Title: METHOD AND DEVICE FOR ANISOTROPIC ETCHING OF HIGH ASPECT RATIO

(57) Abstract: The invention concerns a method which consists in: plasma etching treatment of a substrate (2) contained in a chamber (1) whereof the atmosphere (5) is maintained at low pressure by a vacuum-generating device (6, 7). Plasma-generating means (8) generate a plasma (9) which acts on the surface (2a) of the substrate (2). The etching method consists in submitting the substrate (2) to an alternating succession of steps comprising: a plasma etching step with etching gas derived from an etching gas source (19), a second plasma passivation step with passivating gas derived from a passivating gas source (20), followed by a selective plasma pulsed de-passivation step by the action of a cleaning plasma gas derived from a cleaning plasma gas source (21) which removes the polymer in the base zone of the cavities (2b) more efficiently than the etching gas, thereby enabling formation of cavities (2b) having an aspect ratio higher than 30, with increased speed, and good selectivity with respect to the mask protecting the substrate (2).

(57) Abrégé : Selon l’invention, on traite par gravure au plasma un substrat (2) contenu dans une enceinte (1) dont l’atmosphère (5) est maintenue à faible pression par un dispositif de génération de vide (6, 7). Des moyens de génération de plasma (8) génèrent un plasma (9) qui agit sur la surface (2a) du substrat (2). Le procédé de gravure soumet le substrat (2) à une succession alternée d’étapes comprenant : une étape d’attaque par plasma de gaz de gravure provenant d’une source de gaz de gravure (19), une seconde étape de passivation par plasma de gaz de passivation provenant d’une
(81) États désignés (national) : JP, US.

(84) États désignés (régional) : brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR).

Déclaration en vertu de la règle 4.17 :
— relative à la qualité d’inventeur (règle 4.17.iv)) pour US seulement

Publiée :
— avec rapport de recherche internationale
— avant l’expiration du délai prévu pour la modification des revendications, sera publiée si des modifications sont reçues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

source de gaz de passivation (20), elle-même suivie d’une étape impulsionnelle de dépassivation sélective par action d’un plasma de gaz de nettoyage provenant d’une source de gaz de nettoyage (21) qui enlève le polymère dans la zone de fond des cavités (2b) de façon plus efficace que le gaz de gravure. Cela permet de réaliser des cavités (2b) ayant un facteur d’aspect supérieur à 30, avec une vitesse augmentée, et une bonne sélectivité vis à vis du masque protégeant le substrat (2).
PROCÉDE ET DISPOSITIF DE GRAVURE ANISOTROPE
DU SILICIUM A HAUT FACTEUR D'ASPECT

DOMAINE TECHNIQUE DE L'INVENTION

La présente invention concerne les procédés et dispositifs utilisés pour réaliser des microreliefs à la surface des substrats, notamment des substrats en silicium.

L'invention concerne plus spécialement les procédés et dispositifs permettant de réaliser de tels reliefs par attaque chimique anisotrope au plasma, pour la réalisation de composants à base de silicium, par exemple des composants à semi-conducteur pour l'électronique, ou des pièces pour composants de micromécanique.

Dans la fabrication, de tels composants, on cherche en général à réaliser des reliefs qui reproduisent sur la surface du substrat un modèle plan à deux dimensions dont les bords sont nets et perpendiculaires au plan. Par exemple, on veut réaliser un trou borgne ou traversant, selon la direction perpendiculaire au plan général du substrat ou tranche de silicium, et la paroi du trou doit être parallèle à l'axe, la section du trou étant constante sur toute sa hauteur.

Dans le domaine industriel des MEMS, ou microsystèmes électromécaniques, il y a une demande de plus en plus importante pour la réalisation de structures à très haut facteur d'aspect dans des substrats de silicium. On peut citer comme exemple l'intérêt qu'il y aurait à réaliser des trous de 2 à 3 μm de diamètre sur des profondeurs de 100 à 200 μm, correspondant à un facteur d'aspect de 30 à 100, pour fabriquer des condensateurs de forte capacité et miniaturisés pour être utilisés dans les téléphones portables.

Un autre exemple est le souhait de réaliser des trous de l'ordre de 10 μm de diamètre sur toute l'épaisseur d'une plaquette de silicium pour réaliser les prises de contact : ces trous, une fois métallisés, permettraient de réaliser les connexions électriques vers l'extérieur en remplacement des habituels fils d'or. On pourrait ainsi réaliser des connexions très reproductibles, mais surtout beaucoup plus courtes, diminuant les inductances parasites et présentant ainsi un grand intérêt pour les applications haute fréquence.
On pourrait également envisager d'hybrider des MEMS avec des circuits intégrés classiques et obtenir ainsi des MEMS avec le traitement du signal intégré.

Le micro-usinage des substrats en silicium est actuellement réalisé par des techniques de gravure au plasma. La technique la plus répandue aujourd'hui est pour cela la gravure par plasma de gaz fluoré telle que décrite dans les documents US 5 501 893 ou US 4 985 114. Cette technique consiste à protéger partiellement le substrat de silicium par un masque, et à soumettre le substrat ainsi protégé partiellement à une succession alternée d'étapes d'attaque par plasma de gaz de gravure et d'étapes de passivation par plasma de gaz de passivation. Au cours de chaque étape d'attaque, le plasma de gaz de gravure tel que l'hexafluorure de soufre SF₆ réalise des cavités dans les zones de substrat non protégées par le masque. Au cours de chaque étape de passivation, le plasma de gaz de passivation tel qu'un gaz fluorocarboné, par exemple C₅F₉₄, dépose sur la paroi de la cavité un film polymère protecteur. Chacune des étapes d'attaque et de passivation a une durée très courte, de quelques secondes, et la passivation évite, au cours de l'étape d'attaque ultérieure, que le plasma de gaz de gravure attaque la paroi latérale de la cavité. Il en résulte que l'attaque se fait sélectivement dans le fond de la cavité, après que le plasma de gaz de gravure ait enlevé le film de polymère protecteur dans le fond de la cavité. Ainsi, malgré le caractère isotrope de l'attaque du silicium par un plasma de gaz de gravure tel qu'un gaz fluoré, on obtient une gravure quasi anisotrope, rapide et sélective du silicium.

Mais lorsqu'on utilise cette technique pour réaliser des gravures de motifs à haut facteur d'aspect, comme des tranchées de 2 à 3 μm de large, on se rend compte que le profil de gravure est tout d'abord vertical puis, à partir d'une certaine profondeur, ce profil devient légèrement positif de sorte que les deux côtés de la tranchée finissent par se rejoindre, et il n'est plus possible d'augmenter la profondeur de la tranchée. Le résultat obtenu est illustré sur la figure 1, qui est la photographie d'une coupe de substrat de silicium gravé par cette technique connue : dans un substrat 2 dont la surface 2a est recouverte d'un masque 2c, on a
tenté de réaliser une cavité 2b profonde ; il n'a pas été possible d'atteindre une profondeur de plus d'une cinquantaine de µm, les parois de la cavité 2b se rejoignant selon un fond 2g de section nulle empêchant toute gravure supplémentaire. À ce jour, en pratique, on ne sait guère faire de manière industrielle des gravures de motifs avec des facteurs d'aspect supérieurs à 20, c'est-à-dire ayant une profondeur supérieure à 20 fois la largeur ou le diamètre.

Il existe donc un besoin d'augmenter le facteur d'aspect des reliefs réalisés par gravure sur un substrat de silicium.

Pour cela, comme décrit dans le document JP 63 043321 A, une première solution a été d'augmenter l'énergie des ions pendant l'étape de gravure, en augmentant la tension de polarisation du substrat. Ce faisant, on diminue le nombre d'ions perdus sur les parois de la tranchée et on peut bénéficier de plus d'ions pour pulvériser la couche de polymère dans le fond de la tranchée. On a ainsi pu augmenter légèrement le facteur d'aspect, passant d'un facteur de 20 à un facteur de 23 seulement. Par contre, cette solution présente le gros inconvénient d'augmenter la vitesse d'attaque du masque lui-même qui est en silice ou en résine photosensible, et on diminue ainsi la sélectivité de gravure.

Une seconde solution également mentionnée dans le document JP 63 043321 A est d'augmenter le flux d'ions arrivant sur la surface du substrat, en espérant avoir ainsi assez d'ions pour pulvériser le film de polymère dans le fond des cavités. Pour cela, on a tout d'abord augmenté la puissance de la source de plasma. On a pu ainsi augmenter le facteur d'aspect jusqu'à environ 27, mais en dégradant la sélectivité par rapport au masque comme dans la solution précédente. En alternative, on a placé le substrat au plus près de la source de plasma, et on a pu ainsi augmenter également le facteur d'aspect jusqu'à environ 27. Mais on a alors dégradé l'uniformité de gravure, c'est-à-dire la profondeur de gravure en fonction des zones considérées sur le substrat.

Une troisième solution qui a été imaginée est de diminuer la pression de travail, afin d'augmenter ainsi le libre parcours moyen des particules, diminuant ainsi les collisions entre particules et augmentant la directivité des ions. Comme dans la
première solution, on a pu bénéficier de plus d'ions pour pulvériser la couche de polymère dans les coins du fond de la tranchée, et on a pu augmenter légèrement le facteur d'aspect jusqu'à une valeur d'environ 23. Cette solution ne permet pas d'augmenter sensiblement le facteur d'aspect, et présente en outre l'inconvénient de diminuer considérablement la vitesse de gravure du silicium, ce qui est contraire au but recherché.

Les résultats de ces essais sont illustrés sur la figure 2. La courbe A illustre le procédé habituel de gravure par alternance d'étapes d'attaque pas plasma de gaz fluoré et d'étapes de passivation par plasma de gaz fluorocarboné selon le document US 5 501 893. La courbe B illustre le résultat obtenu en augmentant la tension de polarisation du substrat, c'est-à-dire en augmentant l'énergie de bombardement des ions du plasma. La courbe C illustre le résultat obtenu en rapprochant le substrat au plus près de la source de plasma. Et la courbe D illustre le résultat obtenu en réduisant d'un facteur deux la pression d'atmosphère dans la chambre de gravure.

Dans chaque cas, la courbe illustre la variation progressive de la vitesse de gravure, ou vitesse de creusement des cavités, en fonction de la profondeur atteinte de la cavité. On constate que pour chaque courbe la vitesse de gravure diminue progressivement en fonction de la profondeur de cavité. Pour chaque courbe, on atteint un maximum de profondeur, et ce maximum détermine le facteur d'aspect maximum pouvant être atteint par le procédé. La courbe A montre un facteur d'aspect maximum d'environ 21. La courbe B montre un facteur d'aspect maximum d'environ 23. La courbe C montre un facteur d'aspect maximum d'environ 29. La courbe D montre un facteur d'aspect maximum d'environ 23.

Une autre solution proposée dans le document US 2002 144974 A consiste à effectuer l'étape de gravure en mélangeant de l'oxygène au gaz de gravure (SF₆), pour oxyder le soufre et éviter ainsi de contaminer par le soufre les pompes ou les chambres de procédés. Le document enseigne que la présence d'oxygène n'a pas d'effet sur le procédé de gravure lui-même.

Pour réaliser une gravure à facteur d'aspect plus élevé, le document WO 00 05749 A enseigne de réaliser l'étape de gravure
ou l'étape de passivation par un procédé chimique en phase gazeuse en l'absence de plasma. L'étape de dépassivation est réalisée par plasma d'un gaz précurseur, d'argon, de halo ou hydrocarbone, de gaz de passivation, de gaz de gravure, ou par irradiation. Un tel procédé est difficile à mettre en œuvre et peu rapide, à cause de l'incompatibilité entre les étapes chimiques de gravure ou de passivation hors plasma et les étapes mettant en œuvre un plasma, qui s'effectuent à des pressions différentes.

Le document US 6,277,756 B1 enseigne de graver par un plasma de gaz à mélange d'oxygène et d'argon, puis de passiver par oxydation et formation de silice. Il n'y a pas de dépassivation par un gaz spécifique.

EXPOSE DE L'INVENTION

La présente invention a pour but de réaliser industriellement une gravure de silicium ayant une anisotropie pratiquement parfaite, sans attaque par contre-dépouille ni rétrécissement progressif de la cavité, jusqu'à des profondeurs nettement augmentées permettant d'atteindre des facteurs d'aspect supérieurs à 45.

L'invention vise également à réaliser industriellement de telles gravures avec des vitesses au moins aussi élevées, sinon supérieures aux vitesses de gravure par les procédés connus en étapes alternées d'attaque par plasma de gaz fluoré et de passivation par plasma de gaz fluorocarboné.

Pour atteindre ces buts ainsi que d'autres, l'invention prévoit un procédé de gravure anisotrope du silicium, dans lequel un substrat de silicium protégé partiellement par un masque est soumis à une succession alternée d'étapes d'attaque par plasma de gaz de gravure réalisant des cavités dans les zones de substrat non protégées par le masque et d'étapes de passivation par plasma de gaz de passivation assurant un dépôt de polymère protecteur sur les parois des cavités résultant des étapes d'attaque.

le procédé de l'invention comprend en outre des étapes impulsionnelles de dépassivation sélective par lesquelles le dépôt de polymère protecteur est soumis à l'action d'un plasma de gaz de nettoyage plus efficace que le gaz de gravure et qui enlève le polymère protecteur dans la zone de fond des cavités.
Grâce à un nettoyage plus efficace du film protecteur dans la zone de fond des cavités, on fait disparaître l'inconvénient du rapprochement progressif des parois de la cavité dans le fond de la cavité, permettant d'atteindre des facteurs d'aspect nettement plus élevés.

Selon un mode de réalisation, le procédé comprend une étape impulsionnelle de dépassivation sélective après chaque étape de passivation.

Avantageusement, chaque étape impulsionnelle de dépassivation sélective est disjointe de l'étape de passivation qui la précède et de l'étape d'attaque qui la suit.

Le gaz de gravure peut avantagéusement être un gaz fluoré tel que SF₆, CF₄ ou NF₃. Les meilleurs résultats semblent être obtenus par SF₆.

Le gaz de passivation peut avantagéusement être un gaz fluorocarbure, tel que CHF₃, C₂F₆, C₃F₈, C₄F₈, ou leurs mélanges.

Dans tous les cas, le gaz de nettoyage peut avantagéusement contenir de l'oxygène. On peut ainsi utiliser comme gaz de nettoyage l'un au moins des gaz O₂, SO₂, CO, CO₂, NO, NO₂, N₂O, ou leurs mélanges.

Selon un autre aspect, l'invention prévoit un dispositif de gravure anisotrope de substrat en silicium, comprenant :
- une enceinte étanche conformée pour recevoir et contenir un substrat à graver,
- des moyens de création et de maintien d'un vide approprié dans l'enceinte,
- des moyens d'injection de gaz pour injecter sélectivement dans l'enceinte des gaz de gravure, des gaz de passivation et des gaz de nettoyage selon des durées et des débits programmés,
- des moyens de génération d'un plasma dans l'enceinte, face à la surface de substrat à graver,
- des moyens de polarisation du substrat,
- des moyens de commande qui pilotent les moyens d'injection de gaz, les moyens de génération de plasma et les moyens de polarisation de substrat selon les étapes successives de gravure, de passivation et de dépassivation par plasma telles que définies ci-dessus.
Selon un autre aspect, l'invention permet de réaliser industriellement des composants à base de silicium à microreliefs présentant un facteur d'aspect supérieur à 45, en utilisant par exemple un procédé tel que défini ci-dessus. De tels composants présentant en eux-mêmes un caractère de nouveauté, car ils n'avaient pas pu être obtenus jusqu'à présent.

DESCRIPTION SOMMAIRE DES DESSINS

D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles:

- la figure 1 précédemment considérée illustre le profil de tranchées réalisés par un procédé de gravure selon l'art antérieur ;

- la figure 2 illustre les courbes de vitesse de gravure en fonction du facteur d'aspect pour plusieurs procédés de gravure connus ;

- la figure 3 illustre une vitesse d'attaque d'un film de polymère protecteur, en fonction de la tension de polarisation de substrat, d'une part lors d'une attaque par SF₆, d'autre part lors d'une attaque par un plasma d'oxygène ;

- la figure 4 illustre schématiquement un dispositif de gravure selon un mode de réalisation de l'invention ;

- la figure 5 est un diagramme temporel illustrant les étapes du procédé selon un mode de réalisation de l'invention ;

- la figure 6 illustre schématiquement la formation d'une cavité lors de la suite de quatre étapes successives selon le procédé de la figure 5 ; et

- la figure 7 illustre un profil de tranchées en cours de réalisation par un procédé de gravure selon l'invention.

DESCRIPTION DES MODES DE REALISATION PREFERES

On considère tout d'abord le dispositif de gravure selon l'invention, par exemple dans le mode de réalisation illustré sur la figure 4.

Un tel dispositif comprend une enceinte 1 étanche, conformée pour recevoir et contenir un substrat 2 à graver. Le substrat 2 est posé sur un support 3 lui-même polarisé négativement.
par rapport à la masse par des moyens de polarisation comprenant une source de polarisation 4.

Un dispositif de génération de vide 6, relié à l'enceinte 1 par une canalisation 7, et comprenant par exemple une pompe primaire et une pompe secondaire, permet de créer et de maintenir un vide approprié dans l'enceinte 1.

Le substrat 2 est orienté dans l'enceinte 1 de façon que sa surface 2a à travailler soit apparente. On peut par exemple réaliser dans la surface 2a des cavités telles que la cavité 2b.

Face à la surface 2a à usiner, se trouvent des moyens de génération de plasma 8, pour générer un plasma 9 qui est dirigé vers la surface 2a à usiner et qui se trouve attiré par le substrat 2 polarisé par la source de polarisation 4. Le moyen de génération de plasma 8 comprend, de façon schématique, un générateur de micro-ondes ou radiofréquences 10 qui, par l'intermédiaire d'un transducteur ou d'un applicateur radio-fréquences 11, excite les atomes de gaz dans une zone de génération de plasma 12.

Le dispositif comprend en outre des moyens 13 pour injecter sélectivement dans l'enceinte 1 des gaz de gravure, des gaz de passivation et des gaz de dépassivation. Ainsi, ces moyens d'injection de gaz 13 comprennent une entrée de gaz 14 dans l'enceinte 1, de préférence en amont de la zone de génération de plasma 12, l'entrée de gaz 14 étant reliée par des canalisations 15 et des vannes de commande 16, 17 et 18 respectivement à une source de gaz de gravure 19, à une source de gaz de passivation 20 et à une source de gaz de nettoyage 21. Les vannes de commande 16, 17 et 18 sont actionnées par des moyens de commande 22 pour piloter l'injection de gaz selon les étapes successives de gravure, de passivation et de dépassivation du procédé qui sera décrit ci-après.

On considérera maintenant les diagrammes de la figure 5, qui illustrent respectivement les temps d'ouverture de la vanne 16 pour l'alimentation en gaz de gravure, les temps d'ouverture de la vanne 17 pour l'alimentation en gaz de passivation, et les temps d'ouverture de la vanne 18 pour l'alimentation en gaz de nettoyage. On voit que les étapes du procédé sont impulsionnelles, c'est-à-dire de durée limitée entre des périodes d'arrêt.
On voit que la première étape d'attaque a) consiste à ouvrir la vanne 16, pour générer un plasma 9 de gaz de gravure. La première étape d'attaque a) est suivie d'une seconde étape de passivation b) disjointe, au cours de laquelle on ferme la vanne 16 et on ouvre la vanne 17 pour la génération d'un plasma 9 de gaz de nettoyage. Ensuite on ferme la vanne 17 et, au cours d'une étape de dépasse sion sélective c) on ouvre la vanne 18 pour la génération d'un plasma 9 de gaz de nettoyage. On ferme ensuite la vanne 18 et on recommence les opérations dans une étape d) en ouvrant à nouveau la vanne 16 pour la génération d'un plasma de gaz de gravure, et ainsi de suite.

Dans le mode de réalisation illustré sur la figure 5, les étapes successives a), b), c) et d) sont disjointes les unes des autres. On pourrait toutefois, sans sortir du cadre de l'invention, prévoir une étape c) qui empiète sur l'une et/ou l'autre des étapes b) et d) adjacentes.

Au cours de l'étape a) de génération d'un plasma de gaz de gravure, on introduit dans l'enceinte 1 un gaz de gravure de type gaz fluoré, tel que SF₆, CF₄ ou NF₃ par exemple. D'excellents résultats sont obtenus en utilisant l'hexafluorure de soufre SF₆.

Pendant cette étape, les atomes de fluor générés dans le plasma attaquent de manière isotrope la surface de silicium exposée. Sur la figure 6, on a illustré schématiquement l'action des plasmas sur le substrat : le substrat 2 est illustré en coupe partielle à grande échelle, à l'endroit d'une cavité 2b à réaliser : le substrat 2 est recouvert d'un masque 2c comportant une lumière 2d au droit de la cavité 2b à réaliser. Ainsi, par la lumière 2d, le substrat 2 reste apparent et accessible par le plasma.

Sur la vue o) de la figure 6, le substrat 2 est représenté avant gravure.

Sur la vue a) de la figure 6, on a illustré l'action du plasma de gaz de gravure SF₆, qui attaque de façon isotrope le silicium du substrat 2 au droit de la lumière 2d pour réaliser un premier tronçon 2b1 de la cavité 2b. La durée de l'étape de gravure entre les instants t₁ et t₂ sur la figure 5, est choisie de façon que le premier tronçon 2b1 de cavité présente une forme peu différente de la forme désirée, c'est-à-dire avec une paroi
latérale 2e, sensiblement perpendiculaire à la surface 2a du substrat. Une profondeur de premier tronçon 2b1 de quelques microns peut convenir. On peut choisir des paramètres de gravure tels que ceux habituellement utilisés, par exemple une polarisation du substrat 2 de l'ordre de 20 à 80 volts, une pression de l'atmosphère 5 gazeuse dans l'enceinte 1 de l'ordre de 10 à 100 Pa, et le débit de gaz de gravure est de l'ordre de 10 à 200 Sccm (cm³ standard par minute).

Au cours de l'étape b) de passivation, on génère un plasma de gaz de passivation en utilisant un gaz fluorcarboné tel que CHF₃, C₂F₆, C₃F₈, C₄F₈. La pression de l'atmosphère 5 dans l'enceinte 1 est similaire de celle de l'étape a), et le débit de gaz de passivation est compris entre 50 et 300 Sccm. Au cours de cette étape, comme illustré sur la vue b) de la figure 6, le plasma de gaz de passivation génère la formation d'un film de polymère protecteur 2f sur toute la surface intérieure du premier tronçon 2b1 de cavité, c'est-à-dire à la fois sur la paroi latérale 2e et sur le fond 2g. La durée entre les instants de début t2 et de fin t3 de l'étape b) est choisie de façon que l'épaisseur du film protecteur soit satisfaisante, par exemple de l'ordre de quelques nanomètres à quelques dizaines de nanomètres.

Au cours de l'étape c), on génère un plasma de gaz de nettoyage ou de dépassivation, choisi de façon à assurer un nettoyage du polymère plus efficace que celui assuré par le gaz de gravure, et qui enlève le polymère dans la zone de fond 2g des cavités 2b de façon sélective. De bons résultats sont obtenus en utilisant un gaz de nettoyage contenant de l'oxygène, par exemple un gaz de nettoyage comprenant l'un au moins des gaz : O₂, SO₂, CO, CO₂, NO, NO₂, N₂O.

De préférence, on polarise simultanément le substrat 2 par la source de polarisation 4, pour attirer les ions oxygène sur le substrat 2.

On a pu mesurer la vitesse de gravure du film de polymère par le plasma d'oxygène et la comparer à celle obtenue par le plasma de gaz fluoré SF₆ correspondant à l'étape de gravure. La comparaison est illustrée sur la figure 3. On voit que la courbe correspondant au plasma d'oxygène permet une vitesse de nettoyage
VN au moins quatre fois supérieure à la vitesse obtenue par un nettoyage à l'hexafluorure de soufre SF₆, pour toutes les tensions de polarisation BV entre 0 et 100 volts. Par conséquent, le plasma d'oxygène est au moins quatre fois plus efficace que le plasma de gaz fluoré comme le SF₆, pour nettoyer le film de polymère. De plus, dans un plasma de gaz contenant des atomes d'oxygène, on bénéficie de l'effet oxydant des ions mais aussi de l'effet oxydant des atomes, qui sont des particules neutres à trajectoire isotrope. On constate que l'étape de nettoyage permet d'enlever également le film de polymère sur les flans verticaux de cavité au voisinage du fond de la cavité, évitant ainsi le rétrécissement des motifs et permettant d'atteindre des facteurs d'aspect plus élevés.

Comme le temps passé à enlever le film de polymère est fortement diminué, le temps disponible pour l'étape de gravure est augmenté d'autant, et on peut donc augmenter la vitesse nette de gravure et donc augmenter la productivité de l'équipement.

Au cours de l'étape impulsionnelle de dépassivation sélective ou de nettoyage, le substrat 2 est polarisé à une tension proche de celle utilisée pendant les étapes d'attaque, typiquement de 20 à 120 volts, avantageusement de 20 à 80 volts, de façon à attirer les ions du plasma. La pression de l'atmosphère entourant le substrat 2 est comprise entre 0,5 et 10 Pa, de préférence comprise entre 2 et 5 Pa. Le débit de gaz de nettoyage est compris entre 10 et 100 Sccm, et la durée de l'étape c) est choisie juste suffisante pour assurer un nettoyage efficace de la zone du fond 2g des cavités 2b.

Comme on le voit sur la vue c) de la figure 6, l'étape de dépassivation par action du plasma d'oxygène O₂ permet d'enlever efficacement et rapidement le film de polymère sur le fond 2g du premier tronçon 2b1 de cavité.

Ensuite, au cours de l'étape d), on recommence une étape d'attaque similaire à l'étape a), par action du plasma de gaz de gravure SF₆, qui réalise un second tronçon 2b2 de la cavité 2b. On continue ensuite par une étape impulsionnelle de passivation, puis par une étape de dépassivation et ainsi de suite.

En pratique, la durée des étapes impulsionnelles de dépassivation sélective c) peut être déterminée en fonction de la
durée des étapes de passivation b) qui les précèdent. En effet, plus le film de polymère est épais, plus il faut une étape impulsionnelle de dépassivation sélective longue.

D'autre part, la durée des étapes impulsionnelles de dépassivation sélective peut être choisie croissante d'une étape de dépassivation à l'autre au cours du procédé de gravure d'un même substrat 2. En effet, comme indiqué sur la figure 1, les premières étapes de gravure permettent de réaliser une cavité à paroi latérale sensiblement verticale jusqu'à atteindre un facteur d'aspect de l'ordre de 20, sans qu'il soit nécessaire d'utiliser des étapes de nettoyage longues pour conserver la section constante de la cavité. L'intérêt des étapes de dépassivation est alors seulement d'augmenter la rapidité du procédé. Mais ensuite, il devient indispensable d'utiliser les étapes de dépassivation pour garantir l'obtention du facteur d'aspect au-delà de 20 ou 30. On peut alors imaginer d'utiliser des étapes de dépassivation dont la durée est progressive au fur et à mesure de l'augmentation du facteur d'aspect, ou encore des étapes de dépassivation qui sont en nombre croissant, par exemple en allant de une étape de dépassivation pour trois étapes d'attaque et de passivation, puis une étape de dépassivation pour deux étapes d'attaque et de passivation, puis enfin une étape de dépassivation pour une étape d'attaque et de passivation.

Également, selon l'invention, on peut prévoir une tension de polarisation du substrat 2 qui soit progressivement croissante d'une étape de dépassivation à l'autre au cours du procédé de gravure d'un substrat 2.

Le procédé de l'invention permet à la fois d'obtenir industriellement des facteurs d'aspect nettement plus élevés que les procédés connus, tout en garantissant une bonne sélectivité vis à vis des masques de laque photosensible, et en augmentant la vitesse globale de gravure.

L'effet obtenu est illustré sur la figure 7, qui est une photographie d'une coupe de substrat de silicium après une opération de gravure partielle selon un procédé de la présente invention. On retrouve le substrat 2 dont la surface 2a est recouverte d'un masque 2c. Les cavités 2b en cours de gravure
présentent une paroi latérale sensiblement verticale, de sorte que le fond 2g reste de section transversale suffisante pour autoriser une gravure supplémentaire pour accroître la profondeur des cavités 2b, et pour augmenter ainsi le facteur d'aspect.

La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations qui sont à la portée de l'homme du métier.
REVENDICATIONS

1 - Procédé de gravure anisotrope du silicium, dans lequel un substrat (2) de silicium protégé partiellement par un masque (2c) est soumis à une succession alternée d'étapes d'attaque (a) par plasma de gaz de gravure réalisant des cavités (2b) dans les zones de substrat non protégées par le masque (2c) et d'étapes de passivation (b) par plasma de gaz de passivation assurant un dépôt de polymère protecteur (2f) sur les parois des cavités (2b) résultant des étapes d'attaque, caractérisé en ce qu'il comprend en outre des étapes impulsionnelles de dépassivation sélective (c) par lesquelles le dépôt de polymère protecteur (2f) est soumis à l'action d'un plasma de gaz de nettoyage plus efficace que le gaz de gravure et qui enlève le polymère protecteur (2f) dans la zone de fond (2g) des cavités (2b).

2 - Procédé selon la revendication 1, caractérisé en ce qu'il comprend une étape impulsionnelle de dépassivation sélective (c) après chaque étape de passivation (b).

3 - Procédé selon la revendication 2, caractérisé en ce que chaque étape impulsionnelle de dépassivation sélective (c) est disjointe de l'étape de passivation—qui—la précède (b) et de l'étape d'attaque qui la suit (d).

4 - Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le gaz de gravure est un gaz fluoré tel que SF₆, CF₄ ou NF₃.

5 - Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le gaz de passivation est un gaz fluorocarbone tel que CHF₃, C₂F₆, C₂F₄, C₄F₈.

6 - Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le gaz de nettoyage contient de l'oxygène.

7 - Procédé selon la revendication 6, caractérisé en ce que le gaz de nettoyage comprend l'un au moins des gaz O₂, SO₂, CO, CO₂, NO, NO₂, N₂O.

8 - Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que, pendant les étapes impulsionnelles de dépassivation sélective (c), le substrat (2) est polarisé de façon à attirer les ions du plasma.
9 - Procédé selon la revendication 8, caractérisé en ce que le substrat (2) est polarisé à une tension proche de celle utilisée pendant les étapes d'attaque (a), typiquement de 20 à 120 volts, avantageusement de 20 à 80 volts.

10 - Procédé selon l'une des revendications 8 ou 9, caractérisé en ce que la tension de polarisation du substrat (2) est progressivement croissante d'une étape de dépassivation à l'autre au cours du procédé de gravure d'un substrat (2).

11 - Procédé selon l'une quelconque des revendications 8 à 10, caractérisé en ce que, pendant les étapes impulsionnelles de dépassivation sélective (c), la pression de l'atmosphère (5) entourant le substrat (2) est comprise entre 0,5 et 10 Pa, de préférence comprise entre 2 et 5 Pa.

12 - Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que la durée des étapes impulsionnelles de dépassivation sélective (c) est choisie juste suffisante pour assurer un nettoyage efficace de la zone de fond (2g) des cavités (2b).

13 - Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la durée des étapes impulsionnelles de dépassivation sélective (c) est déterminée en fonction de la durée des étapes de passivation (b) qui les précèdent.

14 - Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la durée des étapes impulsionnelles de dépassivation sélective (c) est croissante d'une étape de dépassivation à l'autre au cours du procédé de gravure d'un substrat (2).

15 - Dispositif de gravure anisotrope de substrats (2) en silicium, comprenant :

- une enceinte (1) étanche conformée pour recevoir et contenir un substrat (2) à graver,
- des moyens de création et de maintien d'un vide approprié (6, 7) dans l'enceinte (1),
- des moyens d'injection de gaz (13) pour injecter sélectivement dans l'enceinte (1) des gaz de gravure, des gaz de passivation et des gaz de nettoyage selon des durées et des débits programmés,
- des moyens de génération (8) d'un plasma (9) dans l'enceinte (1), face à la surface (2a) de substrat (2) à graver,
- des moyens de polarisation (4) du substrat (2),
- des moyens de commande qui pilotent les moyens d'injection de gaz, les moyens de génération (8) de plasma et les moyens de polarisation (4) de substrat selon les étapes successives de gravure, de passivation et de dépassivation par plasma telles que définies dans l'une quelconque des revendications 1 à 14.

16 - Composant à base de silicium à microreliefs (2b) réalisé par un procédé selon l'une quelconque des revendications 1 à 14.

17 - Composant à base de silicium à microreliefs (2b) présentant un facteur d'aspect supérieur à 45.
FIG. 3
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H01L21/3055 H01L21/308 B81B1/00 B81C1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H01L B81B B81C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 00 05749 A (BHARDWAJ JYOTI KIRON; SURFACE TECH SYS LTD (GB)) 3 February 2000</td>
<td>1-5,8, 11,12,15 -/--</td>
</tr>
<tr>
<td></td>
<td>(2000-02-03) page 1, line 2 - line 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 2, line 6 - line 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 3, line 4 - line 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 8, line 2 - line 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 9, line 5 - line 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 10, line 1 - page 11, line 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 11, line 8 - line 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 12, line 19 - line 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 12, line 24 - page 14, line 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 17, line 21 - page 18, line 8; figures 3-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 20, line 18 - page 21, line 25; figure 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 21, line 26 - page 23, line 15; figures 8A-9A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1,4,9,10,15,16,18,21-23,27-30</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
* A* document defining the general state of the art which is not considered to be of particular relevance
* E* earlier document but published on or after the international filing date
* L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* O* document referring to an oral disclosure, use, exhibition or other means
* P* document published prior to the international filing date but later than the priority date claimed

* T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

* &* document member of the same patent family

Date of the actual completion of the international search: 26 June 2003

Date of mailing of the international search report: 04/07/2003

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epc nl, Fax: (+31-70) 340-3016

Authorized officer: Klopfenstein, P
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td>6, 7, 9, 10, 13, 14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>16, 17</td>
</tr>
<tr>
<td>X</td>
<td>DE 198 26 382 A (BOSCH GMBH ROBERT)</td>
<td>1-9, 11, 12</td>
</tr>
<tr>
<td></td>
<td>16 December 1999 (1999-12-16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 2, line 49 - line 59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 34 - line 54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 4, line 23 - line 46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 4, line 53 - line 63; claims</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 5, 9, 11</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>6, 7, 9, 10, 13, 14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>15-17</td>
</tr>
<tr>
<td>X</td>
<td>PATENT ABSTRACTS OF JAPAN</td>
<td>16, 17</td>
</tr>
<tr>
<td></td>
<td>vol. 1996, no. 05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 May 1996 (1996-05-31)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& JP 08 017796 A (HITACHI LTD),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>1, 4, 5, 15</td>
</tr>
<tr>
<td>X</td>
<td>AYON A A ET AL: "Anisotropic silicon trenches 300-500 mum deep employing time</td>
<td>16, 17</td>
</tr>
<tr>
<td></td>
<td>multiplexed deep etching (TMDE)"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vol. 91, no. 3, 15 July 2001 (2001-07-15),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pages 381-385, XP004255492</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISSN: 0924-4247</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 381</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 384, left-hand column -page 385, right-hand column; figures 5,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 385, paragraph 5</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>1, 2, 4, 5, 12</td>
</tr>
<tr>
<td>X</td>
<td>US 6 277 756 B1 (KANO KAZUHIKO ET AL)</td>
<td>15, 16</td>
</tr>
<tr>
<td></td>
<td>21 August 2001 (2001-08-21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 1, line 11 - line 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 2, line 29 - line 52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 45 - column 5, line 15;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1A-1E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 5, line 35 - line 53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 7, line 5 - column 8, line 43;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 7A-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 9, line 22 - line 43</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>10, 13, 14, 1-4, 6-9, 12, 17</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>A</td>
<td>---</td>
<td>1</td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

A. CLASSEMENT DE L'OBJET DE LA DEMande
CIB 7 H01L21/3065 H01L21/308 B81B1/00 B81C1/00

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB.

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 7 H01L B81B B81C

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche.

Base de données électronique consultée au cours de la recherche Internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)
EPO-Internal, PAJ

C. DOCUMENTS CONSIDERES COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 00 05749 A (BHARDWAJ JYOTI KIRON; SURFACE TECH SYS LTD (GB))</td>
<td>1-5,8, 11,12,15</td>
</tr>
<tr>
<td></td>
<td>3 février 2000 (2000-02-03) page 1, ligne 2 - ligne 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 2, ligne 6 - ligne 22 page 3, ligne 4 - ligne 22 page 8, ligne 2 - ligne 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 9, ligne 5 - ligne 16 page 10, ligne 1 - page 11, ligne 2 page 11, ligne 8 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ligne 21 page 12, ligne 19 - ligne 23 page 12, ligne 24 - page 14, ligne 6 page 17,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ligne 21 - page 18, ligne 8 figures 3-5 page 20, ligne 18 - page 21, ligne 25 figure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 page 21, ligne 26 - page 23, ligne 15 figures 8A-9A revendications</td>
<td></td>
</tr>
</tbody>
</table>

X Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:
*"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
*"E" document antérieur, mais publié à la date de dépôt international ou après cette date
*"L" document pouvant élever un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
*"O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
*"P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée
*"Y" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
*"X" document particulièrement pertinent; l'inventeur revendiquant ne peut être considéré comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
*"Y" document particulièrement pertinent; l'inventeur revendiquant ne peut être considéré comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
*"P" document qui fait partie de la même famille de brevets

Date à laquelle la recherche Internationale a été effectivement achevée 26 juin 2003

Date d'expédition du présent rapport de recherche Internationale 04/07/2003

Nom et adresse postale de l'administration chargée de la recherche Internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rivik
Tel: (+31-70) 340-2040, Tx 31 651 epo nl
Fax: (+31-70) 340-3016

Fonctionnaire autorisé
Klopfenstein, P
DOCUMENTS CONSIDERÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 198 26 382 A (BOSCH GMBH ROBERT) 16 décembre 1999 (1999-12-16) colonne 2, ligne 49 - ligne 59; colonne 3, ligne 34 - ligne 54; colonne 4, ligne 23 - ligne 46; colonne 4, ligne 53 - ligne 63; revendications 1,5,9,11</td>
<td>1-9,11, 12</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>6,7,9, 10,13,14, 16,17</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>15-17</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>1,4,5,15</td>
</tr>
<tr>
<td>X</td>
<td>AYON A A ET AL: "Anisotropic silicon trenches 300-500 mum deep employing time multiplexed deep etching (TMDE)" SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 91, no. 3, 15 juillet 2001 (2001-07-15), pages 381-385, XP004255492 ISSN: 0924-4247 page 381 page 384, colonne de gauche -page 385, colonne de droite; figures 5,7 page 385, alinéa 5</td>
<td>1,2,4,5, 12</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 6 277 756 B1 (KANO KAZUHIKO ET AL) 21 août 2001 (2001-08-21) colonne 1, ligne 11 - ligne 16; colonne 2, ligne 29 - ligne 52; colonne 3, ligne 45 - colonne 5, ligne 15; figures 1A-1E colonne 5, ligne 35 - ligne 53; colonne 7, ligne 5 - colonne 8, ligne 43; figures 7A-8 colonne 9, ligne 22 - ligne 43</td>
<td>15,16</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>10,13,14, 1-4,6-9, 12,17</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DOCUMENTS CONSIDERÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
</table>
| X | PATENT ABSTRACTS OF JAPAN
vol. 2000, no. 10,
17 novembre 2000 (2000-11-17)
-& JP 2000 200771 A (TOKYO ELECTRON
YAMANASHI LTD; JAPAN SCIENCE &
technology Corp),
18 juillet 2000 (2000-07-18)
abrégé | 15 |
| A | ----- | 1 |
| A | PATENT ABSTRACTS OF JAPAN
vol. 012, no. 256 (E-635),
-& JP 63 043321 A (MATSUSHITA ELECTRIC IND
CO LTD), 24 février 1988 (1988-02-24)
abrégé | 1,10,13,
14 |

Formulaires PCT/ISA/210 (suite de la deuxième feuille) (Juliet 1992)
<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 0005749 A2</td>
<td>03-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002521814 T</td>
<td>16-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1082754 A1</td>
<td>14-03-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1084076 A1</td>
<td>21-03-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0983610 A1</td>
<td>08-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0052740 A1</td>
<td>08-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0051937 A1</td>
<td>08-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0051938 A1</td>
<td>08-09-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9949506 A1</td>
<td>30-09-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002500574 T</td>
<td>08-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002538067 A</td>
<td>12-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002538068 A</td>
<td>12-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002538620 A</td>
<td>12-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6355181 B1</td>
<td>12-03-2002</td>
</tr>
<tr>
<td>DE 19826382 A</td>
<td>16-12-1999</td>
<td>DE 19826382 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002144974 A1</td>
<td>10-10-2002</td>
</tr>
<tr>
<td>JP 08017796 A</td>
<td>19-01-1996</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10005804 A1</td>
<td>17-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 472286 B</td>
<td>11-01-2002</td>
</tr>
<tr>
<td>JP 63043321 A</td>
<td>A</td>
<td>AUCUN</td>
<td></td>
</tr>
</tbody>
</table>