发明名称
制造电引线的方法

摘要
一种导管 (10) 包括 :一个手柄 (12) ; 一个导管包壳 (14) , 该导管包壳具有在该导管包壳 (14) 的一个管腔内的至少一个导体 ; 以及一个探针 ; 该探针被接纳在该导管包壳 (14) 内。该导管包壳 (14) 是通过以下方法制造的 ; 提供一个管状构件 (40) ; 在该管状构件的远端部分 (30) 处的该管状构件的壁中形成一个孔 ; 并且将一个导体 (26) 插入到该管状构件的管腔中。该导体 (26) 的暴露的远端附接到一个电极 (28) 上。该电极然后被安装到该管状构件 (40) 的一个外表面上, 以便覆盖该孔。该管状构件然后通过热量来进行处理, 以便密封该电极 (28)。
1. 一种制造电引线的方法，该方法包括：
提供非导电材料的一个细长的管状构件，该管状构件界定至少一个管腔；
通过在该管状构件的一个壁中形成至少一个孔来从该管状构件外部接近该至少一个
管腔，该至少一个孔接近该管状构件的一个远端；
将至少一个导体通过该至少一个孔插入到该管状构件的该管腔中并且朝向该管状构
件的一个近端给送该至少一个导体；
将一个导电元件附接到该至少一个导体的一个暴露的远端上；
将该至少一个导电元件安装在该管状构件的一个外表面上；并且
对该管状构件进行处理以便关闭该孔。

2. 如权利要求1所述的方法，其中该管状构件是一种多管腔构件并且其中该方法包括
仅接近这些管腔之一，即接近一个导体管腔，以用于将多个导体插入到该导体管腔之中。

3. 如权利要求2所述的方法，该方法包括，在该管状构件的壁中制造一个纵向延伸的
切口，以便形成该孔并接近该导体管腔，并且将这些导体穿过该切口插入到该导体管腔中，
这样使得每个导体的一个远端从该切口中伸出。

4. 如权利要求2所述的方法，该方法包括，在该管状构件的壁中制造呈现槽缝形式的多
个横向延伸的孔，并且穿过每个槽缝接近该导体管腔中的至少一个导体，这样使得每个
导体的一个远端从其相关的槽缝中伸出。

5. 如权利要求4所述的方法，该方法包括，在形成这些槽缝之前，从该管状构件的壁的
外表面上去除一些材料。

6. 如权利要求3至5中任一项所述的方法，该方法包括，将这些导体的近端附接到一
个给送装置上，并且穿过该导体管腔插入该给送装置，以便拉动这些导体穿过该导体管腔。

7. 如权利要求3至5中任一项所述的方法，该方法包括将一个导电元件附接到这些导
体的至少一些中的每一个上，每个导电元件都呈现一个环形电极的形式，该环形电极是围
绕该管状构件的一个适配配合件。

8. 如权利要求7所述的方法，其中每个环形电极都是通过以下方法附接到其相关的导
体上的：将该导体感应焊接到该环的一个内表面上。

9. 如权利要求3至8中任一项所述的方法，该方法包括将每个环形电极在该管状构件
上固定就位。

10. 如权利要求3至9中任一项所述的方法，该方法包括将一些填充材料装入该导体管
腔中，以便使这些导体彼此隔离并且抑制该导体管腔的坍塌。

11. 如权利要求3至10中任一项所述的方法，该方法包括通过热处理对该管状构件进
行处理。

12. 如权利要求11所述的方法，该方法包括通过在该至少一个孔上方施加牺牲性的
热收缩来对该管状构件进行热处理，以便导致该管状构件的材料熔化并且一起流动，从
而关闭该至少一个孔。

13. 如权利要求12所述的方法，其中该至少一个导电元件在安装在该管状构件中之后
高出该管状构件的该外表面，并且其中该方法包括，在该管状构件的热处理期间，导致该管
状构件向外膨胀，这样使得围绕该导电元件的每个边缘形成一个密封的倒角。

14. 如权利要求11至13中任一项所述的方法，该方法包括，在对该管状构件进行热处
理之前，将多个支撑元件插入到该管状构件的多余的管腔中，以便抑制在该热处理操作期间这些管腔的塌陷。

15. 一种电引线，该电引线是根据以上权利要求中任一项所述的方法制造的。

16. 一种电引线，包括：
非导电材料的一个细长的管状构件，该管状构件界定至少一个管腔；
延伸穿过该管腔的至少一个导体，其中该导体的一个远端穿过该管状构件的一个壁伸出；
一个导电元件，该导电元件附接到该至少一个导体的该远端上并且该导电元件被安装在该管状构件上，以便在该管状构件上形成一个电极；并且
该管状构件的与该导电元件的每个边缘相邻的至少一个部分已被处理，以便使其向外膨胀，从而沿该导电元件的每个边缘形成一个密封的倒角。

17. 如权利要求 16 所述的电引线，其中该管状构件具有至少一个导体管腔和一个探针管腔的一种多管腔构件。

18. 如权利要求 17 所述的电引线，其中该管状构件进一步界定一个冲洗流体管腔。

19. 如权利要求 17 或权利要求 18 所述的电引线，其中该探针管腔被偏心地安排在该管状构件内。

20. 如权利要求 17 至 19 中任一项所述的电引线，该电引线包括多个电极，这些电极各自具有与其相关的至少一个导体，用于这些电极的这些导体延伸穿过该管状构件的该导体管腔并且每个导体的一个远端穿过该管状构件的壁伸出。

21. 如权利要求 20 所述的电引线，其中每个电极都是呈现一种环形尖端的形式的，其中该电极的导体的远端附接到该环的一个内表面上。

22. 如权利要求 21 所述的电引线，其中该导体的远端通过感应焊接或钎焊被附接到其相关的电极的内表面上。
制造电引线的方法

技术领域
[0001] 本披露总体上涉及一种电引线，且更具体来说，涉及一种制造电引线的方法以及一种电引线。该电引线尤其适合用作导管组件的导管包壳。

背景技术
[0002] 贯穿本说明书对现有技术的任何讨论绝不应被视为对此现有技术是广泛已知或者形成本领域中常见的一般知识的部分的认可。
[0003] 在心脏导管的制造中，用来将多个导电体附接到安排在该导管的导管包壳上的多个电极上的一种容易的、简化的方式存在一个问题。理解这些导体需要穿过该导管包壳延伸到该导管包壳的一个近端，以便连接到一电连接器上，以用于连接到诊断或治疗设备或患者导联线上。
[0004] 总体上，将这些电极连接到这些导体上并且使这些导体携带在该导管包壳内的方式是非常劳动密集型的。这增加了该导管包壳的制造成本并且因此增加了最终导管的成本。

发明内容
[0005] 本发明的目的是克服或改良现有技术的至少一个缺点，或提供一个有用的替代物。
[0006] 在一个第一方面中，提供了一种制造电引线的方法，该方法包括：
[0007] 提供非导电材料的一个细长的管状构件，该管状构件界定至少一个管腔；
[0008] 通过在该管状构件的一个壁中形成至少一个孔来从该管状构件外部接近该至少一个管腔，该至少一个孔接近该管状构件的一个近端；
[0009] 将至少一个导体通过该至少一个孔插入该管状构件的管腔中并且朝向该管状构件的一个近端给送该至少一个导体；
[0010] 将一个导电元件附接到该至少一个导体的一个暴露的远端上；
[0011] 将该至少一个导电元件安装在该管状构件的一个表面上；并且
[0012] 对该管状构件进行处理以便关闭该孔。
[0013] 该管状构件可以是一种多管腔构件并且该方法可以包括仅接近这些管腔之一（一个导体管腔）以用于将多个导体插入该导体管腔之中。
[0014] 在一个实施例中，该方法可以包括在该管状构件的该壁中制造一个纵向延伸的切口，以便形成该孔并接近该导体管腔，并且将这些导体通过该切口插入该导体管腔中，这使得每个导体的一个远端从该切口中伸出。
[0015] 在另一个实施例中，该方法可以包括在该管状构件的该壁中制造呈现槽缝形式的多个横向延伸的孔并且穿过每个槽缝接近该导体管腔中的至少一个导体，这样使得每个导体的一个远端从其相关的槽缝中伸出。该方法可以包括：在形成这些槽缝之前，从该管状构件的壁的外表面上去除一些材料。
[0016] 该方法可以包括：将这些导体的远端附接到一个给送装置上；并且穿过该导体管腔插入该给送装置，以便拉动这些导体穿过该导体管腔。

[0017] 该方法可以包括将一个导电元件附接到这些导体的至少一些中的每一个上，每个导电元件都呈现一种环形电极的形式，该环形电极是围绕该管状构件的一个适配配合件。每个环形电极都可以通过以下方法附接到其相关导体上：将该导体感应焊接（或钎焊）到该环的一个内表面上。

[0018] 该方法可以包括将每个环形电极在该管状构件上固定就位。每个环形电极都可以通过一种合适的粘合剂在该管状构件上固定就位。该粘合剂可能是一种环氧粘合剂。该方法可以包括将一个尖端电极以一种类似的方式附接到该管状构件的远端上。

[0019] 该方法可以包括将一种填充材料装入该导体管腔中，以便使这些导体彼此隔离并且在随后的操作期间抑制该导体管腔的坍塌。该填充材料可以是一种柔性粘合剂，该柔性粘合剂被装入该导体管腔中并且允许进行固化。

[0020] 该方法可以包括通过热处理对该管状构件进行处理。另外，该方法可以包括通过至少在该至少一个孔上施加牺牲性的热收缩来对该管状构件进行热处理，以便导该管状构件的材料熔化并且一起流动，从而关闭该至少一个孔。

[0021] 该至少一个导电元件在安装在该管状构件中之后可能高出该管状构件的外表面，并且该方法可以包括：在该管状构件的热处理期间，导致该管状构件向外膨胀，这样使得围绕该导电元件的每个边缘形成一个密封的倒角。

[0022] 该方法可以包括：在对该管状构件进行热处理之前，将支撑元件，例如心轴，插入到该管状构件的剩余的管腔中，以便抑制在该热处理操作期间这些管腔的坍塌。

[0023] 本披露延伸到根据如上所述的方法制造的一种电引线。

[0024] 在一个第二方面中，提供了一种电引线，该电引线包括：

[0025] 非导电材料的一个细长的管状构件，该管状构件界定至少一个管腔；

[0026] 延伸穿过该管腔的至少一个导体，其中该导体的一个远端穿过该管状构件的一个壁伸出；

[0027] 一个导电元件，该导电元件附接到该至少一个导体的远端上并且该导电元件被安装在该管状构件上，以便在该管状构件上形成一个电极；并且

[0028] 该管状构件的与该导电元件的每个边缘相邻的至少一部分已被处理，以便使其向外膨胀，从而沿该导电元件的每个边缘形成一个密封的倒角。

[0029] 该管状构件可以是具有至少一个导体管腔和一个探针管腔的一种多管腔构件。该管状构件可以进一步界定一个冲洗流体管腔。该探针管腔偏心地安排在该管状构件内。

[0030] 该电引线可以包括多个电极，这些电极各自具有与其相关的至少一个导体，用于这些电极的这些导体延伸穿过该管状构件的导体管腔并且每个导体的一个远端穿过该管状构件的壁伸出。

[0031] 每个电极都可以呈现一个环的形式，其中该电极的导体的远端附接到该环的一个内表面上。该导体的远端可以通过感应焊接或钎焊附接到其相关电极的内表面上。

[0032] 该管状构件的壁可以进行热处理以便关闭一个孔，通过该孔从该管状构件的至少一个管腔接近该至少一个导体。
附图说明
[0033] 现在将参照附图仅通过实例描述本发明的优选实施例，在附图中；
[0034] 图 1 示出包括一种电引线的实施例的一个导管组件的透视图，该电引线形成该导管组件的一个导管包壳；
[0035] 图 2 示出该电引线的一个管状构件的比例放大的端视图；
[0036] 图 3 示出在制造该电引线的一种方法的实施例中的一个初始阶段的透视图；
[0037] 图 4 和图 5 示出在制造该电引线的一种方法的另一个实施例中的多个阶段的透视图；
[0038] 图 6 示出在制造该电引线的这种方法中附接一个导电元件的步骤的示意性侧视图；
[0039] 图 7 示出在制造该电引线的这种方法中对该管状构件的一个远端区域进行处理的步骤的示意性侧视图；并且
[0040] 图 8 示出一种电引线的实施例的远端的示意性侧视图。

具体实施方式
[0041] 在附图的图 1 中，参考数字 10 总体上标示一个导管组件。该导管组件包括一个手柄 12。根据一种制造电引线的方法的实施例制成的一个导管包壳 14 从手柄 12 的一个远端 16 延伸。导管包壳 14 界定多个管腔 18,20 以及 22（图 2）。管腔 18 是用于接纳一个偏转探针的一个偏转探针管腔。管腔 20 是一个导体管腔并且具有接纳于其中的多个导体 26。这些导体 26 从导管包壳 14 的一个远端部分 30 上所载承的多个电极 28（图 8）延伸。这些导体 26 穿过手柄 12 延伸到安排在手柄 12 的一个近端 34 处的一个导电体 32（图 1）上。
[0042] 管腔 22 是一个冲洗管腔，该冲洗管腔用于将冲洗流体提供给导管包壳 14 的远程部分 30 处的这些电极 28。管腔 22 与一个流体管腔 36（图 1）相连通，一个鲁尔连接器 38 被安排在管腔 36 的一个近端处，以用于连接到冲洗流体的一个供应口（未示出）。
[0043] 在一个第一实施例中，在一种制造用作导管包壳 14 的电引线的方法中，提供了一个细长的管状构件 40 的一段长度。管状构件 40 是由例如聚醚醚酮酰胺（PEBAX®）的一种生物相容的、非导电的材料形成的。
[0044] 这些导体 26 的远端被向上对接在一个穿线装置上，例如，对接在一个心轴（未示出）上。这些导体 26 的近端是使用一个牺牲性的热收缩套管固定到该心轴上的。该心轴穿过导体管腔 20 被插入到管状构件 40 的近端，以用于使这些导体 26 穿过导体管腔 20。
[0045] 通过从该管状构件的外表面直到导体管腔 20 对该管状构件进行纵向切割来形成一个切口 42。拉动这些导体 26 的远端穿过这些切口 42，使其从管状构件 40 的一个壁 44 的外部是可接近的。
[0046] 在该方法的以下步骤中，将呈现一个环形电极 28 的形式的一个导电元件附接到每个导体 26 的一个远端上。该导体 26 的远端通过以下方式固定到其相关的环形电极 28 上：将导体 26 的一端感应焊接到环形电极 28 的一个内表面 48 上。选择感应焊接是因为它提供了一致的结果，导体 26 到环形电极 28 上的焊接并不引入任何新材料并且该感应焊接消除了对任何中间材料的需求。
[0047] 这些环形电极 28 被选择成其具有的内径约为等于管状构件 40 的外径，这样每个环
形电极 28 都是围绕管状构件 40 的一个外表面的一个适贴配合件。一旦这些导体 26 已附接到其相关的电极 28 上，这些环形电极 28 在管状构件 40 的远端的端部上滑动并且以多个纵向隔开的间隙定位，如附图的图 7 和图 8 中所示。将理解，导体 26 的任何过剩长度都可以通过拉动导体 26 的近端而被引入管状构件 40 的导体管腔 20 中。

[0048] 在这些环形电极 28 已定位在管状构件 40 上时，端电极或尖端电极 28 是通过将该电极附接到管状构件 40 的远端上而形成的。

[0049] 一旦这些电极 28 已定位在管状构件 40 上，则导体管腔 20 装有一种填充材料，这种填充材料使这些导体 26 相对于彼此隔离并且抑制在后续步骤期间导体管腔 20 的坍塌。这种填充材料是（例如）一种柔性的 UV 粘合剂。

[0050] 这些电极 28 在该管状构件上借助于如环氧粘合剂的一种合适的生物相容粘合剂而被固定就位。

[0051] 将多个心轴插入到冲洗管腔 22 和探针管腔 18 中。这支撑了管状构件 40 并且在一个随后的加热操作期间通过抑制这些管腔 18 和 22 的坍塌来保持该管状构件的完整性。

[0052] 将一个牺牲性的热收缩套管 50 放置在这些电极 28 上方，如附图的图 7 中所示。使用一个受控的热源对管状构件 40 的远端进行加热。管状构件 40 的加热导致该管状构件 40 的材料在一定程度上液化并且一起流动，从而导致切口 42 的闭合。另外，发生这种材料的径向膨胀，该径向膨胀的程度受到套管 50 的限制。

[0053] 在该热源已被去除后，牺牲性的热收缩 50 也被去除。由于管状构件 40 的材料的径向膨胀，形成 52 所示的与这些电极相邻的材料向外径向膨胀并且在这些电极 28 周围模制，以便密封这些电极 28 的边缘并且使得这些电极的表面与管状构件 40 的部分 52 的表面基本上平齐。因此，膨胀的材料 52 围绕这些电极 28 的每个边缘形成一个密封的倒角。在这么做时，一个基本上光滑的表面形成于已形成的导管包壳 14 的端部处并且减少了这些电极 28 在穿过患者的脉管系统或在患者的心脏中对电极包壳 14 进行操纵期间绾在组织上的可能性。

[0054] 现参照附图的图 4 和图 5，图示了一种制造电引线以便提供导管包壳 14 的方法的一个第二实施例。参照其他图，除非另外说明，否则相同的参考数字指代相同的部分。

[0055] 在这个实施例中，管状构件 40 的一个平坦区段经机器加工或片割 (skived) 来提供一个台面 54（图 4）。在这个步骤后，多个横向延伸的槽缝 56（每个环形电极 28 具有一个槽缝）形成于该台面 54 中，如附图的图 5 中所示。如图所示，这些槽缝 56 被切割到一个足够的深度，以便与导体管腔 20 相交。

[0056] 在这个实施例中，使用例如一对钳子或类似物的一个适当的夹持装置将这些导体 26 的远端引出这些槽缝 56 之外。形成导管包壳 14 的剩余的程序与如以上参照附图的图 3 以及图 6 至图 8 所描述的程序相同。台面 54 促进了粘合剂在这些环形电极 28 下方的插入，这样使得该粘合剂被接纳在这些槽缝 56 中，以便协助密封这些槽缝 56。

[0057] 所述实施例的一个优点是，提供了一种制造电引线的方法，该方法简化了生产合适的导管包壳的程序。另外，用于使得该管状构件的材料流动的加热技术的使用协助密封该管状构件的管腔以防外来材料的进入。这种加热技术也用来协助将这些电极保持在该管状构件上的适当位置中。

[0058] 贯穿本说明书对“一个实施例”、“一些实施例”或“一种实施例”的引用意味着与
实施方案相应地描述的一个具体的技术、结构或特性是包括在本发明的至少一个实施方案中的。因此，贯穿本说明书各处短语“在一个实施方案中”、“在一些实施方案中”或者“在一种实施方案中”的出现并不必然全部是指同一个实施方案，但可以是指同一个实施方案。此外，如本领域的普通技术人员通过本披露将明白的，可以在一项或多项实施方案中以任何合适的方式组合这些具体的技术、结构或特性。

[0009] 如在此所使用，除非另有指定，否则使用序数形容词“第一”、“第二”、“第三”等来描述公共体，仅仅指示参照了相同公共体的不同实例，而并不旨在暗示这样描述的各公共体必须在给定的顺序中，无论是在时间上、在空间上、在等级上或以任何其他方式。

[0010] 在以下这些权利要求和在此中的描述中，术语、包括或或这包括了中的任一个术语是开放术语，这种开放术语意味着至少包括后面的元件/特征，但不排除其他元件/特征。因此，术语包括当用于权利要求书中时不应被解释为限于之后所列举的手册或元或步骤。举例来说，表述“一个装置包括 A 和 B”的范围不应限于仅由元件 A 和 B 组成的装置。如在此使用，术语包含或包含有或这包含了中的任一个也是开放术语，这种开放术语也意味着至少包含后面的元件/特征，但不排除其他元件/特征。因此，包含与包括是同义的，且意味着包括。

[0011] 应了解，在本发明的多个示例性实施例的示出描述中，本发明的各种特征有时在单个实施例、图或其描述中被合并在一起，用于使得本披露流畅，并且帮助理解不同发明性方面中的一个或多个。然而，本披露的这种方法不应被解释为反映以下意图，即，所要求的发明要求了比每一个权利要求中明确叙述的特征更多的特征。相反，如以下权利要求书中所反映的，本发明的多个方面在于少于单个示出描述的实施例的所有特征。因此，在详细说明之后的权利要求书在此明确结合在此详细说明中，其中每一个权利要求独立地作为本发明的一个分开的实施例。

[0012] 此外，如本领域的技术人员将理解的，虽然在此所描述的一些实施例包括一些特征但不包括其他实施例中所包括的其他特征，但不同实施例的特征的组合意在落入本发明的范围内，并且形成不同的实施例。例如，在以下权利要求中，任何所要求的实施例可以任何组合来使用。

[0013] 在此所提供的描述中，陈述了众多具体细节。然而，将理解，可以在没有这些具体细节的情况下实践本发明的多个实施例。在其他实施例中，未详细展示众所周知的方法、结构和技术，以免妨碍对此描述的理解。

[0014] 类似地，应注意，术语联接当用于权利要求书中时不应被解释为仅局限于直接连接。可使用术语“联接”和“连接”及其派生词。应理解，这些术语无意作为彼此的同义词。因此，表述“一个装置 A 联接到一个装置 B 上”的范围不应局限于其中装置的一个输出直接连接到装置 B 的一个输入上的装置或系统。这意味着在 A 的一个输出与 B 的一个输入之间存在着一条路径，它可以是包括其他装置或设备的一条路径。“联接的”可以意味着两个或两个以上元件处于直接的物理或电接触状态，或者两个或两个以上元件处于直接的彼此接触状态但不彼此协作或相互作用。

[0015] 因此，虽然已描述了相信是本发明的优选实施例的内容，但本领域的技术人员将认识到，在不脱离本发明的精神的情况下，可以对该内容进行其他和进一步的修改，并且它旨在将所有这些改变和修改要求落入本发明的范围内。举例来说，上文给出的任何公式
仅代表可以使用的程序。可以向框图添加功能性或从框图删除功能性，而且操作可以在功能框之间互换。可以在本发明的范围内向所描述的方法添加多个步骤或从这些方法删除多个步骤。

[0066] 本领域的那些技术人员将理解，在不脱离如广泛描述的本披露的范围的情况下，可以对这些具体实施例中所示的披露内容作出众多的变化和/或修改。因此，这些现有实施例在所有方面都被视为是说明性的而不是限制性的。
图 8