DIREKTORATET FOR
PATENT- OG VAREMÆRKEVÆSENET

(21) Patentansøgning nr.: 4760/80

(22) Indleveringsdag: 07 nov 1980

(41) Alm. tilgængelig: 08 maj 1981

(44) Fremlagt: 02 feb 1987

(86) International ansøgning nr.: -

(30) Prioritet: 07 nov 1979 GB 7938563

(71) Ansøger: TATE & LYLE PUBLIC LIMITED COMPANY; London, GB.

(72) Opfinder: Christopher *Bucks; GB, Peter Samuel James *Cheetham; GB.

(74) Fuldmægtig: Plougmann & Vingtoft Patentbureau

(54) Fremgangsmåde til fremstilling af isomaltulose

(57) Sammendrag:

4760-80

Isomaltulose fremstilles ved en fremgangsmåde idet hverken i det mindste det isomaltulose-dannende enzym system af en isomaltulose-producerende mikroorganisme immobiliseres, hvoraf det immobiliserede enzym system bringes i kontakt med en sukkerseeroppløsning til omdannelse af i det mindste et del af suckeren til isomaltulose.

Med det immobiliserede enzym system kan der som substrat anvendes sukkerseeroppløsninger med et suckeremængeligt på 10 vægt/volumeprocent.
Den foreliggende opfindelse angår en fremgangsmåde til fremstilling af isomaltulose ud fra saccharose ved en enzymatisk omdannelse.

Isomaltulose er et reducerende bisaccharid, der også kendes under navnet palatinose. Det har følgende struktur

\[
\begin{align*}
\text{CH}_2\text{OH} & \\
\text{HO} & \\
\text{HO} & \\
\text{OH} & \\
\text{CH}_2 & \\
\text{O} & \\
\text{HO} & \\
\text{CH}_2\text{OH} & \\
\end{align*}
\]

og betegnes med den systematiske betegnelse 6-O-(α-D-glucopyranosyl)-D-fructofuranose.

Tysk patentskrift nr. 1049800 (offentliggjort i 1959) i navnet Süddeutsche Zucker-Aktiengesellschaft beskriver, hvorledes isomaltulose kan fås ud fra saccharose ved en mikrobiologisk proces under anvendelse af Protaminobacter rubrum. Det er kendt, at andre bakterier også kan anvendes til opnåelse af omdannelsen af saccharose til isomaltulose, og i britisk patentskrift nr. 1429334 (der svarer til tysk patentskrift nr. 2217628) nævner samme firma, at Serratia plymuthica er velegnet hertil.
Britisk patentskrift nr. 1429334 angår først og fremmest fremstillingen af isomaltitol (α-D-glucopyranosyl-1,6-sorbitol) ud fra isomaltulose ved katalytisk hydrogenering. I praksis opnås der ved hydrogeneringen en blanding, som også indeholder α-D-glucopyranosyl-1,6-mannitol; denne blanding forhandles som kaloriefattigt sødemiddel under varemærket "Palatinit".

Det har nu vist sig, at såfremt den isomaltulose-producerende mikroorganisme eller et enzymsystem isoleret herfra immobiliseres på en i og for sig kendt måde, jfr. nedenfor, kan der ved den enzymatiske omdannelse anvendes en overraskende høj koncentration af saccharose i opløsningen, nemlig mindst 40 vægtprocent og fortrinsvis mere, fx 55 vægtprocent. Dette kunne forventes at inhibere reaktionen, men det har overraskende vist sig, at en så høj koncentration af saccharose medfører, at stabiliteten af det isomaltulose-syntetiseringe enzymsystem er langt højere end ved lavere saccharosekonzentrationer, hvilket også er tilfældet med enzymsystemets produktivitet, jfr. fig. 1 og 2. Dette er navnlig overraskende i betragtning af, at denne høje saccharosekonzentration ligger langt over de naturligt forekommende saccharoseniveauer, som de isomaltulose-dannende bakterier kunne forventes at have tilpasset sig, og i betragtning af, at saccharoseopløsninger på 40 vægtprocent eller derover er meget viskose sirupper, der sædvanligvis er bakteriologisk stabile. Der er således mod forventning væsentlige fordele ved at anvende de høje saccharosekonzentrationer, når der arbejdes med det immobiliserede system.

Fremgangsmåden ifølge opfindelsen er i overensstemmelse hermed ejendommelig ved, at en isomaltulose-producerende mikroorganisme eller et isomaltulose-dannende enzymsystem isoleret herfra immobiliseres, hvorefter det immobiliserede enzympræparat bringes i kontakt med en saccharoseopløsning, der indeholder mindst 40 vægt/-volumenprocent saccharose, hvorpå den opnåede isomaltuloseopløsning, hvori fortrinsvis 70-95 % af saccharosen er omdannet til isomaltulose, om ønsket reneses, fortrinsvis ved krySTALLisation.

Ichiro Chibata og Tetsuyo Tosa, "Transformation of Organic Compounds by Immobilized Microbial Cells", *Advances in Applied Microbiology* 22, 1977, s. 1-9, og M. Kierstan og C. Bucke, "The Immobilization of Microbial Cells, Subcellular Organelles and Enzymes in Calcium Alginate Gels", *Biotechnology and Bioengineering* 19, 1977, s. 387-397, beskriver som generelt princip den immobiliseringsteknik, der anvendes til et immobiliseret enzymsystemet. De to artikler beskriver imidlertid ikke fremstilling af isomaltulose ud fra saccharose ved hjælp af et immobiliseret enzymsystem og gør det således ikke nærlig-
gende, at der kan opnås en høj isomaltulose-produktion ved anvendelse af saccharosekoncentrationer på mindst 40 vægt/volumenprocent.

Det enzymsystem, der anvendes ved fremgangsmåden ifølge opfindelsen, kan anvendes efter ekstraktion fra den isomaltulose-dannende mikroorganisme, men en ekstraktion er ikke nødvendig. Det er således f.eks. muligt at anvende de hele eller sprængte celler af mikroorganismen, idet cellerne virker som bærer for enzymsystemet.

Der kan ske en vis deling af hele celler efter immobiliseringen, men det foretrækkes langt, at immobiliseringstoden og de andre fremgangsmådevarianter vælges således, at der slet ikke sker nogen deling, eller at delingen holdes på et minimum. Ved den foretrukne udførelsesform for fremgangsmåden tages der ingen skridt til at opretholde cellernes levedygtighed: det sædvanlige er, at der ikke sker nogen celledeling, når det forsøges at dyrke cellerne efter langvarig anvendelse ved den foretrukne udførelsesform for fremgangsmåden.

Det enzymsystem, der er ansvarligt for dannelsen af isomaltulose, kan ekstraheres fra celler af mikroorganismen ved konventionelle teknikker, f.eks. ved en oplosningsmiddelekstraktion. Til lettelse af ekstraktionen kan man anvende hjælpeoranstaltninger, f.eks. sprængning af cellerne eller osmotisk chok. Fra ansøgernes forsøg med Erwinia rhapontici (den foretrukne isomaltulose-dannende mikroorganisme til den foreliggende fremgangsmåde) tyder det på, at enzymsystemet er lokaliseret i cellernes periplasmiske rum, og at enzymsysteme-

5 Til immobilisering af den isomaltulose-dannende mikroorganismes enzymsystem kan der anvendes forskellige i og for sig kendte teknikker. Det er f.eks. muligt at anvende indespærrening i en gel. Der kan som alternativer til indespærrening anvendes andre immobilisersteknikker. Cellerne kan f.eks. adsorberes fysisk på en inert bærer; de kan kobles kovalent til en inert bærer; eller de kan agregeres ved anvendelse af et tværbindingsmiddel.

Blandt de immobilisersteknikker, der har været forsøgt, foretrækkes indespærrening i en gel, specielt da denne teknik er velegnet til immobilisering af en enzymatisk aktiv ekstrakt af cellerne såvel som til immobilisering af de hele eller sprængte celler. Egnede gelmaterialer er alginat, polyacrylamid, agar, xanthangummi/johannesbrødgummi, kappa-carrageenan eller kappa-carrageenan/johannesbrødgummi, collagen eller celluloseacetat.

Blandt disse gelmaterialer har en alginatgel, især en calciumalginatgel, vist sig at give de bedste resultater. Der kan anvendes andre alginatgeler, såsom alginatgeler, der dannes med andre gruppe II-metaller, men der foretrækkes så langt calciumalginat. Det foretrækkes især at immobilisere hele celler i en calciumalginatgel. På denne måde indespærres cellerne i et inert tredimensionalt polymernetværk med relativt store interstitielle rum i gelen.

For en calciumalginatgel er hastigheden for indadgående diffusion af saccharose høj, og det meste af intra-gelrummet kan nås af saccharose. Endvidere er hastigheden for udadgående udslip af hele celler og protein meget lav, og når gelen udsættes for tryk, deformeres den let, men den sammenpresses ikke i nogen kendetegnlig grad. En yderligere fordel er den exceptionelle og overraskende stabilitet af de immobiliserede hele cellers isomaltulose-dannende aktivitet; halveringstiden for de i en calciumalginat indespærrede celler nærmer sig 10.000
timer, idet 8.500 timer er et typisk tal, medens den længste halveringstid under sammenlignelige betingelser for de andre afprøvede immobiliseringsmetoder er under 1000 timer. I modsætning til de fleste af de sædvanlige immobiliseringsmetoder fører immobilisering i alginatgel typisk ikke til noget kendeligt tab af aktivitet.

Til immobilisering af enzymesystemet (i sig selv eller som hele eller sprængte celler) i alginatgel foretrækkes det først at blande enzymesystemet med en vandig opløsning af et opløseligt alginat, f.eks. natriumalginit. Ved en foretrakken udførelsesform for fremgangsmåden vil dette omfatte oplæmning af hele celler med det opløselige alginat. Koncentrationen af cellerne i oplæmningen er ikke på nogen måde kritisk for det vellykkede resultat for fremgangsmåde ifølge opfindelsen, men ved afprøvning af forskellige koncentrationer kan man let finde et optimum for et bestemt system. Koncentrationen af celler er typisk mellem 1 og 90 vådvægt/volumenprocent, men den er fortrinsvis fra 10 til 40 vådvægt/volumenprocent helst ca. 20 vådvægt/volumenprocent. Koncentrationen af opløseligt alginat er heller ikke kritisk. En særlig velegnet koncentration til anvendelse med hele celler eller andre former for enzymesystemet er mellem 1 og 10 vådvægt/volumenprocent, især ca. 5 vådvægt/volumenprocent.

Den resulterende alginatblanding sættes derpå i udmålt mængde til en opløsning af et metallsalt, med hvilket det opløselige alginat danner en gel. Som ovenfor nævnt er den foretrakke gel calciumalginit, og et eksempel på et egentligt salt er da calciumchlorid. Det foretrækkes især at anvende en calciumchloridopløsning, hvis molaritet er fra 0,01 til 1,0M, fortrinsvis fra 0,05 til 0,5M, mest foretrakket omkring 0,1M. Metallsaltopløsningen ligger fortrinsvis ved en temperatur på 15 - 40°C, især omkring 30°C, medens blandingen tilmåles, og det er også fordelagtigt, hvis opløsningen områdes. Det immobiliserede enzymets stabilitet forøges, hvis metallsaltopløsningen yderligere indeholder noget opløst saccharose, f.eks. 5 - 40 vådvægt/volumenprocent saccharose, fortrinsvis ca. 20 vådvægt/volumenprocent saccharose.

Ved at tilmåle oplæmningen eller anden alginatblanding som adskiltte smådræber er det simpelt at frembringe kugleformede piller af gel, der
indeslutter enzymsystemet. Pillestørrelsen kan varieres, men til opnåelse af let manipulering og effektiv masseoverføringssegningskab ved anvendelsen foretrækkes piller, der har en diameter på ca. 3 - 5 mm. Størrelsen og formen er imidlertid af begrænset betydning, og det kan let lade sig gøre at immobilisere enzymsystemet i en blok af gel (som derefter deles til anvendelsen) i et reb af gel (som til anvendelsen kan opvides på en form eller skæres i stykker) eller i mikrofiberbrøse partikler (ved anvendelse af betingelser med høj forskydningskraft ved tilsætningen til alginatblandingen).

Lignende metoder kan anvendes til immobilisering af enzymsystemet i andre gelsystemer. Fremgangsmåder til fremstilling af gelformede produkter er beskrevet i litteraturen, og det er simpelt at tilpasse dem til den foreliggende opfindelsesformål. Som eksempler kan det nævnes, at følgende gelsystemer med godt resultat er blevet anvendt til immobilisering af enzymsystemet som hele celler:

(i) Kappa-carrageenan eller kappa-carrageenan/johannesbrødgummi, under anvendelse af samme procedure som for alginat med den forskel, at den mest foretrukne opløsning, til hvilken celleopslæmmingen ekstruderes, er en blanding af 1M CaCl₂ og 1M KCl ved 20°C.

(ii) Agar, ved kogning af 3 vægt/volumenprocent agar i afioniseret vand, afkøling af den resulterende gel til 50°C, tilsætning af celleopslæmmingen og dråbevis ekstrusion af den resulterende suspension til iskoldt vand;

(iii) xanthan/johannesbrødgummi, idet der anvendes samme metode som for agar med de undtagelser, at gummiets kun opvarmes til 80°C og at gelen afkøles til 60°C før tilsætning af cellerne; og

Det er ikke essentielt at anvende en gel til immobilisering af de hele eller sprængte celler af den isomaltulose-producerende mikroorganis-
me. Som eksempler kan det nævnes, at ansøgerne med godt resultat har adsorberet hele celler på DEAE-cellulose. 2 g celler blev blandet med 10 ml af en meget tyk vandig opslæmning af DEAE-cellulose indstillet til pH-værdi 7 med tris(hydroxymethyl)aminomethan-hydrochloridsalt, dvs. tris-HCl. Opslæmningen blev holdt ved stuetemperatur i 30 minutter og var derefter klar til anvendelse.

Celler er endvidere blevet immobiliseret ved tværbinding. Dette blev opnået ved at omsætte 2 g celler suspenderet i 10 ml afioniseret vand med tværbindingsmiddel, nemlig 10 ml 25% v/v glutaraldehyd.

Der er også med godt resultat blevet udført immobilisering på benkul, idet der er anvendt 2 g celler og 2 g usigtet benkul, som blev suspenderet i 10 ml afioniseret vand i 30 minutter. Derefter blev der tilsat en opsløsning af 150 mg garvesyre og 130 mg glutaraldehyd i 2,2 ml acetone. Blandingen blev holdt ved stuetemperatur til tilendebrin- gelse af immobiliseringen.

Det gælder generelt, at når isomaltulose-dannende enzymsystemer immobiliseres ved andre metoder end indespærring i calciumalginatgel, er retentionen af aktivitet og aktivitetens stabilitet sædværdigvis mindre. De andre immobiliseringsmetoder har imidlertid ofte forskellige egenskaber, som kan gøre dem ønskelige. Således har f.eks. adsorp- tion af cellerne på DEAE-cellulose den fordel, at den væske, der fås efter omdannelsen, typisk er krystalklar - tilsyneladende er eventuel- le urenheder blevet adsorberet af DEAE-cellulosen. Mere generelt kan de alternative immobiliseringsmetoder anvendes til tilpasning til be-
stemte omstændigheder og er nyttige ved fremgangsmåden ifølge opfindelsen.

Ved immobilisering af sprængte celler eller opløsningsmiddelestrakter af enzymsystemet undgås alle muligheder for, at der kan opstå celle-
5 deling under brugen, og der undgås således den nedbrydning af pillerne og blokering af porerne, som undertiden sker, når immo-
biliserede hele celler deler sig i calciumalgatgpillen. Desuden er begyndelsesaktiviteten høj med immobiliserede sprængte celler eller op-
løsningsmiddelestrakter, hvilket afspejler fravær af en intakt celle-
vægmembran, der kunne virke som bærer for spreadning af saccharose og isomaltulose. Sprængning kan udføres ved formaling i en kuglemølle eller ved anden behandling af hele celler.

Kilden til det enzymsystem, der fortrinsvis anvendes ved immobilise-
10 ringen, er en isomaltulose-producerende mikroorganisme af slægten Erwinia. Der kan anvendes andre bakterier af arter såsom Serratia plymuthica eller Protaminobacter rubrum, men førstnævnte er muligvis sygdomsfremkaldende hos mennesker, og sidstnævnte er tilbøjelig til at producere et ønsket rødt pigment med lav molekylvægt.

Af de arter, der tilhører slægten Erwinia, foretrækkes især E. rhap-
15 pontici. Særlig egnede stammer af E. rhapsontici omfatter de stammer, der er deponeret i Storbritannien på National Collection of Plant Pathogenic Bacteria under adgangsnumrene NCPPB 1578, NCPPB 139 og NCPPB 1739.

Stammen NCPPB 1578 er også deponeret på American Type Culture Collection under adgangsnummeret ATCC 29283. Alle NCPPB-stammer omtalt i den foreliggende beskrivelse er nævnt i første udgave af "Catalogue of Cultures in the National Collection of Plant Pathogenic Bacteria", udgivet i 1977 af det britiske landbrugs- og fiskeriministerium og er offentlig tilgængelige.

30 Stammerne NCPPB 1578, 139 og 1739 er usædvanligt lovende, idet de har en højere produktspecificitet, begyndelsesaktivitet og stabilitet i sammenligning med andre stammer af Erwinia eller med stammer af
andre slægter. Mutanter, varianter og andre artefakts af den naturligt forekommende bakterie kan om ønsket anvendes. For eksempel kan kemiske eller fysiske midler inducere mutanter.

Fremgangsmåden ifølge den foreliggende opfindelse udføres fortrinsvis som en kontinuerlig proces, most hensigtsmæssigt ved at overføre det immobiliserede enzymsystem på en søje og føre substratsaccharosen som en opløsning gennem søjlen. En foretrukken udførelsesform for fremgangsmåden ifølge opfindelsen er at anvende flere søjler parallelt, f.eks. på en karrusel. Man kan frit vælge den ønskede søjestørrelse, men en størrelse på 20 ml og opefter er mest hensigtsmæssig. Der dannes normalt en vis mængde carbondioxid under omdannelsen fra saccharose til isomaltulose, når der anvendes immobiliserede hele celler, og det er lettere at fjerne denne carbondioxid, hvis væsken føres opad gennem søjlen. Opadgående passage af væsker kan også medvirke til at fluidisere immobiliseret enzymsystem og undgå den komprimering, der kan ske ved nedadgående passage.

Ved fremgangsmåden ifølge opfindelsen anvendes fortrinsvis mindst 50 vægtprocent saccharose som substrat.

Stabiliteten (målt som halveringstid) for det isomaltulosesyntetiserende enzymsystem i de immobiliserede celler stiger med stigning i saccharosekoncentrationen, hvilket også er tilfældet med koncentrationen af isomaltulose i den omdannede væske.

Disse virkninger er helt tydelige og vises grafisk i fig. 1 og 2, der er baseret på eksperimentelle data opnået ved anvendelse af calcium-alginatpiller af immobiliseret E. rhapontici NCPPB 1739.

Fig. 1 viser variationen i stabilitet for immobiliserede celler, hvad angår koncentrationen af saccharoseopløsningen, og

Fig. 2 viser virkningen af saccharosekoncentrationen på de immobiliserede cellers produktivitet.

Når saccharosekoncentrationen stiger over 40%, stiger stabiliteten og produktiviteten med bemærkelsesværdigt større hastighed. Denne virk-
ning synes i hovedsagen at være en egenskab hos det immobiliserede isomaltulose-dannende enzymsystem snarere end en egenskab ved immobiliseringsteknikken. Dog giver en immobilisationsteknik, hvor der anvendes calciumalginat, sædvanligvis den bedste stabilitet.

Desuden er en høj saccharosekonzentration medvirkende til at inhibere deling af immobiliserede celler og forhindre mikrobiel forurening, medens den samtidig gør det lettere at udvinde produktet og formindersker rumfanget af den væske, der skal behandles.

Der er således nu væsentlige fordele at opnå ved anvendelse af en så høj saccharosekonzentration som det er hensigtsmæssigt, og i praksis er den eneste begrensning sædvanligvis opløsningsens viskositet. Det har vist sig, at den øvre viskositetsgrænse i de fleste tilfælde ligger mellem 100 cp og 1000 cp, typisk på 500 cp.

Ved den foretrukne fremgangsmåde, der anvender celler indesluttet af calciumalginatgel-piller, er saccharosekonzentrationen i udgangsmaterialet hensigtsmæssigt ca. 55 vægtprocent.

Substratet behøver ikke at være en opløsning af ren saccharose. F.eks. kan op til 15 vægtprocent sirup inkorporeres i stedet for saccharose, og fremgangsmåden kan anvende ”affineringssirup”, hvilket er en uren sukkerstrøm, der forekommer i konventionelle sukkerraffinaderier.

Saccharoseopløsningsens pH-værdi er ikke særlig kritisk, idet den fortrinsvis ligger på fra 5 til 9, især på ca. 7. Omdannelsen til isomaltulose resulterer normalt i udvikling af en vis mængde syre, men i praksis er det sædvanligvis uønsendet at tage forholdsregler for at holde pH-værdien inden for 5 - 9. Under alle omstændigheder reduceres syreudviklingen sædvanligvis i takt med stigningen af substratkonzentrationen.
Den foreliggende fremgangsmåde kan udføres på en sådan måde, at
5 der opnås en regulator grad af omdannelse af saccharose til isomaltu-
lose. Samtidig med at opholdstiden for saccharose i kontakt med det
immobiliserede enzymsystem stiger, stiger også omdannelsesgraden i
retning af det praktisk mulige maksimum (typisk mellem 85 og 100%
omdannelse af saccharose til produkter). Den maksimale produktivitet
opnås imidlertid ikke nødvendigvis ved den højeste omdannelsesgrad,
fordi det større gennemløb og den højere aktivitet, der skyldes en
kortere opholdstid, kan kompensere for, at der ikke opereres ved
10 maksimal omdannelse.

Det har derfor vist sig i praksis, at den maksimale produktivitet
opnås ved at operere ved mindre end maksimal omdannelse, sædvan-
ligvis på mellem 70 og 95% omdannelse til produkter. Det foretrækkes
20 at udføre den foreliggende fremgangsmåde ved eller næsten ved den
omdannelsesgrad, der kræves for maksimal produktivitet. Den omdan-
nelsen, der kræves for at opnå den største produktivitet, kan let
findes ved systematisk eksperimentering. Som eksempelet kan nævnes,
at det har vist sig, at der for calciumalgipillar af immobiliserede
Erwinia-celler normalt er en maksimal produktivitet, når der opereres
25 på mellem 80 og 90%'s omdannelse.

Tilstedeværelsen af dette produktivitetsmaksimum er illustreret i fig.
3, der er baseret på eksperimentelle data opnået ved anvendelse af
calciumalgipillar af immobiliseret E. rhapontici NCPPB 1739.

Fig. 3 viser variationen i produktivitet af immobiliserede celler hvad
angår den initiale procentvis omdannelse (dvs., den procentvis
omdannelse ekstrapoleret tilbage til tid nul).

Der er et tydeligt toppunkt i produktivitet ved ca. 85 - 90%'s omdan-
30 nelse af saccharose til isomaltulose.

Omdannelsesgraden for saccharose til produkter har også en bemær-
kelsesværdig indvirkning på stabiliteten af det isomaltulose-dannende
enzymsystem hos de immobiliserede celler. Forsøg har vist, at stabili-
teten kan stige exponentielt med omdannelsesgraden af en koncentre-
ret saccharoseoplosning. Denne virkning ses på fig. 4, der er baseret på eksperimentelle data opnået ved anvendelse af calciumalginatpiller af immobiliseret E. rhapontici NCPPB 1739.

Fig. 4 viser variationen i halveringstid af immobiliserede celler med hensyn til den initiale procentvise omdannelse.

Fig. 4's data blev fundet for omdannelse af 55% saccharoseoplosning. Stabiliteten stiger exponentielt til en værdi af ca. 8500 timer ved 90%’s omdannelse. Dette dramatiske resultat er meget uventet og viser igen de fordele, der kan opnås ved hjælp af den foreliggende opfindelse.

Generelt giver fremgangsmåden ifølge den foreliggende opfindelse en opløsning, der indeholder isomaltulose og andre saccharider sammen med uomdannet saccharose. Det har endnu ikke været muligt at isole re alle de forskellige urenheder, men det er lykkedes at bestemme tilstedeværelsen af saccharose, glucose og fructose, og der er for modning om tilstedeværelsen af andre saccharider.

Efter dannelsen af isomaltulose kan det krystalliseres eller på anden måde renses, hvilket dog ikke er væsentligt for den foreliggende opfindelse.

Til krystalisation foretrækkes det at koncentrere opløsningen til en koncentration på 60 vægtprocent, eller fortrinvis på ca. 65 -70 vægtprocent, hvorefter opløsningen podes og afkøles under omrøring til 20°C. Koncentreringen udføres fortrinvis ved afdampning ved højst 65°C, hvorved farvedannelse reduceres. Podning af den kon centrerede opløsning fremmer vækst af små krystaller, selv om store krystaller, om ønsket, også kan dyrkes. Det er ikke vanskeligt at få en primær mængde krystaller indeholdende 90% isomaltulose, og succes sive krystalisationer vil øge renheden til 100%.

Der kan også opnås krystaller af isomaltulose ved tilsætning af ethan ol eller andre udfældningsmidler (f.eks. saccharose) til den omdannede opløsning. På denne måde produceres der hurtigt krystaller i
godt udbytte, selv om renheden ofte er mindre end den renhed, der opnås ved koncentrerings-krystallisationsfremgangsmåden beskrevet i foregående afsnit. De krystaller, der er dannet ved tilsætning af ethanol, indeholder typisk ca. 80% isomaltulose med saccharose som den væsentligstige urenhed.

Når en uren saccharoseopløsning såsom affineringssirup omdannes, er de krystaller, der opnås ved koncentrerings-krystallisationsfremgangsmåden, sædvanligvis lysebrune og relativt urene.

Op mod 95% eller mere af den samlede mængde isomaltulose, der er til stede i den resulterende væsken, kan let udvindes som krystaller, og det nøjagtige tal afhænger af krystallisationsteknikken og antallet af successive krystallisationer. Findelogen af krystallerne giver et frit-strømmende pulver, der hovedsaglig består af isomaltulose.

Som et alternativ til rensning ved krystallisation kan den resulterende væske renses ved kontakt med en basisk ionbyterharpiks såsom Amberlite® IRA-68 (til fjernelse af syrer, Amberlite® er et registreret varemærke) og med immobiliserede gærceller til fjernelse af glucose, fructose og saccharose. Desuden kan der anvendes frysetørring eller andre teknikker til fremstilling af et fast produkt.

Det er fastslået, at isomaltulose har nogle fysiske egenskaber, der ligner saccharoses, selv om isomaltulose har en meget reduceret sødhed (37% af saccharoses sødhed ved 7 vægtprocent i vand). Overraskende nok er det også konstateret, at isomaltulose har kvantitativt let bestemmelige egenskaber, der gør det særlig egnet til at erstatte saccharose som ingrediens ved fremstillingen af produkter til human eller animalsk indtagelse.

Anvendelsen af isomaltulose i stedet for saccharose i sådanne produkter er omtalt i dansk patentansøgning nr. 4759/80. Som beskrevet i beskrivelsen til den nævnte patentansøgning er isomaltulose særlig anvendeligt ved fremstilling af konserverede produkter, idet det giver volumen, struktur og konsistens samt andre ønskede effekter. Aromaten understreges ofte, når der anvendes isomaltulose i stedet for
saccharose, og bagværk får sædvanligvis en mørkere, rigere farve. I ovennævnte danske patentansøgning nr. 4759/80 gives eksempler såsom konfekture, kiks, buddinger, kager, syltetøj og marmelade.

Til anvendelse i sådanne samt beslægtede produkter kan der anvendes krystalliseret isomaltulose opnået i overensstemmelse med den foreliggende opfindelse - isomaltulosen behøver ikke at være ren, og til nogle anvendelser kan bruges ukrystalliseret, urent produkt.

Fremgangsmåden ifølge den foreliggende opfindelse belyses nærmere i nedenstående eksempler, hvor vægt i gram svarer til vådvægt, til-nærmelsesvis omdannelse til tørvægt fås ved at dividere med 5, og celleaktiviteten er udtrykt pr. gram våde celler.

Eksempel 1.

Celler fra en kultur af Erwinia rhapontici (NCPPB 1578, ATCC 29283) fortyndes med 10 ml phosphatpufret saltopløsning. Der anvendes 0,10 ml alikvoter af den resulterende suspension til podning af 200 ml alikvoter af vækstmediet i 500 ml steriliseret, med prelplader forsynede rystekolber. Mediet fremgår af nedenstående tabel:

Tabel 1

<table>
<thead>
<tr>
<th>Vækstmedium</th>
<th>Mængde g/liter destilleret vand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komponent</td>
<td></td>
</tr>
<tr>
<td>Saccharose</td>
<td>40</td>
</tr>
<tr>
<td>Pepton (forderet casein)</td>
<td>10</td>
</tr>
<tr>
<td>Kødekstrakt</td>
<td>4</td>
</tr>
</tbody>
</table>
De podede kolber rystes ved 120 svingninger pr. minut ved 30°C i 70 timer, hvorefter de høstes. Cellerne indsamles i den stationære vækstfase i dette tilfælde, men de kan også indsamles i den logaritmiske vækstfase eller i dødsfasen. Cellerne centrifugeres ved 15.000 g i 10 minutter ved 30°C, hvorved fås ca. 1 gram pakkede "wct"-celler pr. 100 ml medium. (Når der skal behandles større mængder inkuberet medium, anvendes en kontinuerligt virkende centrifugerotor, hvor mediet pumpes igennem med 100 ml/minut.)

De indsamlede pakkede celler suspenderes umiddelbart efter i en opløsning af 5 vægt/volumenprocent (tør) natriumalgginat i afioniseret vand til dannelse af en celllesuspension på 20 vægt/volumenprocent (våd). Cellesuspensionen ekstruderes derefter dråbevis fra en højde på 10 cm ud i en omrørt 0,1M calciumchloridopløsning, der holdes ved 30°C og også indeholder 15 vægt/volumenprocent saccharose, der tjener til at stabilisere isomaltulosesyntetiseringsaktiviteten i cellerne. De resulterende piller omrøres i 1 time og pakkes derefter ind i en 30 cm høj og 5 cm bred kolonne forsynet med en kappe.

En opløsning af 55 vægt/volumenprocent saccharose i afioniseret vand fremstilles og indstilles til pH-værdi 7,0 med 1,0M NaOH. Saccharoseopløsningen pumpes op i søjlen, der holdes ved 30°C. Med en saccharosegennemstrømningshastighed på ca. 0,01 tomt kolonnevolumen/time (evv/h) nærmer omdannelsen af saccharose til isomaltulose og andre produkter sig ligevægt.

Der opnås en stabil tilstand efter 24 timer. På dette tidspunkt er de immobiliserede cellers aktivitet ca. 0,2 g produkt/g våde celler pr. time. Cellernes stabilitet er ca. 1 år udtrykt i halveringstid. Når saccharosegennemstrømningshastigheden øges, for at reducere omdannelsen til 80%, er aktiviteten ca. 0,325 g produkt/g våde celler pr. time.

Søjleeluatet indsamles, inddampes til ca. 70 vægt/volumenprocent ved 60°C og afkøles eller tvangsafkøles derefter under omrystning, hvorved der fås små hvide krystaller. I praksis kan krystaller udvindes hurtigere ved podning af den afkølede opløsning med en lille mængde

Hvis substratet omdannes 80% til isomaltulose og tilknyttede produkter, fås typisk 88 g krystallinsk produkt pr. 100 g saccharosesubstrat, og søjlen produktivitet er 0,30 tons tørt krystallinsk produkt/søjlevolumen/år.

Dette viser, at der ikke kræves levedygtige celler til dannelse af isomaltulose, og at der sandsynligvis er ét enkelt stabilt enzym, der omdanner saccharosen til isomaltulose, og som ikke kræver recycling co-faktorer eller fortsat gendannelse af energikilder. Denne antagelse bekræftes, når 0,1 g/liter chloramphenicol, der inhiberer proteinsynthese, tilføres de 55 vægt/volumenprocent saccharose, der anvendes som substrat. Isomaltulosesyntetiseringsaktiviteten forbliver upåvirket, men ingen celledeling finder sted, selv ikke når der tilsættes næringsstoffer.

Vækst de novo af Erwinia-cellers i sin kan fremkaldes ved at tilføre næringsstoffer i form af et frisk sterilte medium, selv efter at cellerne er brugt uafbrudt i søjlen over et langt tidsrum, således at isomaltulosesyntetiseringsaktiviteten er faldet til en brøkdel af dens oprindelige værdi. I disse forsøg pumpes medium op gennem søjlen ved 0,01 ecv/time. De immobiliserede cellepiller afgiver betydelige mængder CO₂, pH-værdien af det brugte medium, der elueres fra søjlen, falder til pH-værdi 4,4, antallet af levedygtige celler stiger både i pillarne og i
det brugte medium, og nitrogenanalyse af både det brugte medium og cellepillerne viser, at celyvækst har fundet sted. Efter at være gået tilbage til at anvende 55% saccharose som substrat skal det understreges, at pillernes isomaltulose-dannende aktivitet stiger, i nogle tilfælde til et højere niveau end oprindeligt. Der er ikke noget bevis for induktion af enzym i den oprindelige celle, men det har vist sig, at gendannelsen udelukkende skyldes celyvækst. Graden af genaktivering af pilleaktiviteten er proportional med antallet af de levedygtige celler, der er tilbage umiddelbart før tilsætning af næringsstoffer, og der opnås ingen genaktivering med de piller, der har været anvendt i så lange perioder, at alle de indesluttede celler er blevet ikke-levedygtige (500 timer).

Efter anvendelse i praksis af de gendannede celler i en yderligere periode kan aktiviteten af søjlen genaktiveres på lignende måde mindst 3 gange. Muligheden for at regenerere immobiliserede cellysøjer gør, at søjlems stabilitet teoretisk er uendelig, og åbner mulighed for, at de immobiliserede cellers alder er uafhængig af den gennemløbne substratmængde.

I stedet for at der med mellemrum tilsættes næringsstoffer efter at pillerne har været brugt i nogen tid, kan vækstmediet tilsættes umiddelbart efter immobiliseringen. I disse forsøg fremkommer en langsom vækst af Erwinia in situ. Når et 1 vægt/volumenprocents cellepilleinokulum immobiliseres, opnås en 30-foldig stigning i antallet af levedygtige celler, og cellerne vokser med en fordoblingstid på 64 timer, før forsøges må afsluttes på grund af en kraftig svækelse af alginategelstrukturen. Når celler anvendes på denne måde med hyppig gendannelse af aktivitet ved hjælp af celyvækst, er enzymtilsystems indre stabilitet mindre end i de tilfælde, hvor ingen celyvækst finder sted. Det ser således ud til, at enzymet er meget mere stabilt, når cellen befinder sig i en pseudohvile- eller overlevelsestilstand, end når cellen får lov til at dele sig.
Eksempel 2.

Der anvendes den grundlæggende fremgangsmåde som beskrevet i eksempel 1, og de indsamlede celler af Erwinia rhapsontici sprænges ved formaling i en kuglemølle i 90 minutter ved 8°C før immobilisering. Pillernes initialaktivitet minder om aktiviteten, når der anvendes hele celler som beskrevet i eksempel 1, men halveringstiden er ca. 170 dage.

Eksempel 3.

Der går frem som beskrevet i eksempel 1, men der anvendes andre stammer af isomaltuloseproducerende mikroorganismer, nemlig Erwinia rhapsontici (NCPBP 1578, 139 og 1739 og ATCC 29284), Erwinia carotovora var atroseptica BCPPB 139, Erwinia dissolvens (NCPBP 1862 og 2209), Protaminobacter rubrum (CBS 574, 77), Serratia marscescens (NCIB 8285) og Serratia plymuthica (ATCC 15928). De immobiliserede stammers specificitet, aktivitet og stabilitet måles. Når mikroorganismeres patogenicitet og tendens til at producere polymerer eller pigmenter tages i betragtning, vurderes teststammerne (herunder den fra eksempel 1) med hensyn til velegneteth i fremgangsmåden ifølge eksempel 1. Vurderingen vises i nedenstående tabel 2.

Tabel 2

<table>
<thead>
<tr>
<th>Stamme</th>
<th>Velegneteth</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. rhapsontici NCPBP 1578</td>
<td>++++</td>
</tr>
<tr>
<td>E. rhapsontici NCPBP 139</td>
<td>++++</td>
</tr>
<tr>
<td>E. rhapsontici NCPBP 1739</td>
<td>++++</td>
</tr>
<tr>
<td>E. rhapsontici ATCC 29284</td>
<td>+++</td>
</tr>
<tr>
<td>E. carotovora var atroseptica NCPBP 139</td>
<td>+++</td>
</tr>
<tr>
<td>E. dissolvens NCPBP 1862</td>
<td>++</td>
</tr>
<tr>
<td>E. dissolvens NCPBP 2209</td>
<td>++</td>
</tr>
</tbody>
</table>
Tabel 2 fortsat

Serratia plymuthica ATCC 15928 +
Serratia marcescens NCIB 8285 +
Protaminobacter rubrum CBS 574.77 +

Eksempel 4.

Der gøs frem som beskrevet i eksempel 1 ved anvendelse af forskellige saccharose-koncentrationer på 12,5 - 60 vægt/volumenprocent. Aktiviteten og halveringstiden måles for en procentvis initialomdannelse til produkter på 40%, og resultaterne vises i tabel 3.

Tabel 3

<table>
<thead>
<tr>
<th>Saccharose-koncentration</th>
<th>Aktivitet</th>
<th>Halveringstid</th>
</tr>
</thead>
<tbody>
<tr>
<td>(vægt/volumenprocent)</td>
<td>gram produkt/ vådceller/time</td>
<td>(timer)</td>
</tr>
<tr>
<td>12,5</td>
<td>0,4</td>
<td>47</td>
</tr>
<tr>
<td>25</td>
<td>0,7</td>
<td>200</td>
</tr>
<tr>
<td>35</td>
<td>1,18</td>
<td>415</td>
</tr>
<tr>
<td>45</td>
<td>1,17</td>
<td>650</td>
</tr>
<tr>
<td>55</td>
<td>0,82</td>
<td>4000</td>
</tr>
<tr>
<td>60</td>
<td>0,31</td>
<td>1935</td>
</tr>
</tbody>
</table>

Variationen i substratets saccharose-koncentration har en række vigtige indvirkninger på de immobiliserede sjølers ydeevne. For det første indvirker saccharose-koncentrationen på de immobiliserede cellers aktivitet, idet koncentrationer på over ca. 40 vægt/volumen-
procent viser sig at være inhiberende. For det andet har det overraskende vist sig, at de immobiliserede cellers stabilitet (dvs. halveringstid) øges mærkbart, når saccharose-koncentrationen stiger over de koncentrationer, der hidtil er anvendt. Stigningen i de immobiliserede cellers stabilitet i takt med stigningen i saccharose-koncentrationen mere end kompenserer for eventuelt fald i aktivitet, og således stiger seljens produktivitet, når saccharose-koncentrationen stiger.

Forholdet mellem ligevægtsprodukterne og saccharose varierer også mærkbart, alt efter hvilken saccharose-koncentration, der anvendes som substrat, idet de højeste ligevægtsværdier opnås, når 55 vægt/volumenprocent anvendes. Dvs., med 55% saccharose er ligevægtsforholdet mellem produkter og saccharose ca. 13,2, svarende til 93%’s omdannelse til produkt.

Eksempel 5.

Der går frem som beskrevet i eksempel 1 under anvendelse af celler af Erwinia rhapontici NCPPB 1578 immobiliseret ved andre immobiliseringsteknikker, der er nærmere specificeret tidligere i denne beskrivelse. Aktiviteten og halveringstiden fremgår af nedenstående tabel 4.

| Tabel 4 |
|-----------------|-----------------|
| Immobiliseringsteknik | Aktivitet (gram produkt/gram våde celler/timer) | Halveringstid (timer) |
| Calciumalginate | 0,325 | 8500 |
| DEAE cellulose | 0,583 | 400 |
| Polyacrylamid | 0,13 | 570 |
| Glutaraldehyd-aggregerede celler | 0,153 | 40 |
Tabel 4 fortsat

<table>
<thead>
<tr>
<th>K-carrageenan-johannesbrødgummi</th>
<th>0,263</th>
<th>37,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benkul</td>
<td>0,01</td>
<td>25</td>
</tr>
<tr>
<td>5 Agar</td>
<td>0,34</td>
<td>27</td>
</tr>
<tr>
<td>Xanthan-johannesbrødgummi</td>
<td>0,10</td>
<td>8</td>
</tr>
</tbody>
</table>

Eksempel 6.

Der gøg frem som beskrevet i eksempel 1 under anvendelse af alginatgel indeholdende indeslutet NCPPB 1578-celler, som er geleret enten i en blok og skåret i småstykker eller geleret i en kontinuerlig streng, hvorefter gelen anvendes enten vundet op på en stav eller skåret i stykker. Ved anvendelse i kolonner viser disse immobiliserede celler ingen mærkelig forskel i aktivitet eller stabilitet sammenlignet med celler immobiliseret i kugleformede piller.

Eksempel 7.

Eksempel 3 indikerer, at stammerne af E. rhapontici er særlig egnede. En yderligere sammenligning udføres under standardiserede betingelser og under anvendelse af hver af de tre E. rhapontici-stammer immobiliseret i calciumalginit. Resultaterne fremgår af nedenstående tabel 5.

Tabel 5

<table>
<thead>
<tr>
<th>Stammer</th>
<th>Initial om-dannelse %</th>
<th>Aktivitet (gram produkt/gram celler/timer)</th>
<th>Halverings-tid (timer)</th>
<th>Produktivitet (kg produkt/litersøjle-vol. 1000 timer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. rhapontici</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NCPPB 1578</td>
<td>52,4</td>
<td>0,441</td>
<td>1507</td>
<td>59,52</td>
</tr>
<tr>
<td>NCPPB 139</td>
<td>54,4</td>
<td>0,389</td>
<td>1877</td>
<td>52,53</td>
</tr>
<tr>
<td>NCPPB 1739</td>
<td>56,6</td>
<td>0,354</td>
<td>1840</td>
<td>47,77</td>
</tr>
</tbody>
</table>
Eksempel 8.

Det enzymsystem, der er ansvarlig for omdannelse af saccharose til isomaltulose opløsningsmiddelestraheres fra celler af Erwinia rhapontici NCPPB 1578 ved anvendelse af fire forskellige teknikker, nemlig Mickle-rystning, osmotisk chok, lydpåvirkning og detergentbehandling.

Ved Mickle-rystning rystes 2 g alikvoter frisk indsamlede celler med 2 g tørt sand og 2 ml destilleret vand i 20 minutter ved stuetemperatur under anvendelse af et Mickle-rysterapparat indstillet til maksimale gyrorotationssvingninger.

Ved osmotisk chok-teknik suspenderes 1,5 g alikvoter af cellerne i 10 ml afioniseret vand i 30 minutter ved 1°C.

Ved lydpåvirkninger suspenderes 2 g alikvoter af cellerne i 15 ml afioniseret vand og lydpåvirkes i 30 minutter under anvendelse af en lydtransducer med en endediameter på 2,5 cm.

Ved detergentbehandling suspenderes 0,5 g v/v vandig Triton X-100-opløsning i 3 timer.

Efter hver behandling centrifugeres den resulterende suspension ved 17000 g i 30 minutter ved 30°C. Cellerne eller cellerestene og supernatanten immobiliseres derefter separat i piller af calciumalginat under anvendelse af den i eksempel 1 beskrevne generelle fremgangsmåde.

Pillerne afprøves derefter mod 55 vægt/volumenprocent saccharose for isomaltulose-synteraseaktivitet, og resultaterne fremgår af nedenstående tabel 6, hvor "IM" betegner isomaltulose.
Tabel 6

<table>
<thead>
<tr>
<th></th>
<th>Aktivitet af oprindelige celler (g IM/gww/timer)</th>
<th>Aktivitet af celle- rester (g IM/gww opr. celler/timer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mickle-ryster</td>
<td>0,63</td>
<td>0,567</td>
</tr>
<tr>
<td>Osmotisk chok</td>
<td>0,70</td>
<td>0,465</td>
</tr>
<tr>
<td>Lydpåvirkning</td>
<td>0,63</td>
<td>0,514</td>
</tr>
<tr>
<td>Triton-X 100</td>
<td>1,16</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aktivitet hos supernatant</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g IM/gww)</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Mickle-ryster</td>
</tr>
<tr>
<td>Osmotisk chok</td>
</tr>
<tr>
<td>Lydpåvirkning</td>
</tr>
<tr>
<td>Triton-X 100</td>
</tr>
</tbody>
</table>

Af resultaterne i tabel 6 fremgår det, at Mickle-rystning frigør ca. 5% af celleaktiviteten til supernatanten, medens den resterende aktivitet er forbundet med celleresten. Den oploselige enzymekstrakt, dvs. supernatanten, har en aktivitet på 0,094 g produkt/ml/time, en specifik aktivitet på 0,0029 g produkt/mg protein/time og indeholder tolv forskellige proteinbånd, hvilket fremgår af analyse ved hjælp af polyacrylamidgelelektroforese.

Enzysystemet ekstraheres mere effektivt ved at give cellerne osmotisk chok. Ved denne metode ekstraheres ca. 9% af celleaktiviteten, idet ekstrakten har en aktivitet på 0,253 g produkt/ml/time og en specifik aktivitet på 0,0844 g produkt/mg protein/g. Desuden viser polyacrylamidgelelektroforese kun ti proteinbånd. Dette enzym forholdsmæssigt høje renhed skyldes sandsynligvis, at cellerne ikke sprænges ved osmotisk chok.

Det fremgår af ovenstående resultater, at enzysystemet er bundet til membranen og/eller findes i sektioner i cellen, idet den mest sandsynlige lokaliserings er det periplasmiske rum, især da osmotisk chok er den bedste metode til ekstraktion, og da det endvidere har vist sig,
at enzymmarkørerne i det periplasmiske rum, såsom syrephosphater, co-ekstraheres ved behandling med osmotisk chok.

Yderligere behandling af den celle-frie enzymekstrakt ved osmotisk chok viser, at den har en optimal pH-værdi på 7,0, en optimal temperatur på 30°C og er maksimalt aktiv i en 35 vægt/volumenprocents saccharoseoplosning. Det er ikke overraskende, at substratoptimumet for det oploselige enzymsystem ligger lavere end de (55%) for de frie eller immobiliserede celler, og det afspejler antagelig en modifikation af de indre egenskaber hos enzymsystemet på grund af dets periplasmiske lokaliserings. Når det Mickle-rystede ekstraherede enzymsystem anvendes på 55 vægt/volumenprocent saccharose, har det immobiliserede enzym en initialaktivitet på 0,0067 g produkt/ gram piller/time og en halveringstid på 620 timer og en initialomdannelsesgrad af på 81,5%.

Ved anvendelse af almindeligt og specifikt mærket saccharose, fructose og glucose som substrat for det ekstraherede enzymsystem har det vist sig at systemet indeholder en saccharosespecific glucotransferase. Enzymet er også specifikt for acceptordelen, idet kun fructose afledt af saccharose, og ikke exogent tilsat fructose, glucose eller fructose og fructose er tilgængelig for inkorporering i isomaltulose. Glucose og fructose afledt af saccharose ”aktiveres" sandsynligvis på én eller anden måde; f.eks. kan det eksistere i et sterisk mere gunstigt miljø. Enzymsystemet giver ikke et renere produkt, end når der anvendes hele celler.
PATENTKRAV

1. Fremgangsmåde til fremstilling af isomaltulose ved enzymatisk om-
dannelse af saccharose,
kedetegnet ved, at en isomaltulose-producerende mikroor-

5
ganisme eller et isomaltulose-dannende enzymsystem isoleret herfra
immobiliseres, hvorefter det immobiliserede enzympræparat bringes i
kontakt med en saccharoseopløsning, der indeholder mindst 40 vægt/-

10 volumenprocent saccharose, hvorpå den opnåede isomaltuloseopløsning,
hvori fortrinsvis 70-95% af saccharosen er omdannet til isomaltulose,
om ønsket renses, fortrinsvis ved krystallisation.

2. Fremgangsmåde ifølge krav 1,
kedetegnet ved, at den isomaltulose-producerende mikro-
organisme immobiliseres som hele celler.

15 kedetegnet ved, at det isomaltulose-dannende enzymsys-

tem, som immobiliseres, er en opløsningsekstrakt af hele eller spræng-
tedeller af den isomaltulose-producerende mikroorganisme.

4. Fremgangsmåde ifølge krav 1, 2 eller 3,
kedetegnet ved, at immobiliseringen foregår ved indeslut-

20 ning i en gel.

5. Fremgangsmåde ifølge krav 4,
kedetegnet ved, at gelen er en alginatgel.

6. Fremgangsmåde ifølge et hvilket som helst af kravene 1 - 5,
kedetegnet ved, at den isomaltulose-producerende mikro-

25 organismerer af slægten Erwinia.

7. Fremgangsmåde ifølge krav 6,
kedetegnet ved, at mikroorganismen er af arten E. rhapon-
tici.
8. Fremgangsmåde ifølge krav 7, kendte genet ved, at mikororganismen er stammen E. rhapontici NCPPB 1578.

9. Fremgangsmåde ifølge krav 1,
kendte genet ved, at saccharoseopløsningen indeholder ca. 55 vægt/volumenprocent saccharose.

Fremdragne publikationer:
GB patent nr. 1429334
Biotechnology and Bioengineering, bind XIX, side 387-397, (1977)
Kierstand et al.: The Immobilization of Microbial Cells,
Subcellular Organelles, and Enzymes in Calcium Alginate Gels
Advances in Applied Microbiology, bind 22 (1977), side 1-9,
Chibata et al.: Transformations of Organic Compounds by Immobilized Microbial Cells.
FIG. 3.

![Graph showing productivity in kg/1/yr against initial conversion %]

FIG. 4.

![Graph showing halving time 10^3_h against initial conversion %]