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객체의 미래 동작 상태를 결정하는 모니터링 시스템은 객체의 정상 동작 상태를 나타내는 기준 데이터 및 입력

패턴 어레이들을 수신하는 실증적 모델 모듈을 포함한다. 각각의 입력 패턴 어레이는 다수의 입력 벡터들을 가지

며, 각각의 입력 벡터는 시점을 표현하고 객체의 현재 상태를 나타내는 다수의 파라미터들을 표현하는 입력 값들

을 갖는다.  실증적 모델은 입력 패턴 어레이 및 기준 데이터를 사용하여 입력 값들과 기준 데이터 간의 유사도

척도를 판단하는 계산에 따라 추정 값들을 생성한다.  추정 값들은 추론된 추정 값들의 적어도 하나의 추정 벡터

를 포함하는 추정 매트릭스의 형태이고, 각각의 추정 매트릭스는 입력 벡터들에 의해 표현되지 않은 적어도 하나

의 시점을 표현한다.  추론된 추정 값들은 객체의 미래 상태를 판단하는데 사용된다.

대 표 도 - 도2
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특허청구의 범위

청구항 1 

객체의 미래 동작 상태를 판단하기 위한 모니터링 시스템으로,

상기 객체의 정상 동작 상태(normal operational state)를 나타내는 기준 데이터를 수신하고,

입력 패턴 어레이들을 수신하고 ― 각각의 입력 패턴 어레이는 다수의 입력 벡터들을 갖고, 각각의 입력 벡터는

시점(a time point)을 표현하고 상기 객체의 현재 상태(current condition)를 나타내는 다수의 파라미터들을 표

현하는 입력 값들(input values)을 가짐 ―,

입력 패턴 어레이 및 상기 기준 데이터를 사용하여 상기 입력 값들과 기준 데이터 간의 유사도 척도를 판단하는

계산에 따라 추정 값들(estimate values)을 생성하되, 상기 추정 값들은 추론된 추정 값들의 적어도 하나의 추

정 벡터를 포함하는 추정 매트릭스(an estimate matrix)의 형태로 되어 있고, 각각의 추정 매트릭스는 상기 입

력 벡터들에 의해 표현되지 않은 적어도 하나의 시점을 표현하도록 구성된 실증적 모델 모듈(empirical model

module)과,

상기 추론된 값들을 사용하여 상기 객체의 미래 상태를 판단하도록 구성된 예측 모듈(a prognostic module)을

포함하는

모니터링 시스템.

청구항 2 

제 1 항에 있어서,

상기 추정 매트릭스들은 상기 입력 벡터들에 의해 표현되지 않은 시점들을 표현하는 추정 벡터들을 포함할 뿐인

모니터링 시스템.

청구항 3 

제 1 항에 있어서,

상기 추정 매트릭스들은 상기 입력 벡터들에 의해 표현된 동일 시점을 나타내는 적어도 하나의 추정 벡터 및 상

기 입력 벡터들에 의해 표현되지 않는 시점을 나타내는 적어도 하나의 추정 벡터를 포함하는 

모니터링 시스템.

청구항 4 

제 1 항에 있어서,

상기 추정 매트릭스들은 상기 객체의 상태를 나타내는 그리고 상기 입력 값들에 의해 표현되지 않는 파라미터들

을 표현하는 추정 값들을 포함하는 

모니터링 시스템.

청구항 5 

제 1 항에 있어서,

각각의 추정 매트릭스는 기본 현재 시점 및 상기 입력 벡터들에 의해 표현되지 않은 그리고 상기 현재 시점에
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비해 후행하는 시점들인 시점들을 나타내는

모니터링 시스템.

청구항 6 

제 1 항에 있어서,

상기 실증적 모듈은 상기 유사도 척도를 이용함으로써 가중 값들을 생성하도록 구성되며, 상기 가중 값들을 상

기 기준 데이터를 이용하여 계산하는데 사용하여 상기 추정 매트릭스를 생성하는  

모니터링 시스템.

청구항 7 

제 6 항에 있어서,

상기 가중치 값들은 가중 벡터의 형태로 되어 있는

모니터링 시스템.

청구항 8 

제 6 항에 있어서,

가중 값들을 이용한 계산에서 사용된 상기 기준 데이터는 상기 입력 패턴 어레이들에 의해 표현되지 않는 시점

들을 표현하는 기준 값들을 포함하는 

모니터링 시스템.

청구항 9 

제 8 항에 있어서,

상기 가중 값들을 이용한 계산에서 사용된 상기 기준 데이터는 기본 현재 시점을 나타내며, 상기 입력 벡터들에

의해 표현되지 않는 시점들은 상기 현재 시점에 비해 후행하는 시점들인 

모니터링 시스템.

청구항 10 

제 6 항에 있어서,

상기 가중 값들을 이용한 계산에서 사용된 상기 기준 데이터는 학습된 순차적 패턴 매트릭스들의 3차원 집합의

형태로 되어 있고, 각각의 학습된 학습된 패턴 매트릭스는 기준 값들의 기준 벡터들을 포함하며, 각각의 기준

벡터는 학습된 순차적 패턴 매트릭스 내 상이한 시점을 나타내는 

모니터링 시스템.

청구항 11 

제 10 항에 있어서,

각각의 학습된 순차적 패턴 매트릭스는 기본의 현재 시점 및 상기 기본의 현재 시점에 비해 후행하는 시점들을

표현하고 그리고 상기 입력 패턴 어레이들에 의해 표현되지 않는 시점들을 포함하는  
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모니터링 시스템.

청구항 12 

제 1 항에 있어서,

상기 동일 시점은 다수의 추정 매트릭스들로 표현되는 

모니터링 시스템.

청구항 13 

제 1 항에 있어서,

상기 예측 모듈은 가장 최신의 추정 매트릭스를 사용하여 상기 객체의 상태를 판단하는데 사용하기 위한 상기

추정 값들을 갱신하도록 구성되는

모니터링 시스템.

청구항 14 

제 1 항에 있어서,

상기 예측 모듈은 단일의 추정 벡터에 대한 값들을 제공하여 다수의 추정 매트릭스들 전반에서 단일의 시점을

표현하도록 구성된

 모니터링 시스템.

청구항 15 

제 14 항에 있어서,

상기  단일의  추정  벡터는  상기  단일  시점에서  상기  추정  벡터들  모두의  평균,  가중  평균,  또는  가중  넘

(weighted norm)인 

모니터링 시스템.

청구항 16 

제 1 항에 있어서,

상기 예측 모듈은 단일의 추정 벡터에 대한 값들을 제공하여 각각의 추정 매트릭스를 표현하도록 구성된 

모니터링 시스템.

청구항 17 

제 16 항에 있어서,

상기 단일의 추정 벡터는 상기 추정 매트릭스 내 상기 추정 벡터들의 평균, 가중 평균, 또는 가중 넘인

모니터링 시스템.
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청구항 18 

제 1 항에 있어서,

상기 예측 모듈은 상기 추론된 추정 값들로 표현된 적어도 하나의 파라미터에 대한 추세선을 형성하여 상기 객

체의 예상된 행위를 표시하도록 구성된 

모니터링 시스템.

청구항 19 

제 18 항에 있어서,

상기 예측 모듈은 각각의 새로운 추정 매트릭스를 이용하여 새로운 추세선을 형성하도록 구성된 

모니터링 시스템.

청구항 20 

제 18 항에 있어서,

상기 예측 모듈은 경계 추세선을 형성하여 상기 객체의 예상된 행위의 범위를 정의하도록 구성된  

모니터링 시스템.

청구항 21 

제 19 항에 있어서,

상기 예측 모듈은 상기 시점들로부터 최대 추정 값들을 갖는 상위 경계 추세선, 및 상기 시점들로부터 최소 추

정 값들을 갖는 하위 경계 추세선을 형성하도록 구성된 

모니터링 시스템.

명 세 서

기 술 분 야

본  명세서에  개시된  주제는  일반적으로  머신,  시스템  또는  프로세스와  같은  객체의  예지적  상태  모니터링[0001]

(predictive  condition  monitoring)  및 예측(prognostics)에 사용되는 커널 회귀 모델링(kernel  regression

modeling)의  분야에 관한 것으로,  특히,  파라미터들의 측정치들의 분석을 위한 다변수 모델들(multivariate

models)을 사용하여 모니터링되는 객체의 평가를 제공하는 것에 관한 것이다.

배 경 기 술

커널 회귀는 데이터 집합 내 값들 사이의 비선형 함수 또는 관계를 결정하는데 사용된 모델링의 한 형태이며 머[0002]

신들 또는 시스템들을 모니터링하여 머신 또는 시스템의 상태를 판단하는데 사용된다.  커널 회귀 모델링의 한

가지 공지된 형태는 미국 특허 제5,764,509호 및 제6,181,975에 의해 개시된 유사도-기반 모델링(similarity-

based modeling (SBM))이다.  SBM에 있어서, 다수의 센서 신호들은 모니터링되는 머신, 시스템 또는 다른 객체

의 물리적으로 상호관련된 파라미터들을 측정하여 센서 데이터를 제공한다.  파라미터 데이터는 그 신호들로부

터의 실제 또는 현재 값들 또는 그 센서 신호들에 기반하든 않든 다른 계산된 데이터를 포함할 수 있다.  그런

다음 이 파라미터 데이터는 실증적 모델(empirical  model)에 의해 처리되어 이들 값들의 추정치를 제공한다.

그런 다음 추정치들은 모니터링되는 시스템에서 결함이 존재하는지를 확인하기 위해 실제 또는 현재 값들과 비

교된다. 
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보다 상세히 말해서, 모델은 공지된 동작 상태를 나타내는 센서 값들 중의 선택된 이력 패턴들의 기준 라이브러[0003]

리를 이용하여 추정치를 생성한다.  이들 패턴들은 벡터, 스냅 샷(snapshots), 또는 관측치(observations)라고

도 지칭되며, 순간적 시간에 모니터링되는 머신의 상태를 나타내는 다수의 센서들로부터의 값들 또는 다른 입력

데이터를 포함한다.  기준 라이브러리로부터 생성된 기준 벡터의 경우, 벡터들은 보통 모니터링되는 머신의 정

상 동작을 표시한다.  모델은 현재 시간으로부터의 벡터를 기준 라이브러리의 공지된 상태로부터의 다수의 선택

된 학습된 벡터들(learned vectors)과 비교하여 시스템의 현재 상태를 추정한다.  일반적으로 말해서, 현재 벡

터는 기준 라이브러리로부터의 선택된 벡터들로 이루어진 매트릭스와 비교되어 가중 벡터를 형성한다.  다음 단

계에서, 가중 벡터는 매트릭스에 곱해져서 추정 값들의 벡터를 산출하게 된다.  그런 다음 추정 벡터는 현재 벡

터와 비교된다.  만일 이들 벡터들의 추정 값들 및 실제 값들이 충분히 유사하지 않으면, 이것은 모니터링되는

객체에서 결함이 존재함을 표시할 수 있다. 

그러나, 이러한 커널 회귀 기술은 명시적으로 센서 신호들에 있는 타임 도메인 정보(time domain information)[0004]

를 명시적으로 사용하지 않으며, 그 대신 추정치를 계산할 때 별개이고 연결관계가 없는 동시성 패턴들 내 데이

터를 다룬다.  예를 들면, 각각의 현재 벡터는 개별적으로 기준 라이브러리 벡터들과 비교되기 때문에, 현재 벡

터들이 기준 라이브러리의 벡터들과 어떤 순서로 비교되든 차이가 없다 - 각각의 현재 벡터는 자기 자체에 상응

하는 추정 벡터를 받아들일 것이다. 

일부의 공지된 모델은 커널 회귀 모델링 구조물 내에서 타임 도메인 정보를 획득한다.  예를 들어, 복소 신호[0005]

분해  기술(complex  signal  decomposition  techniques)은  시간  변동(time-varing)  신호를  미국  특허  제

6,957,172 및 제7,409,320호에 의해 개시된 바와 같이 주파수 컴퍼넌트 또는 미국 특허 제 7,085,675 호에 개시

된 바와 같은 스펙트럼 특징으로 변환한다.  이러한 컴포넌트 또는 특징은 단일의 복소 신호가 동일 시간에서

발생하는 주파수 값들의 패턴 또는 벡터로 표현되도록 실증적 모델링 엔진에 개개의 입력으로서 제공된다.  실

증적 모델링 엔진은 추출된 컴포넌트 입력들(현재 또는 실제 벡터)을 예상된 값들과 대조하여 실제 신호에 관한

또는 시간 변동 신호들을 발생하는 시스템의 상태에 관한 정보를 더 많이 유도한다.  이러한 방법들은 음향 또

는 진동 신호와 같은 단일의 주기적 신호에 대해 동작하도록 설계되어 있다.  그러나, 복소 신호용 시스템에서

조차도, 현재 벡터의 추정치를 계산할 때 각각의 현재 벡터는 입력 벡터들이 표현하는 기간에 무관하게 참조로

한 벡터들 또는 예측된 벡터들의 매트릭스와 비교되기 때문에 타임 도메인 정보는 중요하지 않다.

발명의 내용

과제의 해결 수단

일 양태에서, 객체의 미래 동작 상태를 판단하기 위한 방법은 상기 객체의 정상 동작 상태를 나타내는 기준 데[0006]

이터를 취득하는 단계와, 입력 패턴 어레이들을 취득하는 단계를 포함한다.  각각의 입력 패턴 어레이는 다수의

입력 벡터들을 가지며, 각각의 입력 벡터는 시점(time point)을 표현하고 상기 객체의 현재 상태를 나타내는 다

수의 파라미터들을 표현하는 입력 값들을 갖는다.  적어도 하나의 프로세서는 입력 패턴 어레이 및 상기 기준

데이터를 사용하여 상기 입력 값들과 기준 데이터 간의 유사도 척도를 판단하는 계산에 따라 추정 값들을 생성

한다.  추정 매트릭스의 형태로 된 추정 값들은 가상의 또는 추론된 추정 값들의 적어도 하나의 추정 벡터를 포

함하며, 상기 입력 벡터들에 의해 표현되지 않은 적어도 하나의 시점을 표현한다.  상기 추론된 추정 값들은 상

기 객체의 미래 상태를 판단하는데 사용될 수 있다. 

다른 양태에서, 객체의 미래 동작 상태를 판단하는 모니터링 시스템은 상기 객체의 정상 동작 상태를 나타내는[0007]

기준 데이터를 수신하고, 입력 패턴 어레이들을 수신 ― 각각의 입력 패턴 어레이는 다수의 입력 벡터들을 가짐

― 하도록 구성된 실증적 모델 모듈을 갖는다.  각각의 입력 벡터는 상기 객체의 현재 상태를 나타내는 다수의

파라미터들을 표현하는 입력 값들을 갖는다.  상기 실증적 모델은 또한 입력 패턴 어레이 및 상기 기준 데이터

를 사용하여 상기 입력 값들과 기준 데이터 간의 유사도 척도를 판단하는 계산에 따라 추정 값들을 생성하도록

구성된다.  상기 추정 값들은 추론된 추정 값들의 적어도 하나의 추정 벡터를 포함하는 추정 매트릭스의 형태이

고, 각각의 추정 매트릭스는 상기 입력 벡터들에 의해 표현되지 않은 적어도 하나의 시점을 표현한다.  예측 모

듈은 상기 추론된 값들을 사용하여 상기 객체의 미래 상태를 판단하도록 구성된다. 

도면의 간단한 설명
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도 1은 모니터링 시스템의 예시적인 구성의 블록도를 도시한다. [0008]

도 2는 모니터링 시스템의 기본 프로세스를 도시하는 플로우 차트이다.

도 3은 자동연상 유사도 기반 모델링 방정식(auto associative similarity based modeling equation)의 개략도

이다.  

도 4는 추론 유사도 기반 모델링 방정식(inferential similarity based modeling equation)의 일 형태의 개략

도이다.

도 5는 추론 유사도 기반 모델링 방정식의 다른 형태의 개략도이다. 

도 6은 자동연상 순차적 유사도 기반 모델링 방정식(autoassociative sequential similarity based modeling

equation)의 개략도이다. 

도  7은  모델링된 센서 차원에서 추정하는 추론 순차적 유사도 기반 모델링 방정식(inferential  sequential

similarity based modeling equation)의 일 형태의 개략도이다. 

도 8은 모델링된 센서 차원(modeled sensor dimension)에서 추정하는 추론 순차적 유사도 기반 모델링 방정식

(inferential sequential similarity based modeling equation)의 다른 형태의 개략도이다. 

도 9는 시간 차원에서 추정하는 순차적 유사도 기반 모델링 방정식의 개략도이다. 

도 10은 시간 차원에서 추정하는 추론 순차적 유사도 기반 모델링 방정식의 개략도이다. 

도 11은 시간 차원 및 센서 차원에서 추정하는 추론 순차적 유사도 기반 모델링 방정식의 개략도이다. 

발명을 실시하기 위한 구체적인 내용

커널 회귀 모델, 및 특히 유사도 기반 모델에서 추정치의 정확성은 실질적으로 시간 도메인 정보를 모델로 포함[0009]

시킴으로써 개선될 수 있다고 판단되어 왔다.  그래서, 본 발명의 모니터링 시스템 및 방법의 한가지 기술적 효

과는 시간 도메인 정보를 산업 공정, 시스템, 머신 또는 다른 객체들을 모니터하는 대다수의 주기적 및 비주기

적 센서 신호들로부터 포착함으로써 추정 데이터를 생성하는 것이다.  본 발명 시스템의 기술적 효과는 또한 아

래에서 상세히 설명되는 바와 같이 커널 회귀 모델링의 코어에서 기본적인 비선형 수학적 계산을 벡터-대-벡터

연산에서 매트릭스-대-매트릭스 (또는 어레이-대-어레이) 연산으로 확장하는 실증적 모델을 동작시키는 것이다.

모니터링 시스템 및 방법의 또 다른 대안의 기술적 효과는 추정치를 생성하는데 사용된 기준 데이터가 모니터링

되는 객체의 정상적 동작을 표현하는 데이터인지 또는 결함을 나타내는 객체으로부터의 데이터를 더 잘 매칭시

키는 결함 모드 데이터인지 모니터링되는 객체의 미래 상태를 판단하는 미래 시점에 대한 가상 또는 추론된 추

정 값을 생성하는 것이다.  

도 1을 참조하면, 시간 도메인 정보를 포함하는 모니터링 시스템은 하나 이상의 모듈의 형태로 된 컴퓨터 프로[0010]

그램으로 구현될 수 있으며 하나 이상의 컴퓨터(100)에서 실행되고 하나 이상의 프로세서(102)에 의해 실행될

수 있다.  컴퓨터(100)는 센서 데이터 및/또는 컴퓨터 프로그램을 영구적이든 일시적이든 보유하는 내부이든 외

부이든 하나 이상의 메모리 스토리지 디바이스(104)를 가질 수 있다.  일 형태에서, 스탠드얼론 컴퓨터는 생물,

계측 파라미터 (온도, 및 압력 등)을 포함하는 지령받은 머신, 프로세스 또는 다른 객체에 있는 센서들로부터

센서  데이터를  수신하도록  구성된  전용  프로그램을  구동한다.   모니터링되는  객체는,  특별하게  제한되지

않지만, 몇 가지 예를 들면, 산업 플랜트 내 하나 이상의 머신, 하나 이상의 차량, 또는 제트 엔진과 같이 차량

에 탑재된 특정한 머신일 수 있다.  센서 데이터는 컴퓨터 네트워크 또는 인터넷을 통하여 유선 또는 무선으로,

예를 들면, 데이터를 수집하는 컴퓨터 또는 데이터베이스에 전송될 수 있다.  하나 이상의 프로세서를 갖는 하

나의 컴퓨터는 모든 모듈의 모든 모니터링 작업을 수행할 수 있거나, 또는 각각의 작업 또는 모듈은 그 모듈을

실행하는 그 자신의 컴퓨터 또는 프로세서를 가질 수 있다.  그래서, 한 곳에서 프로세싱이 일어날 수도 있고

또는 유선 또는 무선 네트워크에 의해 모두 연결되어 있는 다른 많은 장소에서 프로세싱이 일어날 수 있다.   

도 2를 참조하면, 모니터링 시스템(10)에 의해 수행된 프로세스(300)에서, 시스템은 전술한 바와 같이 모니터링[0011]

되는 객체(16) 위에 놓여진 센서들(12)로부터 데이터 또는 신호를 수신한다.  이러한 데이터는 모델(14)에 의해

사용하기 위한 입력 벡터들(32) 내로 배열된다.  여기서, 입력, 실제, 및 현재라는 용어는 서로 바꾸어 사용되

며, 벡터, 스냅샷 및 관측치라는 용어는 서로 바꾸어 사용된다.  입력 벡터(또는 예를 들어, 실제 스냅샷)는 한

순간의 시간에 모니터링되는 머신의 동작 상태를 나타낸다. 
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부가적으로, 또는 대안으로, 입력 벡터(32)는 센서 데이터(또는 미가공 데이터(raw data))에 기반하여 계산될[0012]

수 있거나 또는 계산되지 않았을 수 있는 계산된 데이터를 포함할 수 있다.  이것은, 예를 들어, 평균 압력 또

는 압력 강하를 포함할 수 있다.  입력 벡터(32)는 또한 객체(16) 위에 놓여진 센서들에 의해 표현되지 않은 다

른 변수를 표현하는 값들을 가질 수 있다.  이것은, 예를 들면, 센서 데이터가 수신되는 년도의 하루의 평균 주

변 온도 등일 수 있다.  

모델(14)은  벡터(32)  형태의 데이터를 취득하고(302)  입력 벡터들을 입력 어레이 또는 매트릭스로 배열한다[0013]

(304).  그러나, 모델(14) 자체는 입력 데이터로부터 온 벡터들(32)을 구성할 수 있고 또는 데이터를 집합 또는

벡터들 및 어레이들로 구성하는 입력 컴퓨터 또는 프로세서로부터 벡터들을 수신할 수 있다.  그래서, 입력 데

이터는 컴퓨터(100), 컴퓨터(100)의 위치에 가까운 다른 컴퓨터에 의해, 또는 객체(16) 근처와 같이 다른 위치

에서 벡터로 배열될 수 있다. 

모델(14)은 또한 기준 벡터 또는 행렬 형태, 때로는 행렬(H)라고 지칭되는 기준 데이터를 기준 라이브러리(18)[0014]

로부터 취득한다(306).  라이브러리(18)는 시스템 내 모든 이력 기준 벡터들을 포함할 수 있다.  그러면 모델

(14)은 기준 데이터 및 입력 어레이들을 사용하여 결과 추정 매트릭스 또는 어레이 형태의 추정치를 생성한다

(310).  추정 매트릭스는 차분 모듈(20)에 제공되며, 이 차분 모듈은 추정 매트릭스 내 추정 값들과 입력 어레

이 내 대응하는 입력 값들 간의 차(또는 잔차(residual))를 판단한다(312).  잔차는 경보 또는 분석 관리 모듈

(또는 간단히 경보 모듈)(22)에 의해 사용되어 결함이 존재하는지를 판단한다(314).   

파선으로 도시한 바와 같이, 모니터링 시스템(10)은 또한 각각의 입력 어레이 내 벡터들과 비교하기 위해 서브[0015]

세트 또는 매트릭스 D(t)(아래의 학습된 순차적 패턴 매트릭스들(learned sequential pattern matrics)의 3차

원 집합(three-dimensional collection)이라고 지칭함(도 6))을 구성하는데(308) 사용된 기준 라이브러리로부

터 어느 데이터를 변경하는 로컬라이제이션(localization) 모듈(28)을 포함할 수 있다.  그렇지 않으면, 기준

데이터의 매트릭스 D(t)는 아래에서 자세히 설명되는 바와 같이 모든 입력 매트릭스들에서 동일하게 유지할 수

있다.  또한, 모니터링 시스템은 적응 모듈(30)을 가질 수 있으며, 이 적응 모듈은 입력 벡터들을 계속하여 기

준 라이브러리에 위치하게 하여 라이브러리 내 데이터를 갱신하거나 또는, 예를 들어, 모델이 여태껏 겪어보지

못한 머신의 새로운 정상 상태를 나타내는 데이터를 수신할 때처럼 어떤 이벤트가 발생할 때 라이브러리 내 데

이터를 갱신한다.  이것 또한 아래에서 상세히 설명된다.

경보 모듈(22)은 경보뿐 아니라 잔차를 직접 사용자용 인터페이스 또는 출력 모듈(24)에 제공하여 잔차 자체의[0016]

진단 분석을 수행하도록 할 수 있고, 또는 진단 모듈(26)은 결함의 원인의 정확한 특성을 분석하여 출력 모듈

(24)을 통해 진단 결론 및 심각도(severity ratings)를 사용자에게 보고하도록 제공될 수 있다.  

출력 모듈(24)은 이러한 결과를 표시하기 위한 메커니즘 (예를 들면, 컴퓨터 스크린, PDA 스크린, 프린트 아웃,[0017]

또는 웹 서버), 결과를 저장하는 메커니즘 (예를 들어, 쿼리 기능을 갖는 데이터베이스, 플랫 파일, XML 파일)

및/또는 결과를 원격 위치 또는 다른 컴퓨터 프로그램에 결과를 통신하기 위한 메커니즘(예를 들어, 소프트웨어

인터페이스, XML 데이터그램, 이메일 데이터 패킷, 비동기 메시지, 동기 메시지, FTP 파일, 서비스, 파이프형

명령 등)을 포함할 수 있다.

실증적 모델(14)의 보다 상세한 설명은 커널 회귀의 확실한 지식을 필요로 한다.  커널 회귀와 같은 패턴 인식[0018]

기술에서, 패턴은 벡터로서 (전술한 바와 같이) 함께 그룹화된 입력 데이터로 구성된다.  각 벡터의 데이터는

공통의 시점에서 한편의 장비로부터 수집된다.  그러나, 여기에서, 그리고 아래에서 더 상세히 설명되는 바와

같이, 기존의 커널 회귀 방법과 연관된 동시성 센서 값들의 패턴(벡터)은 연속하는 순간의 시간에서 생성된 순

차적 패턴과 같은 시간적으로 관련된 정보 또는 연속하는 순간의 시간에서 생성된 패턴에 적용된 시간-독립 함

수들(예를 들면, 필터, 시간 유도체 등)에서 생성된 출력으로 늘어난다.  그러므로, 기존의 커널 회귀 방법에

의해 처리된 개개의 패턴(벡터)은 어레이를 구성하는 패턴들의 시간-관련 시퀀스들(또는 간단하게는 패턴 어레

이 또는 패턴 매트릭스들)로 대체된다.    

커널 회귀, 방사형 기저 함수(radial basis functions) 및 유사도-기반 모델링을 포함하는 모든 커널-기반 모델[0019]

링 기술은 하기 수학식으로 기술될 수 있다.  
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수학식 1

[0020]

상기 수학식에서, 센서 신호 또는 센서 값 추정치의 벡터 xest는 센서 측정치의 입력 벡터 xnew를 센서 데이터 xi[0021]

의 L 개 학습된 패턴들과 비교하는, 커널 함수 K의 결과들의 가중 합(weighted sum)이다.  xi는 벡터(또는 관측

치, 패턴, 스냅샷, 또는 표본(exemplars)이라고도 지칭함)의 형태로 된 기준 또는 학습된 데이터로 구성된다.

커널 함수의 결과들은 벡터의 형태일 수 있고 또한 다수의 방식으로 판단될 수 있는 가중치 ci에 따라 조합된다.

전술한 형태는 모든 추정된 출력 신호들이 또한 입력 신호로 표현되는 "자동연상(autoassociative)" 형태이다.

다시 말해서, 각각의 입력 값마다, 추정 센서 값이 산출된다.  이것은 어떤 추정 출력 값들이 기존의 입력 값을

표현하지 못하는 "추론적(inferential)" 형태와 대조를 이루지만, 그 대신 입력으로부터 추론된다.

수학식 2

[0022]

여기서 이 경우, yest는 다른 파라미터들의 입력 벡터들 xnew과 이들 파라미터들의 L 개 학습된 표본들 xi와의 커[0023]

널-기반 비교를 통해 취득된 추론된 센서 추정치이다.  각각의 학습된 표본 xi는 이것은 적어도 부분적으로 yi의

함수인 커널 K 및 벡터들 ci에 따라서 가중된 방식으로 조합된 추정될 파라미터들의 또 다른 표본 벡터 yi와 연

관된다.  유사한 방식으로, 하나보다 많은 센서가 동시에 추론될 수 있다. 

커널-기반 추정기에 공통적인 사항은 커널 함수, 및 커널 결과 및 표본들을 구현하는 벡터들 ci에 기반한 표본들[0024]

의 선형적 조합(예를 들면, 표본들 또는 벡터들의 매트릭스)로부터 생성된 결과의 생성물이다.  커널 함수 K는

일반화된 내적(generalized inner product)이지만, 하나의 형태로 xnew 및 xi가 동일할 때 그의 절대 값이 최대

라는 또 다른 특징을 가지고 있다. 

본 발명의 일 실시예에 따르면, 모델을 제공하는데 사용될 수 있는 커널-기반 추정기는 다음과 같이 나다라와-[0025]

왓슨 커널 회귀 형(Nadaraya-Watson kernel regression form)으로 예시되는 커널 회귀이다. 

수학식 3

[0026]
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수학식 4

[0027]

추론 형태에서, 추론된 파라미터들 yest의 다변수 추정치는 파라미터 측정치 xnew 및, 각각의 xi와 연관되고 커널[0028]

결과들의 합으로 정규화된 각각의 학습된 벡터들 yi에 따라 선형적으로 조합된 L 개의 학습된 표본들 xi의 입력

벡터에 대한 커널 K 연산자의 결과로부터 생성된다.  yi는 X 내 파라미터들의 학습된 측정치들과 연관된 (이를

테면, 동시적으로 측정된) Y 내 파라미터들의 학습된 측정치들의 L개 세트를 표현한다.  예를 들어, X는 다수의

압력 판독값들을 포함할 수 있으며, 한편 Y는 동일 시스템으로부터의 대응하는 다수의 온도 판독값들 표현할 수

있다.  다시 말해서, 압력 판독값들은 yi (빠트린 파라미터의 이전 값들을 가진 기준 벡터)와의 계산에서 사용되

는 가중치들을 계산하는데 사용되어 yest에 대한 추정된 온도 판독값들 또는 센서 값들을 계산할 수 있다. 

커널 회귀의 자동 연상 형태에 있어서, 파라미터 xest의 다변수 추정치는 학습된 관측치 xi에 대한 입력 벡터 xnew[0029]

의 커널 동작 결과들로 곱해진, 이들 파라미터들 xi의 학습된 측정치들의 정규화된 선형적 조합에 의해 (예를 들

어, 아래에서 기술된 표본의 매트릭스 D의 형태로) 생성된다. 

본 예의 커널 회귀에 있어서, 상기 수학식 1 및 2로부터 ci는 커널 비교 값들의 합에 의해 정규화된 학습된 표[0030]

본으로 구성된다.  추정 벡터 yest 또는 xest는, 일 예에 따르면, 잔차를 제공하기 위해 실제 측정된 값들(xnew 또

는 ynew)과 차이나는 추정된 파라미터들의 세트를 포함한다.  

커널 회귀의 특정 예에서, 유사도-기반 모델(SBM)은 본 발명에 따른 모델로서 사용될 수 있다.  나다라와-왓슨[0031]

커널 회귀는 한 세트의 (어쩌면 잡음의) 학습된 표본들이 주어진 경우 추정치를 유연하게 하는 추정치를 제공하

는 반면, SBM은 입력 벡터가 학습된 표본들 중 하나와 동일한 경우와 같이 학습된 표본들이 또한 입력이 될 때

도 학습된 표본에 맞는 보간된 추정치를 제공한다. 이것은 이들 신호 내 잡음이 (만일 잡음이 모델이 만들어졌

던 표본에서도 마찬가지로 존재한다면) 어떤 범위까지 과적합할 것이기 때문에, 파라미터에서 편차를 검출할 때

유리할 수 있고, 그래서 나다라와-왓슨 커널 회귀 접근법과 비교하여 어느 정도 잔차로부터 잡음을 제거할 수

있다.  SBM은 커널 함수 K를 연산자 로서 재작성하고 그리고 학습된 표본들 xi의 세트를 로우들(rows)을 구

성하는 xi의 원소들 및 그의 컬럼들(columns)을 구성하는 xi  관측치들로 이루어진 매트릭스 D와 같게 함으로써

커널-기반 추정기의 형태로서 이해될 수 있다.  그러면 하기 수학식과 같다.

수학식 5

[0032]

상기 수학식에서 D는 전치된 것으로, 그 결과 D 내 각각의 관측치 xi 마다 하나씩 커널 값들의 컬럼 벡터가 된[0033]

다.  마찬가지로, 모든 표본들을 서로 비교하면 다음과 같이 표현될 수 있다. 
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수학식 6

[0034]

그런 다음, SBM의 자동연상 형태는 하기 수학식에 따라서 추정 벡터를 생성한다. [0035]

수학식 7

[0036]

수학식에서, xest는 추정 벡터이고, xnew는 입력 관측치이고, D는 파라미터들의 학습된 표본 관측치들의 세트(또[0037]

는 서브세트)를 포함하는 학습된 벡터 매트릭스이다.  유사도 연산자 또는 커널은 심볼 로 나타내며, 각각의

피연산자로부터 어느 두 벡터의 비교에 대한 유사도 점수를 렌더링하는 일반적인 특성을 가지고 있다.  그래서,

제1차 항 은 상기 수학식 6에서 도시된 바와 같이 D 내 관측치들의 개수에 대등한 크기 값들의

제곱 매트릭스를 산출할 것이다. 항  은 수학식 5에서 도시된 바와 같이 D 내 각 벡터 당 하

나씩의 유사도 값들의 벡터를 산출할 것이다.  이러한 유사도 연산자는 아래에서 더욱 상세히 설명된다.  수학

식은 도 3에서 개략적으로 도시되며 수학식의 각 컴포넌트가 사각형 박스로 표현된 것처럼 어떻게 벡터로 형성

되는지를 보여준다.  이 예에서, 각각의 벡터는 (비록 전술한 바와 같이 다른 비-센서 값들을 포함할 수도 있을

지라도) 파라미터들 1-5에 대한 센서 값들을 담고 있다.  숫자 1-5는 어느 파라미터가 표현되고 있는지를 표시

하는 것이며 정확한 센서 값을 표시하는 것이 아니라는 것을 이해할 것이다.  그래서, 센서 값 자체는 수학식의

상이한 부분 마다 다를 것이다 (예를 들면, 파라미터 1에 대한 값은 xnew 대 D에서의 값 대 xest에서의 값마다 다

를 수 있다).  

수학식 7의 경우, 입력 벡터들의 그룹 중에서 시간 도메인 정보는 추정치를 생성하는데 무시된다는 것 또한 알[0038]

아야 한다.  다시 말해서, 수학식 7은 단일 입력 벡터 xnew를 이용함으로써 추정 벡터를 생성하기 때문에, 입력

벡터들의 그룹 내 벡터들이 분석되어 추정 벡터를 생성하는 순서는 크게 중요치 않다.  만일 결함이 존재하는지

를 판단하기 위해 또는 결함의 특정한 형태를 진단하기 위해 (순차적인 것처럼) 시간에 관련된 어떤 순서가 나

중에 프로세서에서 필요하다면. 추정치를 생성한 이후에 벡터들을 원하는 대로 순서화시킬 수 있다. 

추정치는 다음의 수학식에 따라서 데이터의 원본과 무관하게 만듦으로써 더욱 개선될 수 있는데, 이 수학식에서[0039]

추정치는 유사도 연산자로부터 생성된 "가중치들"의 합으로 나눔으로써 정규화된다.

수학식 8

[0040]

추론 형태의 유사도-기반 모델링에 있어서, 추론된 파라미터 벡터 yest는 하기 수학식에 따른 학습된 관측치로부[0041]

터 추정된다.
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수학식 9

[0042]

수학식에서 Din은 xin 내 실제 센서 값들(또는 파라미터들)과 동일한 개수의 로우들을 가지며, Dout는 추론된 파라[0043]

미터들 또는 센서들을 포함하는 파라미터들의 총 개수와 동일한 개수의 로우들을 갖는다.  수학식 9는 벡터들의

위치, 입력 값들(1 내지 5) 및 추론된 결과 값들(6-7)을 보여주는 도 4에서 개략적으로 도시된다. 

일 형태에서, 학습된 표본들 Da의 매트릭스는 입력 벡터 xin의 센서 값들에 맵핑하는 로우들과 추론된 센서들에[0044]

맵핑하는 로우들을 포함하는 집합 매트릭스(aggregate matrix)로서 이해될 수 있다.

수학식 10

[0045]

이전처럼 가중치들의 합을 이용하여 정규화하면 다음과 같다. [0046]

수학식 11

[0047]

다음과 같이 Dout를 학습된 표본들 Da의 전체 매트릭스로 대체함으로써, 유사도-기반 모델링은 (자동 연상형의)[0048]

입력 센서들과 (추론형의) 추론 센서들의 추정치들을 동시에 계산할 수 있다는 것을 알아야 한다. 

수학식 12

[0049]

도 5를 참조하면, 수학식 12는 입력 및 추론된 값들 둘 다를 기준 값으로 하는 매트릭스 Da를 사용한다.  이렇[0050]

게 함으로써 입력 값들과 추론 값들을 모두 표현하는 추정 벡터가 된다. 

전술한 바와 유사한 또 다른 커널-기반 모델링 기술은 방사형 기저 함수의 기술이다.  신경학적 구조에 기초하[0051]

여, 방사형 기저 함수는 - 각각의 기저 함수는 입력 벡터들의 n-차원 공간에서 수용 필드(receptive field)를

구성함 - 신경 회로망의 특정한 형태로 수용 필드를 활용하며, 신경망에서 은닉층 노드로 표현된다. 각각의 수

용 필드는 전술한 커널들의 형태를 갖는데, 여기서 수용 필드의 "중앙(center)"은 특별한 은닉 단위가 표현하는
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표본이다.  표본 만큼의 동일한 개수의 은닉 단위 수용 필드가 존재한다.  다변수 입력 관측치는 은닉 층과 완

전히 연결된 입력 층에 입력된다.  그래서, 각각의 은닉 유닛은 전체 다변수 입력 관측치를 수용하고, 입력이

각각의 필드의 "중앙"에 일치할 때 최대가 되는 결과를 생성하며, (전술한 SBM과 유사하게) 이들이 점차 달라짐

에 따라 줄어든다.  수용 필드의 은닉 층의 출력은 (상기 수학식 1에서와 같이) 가중치 ci에 따라서 조합된다.

전술한 바와 같이, 커널은 각종의 가능한 커널들로부터 선택될 수 있으며, 일 형태에서 커널은 동일한 두 벡터[0052]

들의 비교를 통해 그 커널에 의해 반환된 모든 값들 중 최대 절대 값을 갖는 값(또는 유사도 점수)을 반환하도

록 선택된다.  본 명세서에서 여러 예가 제공되지만, 이들 예는 본 발명의 범주를 제한하려는 것은 아니다.  하

기의 예는 어느 두 벡터들 xa 및 xb의 비교를 통해 본 발명에 따라 사용될 수 있는 커널/유사도 연산자의 예들이

다. 

수학식 13

[0053]

수학식 14

[0054]

수학식 15

[0055]

수학식 13-15에서, 두 벡터들의 벡터 차 또는 "넘(norm)"이 사용되며, 일반적으로 이것은 2-넘이지만, 1-넘 또[0056]

는 p-넘일 수도 있다.  파라미터 h는 일반적으로 커널의 흔히 "대역폭"이라고 불리우는 상수이며, 각각의 표본

이 중요한 결과를 반환하는 "필드"의 크기에 영향을 미친다.  전력 λ 또한 사용되지만, 1이 되게 설정된다.

각각의 표본 xi 마다 상이한 h 및 λ를 이용하는 것이 가능하다.  한 가지 접근법에 의하면, 벡터 차 또는 넘을

이용하는 커널을 이용할 때, 측정된 데이터는, 예를 들면, 그 센서 데이터 세트의 최저 판독 값을 모든 센서 값

들에 가산 또는 그로부터 감산한 다음 모든 결과들을 그 센서의 범위로 나눔으로써 0 내지 1의 범위 (또는 다른

선택된 범위)로 먼저 정규화되어야 한다.  대안으로, 데이터는 표준 편차 세트를 1로(또는 어떤 다른 상수로)

설정하는 제로-중심 평균 데이터(zero-centered mean data)로 변환함으로써 정규화될 수 있다.  더욱이, 본 발

명에 따른 커널/유사도 연산자는 또한 관측치들의 원소들의 항에서 정의될 수 있다.  즉, 유사도는 벡터들의 각

차원에서 판단되며, 이들 개개의 원소 유사도들(elemental similarities)은 몇가지 방식으로 조합되어 전체 벡

터 유사도를 제공한다.  전형적으로, 이것은 다음과 같이 어느 두 벡터 x 및 y의 커널 비교를 위해 원소 유사도

들을 평균하는 것만큼 간단해질 수 있다.  
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수학식 16

[0057]

그런 다음, 본 발명에 따라 사용될 수 있는 원소 유사도 연산자는 제한없이 다음을 포함한다. [0058]

수학식 17

[0059]

수학식 18

[0060]

수학식 19

[0061]

상기 도시된 바와 같은 원소 커널의 경우에, 대역폭 h는 관측 벡터들의 m번째 파라미터의 예상된 범위의 몇 가[0062]

지 종류의 측정치가 되게 선택될 수 있다.  이것은, 예를 들면, 모든 표본들 전체의 파라미터의 최대 값과 최소

값과의 사이의 차를 찾음으로써 판단될 수도 있다.  대안으로, 이것은 표본들 또는 기준 벡터들에 존재하는 데

이터에 무관하게 알고있는 도메인을 이용하여 설정될 수 있다.  더욱이, 차이 함수를 이용하는 벡터 및 원소 커

널들 둘다에 대하여, 만일 대역폭으로 나눈 차가 1 보다 크면, 이것은 1이 되게 설정될 수 있고, 그 결과 예를

들면 수학식 14, 15, 18 및 19 의 경우는 커널 값이 제로가 된다는 것을 주목하여야 한다.  또한, 커널 또는 유

사도 연산자는 1, h, λ 등 대신에 상이한 상수들을 더하기 또는 곱하기 함으로써 변형될 수 있음을 용이하게

알 수 있다.  삼각 함수들 또한 사용될 수 있으며, 예를 들면, 다음과 같다. 
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수학식 20

[0063]

일 형태에서, 유사도 연산자 또는 커널은 일반적으로 동일한 차원의 두 벡터들의 비교를 위해 유사도 점수를 제[0064]

공한다.  이러한 유사도 점수는: 

1. 스칼라 범위 내에 있다.  이 범위는 각 끝 부분에서 경계를 이루고 있다; [0065]

2. 두 벡터가 동일하다면, 경계를 이룬 끝 부분들 중 한 곳에서 1이라는 값 (또는 다른 선택된 값)의 값을 갖는[0066]

다;

3. 스칼라 범위를 넘어 단조적으로 변하며; 그리고 [0067]

4. 두 벡터가 동일해지게 접근함에 따라 증가하는 절대 값을 갖는다.[0068]

전술한 모델링을 위한 모든 방법들은 전술한 커널-기반 접근법을 이용하며 표본들의 기준 라이브러리를 이용한[0069]

다.  표본들(또는 기준 관측치 또는 기준 벡터들이라고도 지칭함)은 모델링된 시스템의 "정상(normal)"  행위

(behavior)를 표현한다.  옵션으로, 이용가능한 기준 데이터는 표본들의 라이브러리로서 작용하는 특징 서브세

트(characteristic subset)를 제공하기 위해 다운-선택(down-selected)될 수 있고, 이 경우에는 커널-기반 모

델을 "훈련(training)하는"  다수의 기술들이 이용될 수 있다.  이 경우, 다운-선택된 라이브러리 자체는 상기

수학식에서 사용되는 매트릭스 D를 구성할 수 있다.  한가지 훈련 방법에 따르면, 라이브러리에는 모든 이용가

능한 참조 관측치들 전체에서 소정 파라미터마다 최고 또는 최저 값을 갖는 적어도 이들 관측치들이 포함되어

있다.  이것은 추가적인 관측치들의 무작위 선택, 또는 충실히 데이터의 분산(scatter) 또는 군집(clustering)

을 표현하기 위해 선정된 선택으로 보충될 수 있다.  대안으로, 기준 데이터는 군집될 수 있으며, 인위적으로

생성된 새로운 표본들로서 형성되는 - 그런 다음 라이브러리를 구성함 - 군집들의 "중심(centriods)"을 나타낸

다.  본 기술들에는 표본들의 라이브러리를 포함하도록 관측치들을 선택하는 각종 기술들이 공지되어 있다.  그

래서, 이 경우 적어도 일반적인 견지에서, 매트릭스 D는 라이브러리가 변하지 않는 한(즉, 이를 테면 라이브러

리가 업데이트 될 때) 모든 입력 벡터들 xin 에 대한 수학식 7에서 동일하게 유지된다. 

실증적 커널-기반 모델의 추론 및 자동연상 형태에 대한 대안의 구성에 있어서, 매트릭스 D는 모델이 입력 관측[0070]

치의 품질에 기반하여 "수시로" 생성될 수 있도록 각각의 입력 벡터 xin 마다 재구성될 수 있으며, 학습된 관측

치들의 대형 세트, 즉, 기준 세트으로부터 유도될 수 있다.  이것의 일예는 미국 특허 제7,403,869호에 기술되

어 있다.  이 프로세스는 로컬라이제이션라고 지칭된다.  따라서, 커널-기반 모델링의 추론 형태 및 자동연상

형태의 커널-기반 모델링은 입력 관측에 기반하여, 대형 세트의 기준 관측치들로부터 선택된 한 세트의 학습된

관측치들 xi(매트릭스 D)를 이용하여 수행될 수 있다.  커널-기반 모델들은 예외적으로 이러한 종류의 로컬라이

제이션에 아주 적합한데 그 이유는 이 모델들이 한번의 공정으로 훈련되고 신속하게 갱신될 수 있기 때문이다.

유리하게, 대형 세트의 후보 표본들을 이끌어내되, 추정치를 생성할 목적으로 각기 새로운 입력 관측치을 갖는

서브세트를 선택함으로써, 모델링 계산의 속도가 줄어들 수 있으며 모델링되는 시스템의 역학을 여전히 잘 특징

으로 하면서 모델의 강인성을 개선할 수 있다. 

모니터링 시스템(10)에 있어서, 로컬라이제이션 모듈(28)은 각종 표준을 이용하여 유사도 연산자 자체의 응용을[0071]

포함하는 집합 D(t)의 로컬라이즈된 매트릭스 멤버십을 구성할 수 있다.  일반적으로, 그러나, 모니터링 프로세

스의 일부로서 모델에 의해 평가될 파라미터들의 세트 또는 유도된 특징들의 세트를 포함하는 입력 관측치(32)

는 로컬라이제이션 모듈(28)에 제공되며, 로컬라이제이션 모듈은 표본 관측들의 서브세트를 선택하여 모델을 구

축하기 위하여 기준 라이브러리(18)의 형태로 된 표본 관측치들의 대형 스토어에 액세스한다.  로컬라이제이션

모듈(28)은 라이브러리의 크기 보다 훨씬 작은 세트일 수 있는, 입력 관측치(32)에 관련한 라이브러리(18)로부

터 표본들을 선택한다.  예를 들어, 기준 라이브러리(18)는 모델링되는 파라미터들로 표현된 시스템의 정상적인

역학을 특징으로 하는 100,000 표본 관측치들을 포함할 수도 있지만, 로컬라이제이션 모듈(28)은 입력 관측치

(32)를 수신함에 응답하여 로컬라이즈된 모델을 구축하는데 소수 무리의 관측치들만을 선택할 수 있다.  그런
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다음, 선택된 표본 관측치들은 이제 로컬라이즈된 모델(14)에 제공된다.  벡터-기반 시스템에서, 그 다음에 이

들 관측치들은 커널-기반 추정기의 목적상 학습된 표본들 xi의 세트(또한 상기 SBM과 관련하여 D로 도시됨)를

포함한다.  추정 관측치 xest은 전술한 바에 따라서 생성된다.  모니터링 시스템(10)에 있어서, 선택된 학습된

표본들은 각기 시점 tp에서 벡터를 표현할 수 있고, 그래서 순차적 패턴 매트릭스가 tp에서 각 벡터마다 구축되

어 아래에서 기술되는 집합 D(t)을 구성하게 된다.  다음번 입력 관측치(32)는 모니터링 시스템(10)으로 제공되

므로, 이 프로세스는 새로운 입력 관측치에 따라, 라이브러리(18)로부터 새롭고 아마도 상이한 표본들의 서브세

트를 선택하면서 반복된다. 

하나의 접근법에 따르면, 입력 관측치(32)는 군집 기술에 기반하여, 학습된 관측들의 기준 라이브러리(18)와 비[0072]

교될 수 있다.  따라서, 라이브러리(18) 내 표본 관측치들은 벡터들을 군집하기 위한 기술에서 공지된 다수의

기술 중 어느 기술을 이용하여 군집되며, 로컬라이제이션 모듈(28)은 입력 관측치(32)가 가장 가까운 클러스터

가 어느 클러스터인지를 식별하고 그 클러스터의 멤버 표본들이 로컬라이즈된 모델(14)에 제공된 로컬라이즈된

관측들이  되도록  선택한다.   적합한  군집  방법은  k-평균(k-means)  및  퍼지  c-평균  군집(fuzzy  c-means

clustering) 또는 자기-조직화 맵 신경 회로망(self-organizing map neural network)을 포함한다. 

또 다른 접근법에 따르면, 커널은 입력 관측치(32)를 라이브러리(18) 내 각각의 표본과 비교하는데 사용되어 입[0073]

력 관측치 대하여 기준 관측치들의 순위를 제공하는 유사도 값을 산출할 수 있다.  그러면, 이들의 소정의 상단

부분은 로컬라이즈된 집합 D(t)에 포함될 수 있다.  이러한 로컬라이제이션 양태의 다른 개량으로서, 모든 기준

관측치들의 순위화된 리스트 내 관측치들은 이들의 컴포넌트 구성요소의 범위까지 로컬라이즈된 집합 D(t)에 포

함되어, 입력 벡터에서 해당 값을 "괄호로 묶인" 값을 제공한다.  예를 들어, 입력 벡터 내 값들이 기준 관측치

들 중 하나의 관측치의 값에 의해 낮고 높은 쪽의 양쪽에서 괄호로 묶일 때가지 순위화된 리스트의 서치 다운이

수행된다.  이러한 "괄호로 묶인" 관측치들은 라이브러리(18) 내 다른 관측치들이 입력보다 더 높은 유사도를

가질지라도 로컬라이즈된 집합 D(t)에 포함된다.  입력 벡터내 모든 입력 값들이 괄호로 묶일 때까지, 순차적인

패턴 매트릭스들을 집합 D(t)에 포함하도록 구축하기 위한 벡터들의 사용자-선택가능한 최대 한계에 도달할 때

까지, 또는 입력과의 유사도가 충분히 높아서 포함을 위한 유사도 임계치를 능가하는 입력에 대한 기준 관측치

들이 더 이상 없을 때까지 서치는 지속된다. 

로컬라이즈된 집합 D(t)의 멤버십을 판단하는데 있어서 다른 변형예가 고려된다.  예를 들어, 전술한 두 가지의[0074]

군집 선택 방법 및 유사도 선택 방법에 있어서, 원소들의 세트, 즉, 유사도를 위해 군집된 또는 커널과 비교된

벡터들을 포함하도록 사용된 파라미터들은 모델 및 추정치를 생성하는데 사용된 것들과 같을 수 없지만, 그 대

신 서브세트와 동일할 수 있거나 또는 부분적으로 중복되는 파라미터 세트와 동일할 수 있다.  전술한 바와 같

이, 시스템(10) 및 모델(14)의 다음 단계는 집합 D(t)를 생성하도록 수행된다.  상세히 말해서, 일단 벡터들(일

차(primary) 벡터들 tp라 지칭함)이 집합 D(t)에 포함을 위해 선택되면, (시간상 앞으로든 뒤로든) 시간적으로

관련된 다른 벡터들은 학습된 순차적 패턴 매트릭스를 형성하기 위해 각각의 기본 벡터마다 선택되며 집합 D

(t)에 포함된다.  시간적으로 관련된 벡터들을 선정하는 프로세스는 아래에서 설명된다.  모듈(28)에 의한 로컬

라이제이션은 아래에서 상세히 설명되는 학습된 순차적 패턴 매트릭스의 3차원 집합들 모두에 적용될 수 있다는

것이 이해될 것이다. 

이제 시간 도메인 정보를 모델(14)에 포함시키는 쪽으로 들어가면, 본 명세서에서 기술된 모니터링 시스템(10)[0075]

의 한가지 접근법에 의해, 두 벡터들의 유사도를 비교하기 위해 동작하는 상기 커널 함수가 동일 차원의 두 어

레이들에서 동작하는 확장된 커널 함수 K로 대체된다.

수학식 21

[0076]

상기 수학식에서 Xnew는 입력 패턴 어레이이며 Xi는 학습된 패턴 어레이이다.  패턴 어레이 또는 패턴 매트릭스는[0077]

시간적으로 관련된 벡터들의 시퀀스로 구성되며, 여기서 이러한 구성 벡터들은 각기 시간적으로 구분된 순간에

서의 센서 측정치를 포함한다.  패턴 어레이 내 벡터들 중 하나는 기본 벡터로 지정되며, 그 데이터가 현재의
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일차 시점 tp으로 지정된다.  다른 벡터들은 체계적인 방식으로 일차 시점에 관련하는 시점과 연관된다. 

일 형태에서, 일차 기본 시점은 패턴 어레이에서 시간 순서로 된 시점들(또는 그러한 시점들을 나타내는 순서로[0078]

된 시간 벡터들)의 시퀀스를 작성하는 가장 최신의 시점들이다.  한 접근법에 의하면, 다른 시점들은 동일하게

이격되어 있으며, 시점들 간의 일정한 시간 간견을 제공하는 시간 폭(time step) △t의 정수곱만큼 일차 시점을

선행한다.  소정 개수의 샘플들 nlb의 경우, 시점들은 순서로 된 시퀀스, 즉, (tp - nlb△t, tp - (nlb -1)△t, .

. . , tp - 2△t, tp - △t, tp)를 구성한다.  시점들의 시퀀스는 하기와 같은 룩-백(look-back) 패턴 어레이를

정의한다.

수학식 22

[0079]

도 6에 도시된 바와 같이, 기본 벡터 tp는 각 패턴 어레이의 최우측 컬럼으로서 배치되며, 다른 (nib) 데이터 벡[0080]

터들은 기본 벡터 tp의 좌측에 위치한 컬럼 벡터들이다.  패턴 어레이들의 로우들은 모델링된 센서들로부터의 시

간-변동 신호들의 짧은 부분에 상응한다. 

룩-백 패턴 어레이들을 이용함으로써, 수학식 21의 확장된 커널 함수는 실시간 시스템 모니터링에 적용될 수 있[0081]

다. (시점 tp에서 벡터를 의미하는) 입력 패턴 어레이 Xnew내 기본 벡터 tp는 시간적으로 현재 시점의 시스템 데

이터를 포함하며, 어레이의 나머지는 과거의 최근 시점들의 데이터 벡터들로 구성된다.  그래서, 입력 패턴 어

레이가 비록 고정적일지라도 통상적인 커널 방법들에 의해 사용된 현재 벡터를 포함할 뿐만 아니라, 모니터링된

시스템의 전개되는 동적 행위를 표현하는 벡터들의 시퀀스를 포함한다.  시스템 타임이 진행함에 따라, 새로운

기본 벡터들이 어레이들의 최우측 위치에서 나타나는 것을 제외하고는 선행하는 어레이들과 동일한 데이터를 많

이 포함하는 새로운 입력 패턴 어레이들이 구성되며, 가장 오래된 벡터들을 최좌측 위치로부터 탈락된다.  그래

서, 시간적으로 단일의 순간을 표현하는 단일 입력 벡터가 다중 입력 패턴 어레이들 Xnew에서 사용될 것이며, 벡

터들이 시퀀스에서 사용된다고 가정하면, 이 벡터들은 벡터들이 어레이에 있을 때와 동일한 회수로 사용될 것이

다.  이러한 방식으로, 입력 패턴 어레이는 시간을 통해 패턴들의 이동 윈도우를 기술한다.  여기서, 이동 윈도

우는 윈도우가 타임라인을 따라 또는 시간 순서로 된 센서 값 벡터들의 시퀀스를 따라서 이동함에 따라 어느 벡

터들이 세트 내에 포함되는지를 변화시키는 연대순으로 고정된 개수의 벡터들의 세트 또는 그룹을 의미한다. 

상기 수학식 22에서 정의된 패턴 어레이는 nlb*△t 와 동일한 시간에 윈도우에 걸쳐 이어져 있는 nlb 데이터 벡터[0082]

들을 포함한다.  이 예에서 데이터 벡터들은 시간적으로 동일하게 이격되어 있다.  이것을 부르는 다른 방식은

각각의 입력 패턴 어레이 또는 매트릭스가 입력 패턴 어레이 Xnew 내 입력 벡터들로 표현된 시점들 간의 일정한

시간 간격만으로 정의된다는 것이다. 

대안으로, 커널은 달라지는 시간 길이 전반의 패턴 어레이들을 비교하는데 사용될 수 있다.  만일 패턴 어레이[0083]

가 제1 시간 폭 △t1 (예를 들어, 일초 간격)만큼 이격되어 있는 시점들에서의 데이터를 포함하는 경우, 및 다

른 패턴 어레이의 시점들이 제2 시간 폭 △t2  (예를 들어, 10초 간격)만큼 차이가 난다면, 이 패턴 어레이들은

상이한 기간을 표현하는 두 개의 패턴 어레이들이 존재하도록 달라지는 두 시간 윈도우들, nlb*△t1 및 nlb*△t2

에 걸쳐 이어져 있을 것이다.  일 형태에서, 하나의 패턴 어레이가 다른 패턴 어레이 내에 있는 것 보다 벡터들

(또는 시점들) 사이에서 상이한 시간 간격들을 가질 수 있을 지라도 패턴 어레이들이 동일한 개수의 벡터들을

포함하고 있는 한, (최우측 대 최우측, 우측에서 두번째 대 우측에서 두번째, 최좌측 대 최좌측과 같이) 두 패

턴 어레이들에서 동일한 위치에 있는 벡터들과 일치하는 커널 함수는 시간-변동 스케일 전체에서 동작할 수 있

을 것이다.  그래서, 일 예에서, 매트릭스들은 시간 간격 이격이 스펙트럼 시간 신호에서 피크들의 하모닉(1/

f)에 대응할 수 있도록 상이하게 이격된 시점들 전체에서 확장될 수 있다.  패턴 어레이들이 차지한 기간 또는

지속 기간에서 이러한 차이는 학습된 패턴 어레이들과 입력 패턴 어레이들 사이에서, 입력 패턴 어레이로부터

입력 패턴 어레이까지, 학습된 패턴 에레이로부터 학습된 패턴 어레이까지, 또는 입력 패턴 어레이 내 각각의

벡터가 학습된 패턴 어레이들 내 대응하는 학습된 표본을 가지고 있는 한 (또는 다른 말로 하여, 학습된 매트릭
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스들 및 입력 매트릭스들이 동일한 개수의 벡터들을 가지고 있는 한) 상기한 것들의 모든 조합에서 사용될 수

있음을 또한 이해될 것이다.  

다른 예에 따르면, 커널은 패턴 벡터들이 시간적으로 동일하게 이격되어 있지 않은 패턴 어레이들을 비교하는데[0084]

사용될 수 있다.  패턴 벡터들을 일정한 시간 간격 또는 시간 폭으로 이격시키는 대신, 시간 폭은 패턴 어레이

내 위치에 따라 변할 수 있다.  (어레이의 우측편 가까이에 위치한) 가장 최근의 벡터들에 대해 작은 시간 폭을

이용하고 (어레이의 좌측 편 가까이에 위치한) 오래된 벡터들에 대해서는 큰 시간 폭을 이용함으로써, 커널 함

수는 여전히 더 먼 과거에서 변동으로부터 기인한 약간의 영향을 보유하면서도 가장 최근의 변동에 주목할 것이

다. 

다시 도 1을 참조하면, 부가적인 필터링 단계가 필터 모듈(106)에 의해 패턴 어레이들에 대해 부가적인 필터링[0085]

단계가 수행된 다음, 커널 함수(수학식 21)에 의 해 분석될 수 있다.  필터링이 사용될 때, 이러한 필터링은 추

정치를 생성하기 위하여 사용될 두 개의 결과 신호 값들 사이에서 어떤 실질적이고 의도하지 않은 부조화를 피

하기 위하여 기준 벡터들과 입력 벡터들에 대해 수행된다.  필터링 단계에서, 시간-변동 센서 세그먼트들(패턴

어레이의 로우들)은 각기 세그먼트 내 데이터를 스무스(smooth)하게 하거나 또는 데이터로부터 통계적 특징들을

계산하기 위하여 필터링 알고리즘에 의해 처리된다. 이동 윈도우 평균화(moving window averaging), 큐빅 스플

라인 필터링(cubic spline filtering), 또는 사비츠키-코레이 필터링(Savitsky-Golay filtering)과 같은 스무

딩 알고리즘은 원 신호에서 중요한 추세(trends)를 포착하지만, 그 신호에서 잡음을 줄여준다.  스무딩 알고리

즘은 입력 신호에서 원소들 각각에 대해 스무스해진 값을 산출하기 때문에, 이 알고리즘들은 센서 데이터의 원

래 패턴 어레이와 동일한 차원을 갖는 패턴 어레이를 생성한다.  대안으로, 필터링 단계는 한 가지 이상의 특징

추출 알고리즘들을 적용하여 각 신호 내 데이터의 통계적 특징들을 계산하는 단계로 구성될 수 있다.  이러한

특징들은 신호 데이터의 평균, 편차, 또는 시간 파생물을 포함할 수 있다.  동일한 개수의 특징 추출 알고리즘

들이 패턴 어레이들 내 데이터에 적용되는 동안에는 원 패턴 어레이 내 데이터 벡터들의 개수는 변할 수 있다. 

전술한 바와 같이, 패턴 어레이들이 모델링되는 시스템으로부터 시간 정보를 표현하는데 사용되는 여러가지 방[0086]

법이 있다.  이러한 방법들은 이것으로 제한되지 않지만, 동일하게 이격된 시점들에서부터의 데이터 벡터들의

시퀀스, 패턴 어레이들이 변하는 지속기간을 갖도록 달라지는 기간에 걸쳐 이어지는 데이터 벡터들의 시퀀스,

및 데이터 벡터들이 시간적으로 동일하게 이격되어 있지 않은 시퀀스들을 포함한다.  입력 패턴 어레이는 기준

패턴 어레이들보다 상이한 간격을 가질 수 있거나 또는 같을 수도 있다.  게다가, 패턴 시퀀스들은 스무딩 또는

특징 추출 알고리즘들에 의해 필터될 수 있다.  패턴 어레이들 또는 알고리즘들에 의해 필터링함으로써 생성된

어레이들의 형태에서 유일한 제한은 확장된 커널 함수 (수학식 21)에 의해 처리된 두 어레이들이 동일한 차원으

로 이루어진다는 것(즉, 로우들 및 컬럼들의 개수가 동일한 것)이다.  

전술한 벡터-기반 커널 함수와 유사하게, 비록 여기에서 스칼라 값이 두 벡터들이라기 보다 두 어레이들 사이의[0087]

유사도를 표현한다고 할지라도, 확장된 커널 함수는 스칼라 값 또는 유사도 척도를 반환한다.  확장된 커널 함

수는 상기 열거된 벡터-기반 커널 함수와 동일한 특성을 보이는 유사도 점수를 생성한다.  즉, 유사도 점수는

그의 범위가 한정된 스칼라이고; 두 어레이들이 동일할 때 그 한정 값들 중 하나에 대해 일이라는 값(또는 다른

선택된 값)을 가지며; 그 범위에 걸쳐 일정하게 변하며; 그의 절대 값은 두 어레이들이 동일해지게 근접함에 따

라 증가한다.  게다가, 확장된 커널 함수는 두 어레이들의 일치하는 시계열 컴포넌트들에서 동작한다.  이것은,

룩-백 패턴 어레이를 예를 든 경우, 확장된 커널 함수가 기준 및 입력 패턴 어레이들로부터 두 기본 벡터들 tp

간의 유사도를 찾는 것, 그런 다음, 어레이들 내 선행 벡터들 전체에서 기본 벡터들, -1 등의 좌측까지 두 데이

터 벡터들 간의 유사도를 찾는 것을 의미한다.  

확장된 커널 함수의 일예는 미국 특허 제 6,952,662호에 개시된 유사도 연산자에 기반한다.   Xnew 및 Xi를 두[0088]

개의 동일하게 차원을 이룬 패턴 어레이라 하고, nsens 센서들 (또는 파라미터들)로부터의 데이터를 포함하면서

nib 순차적 시점을 이어지게 하면, 확장된 커널 함수는 다음과 같이 작성된다.

공개특허 10-2014-0043439

- 18 -



수학식 23

[0089]

수학식에서 ρ 및 λ는 상수이다.  수학식 23에서 시간 종속 함수 θ(t)는 패턴 어레이들의 시간 원소들을 연산[0090]

하여, 두 어레이들 내 동일 시점 벡터들로부터의 데이터를 매칭(match)한다.  이러한 시계열 데이터 매칭을 성

취하는 한가지 수단은 소정 센서 j 마다 시계열 데이터의 가중 평균을 사용하는 것이다. 

수학식 24

[0091]

소정 센서 j 마다 데이터 원소들 간의 유사도 (Sj, k)는 센서 범위 rangej 동안 정상 동작 데이터의 범위로 정규[0092]

화된 데이터 원소들의 절대차로서 정의된다.   그래서, 소정 센서의 데이터에 대한 시간 종속 유사도 함수 θ

(t)는 다음과 같다.

수학식 25

[0093]

수학식 23과 25를 합하면, 하기와 같이 두 패턴 어레이에 대한 확장된 커널 함수가 생성된다. [0094]

수학식 26

[0095]

확장된 커널 함수의 다른 예는 미국 특허 제7,373,283호에 개시된 유사도 연산자에 기반한다.  또 다시 Xnew 및[0096]

Xi를 두 개의 동일하게 차원을 이룬 패턴 어레이라 하고, nsens 센서들 (또는 파라미터들)로부터의 데이터를 포함
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시키고 nlb 순차적 시점을 이어지게 하면, 제2의 확장된 커널 함수가 다음과 같이 작성된다. 

수학식 27

[0097]

이러한 확장된 커널 함수는 수학식 24 및 25에 의해 정의된 바와 같이 동일한 시간-종속 함수 θ(t)를 활용하여[0098]

두 패턴 매트릭스 내 소정 센서의 시계열 데이터를 비교한다. 

수학식 28

[0099]

도 6을 참조하는 동안, 두 확장된 커널 함수들(수학식 26 및 28)은 이 함수들이 모델링된 센서들로부터 정보를[0100]

모으는 방법에서만 차이가 나는데, 첫 번째 수학식은 커럴 함수의 원소적 형태를 표현하며, 두 번째 수학식은

커널 함수의 (1-넘과 같은) 벡터 차 형태를 표현한다.  두 수학식은 두 어레이들 Xnew 및 Xi 내 시간-변동 신호

들의 세그먼트들 간의 차를 설명하기 위해 가중 평균을 활용한다.  상세히 말해서, 두 예의 수학식 26 및 28에

서, 그리고 각각의 순차적 학습된 패턴 매트릭스 a 내지 g 경우, 각각의 학습 및 입력 값의 대응 쌍마다 절대차

가 계산된다.  이 값들은 이 값들이 (1) 동일한 센서(또는 파라미터) 및 (두 값들이 기본 시간 tp 로부터 발생

하는 것 처럼)  패턴 어레이 내 동일 시점 또는 (두 값들이 패턴 어레이 내에서 우측으로부터 두번 째인 벡터들

상에 놓여있을 때와 같이) 어레이 내 다른 벡터들에 대한 동일 위치를 나타낼 때와 대응한다.  학습 및 입력 값

의 쌍들로부터의 절대 차는 가중 평균을 통해 결합되어 특정 센서에 대한 단일 평균의 결과를 취득하게 된다.

이것은 패턴 매트릭스들 a 내지 g 및 패턴 어레이들 Xnew로 표현된 각 센서 마다 또는 파라미터(1 내지 5) 마다

반복되어, 가중 평균 단계에서 각 센서/파라미터 마다 하나의 평균 스칼라 결과가 만들어 낸다. 

그 다음, 제1의 확장된 커널 함수(수학식 26)에서, 가중 평균 단계의 결과는 차례로 모든 센서들 전체에 대해[0101]
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평균되어 어레이-대-어레이 비교를 위한 스칼라 값을 생성한다.  마지막으로, 이 스칼라 값은 제로 내지 1의 범

위 내에 속하도록 전술한 바와 같이 유사도 점수의 특성들을 고수하는 신봉하는 값으로 변환된다 - 여기서 1은

동일함을 의미한다.  그런 다음 이 프로세스는 3차원 집합 D(t) 내 학습된 순차적 패턴 매트릭스 a 내지 g 에

대해 반복된다.  제2의 확장된 커널 함수(수학식 28)에서, 가중 평균 단계의 결과는 각 센서마다 하나씩 즉시

유사도 점수들로 변환된다.  그 다음 이러한 유사도 점수들의 벡터는 단일의 유사도 점수가 3차원 집합 D(t) 내

각 학습된 순차적 패턴 매트릭스 a 내지 g 마다 함수로 반환되도록 평균된다. 

 유사도-기반 모델링의 상황 내에서 사용될 때, 전술한 확장된 커널 함수는 일반성을 잃지 않고 확장된 유사도[0102]

연산이라고도 불리운다.  상기 수학식에서 사용된 표시 는 또한 전통적인 유사도 연산자 심볼

를 이용하여 작성될 수 있다.  

앞에서 정의된 다른 벡터-기반 커널 함수의 확장된 버전(예를 들면, 수학식 13 내지 20)은 두 순차적 패턴 어레[0103]

이에서 동일한 시점으로부터의 시계열 데이터를 일치시키기 위해 가중 평균을 이용함으로써 구축될 수 있다.

예를 들어, Xnew 및 Xi를 동일하게 차원을 이룬 두 패턴 어레이라 하고, nsens 센서들 (또는 파라미터들)로부터의

데이터를 포함시키고 nib 순차적 시점을 이어지게 하면, 수학식 17의 원소 유사도 연산자를 이용하여 수학식 16

에서 정의된 커널 함수의 확장된 버전은 다음과 같다.

수학식 29

[0104]

가중 평균(수학식 23)은 가중치들이 오래된 데이터 보다 더욱 최신의 데이터에 더 많이 가중되도록 선택될 수[0105]

있기 때문에 패턴 어레이들 내 시간-변동 신호들의 세그먼트들 간의 차이를 설명하는데 사용된다.  그래서, 일

차 시점 tp로부터의 데이터에는 가장 높은 가중치가 주어진다 - 전형적으로 앞선 시점으로부터의 데이터(수학식

22)에는 점차 증가하는 가중치가 주어진다.  기본 시점에 대한 시간에 따라 가중치들을 선형적으로 또는 지수함

수적으로 감소시키는 것과 같이 가중치를 정의하는 수많은 방식이 사용될 수 있다.  

여러가지 다른 시간-종속 함수들 θ(t)이 시간-변동 신호의 두 세그먼트들 내 순차적인 시점들로부터 데이터를[0106]

일치시키하는데 사용될 수 있다는 것이 이해될 것이다.  그러한 방법은 이것으로 제한되지 않지만, 다른 가중

넘(2-넘 및 p-넘) 및 최대, 최소, 또는 중간 차를 포함한다.  함수에게 필요한 모든 것은 두 시퀀스들이 차이가

더 벌어짐에 따라 두 시퀀스들의 값이 동일하거나 증가한다면 최소가 되는(0의 값) 스칼라 값을 반환하는 것이

다.  

순차적 패턴 어레이들의 개념을 SBM(수학식 7)의 자동연상 형태의 확장된 유사도 연산자 (예를 들어, 수학식 26[0107]

또는 28)와 조합하기 위하여, 벡터-기반 학습 벡터 매트릭스 D의 개념이 확장된다.  전술한 SBM의 표준 형태에

서, 학습된 벡터 매트릭스는 정규 연산의 기간 동안 여러 시점에서 선택된 한 세트의 학습된 표본들(벡터들)로

이루어진다.  이들 벡터들이 선택된 시점들을 기본 시점들이라 표현하면, 각각의 학습된 벡터는 각각의 기본 시

점에 선행하는 시점들의 시퀀스로부터 데이터를 수집함으로써 학습된 순차적 패턴 매트릭스로 확장될 수 있다.

이러한 방식으로, 학습된 벡터 매트릭스 D는 학습된 순차적 패턴 매트릭스들 D(t)의 집합으로 확장된다.  이러

한 학습된 패턴 매트릭스들의 집합은 3차원 매트릭스를 형성하며, 여기서 차원은 제1 차원에서 모델링된 센서들

또는 파라미터들, 제2 차원에서 다양한 기본 시점들로부터의 학습된 표본들(벡터들), 및 제3 차원에서 기본 시

점들에 대한 시간을 표현한다. 

SBM의 벡터-기반 형태에서 사용된 학습된 벡터 매트릭스를 구축하는데 사용된 전술한 훈련 방법은 SBM의 순차적[0108]

공개특허 10-2014-0043439

- 21 -



패턴 형태에 의해 요구된 학습된 순차적 패턴 매트릭스들 D(t)의 3차원 집합을 창출하는데 활용될 수 있다.  이

것은 훈련 알고리즘에 의해 선택된 각각의 기준 벡터를 순차적 패턴 매트릭스를 구축하는 선행 시점들로부터의

기준 벡터들로 늘림으로써 성취된다.  학습된 패턴 매트릭스들의 집합은 훈련 알고리즘에 의해 선택된 각각의

기준 벡터 마다 하나씩, 모델링된 시스템의 "정상적" 행위를 표현하는 표본들의 기준 라이브러리(18)로부터 유

도된다.  만일 순차적 SBM의 시간-추론적 형태가 사용된다면, 선행 시점들로부터의 부가적인 벡터들이 각각의

순차적 패턴 매트릭스에 추가된다. 

SBM의 벡터-기반 형태를 위해 사용되는 훈련 방법들은 기준 데이터에 내재하는 시간 도메인 정보를 고려하지 않[0109]

고 정규 연산의 기간 동안의 여러 시점들로부터 표본들(벡터들)을 선택한다.  SBM의 순차적 패턴 어레이 형태에

서, 그 시간 도메인 정보는 각각의 선택된 표본을 증가함으로써 바로 선행하는 그리고 (어쩌면) 기본 시점들에

후행하는 시점들의 시퀀스로부터의 데이터 벡터를 공급받게 된다.  시간 도메인 정보를 감안하면서 순차적 학습

된 패턴 매트릭스들의 집합 D(t)를 구축하고 로컬라이징하기 위한 대안의 프로세스에서, 각각의 입력 패턴 어레

이는 입력 패턴 어레이의 개수와 동일한(즉, nlb+1) 기준 벡터들의 매 시퀀스와 비교될 수 있다.  이러한 비교는

입력 패턴 어레이와 가장 유사한 기준 벡터들의 시퀀스들을 식별하는 유사도 연산자의 확장된 형태(예를 들어,

수학식 26 또는 28)를 이용함으로써 성취된다.  기준 벡터들의 식별된 시퀀스들은 각기 집합 D(t) 내 순차적 학

습된 패턴 매트릭스 중 하나를 구성한다.  선택 프로세스가 무엇이든 간에, 훈련 방법은 서로에 아주 가까운 기

본 시점으로부터의 표본들을 선택하는 것이 가능하다.  가까운 기본 시점들로부터 두 표본들이 선택될 때, 상응

하는 순차적 패턴 매트릭스들은 공동으로 데이터 벡터를 포함할 수 있다. 

도 6을 참조하면, 수학식 7은 입력 패턴 어레이 Xnew 및 학습된 순차적 패턴 매트릭스들 D(t)의 3차원 집합으로[0110]

도시된다.  입력 패턴 어레이 Xnew는 또한 현재 순간을 표현하는 벡터 tp를 포함하고 D(t) 내 학습된 패턴 매트

릭스들과 대조가 되기 때문에 현재 또는 실제 패턴 어레이 또는 매트릭스라고 지칭할 수 있다.  예시된 실시예

에서, 입력 패턴 어레이 Xnew는 네개의 벡터를 포함하며, 벡터 tp는 어레이에서 마지막(최우측) 벡터이다.  다른

벡터들은 간략성을 기하기 위해 tp 다음에 오는 시간 간격의 번호대로 -3 내지 -1로 번호가 붙여진다.  그래서,

도 6에서 벡터 -3은 (tp-nlb△t)와 같은 것을 표현한다 (여기서 nlb = 3 이다).  도 6에 도시된 바와 같이, 학습

된 순차적 패턴 매트릭스들(모델링된 센서들, 기본 시점들, 및 패턴 시퀀스들)의 3차원 집합은 다음과 같이 묘

사된다.  즉, 번호 1 내지 5는 모델링된 다섯 센서들로부터의 데이터를 표현하고, 번호들 붙인 네개의 컬럼들

(또는 벡터들)은 네개의 순차적 시점들을 표현하며, 일곱개 층을 이룬 사각형들은 순차적 패턴 매트릭스 a 내지

g, - 각기 정규 연산의 여러 기간들로부터 선택된 기본 시점 tp인를 가짐 - 를 나타낸다.  학습된 순차적 패턴

매트릭스들 D(t)의 3차원 집합은 일곱개의 순차적 패턴 매트릭스들 a 내지 g를 포함한다.  그래서, 각각의 순차

적 패턴 매트릭스 a 내지 g는 다섯 센서들과 네개의 순차적 시점들을 포함하며, 입력 패턴 매트릭스 Xnew와 동일

한 차원을 갖는다.  비교를 위해, 이차원 매트릭스 D의 종래의 벡터-기반 수학식(도 3)과 학습된 순차적 패턴

매트릭스 D(t)의 3차원 집합(도 6)과의 차이를 가시화하는 다른 방식은 종래의 이차원 어레이는 3차원 집합

D(t)로부터 tp 벡터들만을 포함시키기 위해 그저 일곱개의 순차적 패턴 어레이들 a 내지 g  전반의 단일 매트릭

스에 의해 구성되었을 것이라는 것이다. 

도 6의 최우측 괄호에서, 확장형 유사도 연산자 ( )는 앞에서 설명한 바와 같이 입력 패턴 어레이 Xnew와 일곱[0111]

개의 학습된 순차적 패턴 매트릭스들 a 내지 g 와의 유사도를 계산한다.  도 6의 예에서, 수학식 26 또는 28로

부터 가중 평균을 이용하여, 모델은 순차적 패턴 매트릭스 a 에서 센서 1에 대한 시간-변동 신호를 입력 패턴

매트릭스 Xnew 에서 센서 1에 대한 시간-변동 신호와 비교하여 센서 1에 대한 단일의  평균 값을 구한다.  이것

은 하나의 평균 값이 각 센서마다 제공될 때까지 센서 2-5에 대해 반복된다.  그 다음, 이들 스칼라 값들(또는

수학식 28에 대한 유사도 점수들)이 평균화되어 순차적 패턴 매트릭스 a의 단일 유사도 척도를 판단한다.  그런

다음 이 과정은 각각의 순차적 패턴 매트릭스 b 내지 g 에 대해 반복되어, 각각의 학습된 순차적 패턴 매트릭스

a 내지 g 마다 유사도를 하나씩하여, 일곱 유사도 점수들을 포함하는 유사도 벡터를 반환하게 된다. 

중간 괄호에서 연산은, 집합 D(t) 내 학습된 순차적 패턴 매트릭스들 a 내지 g의 쌍의 각 조합 마다 하나씩, 유[0112]

사도 값들의 7x7 사각 유사도 매트릭스를 산출한다.  유사도 벡터로 된 결과 유사도 매트릭스의 전치 매트릭스

를 곱하면 일곱 원소를 포함하는 가중 벡터가 산출된다.  마지막 단계에서, 가중 벡터는 집합 D(t)로 곱해져서

추정 매트릭스 Xest를 생성한다.  일 형태에서, 추정 매트릭스 Xest는 입력 패턴 어레이들 내 입력 벡터들로 표현
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된 각각의 기간들에 상응하는 추정 벡터를 갖도록 입력 패턴 어레이 Xnew와 동일한 크기를 갖는다.  도 6의 예에

서, 추정 매트릭스 Xest는 마치 룩-백 윈도우에서 형성된 것처럼 현재 시간의 순간 tp 및 세개의 선행 시점들 -1

내지 -3 각각에 대한 추정 벡터들 갖는다.  추정 벡터 Xest의 사용은 아래에서 더 상세히 기술된다.  현재 또는

기본 벡터와 함께 또는 기본 벡터 없이 그룹화된 선행 벡터들은 본 명세서에서 룩-백 윈도우라고 불리울 수 있

으며, 현재 또는 기본 벡터와 함께 또는 기본 벡터 없이 그룹화된 후행 벡터들은 본 명세서의 아래나 어디에서

든 설명되는 룩-어헤드(look-ahead) 윈도우라고 불리울 수 있음을 알아야 한다.  

확장된 유사도 연산자를 갖는 순차적 패턴 매트릭스를 활용하는 SBM의 추론형으로의 확장(수학식 9)는 쉽게 명[0113]

백해진다.  추론 모델링의 벡터-기반형과 유사하게, 학습된 순차적 패턴 매트릭스의 3차원 집합 Da(t)은 입력

패턴 어레이 Xin 내 센서 값들에 맵핑하는 학습된 순차적 패턴 매트릭스 a 내지 g 및 추론된 센서들 Dout(t)에 맵

핑하는 순차적 패턴 매트릭스들 a 내지 g를 포함하는 집합 매트릭스(aggregate matrix)라고 이해될 수 있다.

도 7을 참조하면, 수학식 9는 입력 패턴 어레이 Xin 및 학습된 순차적 패턴 매트릭스들의 3차원 집합 Din(t) ―

다섯 입력 센서들 1 내지 5에 대해 일곱 개의 학습된 순차적 패턴 매트릭스들 a 내지 g를 가짐 ― 으로 도시되

어 있다.  집합 매트릭스 Da(t)는 수학식 10에서 정의된 2차원 집합 매트릭스의 3차원 확장이다.  도 7의 도시

한 것과 도 6의 도시한 것을 비교하면, 두 도면의 괄호로 묶인 매트릭스들은 이들을 표현하는 방법을 제외하고

는 동일하다.  그러므로, 추론 모델의 가중 벡터의 계산은 자동연상 모델에 대해 앞에서 설명한 바와 동일한 방

식으로 진행한다.  그러면, 도 4에서와 같이, 여기서 매트릭스 Dout(t)가 지금 학습된 순차적 패턴 매트릭스들의

3차원 집합이라는 것을 제외하고는, 가중 벡터는 도 7의 추론된 센서들의 학습된 순차적 패턴 어레이로 곱해지

며, 이 단계에 의해 추론된 센서들 만을 표현하는 추정 매트릭스 Yest가 구성된다.  추론적 모델링의 벡터-기반

형태에 대해 앞에서 설명한 바와 같이, 가중 벡터는 또한 (도 8에 도시된) 두 입력 및 추론된 센서들의 추정 매

트릭스들을 생성하기 위해 두 Din(t) 및 Dout(t)를 포함하는 학습된 순차적 패턴 매트릭스들의 3차원 집합 Da(t)

전체로 곱해질 수 있다.  

추론 모델링은 데이터가 입력 데이터 스트림에 포함된 센서들의 기준 데이터가 학습된 순차적 패턴 매트릭스들[0114]

의 3차원 집합 Da(t) 또는 Dout(t)에 포함되기 때문에 이들 센서들의 추정치를 계산할 수 있게 해준다.  개념적

으로, 추론 모델은 모델링된 센서들의 차원을 따라서 추론한다.  시간 차원에서 추론하는 추론적 모델을 생성하

는 것 또한 가능하다.  이것은 기본 시점의 개념과 수학식 22의 룩-백 윈도우를 다시 돌아봄으로써 이해될 수

있다.  룩-백 윈도우 내 시점들은 기본 시점에 선행하는데, 이것은 이 시점들이 기본 시점에 대해 과거에 놓여

있다는 것을 의미한다.  우리는 기본 시간에 후행하는 시점들로 구축된 룩-어헤드 윈도우를 정의할 수 있다.

룩-어헤드 윈도우 내 시점들은 기본 시간에 대해 미래에 있는 것이다.  기본 시점에 후행하는 소정 개수(nlb)의

시점들과 기본 시점에 후행하는 소정 개수(nla)의 시점들로 구성되는 시점들의 순서화된 시퀀스, 즉, (tp - nlb△

t, tp - (nlb -1)△t, . . . , tp - 2△t, tp - △t, tp, tp + △t, tp + 2△t, . . ., tp + (nla-1)△t, tp + nla

△t)를 고려해보자.  시점들의 시퀀스는 다음과 같이 룩-백 및 룩-어헤드 데이터를 포함하는 패턴 어레이를 정

의한다.  

수학식 30

[0115]

도 9를 참조하면, 학습된 순차적 패턴 매트릭스의 3차원 집합 Da(t)이 룩-백 및 룩-어헤드 둘 다를 포함하는 순[0116]

차적 패턴 매트릭스 a 내지 g로 생성된다면 추론을 지원하는 SBM의 추론 형태가 시간 도메인으로 확장된다.  입

력 패턴 어레이 Xin는 단지 현재 시점부터의 데이터 및 후행 시점들(미래 시점들부터의 데이터는 아직 존재하지

않음)를 포함하기 때문에, 학습된 순차적 패턴 매트릭스의 집합 Da(t)은 시간 차원을 따라서 분리된 두 서브 매
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트릭스들로 구성된 집합 매트릭스이다.  이들 서브-매트릭스들 Dlb(t) 중 첫 서브-매트릭스는 여러 기본 시점들

로부터 그리고 룩-백 시점들로부터의 데이터를 포함한다.  서브 매트릭스 Dla(t)의 두 번째 서브-매트릭스는 룩-

어헤드 시점들로부터의 데이터를 포함한다.  수학식 9는 다섯개의 입력 센서들 및 시점들 tp 내지 -3 사이의 세

개의 시간 간격들의 룩-백 윈도우의 입력 패턴 어레이 Xin로 도시된다.  룩-백 부분 또는 서브-매트릭스 Dlb(t)

는 다섯 개의 입력 센서들(1-5)로부터의 데이터, 각자 자체의 순차적 패턴 매트릭스 a 내지 g 상의 일곱개의 기

본 시점들, 및 각기 순차적 패턴 매트릭스 a 내지 g 상의 네 개의 룩-백 시점들 또는 기준 벡터들 tp 내지 -3을

포함하는 학습된 순차적 패턴 매트릭스들의 3차원 집합이다.  룩-어헤드 부분 또는 서브-매트릭스 Dla(t)는 다섯

입력 센서들(1-5)로부터의 데이터, 각기 자신의 기본 시점을 갖는 일곱 개의 순차적 패턴 매트릭스들 a 내지 g,

및 두 개의 미래 또는 후행하는 시점들 또는 벡터들 +1 및 +2를 포함하는 학습 순차적 패턴 매트릭스들의 3차원

집합이다.  두 세트의 괄호로 묶인 연산들에 의해 생성된 결과 가중 벡터는 학습된 순차적 패턴 매트릭스들의

룩-어헤드 집합 Din(t)으로 곱해져서 시간적으로 추론하는 추정 매트릭스 Yla를 생성한다.  이 예에서, 두 개의

추론된 추정 벡터들 +1 및 +2는 미래에서 하나 및 두 개의 시간 폭 △t에 해당하는 시점들을 표현하는 추정 매

트릭스 Yla에 대해 계산된다.  벡터-기반 수학식(도 5)으로 전술한 바와 같이, 가중 벡터는 또한 두 Dla(t) 및

Dlb(t)를 포함하는 기본 벡터 패턴 매트릭스들의 총 집합 Da(t)로 곱해져서 (도 10에 도시된) 과거, 현재 및 미

래 시점들의 추정 데이터를 포함하는 추정 매트릭스 XYel 내에 있는 추정 매트릭스들 Xlb 및 Xla를 생성한다. 

도 9 및 도 10에 예시된 것과 도 7 및 도 8에 도시된 것을 비교하면, 네개의 도면 모두의 괄호 내의 매트릭스[0117]

계산은 동일하다.  이것은 시간 차원에서 추론하는 추론 모델의 가중 벡터를 계산하는 것이 모델링된 센서들의

차원을 따라서 추론하는 추론 모델의 가중 벡터와 동일하다는 것을 의미한다.  추론 모델링의 두 형태는 학습된

순차적 패턴 매트릭스들의 총 집합에 포함된 데이터만이 다를 뿐이다. 기본 시점들에 비해 미래에 있는 시점의

데이터를 포함하는 모델은 미래에서 추론한다.  입력 데이터 스트림에 있지 않은 센서들의 데이터를 포함하는

모델은 이들센서들내에서 추론한다.  도 11을 참조하면, 시간 및 모델링된 센서 차원 둘 다에서 추론하는 추론

모델이 도시된다.  이 모델의 학습된 순차적 패턴 매트릭스의 3차 집합 Da(t)는 모델링된 센서 및 시간 차원을

따라서 분리된 네 개의 서브-매트릭스들로 구성된 집합 매트릭스이다.  이 서브-매트릭스들은 입력 센서들의 룩

-백 윈도의 데이터 Dlb(t), 출력 (추론된) 센서들의 룩-백 윈도우의 데이터 Dlbout(t), 및 출력(추론된) 센서들의

룩-어헤드 윈도우의 데이터 Dlaout(t)를 포함한다.  이를 계산하면 두 입력 및 출력(추론된) 센서들에 대해 (도

10에 도시된) 과거, 현재 및 미래 시점들의 추정 데이터를 포함하는 추정 매트릭스 XYe2 내 추정 매트릭스들 Xlb

및 Xla가 생성된다. 

전술한 순차적 패턴 어레이들을 이용하여 각종 형태의 커널 회귀 모델링은 각기 모델 추정 데이터의 추정 매트[0118]

릭스를 생성한다.  일 예에서, 추정 매트릭스 Xest는 각 입력 패턴 어레이 Xnew (도 6) 마다 형성된다.  전술한

예들로부터 이해되는 바와 같이, 현재 시점에 상응하는 추정 벡터 이외에, 추정 매트릭스는 룩-백 및/또는 룩-

어헤드 윈도우들 내 각각의 시점에서 벡터들을 포함한다.  추정 매트릭스 내 순차적 벡터들의 개수는 (자동연상

또는 추론) 모델링 수학식 및 룩-백 윈도우 내 시점들의 개수 nlb 및 룩-어헤드 윈도우 내 시점들의 개수 nla에

달려있다.  시스템 시간이 진행함에 따라, 시간표를 따라 있는 각각의 고정된 시점은 다수의 추정 벡터들이 그

시점에 도달하고, 지나가고, 시점이 과거가 되므로 다수의 추정 벡터를 누적한다.  고정된 순간마다 계산될 추

정 벡터들의 총 개수는 순차적 패턴 매트릭스 내의 그리고 모델에 의해 분석된 순차적 패턴들(벡터들)의 총 개

수와 같다.  자동연상 모델 또는 센서 차원을 따라서 추론하는 추론 모델의 경우, 이러한 총 개수는 nlb+1로 주

어지는데, 이것은 룩-백 윈도우 내 각 패턴에 대한 추정 벡터 및 기본 (현재) 시점에 대한 추정 벡터에 상응한

다.  시간 차원을 따라 추론하는 추론 모델의 경우, 이러한 총 개수는 nlb+1+nla로 주어지며, 이것은 룩-백 내

각 패턴의 추정 벡터 및 기본 (현재) 시점의 추정 벡터에 상응한다. 

고정 시점 마다 다수의 추정 벡터들이 계산되기 때문에, 상태 모니터링 또는 진단을 위한 알고리즘을 충족시키[0119]

는 순차적 커널 회귀 모델을 활용하는 것은 이들 알고리즘들 대부분이 한 시점 당 하나의 단일 추정 벡터만 존

재한다는 것을 제외한다는 사실로 인해 복잡해진다.   다수의 추정 벡터들을 다루는 가장 간단한 수단은 간단하

게 모델 추정치들의 소스로서 추정 매트릭스 내 모든 다수의 벡터들 보다 적게 단순하게 지정하고 다른 것들은

무시하는 것이다.  일 형태에서, 각각의 추정치 매트릭스로부터의 추정 벡터들 중 단 하나만이 추가적인 진단
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분석을 위해 선택된다.  전형적으로, 이것은 다수의 추정 매트릭스들 전체를 보면서 고정된 임의의 시점 ti 에서

선택된 추정 매트릭스 내 추정 벡터가 현재 시점(ti = tcur) 또는 다른 말로 하자면, 가장 최신의 시점 (도 6 내

지 도 8의 예시적인 추정 매트릭스에서는 tp)가 될 때 생성된 추정 벡터임을 의미한다.  입력 패턴 윈도우가 과

거 ti로 진행하여 ti가 지금의 새로운 시점까지의 룩-백 윈도우의 일부가 되기 때문에, ti에 대해 계산된 새로운

추정 데이터는 무시된다.  다시 말해서, 추정 매트릭스 내 현재 벡터 tp에 비해 오래된 또는 선행 벡터들은 무시

된다. 

다수의 벡터들 내 정보의 장점을 취하면서도 다수의 추정 매트릭스 전체의 고정 시간 마다 단일의 추정 벡터를[0120]

산출 또는 선택하는 다른 더 많은 복잡한 방법이 사용될 수 있다.  그러한 방법은 이것으로 제한되지 않지만,

평균; 가중 평균; 다른 가중 넘(2-넘 및 p-넘); 최대, 최소 또는 중간 값 등을 포함한다.  진단 분석을 위해 선

택된 추정 벡터는 그의 대응하는 입력 벡터와의 최고의 유사도를 갖는 벡터일 수도 있으며, 가중 벡터를 판단하

는데 사용되는 것과 유사한 유사도 수학식을 사용할 수 있다.  또한 이들 방법은 다수의 추정 매트릭스들 전반

의 단일의 고정된 시점이라기 보다는 추정 매트릭스 내 다수의 순차적 시점들을 표현하는 각각의 추정 매트릭스

에 대해 단일의 추정 벡터를 제공하도록 적용될 수 있다. 

시간 차원에서 추론하는 추론 모델의 경우, 예측 모델은 자산의 잔여 유효 수명의 계산과 같이 예측 알고리즘을[0121]

만족시키기 위해 (또는 달리 말해서, 모니터링되는 객체의 미래 상태 또는 동작 상태를 판단하기 위해) 미래의

추정 매트릭스 Xla를 사용할 수 있다.  이것은 모델링된 센서의 추론된 추정치들의 시퀀스가 모델링된 센서의 미

래 행위를 예측하는 추세선(trend-line)이라는 사실에 기반한다.  시스템 시간이 진행되고 새로운 기본 벡터들

을 포함하는 새로운 입력 패턴 어레이가 구성됨에 따라 새로운 미래 추정 매트릭스들이 계산된다.  전술한 다른

커널 회귀 모델들과 마찬가지로, 새로운 추정 매트릭스들은 실질적으로 이전의 매트릭스들과 겹치는데, 이것은

다수의 추정 값들이 각 시점에서 각 센서마다 산출된다는 것을 의미한다. 

또한 다른 커널 회귀 모델들과도 유사하게, 추론 시간 추론 모델은 고정된 시점에서 계산된 다수의 추정 값들을[0122]

센서의 추세에 적합한 하나의 단일 값으로 줄이기 위해 고안된 여러 방법을 사용할 수 있다.  가장 간단한 방법

은 룩-어헤드 윈도우 내 각각의 시점들에서 추정 데이터를 공급하는 가장 최근에 계산된 추정 매트릭스를 선택

하는 것이다.  상세히 말해서, 미래에까지 고정된 시점 ti의 경우, 추정 벡터는 룩-어헤드 패턴 윈도우가 이 시

점에 처음 도달할 때, 즉, ti = tcur + nla*△t 생성될 것이다.  각각의 후행 시간 단계에서, 룩-어헤드 윈도우가

고정된 시점을 통과함에 따라, 새로운 추정 벡터는 그 시점 마다 계산되고, 마지막 벡터를 대체한다.  그래서,

모든 추정 벡터들은 모두 추세선을 구축하는데 사용되며, 추정 벡터들로 표현된 매 시점(고정 시점) 마다의 결

과는 이들 결과들이 추정 매트릭스들을 구축하는데 사용된 룩-어헤드 윈도우를 통과함에 따라 벡터들에 대응하

는 더 최근의 추정 값들로 거듭 갱신되어진다.  

간단하다는 것 이외에, 이러한 접근법은 가장 최근에 계산된 추정 매트릭스만이 사용되기 때문에 동적인 변화에[0123]

신속하게 반응하는 센서 추세를 생성한다. 추세선에 놓인 추정 데이터는 각각의 후행 시간 단계마다 대체되기

때문에, 추세는 랜덤한 변동에 민감하다.  이것은 고정된 시점에서의 추세 값은 후속하는 시간 단계들 사이에서

극적으로 변할 수 있다는 것을 의미한다.  평균, 가중 평균, 또는 다른 가중 넘(weighted norms)과 같은 다른

많은 복잡한 방법들은 다수의 추정 매트릭스들 전체의 고정된 시점에서 계산된 추정 값들 중 둘 이상, 또는 모

두를 활용하여 그 시점에 대해 단일의 추정 값을 산출한다.  이러한 방법들에 의해 산출된 추세선은 더 스무드

하지만, 급격한 동적인 변동에는 미약하게 반응한다.  예상된 시스템 행위를 나타내는 추세선을 생성하도록 설

계된 전술한 방법들 이외에, 가능한 행위의 범위를 나타내는 다른 추세선들이 산출될 수 있다.  예를 들면, 최

소 추정 값들을 연결하는 추세선과 결합된 각각의 미래 시점에서의 최대 추정 값들을 연결하는 추세선은 모델에

의해 생성된 결과를 구속한다. 

다시 도 1을 참조하면, 전술한 바와 같이, 전체 추정 매트릭스 Xest 또는 단일의 대표적인 추정 벡터는 차분 엔[0124]

진(20)에 전달된다.  차분 엔진은 추정 매트릭스를 입력 패턴 어레이 (Xin 또는 Xnew)에서 감해지거나 또는 대표

적이 추정 벡터를 현재 시점의 입력 벡터에서 감해진다.  상세히 말해서, 추정 매트릭스로부터 각기 선택된 추

정 값은 입력 패턴 어레이로부터 대응하는 입력값으로부터 감해진다.  그런 다음 나머지 벡터들 또는 단일의 대

표적인 잔여 벡터들의 어레이는 경보 모듈(22)에 제공된다.  경보 모듈(22)은 통계적 테스트를 잔여 데이터에

적용하여 추정 및 입력 데이터가 통계적으로 다른지를 판단한다.  경보 모듈(22)은 결함 판단을 위해 각종 테스

트 중 어느 테스르를 수행한다.  이것은 하나 이상의 잔여 값들을 이용하여 룰 로직을 평가하기 위한 룰 엔진을
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포함할 수 있다.  룰은 간단한 일변량(univariate)의 임계 측정치부터 다변량(multivariate) 및/또는 시계열 로

직까지 각종의 통상적으로 사용된 룰 중 어느 룰일 수 있다.  더욱이, 일부 룰의 출력은, 예를 들어, 간단한 임

계 룰이 윈도우형 경보 카운팅 룰(예를 들어, y 관측치에서 x 임계치 경보)에 넣어질 때처럼 다른 룰로의 입력

일 수 있다.  더욱이, 이들 자체가 룰에 입력될 수 있는 다른 측정치 및 신호들을 유도하기 위해 잔여 데이터에

대해 통계적 기술이 사용될 수 있다.  적용가능한 통계적 분석은 이것으로 제한하지 않지만, 이동 윈도우 통계

(평균, 중간, 표준편차, 최대, 최소, 왜도(skewness), 첨도(kurtosis) 등), 통계적 가설 테스트(예를 들면, 순

차 확률비 테스트(sequential probability ratio test(SPRT)), 추세화(trending), 및 통계 프로세스 제어(예를

들면, CUSUM, S-chart))를 포함하는 본 기술에서 공지된 매우 다양한 기술로부터 선택될 수 있다.

경보 모듈(22)은 추정과 입력 데이터 간의 어떤 차이가 훈련 중에 조우되지 않는 정상적 동작 상태 때문이라고[0125]

판단할 수 있다.  이러한 경우, 새로운 동작 상태를 나타내는 센서 데이터는 옵션의 적응 모듈(30)에 제공되고,

이 모듈은 그 데이터를 예를 들어, 라이브러리(18)를 통해 모델(14)의 학습에 포함시킨다.  또한, 적응 모듈

(30)은 옵션으로 그 자체의 자동화된 테스트를 데이터 및/또는 잔여 분석 결과에 대해 수행하여 어느 입력 벡터

또는 입력 어레이가 모듈(14)을 갱신하는데 사용되어야 하는지를 판단한다. 

모델을 적응하는 프로세스는 새로운 동작 상태를 나타내는 센서 데이터를 원(original) 커널-기반 모델이 훈련[0126]

받았던 라이브러리 H 내 기준 데이터의 세트에 추가하는 단계를 포함한다.  가장 간단한 실시예에서, 모든 기준

데dl터는 모델 표본으로서 사용되며, 그러므로 모델 평균을 적응하는 것은 새로운 센서 데이터를 모델의 표본

세트에 추가하는 것이다.  순차적 커널 회귀 모델은 설계에 따라 관측 벡터들의 시퀀스에서 동작하기 때문에,

기준 데이터에 추가된 새로운 동작 데이터는 관측 벡터들의 시퀀스로 이루어져야만 한다.  어떠한 적응 이벤트

동안 추가된 벡터의 최소 개수는 모델에 의해 분석된 순차적 패턴들(벡터들)의 총 개수와 같다. 전술한 바와 같

이, 이러한 총 개수는 센서 차원을 따라서 추론하는 자동연상 모델 또는 추론 모델의 경우에는 nlb+1로 제시되거

나 또는 시간 차원을 따라서 추론하는 추론 모델의 경우에는 nlb+1+nla로 제시된다.  만일 훈련 방법이 상기 기술

된 바와 같이 기본 벡터 패턴 매트릭스들의 3차원 집합 D(t)을 구성하기 위한 시스템 동력학을 "대표하는"것으

로서 저장된 서브세트에 대한 기준 관측치를 다운-선택하는데 사용되었다면, 관측 벡터들(또는 다른 말로 전체

입력 패턴 어레이)의 새로운 시퀀스는 원래 기준 데이터 세트에 추가되며, 다운-선택 기술은 새로운 관측의 표

현을 포함하여야 하는 새로운 대표적 표본 세트를 유도하는데 적용된다.  다운-선택 기술을 반환하지 않고도,

새로운 시퀀스를 다운-선택된 학습 패턴 어레이의 다운-선택된 세트에 단순하게 추가하는 것 또한 가능하다.

더욱이, 그 경우에 있어서, 일부의 학습 패턴 어레이들이 새로운 데이터에 의해 효과적으로 대체되도록 이들을

모델로부터 제외하는 것 또한 유용할 수 있으며, 모델은 관리가능한 크기로 유지된다.  오래된 학습 패턴 어레

이들이 제거되는 기준은 새로운 기본 시점들에서의 관측치를 오래된 기본 시점들에서의 관측치들과 비교하고 새

로운 순차적 패턴 어레이들과 가장 유사한 순차적 패턴 어레이들을 교체하는 전술한 수학식들을 이용하는 군집

및 유사도 판단을 포함할 수 있다. 

이 점에서, 본 발명은 정상 동작의 기간으로부터의 대표적인 데이터를 이용하여 훈련된 순차적 커널 회귀 모델[0127]

을 기술한다.  그러한 모델은 시스템 결함을 검출하고 진단하는데 사용될 수 있다.  또한, 본 발명의 시간-추론

적 형태는 시스템 행위를 미래에서 추론할 수 있는 모델을 생성한다.  그러나, 모델은 정상적 동작 데이터로만

훈련되기 때문에, 결함이 진행함에 따라 이들의 활용은 시스템 행위가 더 정상에서 더 많이 벗어남에 따라 제한

된다. 

결함을 발생하는 동안 진단과 예측을 개선하기 위하여, 결함 상태 동안 수집된 데이터(또는 결함 모드 참조 데[0128]

이터)를 이용하여 훈련된 별개의 순차적 커널 회귀 모델이 활용될 수 있다.  이러한 결함 모델들은 결함이 시스

템에서 결함이 발생되고 있음을 표시한 이후에만 작동된다.  결함 표시는 정상 시스템 데이터를 이용하여 또는

다수의 다른 수단에 의해 훈련된 순차적 모델들, 즉 이것으로 제한되지 않지만, 벡터-기반 커널 회귀 모델(예를

들면, SBM), 신경 회로망, k-평균 군집 모델, 및 룰-기반 결함 검출 모델에 의해 제공될 수 있다.  결함 모델들

은 모니터되고 있는 자산의 알고 있는 결함 이벤트의 총체적 이력을 이용하여 훈련된다.  이들 결함 이벤트는

실제 자산에 대해 초기의 기간부터 발생할 필요가 없고, 모니터링되는 자산에 실질적으로 대등한 다른 기계류에

서 발생한 결함 이벤트로부터 유래할 수 있다.  결함 히스토리 이력은 그 결함이 시스템 결함 또는 시스템 셧다

운과 같이 이벤트의 최종단 상태까지 처음 표시되었던 시간부터 수집된 모든 시스템 데이터로 이루어진다. 

본 기술에서 통상의 지식을 가진 자라면 전술한 실시예들에 대한 변형은 다양한 양태로 이루어질 수 있다는 것[0129]

이 인식될 것이다.  다른 변경도 또한 만들어질 것이며 본 발명의 범주와 정신 내에 있다.  본 발명은 첨부의

청구범위에서 자세하게 설명된다.  본 발명의 정신과 범주는 본 기술에서 통상의 지식을 갖고 본 출원의 가르침
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에 정통한 자들에게 자명해지는 것처럼 본 명세서에서 실시예들에 대한 그러한 변형 및 변경을 망라하는 것으로

간주된다.
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