. Each programmable
interconnect element 43 can also include connections to interconnect segments
49 of adjacent programmable interconnect element(s) in the same tile or other
tiles. Each programmable interconnect element 43 can also include connections
to interconnect segments 50 of general routing resources between logic blocks
(not shown). The general routing resources can include routing channels
between logic blocks (not shown) comprising tracks of interconnect segments
(e.q., interconnect segments 50) and switch blocks (not shown) for connecting
interconnect segments. The interconnect segments of the general routing
resources (e.g., interconnect segments 50) can span one or more logic blocks.
The programmable interconnect elements 43 taken together with the general
routing resources implement a programmable interconnect structure
(“programmable interconnect”) for the illustrated FPGA.

In an example implementation, a CLB 33 can include a configurable logic
element (“CLE”) 44 that can be programmed to implement user logic plus a
single programmable interconnect element (“INT”) 43. A BRAM 34 can include a
BRAM logic element (“BRL”) 45 in addition to one or more programmable
interconnect elements. Typically, the number of interconnect elements included
in a tile depends on the height of the tile. In the pictured example, a BRAM tile
has the same height as five CLBs, but other numbers (e.g., four) can also be
used. A DSP tile 35 can include a DSP logic element (“DSPL”) 46 in addition to
an appropriate number of programmable interconnect elements. An IOB 36 can
include, for example, two instances of an input/output logic element (“IOL”) 47 in
addition to one instance of the programmable interconnect element 43. As will
be clear to those of skill in the art, the actual I/O pads connected, for example, to
the 1/O logic element 47 typically are not confined to the area of the input/output
logic element 47.

In the pictured example, a horizontal area near the center of the die is
used for configuration, clock, and other control logic. Vertical columns 51
extending from this horizontal area or column are used to distribute the clocks
and configuration signals across the breadth of the FPGA.

Some FPGAs utilizing the architecture illustrated in FIG. 10 include

additional logic blocks that disrupt the regular columnar structure making up a

21

WO 2019/079319 PCT/US2018/056112

large part of the FPGA. The additional logic blocks can be programmable blocks
and/or dedicated logic.
Note that FIG. 10 is intended to illustrate only an exemplary FPGA

architecture. For example, the numbers of logic blocks in a row, the relative

5 width of the rows, the number and order of rows, the types of logic blocks
included in the rows, the relative sizes of the logic blocks, and the
interconnect/logic implementations included at the top of FIG. 10 are purely
exemplary. For example, in an actual FPGA more than one adjacent row of
CLBs is typically included wherever the CLBs appear, to facilitate the efficient

10 implementation of user logic, but the number of adjacent CLB rows varies with

the overall size of the FPGA.

A number of non-limiting examples are provided below.
In one example, a method of processing in a neural network system may be
provided. Such a method may include writing by a host computer system, a

15 plurality of weight matrices associated with a plurality of layers of a neural
network to a memory shared with a neural network accelerator; assembling a
plurality of per-layer instructions into an instruction package by the host
computer system, each per-layer instruction specifying processing of a
respective layer of the plurality of layers of the neural network, and respective

20 offsets of weight matrices in a shared memory; writing input data and the
instruction package by the host computer system to the shared memory;

reading the instruction package from the shared memory by the neural
network accelerator; and processing the plurality of per-layer instructions of the
instruction package by the neural network accelerator.

25 In some such method, the writing of the plurality of weight matrices may
include writing all of the plurality of weight matrices to the shared memory
before the processing of the plurality of per-layer instructions.

In some such method, the writing of the plurality of weight matrices may
include writing all of the plurality of weight matrices to contiguous address space

30 in the shared memory before the processing of the plurality of per-layer
instructions.

Some such method may further include communicating from the host
computer system to the neural network accelerator a parameter indicative of a

base address in the shared memory of the weight matrices.

22

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

In some such method, the processing the plurality of per-layer instructions
may include: processing a first per-layer instruction followed in succession by
processing a second per-layer instruction of the instruction package; reading
input data from a first portion of the shared memory and writing output data to a
second portion of the shared memory in processing the first per-layer instruction;
and reading input data from the second portion of the shared memory and
writing output data to the first portion of the shared memory in processing the
second per-layer instruction.

Some such method may further include: communicating from the host
computer system to the neural network accelerator a first parameter indicative of
an address in the shared memory of a first portion of a shared buffer and a
second parameter indicative of an offset in the shared buffer of a second portion
of the shared buffer; wherein the processing the plurality of per-layer instructions
may include: processing a first per-layer instruction followed in succession by
processing a second per-layer instruction of the instruction package; reading
input data from the first portion of the shared buffer and writing output data to the
second portion of the shared buffer in processing the first per-layer instruction;
and reading input data from the second portion of the shared buffer and writing
output data to the first portion of the shared buffer in processing the second per-
layer instruction.

Some such method may further include: determining by the host
computer system from a specification of the neural network, a size of the shared
buffer based on a maximum of sizes of input matrices and output matrices
referenced in the plurality of layers of the neural network.

In some such method, the assembling the plurality of per-layer
instructions may include specifying in one or more of the per-layer instructions,
configuration parameters for scaling, maxpool dimensions, and an activation
function.

In some such method, a first per-layer instruction and a second per-layer
instruction of the plurality of per-layer instructions specify different sets of neural
network operations.

In some such method, the processing the plurality of per-layer instructions
may include processing the plurality of per-layer instructions in the instruction

package in order of appearance in the instruction package.

23

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

In some such method, the processing the plurality of per-layer instructions
may include processing completing execution of instruction i before commencing
execution of instruction i+1 for n instructions in instruction package and 1 <= <=
n.

In some such method, the processing the plurality of per-layer instructions
may include evaluating a finite state machine transition table for a state machine
defined by the instruction package.

In another example, a neural network processing system may be
provided. Such a neural network processing system may include: a shared
memory; a host computer system coupled to the shared memory, wherein the
host computer system may be configured with instructions that when executed
cause the host computer system to: write a plurality of weight matrices
associated with a plurality of layers of a neural network to the shared memory;
assemble a plurality of per-layer instructions into an instruction package, each
per-layer instruction specifying processing of a respective layer of the plurality of
layers of the neural network, and respective offsets of weight matrices in the
shared memory; write input data and the instruction package to the shared
memory; and a neural network accelerator coupled to the shared memory and to
the host computer system, wherein the neural network accelerator may be
configured to: read the instruction package from the shared memory; and
process the plurality of per-layer instructions of the instruction package.

In some such neural network processing system, the instructions that
cause the host computer system to write the plurality of weight matrices may
include instructions that cause the host computer system to write all of the
plurality of weight matrices to the shared memory before the processing of the
plurality of per-layer instructions by the neural network accelerator.

In some such neural network processing system, the instructions that
cause the host computer system to write the plurality of weight matrices may
include instructions that cause the host computer system to write all of the
plurality of weight matrices to contiguous address space in the shared memory
before the processing of the plurality of per-layer instructions by the neural
network accelerator.

In some such neural network processing system, the host computer

system may be further configured with instructions that when executed cause the

24

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

host computer system to communicate to the neural network accelerator a
parameter indicative of a base address in the shared memory of the weight
matrices.

In some such neural network processing system, the neural network
accelerator in the processing the plurality of per-layer instructions may be
configured to: process in succession a first per-layer instruction and a second
per-layer instruction of the instruction package; read input data from a first
portion of the shared memory and write output data to a second portion of the
shared memory in processing the first per-layer instruction; and read input data
from the second portion of the shared memory and write output data to the first
portion of the shared memory in processing the second per-layer instruction.

In some such neural network processing system, the host computer
system may be further configured with instructions that when executed cause the
host computer system to: determine from a specification of the neural network, a
size of a shared buffer based on a maximum of sizes of input matrices and
output matrices referenced in the plurality of layers of the neural network; and
communicate to the neural network accelerator a first parameter indicative of an
address in the shared memory of a first portion of the shared buffer and a
second parameter indicative of an offset in the shared buffer of a second portion
of the shared buffer; the neural network accelerator in processing the plurality of
per-layer instructions, may be further configured to: process in succession a first
per-layer instruction and a second per-layer instruction of the instruction
package; read input data from the first portion of the shared buffer and write
output data to the second portion of the shared buffer in processing the first per-
layer instruction; and read input data from the second portion of the shared
buffer and write output data to the first portion of the shared buffer in processing
the second per-layer instruction.

In some such neural network processing system, the instructions that
cause the host computer system to assemble the plurality of per-layer
instructions include instruction that cause the host computer system to specify in
one or more of the per-layer instructions, configuration parameters for
convolution, matrix multiplication, scaling, maxpool dimensions, and an
activation function.

25

WO 2019/079319 PCT/US2018/056112

10

15

In some such neural network processing system, the neural network
accelerator in processing the plurality of per-layer instructions, may be further
configured to process the plurality of per-layer instructions in the instruction
package in order of appearance in the instruction package.

Though aspects and features may in some cases be described in
individual figures, it will be appreciated that features from one figure can be
combined with features of another figure even though the combination is not
explicitly shown or explicitly described as a combination.

The methods and system are thought to be applicable to a variety of
systems for neural network processing. Other aspects and features will be
apparent to those skilled in the art from consideration of the specification. The
methods and system may be implemented as one or more processors
configured to execute software, as an application specific integrated circuit
(ASIC), or as a logic on a programmable logic device. Itis intended that the
specification and drawings be considered as examples only, with a true scope of

the invention being indicated by the following claims.

26

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

CLAIMS
What is claimed is:

1. A method comprising:

writing by a host computer system, a plurality of weight matrices
associated with a plurality of layers of a neural network to a memory shared with
a neural network accelerator:;

assembling a plurality of per-layer instructions into an instruction package
by the host computer system, each per-layer instruction specifying processing of
a respective layer of the plurality of layers of the neural network, and respective
offsets of weight matrices in a shared memory;

writing input data and the instruction package by the host computer
system to the shared memory;

reading the instruction package from the shared memory by the neural
network accelerator; and

processing the plurality of per-layer instructions of the instruction package
by the neural network accelerator.

2. The method of claim 1, wherein the writing of the plurality of weight matrices
includes writing all of the plurality of weight matrices to the shared memory

before the processing of the plurality of per-layer instructions.

3. The method of claim 1 or claim 2, wherein the writing of the plurality of weight
matrices includes writing all of the plurality of weight matrices to contiguous
address space in the shared memory before the processing of the plurality of

per-layer instructions.
4. The method of any of claims 1-3, further comprising communicating from the

host computer system to the neural network accelerator a parameter indicative

of a base address in the shared memory of the weight matrices.

27

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

5. The method of any of claims 1-4, wherein the processing the plurality of per-
layer instructions includes:

processing a first per-layer instruction followed in succession by
processing a second per-layer instruction of the instruction package;

reading input data from a first portion of the shared memory and writing
output data to a second portion of the shared memory in processing the first per-
layer instruction; and

reading input data from the second portion of the shared memory and
writing output data to the first portion of the shared memory in processing the

second per-layer instruction.

6. The method of any of claims 1-5, wherein the processing the plurality of per-
layer instructions includes processing the plurality of per-layer instructions in the

instruction package in order of appearance in the instruction package.

7. The method of any of claims 1-6, wherein the processing the plurality of per-
layer instructions includes processing completing execution of instruction i before
commencing execution of instruction i+1 for n instructions in instruction package

and 1 <=ji<=n.

8. The method of any of claims 1-7, wherein the processing the plurality of
per-layer instructions includes evaluating a finite state machine transition table

for a state machine defined by the instruction package.

9. A neural network processing system, comprising:

a shared memory;

a host computer system coupled to the shared memory, wherein the host
computer system is configured with instructions that when executed cause the
host computer system to:

write a plurality of weight matrices associated with a plurality of

layers of a neural network to the shared memory;

28

WO 2019/079319 PCT/US2018/056112

10

15

20

25

30

assemble a plurality of per-layer instructions into an instruction
package, each per-layer instruction specifying processing of a respective
layer of the plurality of layers of the neural network, and respective offsets
of weight matrices in the shared memory;
write input data and the instruction package to the shared memory;
and
a neural network accelerator coupled to the shared memory and to the
host computer system, wherein the neural network accelerator is configured to:
read the instruction package from the shared memory; and
process the plurality of per-layer instructions of the instruction

package.

10. The neural network processing system of claim 9, wherein the instructions
that cause the host computer system to write the plurality of weight matrices
include instructions that cause the host computer system to write all of the
plurality of weight matrices to the shared memory before the processing of the

plurality of per-layer instructions by the neural network accelerator.

11. The neural network processing system of claim 9 or claim 10, wherein the
instructions that cause the host computer system to write the plurality of weight
matrices include instructions that cause the host computer system to write all of
the plurality of weight matrices to contiguous address space in the shared
memory before the processing of the plurality of per-layer instructions by the

neural network accelerator.

12. The neural network processing system of any of claims 9-11, wherein the
host computer system is further configured with instructions that when executed
cause the host computer system to communicate to the neural network
accelerator a parameter indicative of a base address in the shared memory of

the weight matrices.

29

WO 2019/079319 PCT/US2018/056112

10

15

20

13. The neural network processing system of any of claim 9-12, wherein the
neural network accelerator in the processing the plurality of per-layer instructions
is configured to:

process in succession a first per-layer instruction and a second per-layer
instruction of the instruction package;

read input data from a first portion of the shared memory and write output
data to a second portion of the shared memory in processing the first per-layer
instruction; and

read input data from the second portion of the shared memory and write
output data to the first portion of the shared memory in processing the second

per-layer instruction.

14. The neural network processing system of any of claims 9-13, wherein the
instructions that cause the host computer system to assemble the plurality of
per-layer instructions include instruction that cause the host computer system to
specify in one or more of the per-layer instructions, configuration parameters for
convolution, matrix multiplication, scaling, maxpool dimensions, and an

activation function.

15. The neural network processing system of claim 10, wherein the neural
network accelerator in processing the plurality of per-layer instructions, is further
configured to process the plurality of per-layer instructions in the instruction

package in order of appearance in the instruction package.

30

WO 2019/079319 PCT/US2018/056112

1/9
Computer System(s) 108
Neural Network(s) 110
Computer System 102
: Applications 112
Design
Tool(s) 104
—>
Acceleration
Libraries 106 Libraries 114
Hardware

Accelerator(s) 116

FIG. 1

3¢z (S)putey 0ve sunoug

poing ¢ 9l
0¢z uoibay

9|qewwe.bold y€z uoibay oneig

PCT/US2018/056112

TZ IN2IID) UONRIS[8IdY

2/9

WO 2019/079319

4-
L [H0EC | VOEC | ¢ sng |eJayduad
R g1 ¢ 9beio)s
Z¢ Dl 9qewwelbold VA
synaa) poddng
9¢¢ NVY | | ¥2Z WAN FA¥4
TS 10558201d0o1
011 I0jeJ9|920y aJempieH woyshs 0T¢ waysAs Buissanold
0¢ 2JempieH
AN PIT saueiqi] —
suoneolddy uoneJsedy vv¢ SO
00¢ 2./emyos
807 waysAg Jeindwo)

PCT/US2018/056112

WO 2019/079319

3/9

__||||||||||||||||||||||||||||||_
=— |
I — ¢S€ I
| ¥9€ — vse [01Ju0) >
99¢ S)
" 19[eos Buijood 2l SIM _
| Ln1ey . !
89¢ I
1 |
|| ZOF Aewe — 0S¢ — _
| soydynw le—] % | ooy le— 87 lg “ Oyt S9eds|
Iy new SQ4Id pesy 3Y3ed | 108UU02IB)U|
TR
|
I —
| ¢ _
_ |03U0D |
| — s)
| [8¢ P !
| | o4l = “A. T oboT | |
" 95¢ sopewuo; [“ 104100
b U IIIIIIIIIIIIIIIIIIIIIII 37 J0jeI9Roe
(2% ENIE
0€¢e
768 (X%%
|| -
I
— <> — =— I
¢le — ¥0¢ ¢0¢
sooepaiy |a—p] 06 mmﬁ%@ <> 30T 199UU02IB| 19]j0U0) |«—p{ Juiodpu3 _
Kowsp > yAQ letoyduad | |
I
I

€ Ol

7/ 0€¢C

PCT/US2018/056112

4/9

WO 2019/079319

m] @ E sjyBrom (-u) Jake|
S : L~ 02§
29¢ 7ot o > sjybiam z Jofe|
Rewe > Duieos > Bujood 89t > sjybiam | Joke|
sydinu xpew pue N3y -
y ¢0S sjybiom (Jofe
3 7 2160
Buissaippe
pue yojedsip
%A gep | | | [T " 81S
< i3 Jajing /g
Jopewuoy | ejep
7] 01,6 obeyoed
uononusul
807 sie)sibay 92¢
uonelnbyuoo h WvY
gz —
apu)s
aseq abeyoed uononysul
Jesyo O/g
. ssalppe 8seq /g
.V w_n_ 307 siejsibel < ssaippe aseq y
uone _smE_oo sigjaweled uoneinbijuos
. —
ejep jndjno o %ﬂd . A
| 9T e N SOBUIUI W) oy
8¢ X <« WY 0lv 180y
lojesajpaoe ejep Jndu < ylomawel) N
ouIaY suoINJsul Sorond ejep jndul
s1ubiom abexoed uononsul
00y —* 4ol SubroM

WO 2019/079319

5/9

602 Gather weight matrices and write
merged weight matrices to shared RAM
in contiguous address space

h 4

604 Determine size of B/C buffer

606 Configure kernel accelerator with
base addresses of instruction package,
weight matrices, and B/C buffer

h 4

608 Receive a command to initiate
neural network processing of an input
data set

610 Assemble per-layer instructions for
kernel accelerator

h 4

612 Write the package of per-layer
instructions to shared RAM

614 Write input data to the B/C buffer in
shared RAM

616 Signal kernel accelerator to
commence processing

h 4

618 Read output from B/C buffer in
shared RAM

FIG. 6

PCT/US2018/056112

WO 2019/079319 5/9 PCT/US2018/056112

702 Read per-layer instruction from
instruction package

Ll

704 Setup addressing of weight matrix
and B/C buffer according to instruction

706 Perform specified neural network
operations of the layer using
parameters specified in the per-layer
instruction

h 4

708 \ 0
More 0
instructions? /

yes

Y
710 Read next per-layer instruction
from instruction package

Y
712 Signal completion

FIG. 7

PCT/US2018/056112

WO 2019/079319

79

718 9
N3y ‘jood ‘WNID

718 09
N13Y ‘jood ‘WINTD

018 e
N3y ‘lood ‘WNTD

808 010
N3y ‘jood ‘WNID

008 "0e
N3y ‘lood ‘WNTD

<«— p19fe

<«— ¢ iafe

<«—— g 1ofe

<« | Jofe

<«— (Jofe

A A A A

8 Ol

Jesyong+eseq /g = 9
oseqO/d=9
Josyoy1+aseq siybiom = y

9seq 0/ =9
jJosyong+eseq H/d =9
Josyjog+aseq sjybiem =

1osjoDg+eseq 9/gd = 9
oseq/d=9
Josyoz1+aseq sjybiam = y

9seq)/d=9
Jesyong+eseq H/d =9
1980 1+0seq Siyblom =

Jespong+eseq 9/d = 9
eseqo/d=49
aseq syybiam =

c08

sjybiom y Jofe
< Josyop1+aseq sjybiam
s)yblam ¢ Joke
B Josyog1+oseq sjybiom
sjyBlom g Jake|
Siubiom | joke) |\ Josjjoz 1+0seq Sjybiom
< Josyjo|, 1+9seq sjybiom
sjyBiam Jakey
aseq sjybiom
“““““““““““““““““ <«——]8s}jo)g+eseq O/d
daynqg o/d
M < 9seq O/d
708

WO 2019/079319 8/9 PCT/US2018/056112

228
N

e e e e —— — —— —— —— — — —

Programmable Logic 3

Support
Circuits
kil

Logic
Cells 30

Programmable
Interconnect 32

Configuration Logic 25

Configuration Memory 26
Nonvolatile Other
Memory 224 RAM 220 Circuits 29

FIG. 9

PCT/US2018/056112

9/9

WO 2019/079319

o N 1
AT |
09 w1 75 || —
0l 9OI4 _ | v, 8¢ 0QV 7€ sionigosuel |
I
_ —
9 _Mmuﬁ T, _____[pEsiv
14174 _ N £e sd10
_ 37 N T
\%ﬂ I 9€ sgol
I g h_ €€ 5610
/7] GE sdsa
/ 1 11 1] 1 1 1] 11 | 1 11 111
p 1 1 11 L 111 L 111 111 L1 11 1 111
I V€ Sy
09 L1 11 L1 11 L1 11 1 1 11 55 | | 1 11
S A A N A CSHIOTT T 111
| > | €euwo| W oon % SH0010/ OIINOD
g ﬂ _ cC n,
idl o £e sg10
1dsda _ L
1 _ GE SdSd
_ a L x Lk = 111 1 11 L1 11 111 1 11 l
X4 (X4 CY 4 Cb L1 11 L1 11 L1 11 L1 11 L1 1 1]
INI P INI P INI B INI | INI V€ Svyd
£€ 5870
9¢ sg0|
V€ Snvyg
€€ 910
07 @10d 7€ Janigosuel |

/ 1S NOILNGI¥LSIA D010/ 9I14NOD .\

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/056112

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6N3/063 GO6N3/04
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X YONGMING SHEN ET AL:

Partitioning",

YORK, NEW YORK, USA,

XP058369126,
DOI: 10.1145/3079856.3080221
ISBN: 978-1-4503-4892-8
abstract; figures 1-5
paragraph [0001]
paragraph [04.1]
paragraph [0005]
page 542 - page 543
paragraph [0006]
paragraph [06.5]
paragraph [0007]

"Maximizing CNN
Accelerator Efficiency Through Resource

PROCEEDINGS OF THE 44TH ANNUAL
INTERNATIONAL SYMPOSIUM ON COMPUTER
ARCHITECTURE , ISCA '17, ACM PRESS, NEW

24 June 2017 (2017-06-24), pages 535-547,

- paragraph [03.1]
- paragraph [04.3]
- paragraph [05.1]

1-15

_/__

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

21 January 2019

Date of mailing of the international search report

30/01/2019

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Cilia, Elisa

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/056112

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X JIANTAO QIU ET AL: "Going Deeper with
Embedded FPGA Platform for Convolutional
Neural Network",

PROCEEDINGS OF THE 2016 ACM/SIGDA
INTERNATIONAL SYMPOSIUM ON
FIELD-PROGRAMMABLE GATE ARRAYS, FPGA '16,
21 February 2016 (2016-02-21), pages
26-35, XP055423746,

New York, New York, USA

DOI: 10.1145/2847263.2847265

ISBN: 978-1-4503-3856-1

abstract; figures 1, 4-5, 7-9; tables 4-5
paragraph [02.1]

paragraph [03.3]

paragraph [06.1] - paragraph [07.2]

A LI ZHEN ET AL: "A survey of neural
network accelerators",

FRONTIERS OF COMPUTER SCIENCE, SPRINGER
BERLIN HEIDELBERG, BERLIN/HEIDELBERG,
vol. 11, no. 5, 17 May 2017 (2017-05-17),
pages 746-761, XP036319088,

ISSN: 2095-2228, DOI:
10.1007/S11704-016-6159-1

[retrieved on 2017-05-17]

the whole document

A MAURICE PEEMEN ET AL: "Memory-centric
accelerator design for Convolutional
Neural Networks",

2013 IEEE 31ST INTERNATIONAL CONFERENCE ON
COMPUTER DESIGN (ICCD),

6 October 2013 (2013-10-06), pages 13-19,
XP055542639,

DOI: 10.1109/1CCD.2013.6657019

ISBN: 978-1-4799-2987-0

the whole document

A ZIDONG DU ET AL: "ShiDianNao",
PROCEEDINGS OF THE 42ND ANNUAL
INTERNATIONAL SYMPOSIUM ON COMPUTER
ARCHITECTURE, ISCA '15,

13 June 2015 (2015-06-13), pages 92-104,
XP055301503,

New York, New York, USA

DOI: 10.1145/2749469.2750389

ISBN: 978-1-4503-3402-0

the whole document

1-15

1-15

1-15

1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 3

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/056112

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

CHEN YUNJI ET AL: "DaDianNao: A
Machine-Learning Supercomputer",

2014 47TH ANNUAL TEEE/ACM INTERNATIONAL
SYMPOSIUM ON MICROARCHITECTURE;
[PROCEEDINGS OF THE ANNUAL ACM/IEEE
INTERNATIONAL SYMPOSIUM ON
MICROARCHITECTURE], IEEE COMPUTER SOCIETY,
1730 MASSACHUSETTS AVE., NW WASHINGTON, DC
20036-1992 USA,

13 December 2014 (2014-12-13), pages
609-622, XP032725058,

ISSN: 1072-4451, DOI:
10.1109/MICR0.2014.58

ISBN: 978-0-7695-3047-5

[retrieved on 2015-01-15]

the whole document

1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 3 of 3

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report
	Page 43 - wo-search-report
	Page 44 - wo-search-report

