wo 2014/019093 A1 |1 I} NP0 O A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/019093 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

6 February 2014 (06.02.2014) WIPOIPCT
International Patent Classification:
GO6F 9/44 (2006.01)
International Application Number:
PCT/CA2013/050599

International Filing Date:
1 August 2013 (01.08.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/678,395 1 August 2012 (01.08.2012) US

Applicant: SHERPA TECHNOLOGIES INC. [CA/CA];
527 Marie-C-Daveluy, Boisbriand, Québec J7G 3G7 (CA).

Inventor: MENARD, Eric-Pierre; 527 Marie-C-Daveluy,
Boisbriand, Québec J7G 3G7 (CA).

Agent: ROBIC, LLP; 1001, Square-Victoria Bloc E - 8th
floor, Montréal, Québec H2Z 2B7 (CA).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))
with amended claims and statement (Art. 19(1))

(54) Title: SYSTEM AND METHOD FOR MANAGING VERSIONS OF PROGRAM ASSETS

(57) Abstract: A method and system for managing
versions of program assets of a library is disclosed, to
be used for example with IBM Infosphere Data-
stage™. Each program asset has source code which is
protected. A selection of one or more program asset to
be exported into the utility application is selected. In-
structions for building the source code of each pro-
gram asset is extracted from the library and into a di-
gest. A database stores each digest as a new instance
of the digest in a data storage and associates thereto a
new version identifier representing a new version of
the corresponding program asset. A checked-in status
is further associated to each new instance of digest, to
indicate that the digest is stored in the utility applica-
tion.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

1

SYSTEM AND METHOD FOR MANAGING VERSIONS OF PROGRAM ASSETS

Field of the invention:

The present invention relates to a version control system and method. More
particularly, the present invention relates to a version control method for controlling

versions of protected source code and to a system for performing the same.

Background of the invention:

Source control, also known as revision control or version control, is an important
practice of software development. It allows for the management of changes to
documents and programs, by registering the source code at each change, and also
provides developers a variety of functionalities, including the reservation of files by
means of a check-in, check-out procedure and can also handle conflicts between

simultaneous changes of the same program ("merging").

Release management, in software development, automates and/or allows better
control of the deployment and maintenance of all the different versions of programs
through the evolutionary phases, such as development, testing and production

environments

Extract-Transform-Load (ETL) is a field of information technology that handles the
transportation and integration of data. ETL programs make possible the transmission
of data between various computer systems such as sending billing information to an
application responsible of invoicing, from a product sold using a customer relationship
management application (CRM). ETL programs are also heavily used in loading data
warehouses and when replacing outdated computer systems by new technology that
requires preserving relevant data accumulated throughout the years in the older

system.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

IBM Infosphere Datastage™ (also referred to herein as "Datastage™") is a
component of the IBM Information Server™ suite of applications, and is recognized
worldwide as a leader in the field of ETL. The latter is widely distributed throughout

North America, Europe and Asia.

Version control and release management practices are widely spread in the IT
community. There are to date more than two dozen unique solutions, with as many
offered under free licence as paid proprietary licenses. IBM Rational ClearCase™,
CVS™ Subversion™ Microsoft Team Foundation Server™ and Git™ are among the

best known.

Despite the multitude of applications available, no software known to the Applicant is
adapted to integrate programs such as those created by DataStage™, due to the
complexity and uniqueness of its architecture. While modern programming is mostly
text-based and usually consisting of several independent text files, each of which can
be accessed and saved individually (Java™, PHP, C/C++, etc.), DataStage™ on the
other hand is a graphical tool (see FIG. 1). Template modules representing functions
are dragged to the design screen from a palette and are linked together to be finally
customized for specific needs. Behind the scenes, the actual code is separated into
design files, executable binaries and metadata stored in a database. All those
artifacts compose a single program. Those components are write-protected by
Datastage™ so as to prevent direct access. In such an environment, modifications to

programs must be done via an application layer of Datastage ™.

It is however possible to manually extract a summary of each program composition
into either an XML format file or a file format proprietary to DataStage™, called
"DSX". This summary can then be used by Datastage™ to recreate a program in its
original form. This is the most common practice today for managing Datastage™

programs. Users export each component either individually or as a bundle into a

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

3

processing summary file. This file is then uploaded into a source management
program. When an archived version of a program is required in a Datastage™
project, the appropriate file is extracted from the source management program and
then manually imported into the project. This is a tedious task which, since it requires

manual manipulations, increases the risk of errors.

Shown in FIG. 2A and 2B are two flow charts illustrating the manual versioning steps
required, namely FIG. 2A exemplifies the exporting of a program from a Datastage™
project, and FIG. 2B exemplifies the importing of a program into a target Datastage™
project (i.e. recreating the program in Datastage™). FIG. 3 illustrates the data flow
between the Datastage™ environments using a conventional source control

application.

DataStage™ does provide some level of automation for extracting and importing of
programs. DataStage™ provides an implementation of certain key controls by various
DOS or UNIX commands, and gives access via an application program interface
(API) that allows C / C++ programmers to access a limited number of methods of the

program.

With release 8.5 of the IBM Information Server™ suite, features were added to the
DataStage™ application, allowing the check-in and check-out of source code into two
source control applications: IBM Rational ClearCase™ and Concurrent Versions
System™ (CVS), directly from the graphical user interfface (GUI) of
DataStage™. However, this feature does not serve as a release management
application as it does not allow for example the deployment of packages or bundles of

programs, from the release management application itself.

IBM has recently developed an application suite called Jazz Rational Team Concert™
or Jazz RTC™ (http://jazz.net) whose mission is to enable closer collaboration

between the various units of a development team such as business analysts,

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

4

architects, developers and other manager types. Jazz RTC™ contains several
modules, including one for managing source control and release management.
However, this application has been designed for common text-based programming,
as for previously stated solutions, and is therefore not readily integrated with
DataStage™.

As ETL programming is a particular niche of information technology and as software
source control and release management applications are designed to handle the
integration of a wide range of applications, no custom module fitted for a single

program such as DataStage™ is known to the applicant.
Hence, in light of the aforementioned, there is a need for an improved system which,
by virtue of its design and components, would be able to overcome some of the

above-discussed prior art concerns.

Summary of the invention:

The object of the present invention is to provide a solution which better integrates
write-protected and/or complex programs, such as DataStage™, in a suite of release
management and source control, and is thus an improvement over other related
version control or release management systems and/or related methods known in the

prior art.

In accordance with the present invention, the above mentioned object is achieved, as
will be easily understood, by a version control system and method such as the one
briefly described herein and such as the one exemplified in the accompanying

drawings.

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

In accordance with an aspect of the invention, there is provided a method for

managing versions of program assets of a library, each of said program assets having

source code which is protected, the method being executable by a single utility

application having an integration module which is embedded in a processor, the

method comprising the steps of:

)

receiving a selection of one or more program asset to be exported into the
utility application for storage;

extracting from the library and into a digest, for each of the one or more
program asset selected, instructions for building the source code of the
corresponding program asset, by means of the integration module;

storing, by means of the integration module, each digest as a new instance of
the digest in a data storage;

associating in the data storage, by means of the integration module, a new
version identifier to each new instance of digest, the new version identifier
representing a new version of the corresponding program asset; and

in the data storage, associating a checked-in status to each new instance of
digest stored at step (iii), by means of the integration module, to indicate that

each of said new instance of digest is stored in the utility application.

In a particular embodiment of the above-mentioned aspect, the data storage

comprises a plurality of said digests, each digest comprising instructions to rebuild a

corresponding program asset in the library, the method further comprising:

Vi)

vii)

receiving, via a user interface, a selection of one or more of said program
assets to be imported into the library and the corresponding version
information;

retrieving an instance of the digest from the data storage for each of said one
or more program asset to be imported, by means of the integration module,

being associated to the version information received at step (vi); and

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

viii)

6

for each digest retrieved at step (vii), executing the instructions to rebuild the
corresponding program asset, by means of the integration module, in order to
import a new version of the corresponding program asset into the library.

in the data storage, replacing a checked-in status associated each instance of
the digest retrieved at step (vii) with a checked-out status, by means of the
integration module, to indicate that the corresponding one or more program

asset is currently being updated.

In another particular embodiment of the above-mentioned aspect, the data storage

comprises a plurality of said digests, each digest comprising instructions to rebuild a

corresponding program asset in the library, the data storage storing multiple

instances of at least one of the digests, each instance corresponding to a version of

the corresponding program asset, the method further comprising:

receiving a selection of two or more digest instances of the data storage and
corresponding version identifier, to be compared;

retrieving from the data storage the instances of the digest corresponding to
the selection received;

by means of the integration module, comparing the content of the digest
instance, to generate comparison information; and

returning the comparison information on a user interface component.

In accordance with another aspect of the present invention, there is provided a

system for managing versions of program assets of a library, each of said program

assets having source code which is protected, the system comprising:

a user interface for receiving a selection of one or more program asset to be
exported into a utility application for editing;

an integration module embedded in a processor which is in communication
with the user interface, the integration module comprising an exportation

module for extracting from the library into a digest, for each of the one or more

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

7

program asset selected, instructions for building the source code of the
corresponding program asset; and

- a data storage, in communication with the integration module, for storing each
digest as a new instance of the digest, and for associating a new version
identifier to each new instance of digest, the new version identifier representing
a new version of the corresponding program asset, and for further associating
a checked-in status to each new instance of digest stored to indicate that each

of said new instance of digest is stored in the utility application.

In accordance with another aspect of the present invention, there is provided a
storage medium for managing versions of program assets of a library, each of said
program assets having source code which is protected, the storage medium being
processor-readable and non-transitory, the storage medium comprising instructions

for execution by a processor, via a single utility application, to:

1) receive a selection of one or more program asset to be exported into the

utility application for storage;

i) extract from the library and into a digest, for each of the one or more
program asset selected, instructions for building the source code of the
corresponding program asset, by means of the integration module;

ii) store, by means of the integration module, each digest as a new instance
of the digest in a data storage;

V) associate in the data storage, by means of the integration module, a new
version identifier to each new instance of digest, the new version identifier
representing a new version of the corresponding program asset; and

V) associated, in the data storage, a checked-in status to each new instance

of digest stored at (iii), by means of the integration module, to indicate

that each of said new instance of digest is stored in the utility application.

Program asset export ("check-in" to the version control system)

5

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

8

In accordance with another aspect of the invention, there is provided a method for
exporting a program asset from an extract-transform-load (ETL) library storing a
plurality of said program assets, each program asset being protected in the ETL
library, the method comprising steps of:

a) receiving, via a user interface, a command for exporting said program asset;

b) exporting, by means of an integration module, the program asset from the ETL
library into a digest, the digest comprising instructions for rebuilding the
program asset in the ETL library;

c) storing, by means of the integration module, a new instance of the digest in the
data storage;

d) associating in the data storage, by means of the integration module, a new
version to said new instance of the digest; and

e) by means of the integration module, setting a checked-in status to the new

instance of the digest in the data storage.

In a particular embodiment of the above-mentioned aspect, step (d) of the method
includes:
- querying the data storage to locate an instance of the digest being associated
to a latest version of the digest; and
- if no instance of the digest is located in the data storage, said new version is a
first version, and otherwise, said new version is obtained by incrementing an

originating version associated to the digest.

In accordance with particular embodiments of the present invention, rules are defined
in the integration modules which increment the version based on allowed increases.
For example, when a version to check-in is the highest, major updates increment the
first digit (1.0 to 2.0), while minor updates update the second digit (3.3 to 3.4). When
checking-in an intermediate version, a major update upgrades the second digit (4.1.2
to 4.2.0) and minor updates increment the third digit (5.3.4 to 5.3.5). A fourth level of

change could be implemented on customer request for specific needs.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

In a particular embodiment of the above-mentioned aspect, instances of digests are
organized in a tree defining branches, each branch for a given digest representing a
subset of versions of the corresponding program asset. In this particular embodiment,
the method further includes prior to step (d), receiving branch information identifying a
selected branch in the data storage to which the new instance of the digest is to be
associated to, and said new version of step (d) is assigned based on said selected

branch.

In accordance with another aspect of the present invention, there is provided a
method for exporting one or more program asset from an ETL library storing a
plurality of said program assets, each program asset being protected in the ETL
library, the method comprising steps of:

a) receiving, via a user interface, a command for exporting said one or more
program asset;

b) exporting, by means of an integration module, the one or more program asset
from the ETL library into respective one or more digest, each digest comprising
instructions for rebuilding the corresponding program asset in the ETL library;

c) storing, by means of the integration module, a new instance of each of the one
or more digest in the data storage;

d) associating in the data storage, by means of the integration module, a new
version to each of said new instance; and

e) by means of the integration module, setting a checked-in status to the new

instance of each of the one or more digest in the data storage.

In accordance with another aspect of the present invention, there is provided a
version control system for an ETL library adapted to store a plurality of protected
program assets, each of the protected program assets being exportable in the format
of a digest of instructions for rebuilding the corresponding program asset, the version

control system comprising:

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

10

a user interface for exchanging information with a user,;

a data storage for storing instances of said digests of program assets and
corresponding version information; and

an integration module being in communication with the user interface, with the
storage module and with the ETL library, in order to generate a digest from
said ETL library upon receiving a corresponding command from the user
interface, to generate corresponding version information and to store said

digest and version information in the data storage.

Program asset import ("check-out” from the version control system)

In accordance with another aspect of the present invention, there is provided a

method for importing a versioned program asset into an ETL library from a data

storage, said program asset being buildable in the ETL library from a corresponding

digest of instructions, one or more instance of said digest being stored in the data

storage, each instance being associated to a version of the digest, the method

comprising steps of:

a)
b)

C)

receiving, via a user interface, a command for importing said program asset;
receiving, via the user interface, version information of the program asset to be
imported;

retrieving an instance of the digest from the data storage, by means of an
integration module, in accordance with the version information received at step
(b);

by means of the integration module, setting a checked-out status to the
instance of the digest in the data storage; and

executing the instructions of said instance of the digest (to build the
corresponding program), by means of the integration module, in order to import

the corresponding program asset in the ETL library.

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

11

In a particular embodiment of the above-mentioned aspect, the method further
comprises after step (c), validating whether said instance of digest retrieved at step
(c), has a checked-out status, and only if the program asset does not have a

checked-out status, proceeding to the following steps of the method.

In a particular embodiment of the above-mentioned aspect, instances of digests are
organized in a tree defining branches, each branch for a given digest representing a
subset of versions of the corresponding program asset. In this particular embodiment,
the version information received at step (b) further includes branch information, and

the retrieving of step (c) takes into account the branch information.

Package Creation and Deployment

In accordance with another aspect of the present invention, there is provided a
method for importing a package of versioned program assets into an ETL library from
a data storage, each of said program asset being buildable in the ETL library from a
corresponding digest of instructions, one or more instance of said digest being stored
in the data storage, each instance being associated to a version of the digest, the
method comprising steps of:

a) receiving, via a user interface, a command for importing a new package;

b) receiving, via the user interface, the program assets to be imported via the new
package and corresponding version information;

c) generating the new package in the data storage, by means of the integration
module;

d) retrieving from the data storage, instances of the digests corresponding to the
program assets to be imported, by means of the integration module, in
accordance with the version information received at step (b);

e) associating in the data storage, the instances retrieved at step (d) with the new

package;

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

12

f) by means of the integration module, setting a deployment status to the new
package in the data storage; and

g) executing the instructions of each of said instances associated to the new
package, by means of the integration module, in order to import the

corresponding program assets in the ETL library.

In a particular embodiment of the above-mentioned aspect, the one or more instance
of the digest are grouped by branches in the data storage, each branch
corresponding to a subset of versions of the digest. In this particular embodiment the
version information received at step (b) further includes branch information, and the

retrieving of step (c) is takes into account the branch information.

Version Comparison

In accordance with another aspect of the present invention, there is provided a
method for comparing versions of a given program asset in an ETL library, the given
program asset being protected and buildable from a digest of instructions stored in a
data storage, the data storage storing multiple instances of the digest, each instance
corresponding to a version of the given program asset, the method comprising steps
of:

a) receiving, via a user interface, instructions to compare two versions of said
given program asset of the ETL library;

b) retrieving from the data storage, by means of an integration module, two
instances of the digest corresponding to said two versions of said given
program asset;

c) by means of an integration module, generating comparison information, by
pairing matching components of the two instances; and

d) returning, by means of the integration module, the comparison information on

the user interface.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

13

Terminology

In the context of the present invention, a "program asset" (also referred to herein as
an "asset" or "component") may be a DS job (Datastage™ program), a routine, a data
connection, and/or any other unitary component that may be exported from the ELT

library (example: Datastage ™) and versioned independently.

In the context of the present invention, each of said "integration module", "ETL library"
and "data storage" is located on a server or a plurality of server(s). It is to be
understood that two or more of said "integration module", "ETL library" and

"database" may share one or more same server(s).

An "ETL library", in the context of the present invention, refers to an ETL system such
as the Datastage™ tool, for example, including the program assets it defines for a
given project within a particular development environment (development, testing,
production, etc.). In the context of Datastage™, program assets are each defined by
a plurality of "artifacts" which may include source code, an object, an instruction, a
graphical component, etc. in the form of a file, table, a pointer or reference, or portion

thereof for example, which read-protected and write-protected.

A "digest" (also referred to herein as "summary"), in the context of the present
invention, may be a file or group of files and/or the like, comprising a set of
instructions to build an instance of the corresponding program asset in the ETL
library. Thus, with said digest, an instance of the program asset is built in a format

which can be independently stored by a user (i.e. a developer).

In the context of the present invention, the expressions "source control", "revision
control”, "version control", "release management", "source management program",
" "

"source control application", "source program", and/or the like, as well as compound

terms thereof, are used interchangeably.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

14

Other aspects of the invention

In accordance with another aspect of the invention, there is provided a method for
exporting a program component from a library of program components, the library
storing artefacts, each program component being defined by a plurality of said
artefacts, the method comprising steps of:

a) extracting from the library, a digest of the artifacts being associated to the
program component to be exported, the digest comprising instructions for
rebuilding the program component in the library;

b) storing the digest in a data storage; and

c) associating version data to said digest in the data storage, said version data

being indicative of a new version of the program component.

In a particular embodiment of the present invention, the steps of the above-method
are performed by means of an integration module being in communication with the

library, the data storage and the user interface.

In accordance with another aspect of the invention, there is provided a version control
method for a library of protected program components, each program component
being convertible into a digest comprising instructions for building the corresponding
program component, the method comprising steps of:

a) generating a digest of one of said program components, the digest comprising

instructions for rebuilding the program component in the library;
b) storing the digest in a data storage; and
c) associating version data to said digest in the data storage, said version data

being indicative of a new version of the program component.

In accordance with another aspect of the invention, there is provided a version control

system for controlling versions of a program component of a library of said program

5

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

15

components, each program component being protected in the library and being

further convertible into a digest comprising instructions for building the corresponding

program component, said version control system comprising:

a) a user interface for exchanging data with a user;

b) a data storage for storing version data related to said program component of

C)

the library;

an integration module being in communication with the user interface for
receiving a user command to generate a new version of one of said program
components, the integration module being in communication with the library of
program components for extracting therefrom an instance of a digest
corresponding to said program component and for associating thereto a new
version, the integration module being further in communication with the data

storage for storing therein said instance of the digest and the new version.

In accordance with yet another aspect of the invention, there is provided a version

control system for controlling versions of program components of a library of said

program components. Each program component is either protected in the library or

defined by a plurality of artifacts accessible by the library. Each program component

is further convertible into a digest of instructions for rebuilding the corresponding

program component in the library. The version control system comprises:

a) a user interface for exchanging data with a user;

b) a data storage for storing instances of digests corresponding to the program

components, and for storing version data related each instance of said digest,
each instance of said digest representing a version of said program component
of the library;

an integration module being in communication with the user interface for
receiving a user command and with the data storage in order to interact with

the data storage, based on the user command.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

16

In accordance with another embodiment of the present invention, there is provided a
computer readable storage medium having stored thereon, data and instructions for

performing one or more of the above-mentioned methods.

The objects, advantages and features of the present invention will become more
apparent upon reading of the following non-restrictive description of preferred
embodiments thereof, given for the purpose of exemplification only, with reference to

the accompanying drawings.

Brief description of the drawings:

FIG. 1 is a screen shot of graphical components defining a program in the Datastage

environment, in accordance with the prior art.

FIG. 2A is a flow chart showing the manual steps carried out in exporting a

Datastage™ program, in accordance with the prior art.

FIG. 2B is a flow chart showing the manual steps carried out in importing a program

into a Datastage ™ project, in accordance with the prior art.

FIG. 3 is a bloc diagram illustrating a data flow between the Datastage™

environments and a source control application, in accordance with the prior art.

FIG. 4 is a schematic diagram showing a three-tier architecture of a version control
system, namely, a user interface, a coordinating module (or "logical layer") and

database, in accordance with an embodiment of the present invention.

FIG. 5 is a schematic diagram showing a Linux-Apache-MySQL-PHP (LAMP)

configuration of the user interface shown in FIG. 4.

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

17

FIG. 6 is a schematic diagram representing an ETL axis, a user interface axis and a

database axis of the version control system shown in FIG. 4.

FIG. 7 is a hierarchical class diagram showing classes and subclasses of the ETL

axis represented in FIG. 6.

FIG. 8 is a hierarchical class diagram showing classes and subclasses of the

database axis represented in FIG. 6.

FIG. 9 is a data model showing the tables of the database represented in FIG. 6.

FIG. 10 is a sequence diagram of steps performed by the version control system, for

checking-in a component, according to an embodiment of the present invention.

FIG. 11 is a sequence diagram of steps performed by the version control system, for

checking-out a component, according to an embodiment of the present invention.

FIG. 12 is a sequence diagram of steps performed by the version control system, for
creating and deploying a package, according to an embodiment of the present

invention.

FIG. 13 is a sequence diagram of steps performed by the version control system, for
comparing versions of a component, according to an embodiment of the present

invention.

FIG. 14 is a bloc diagram of a system in accordance with an embodiment of the

present invention.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

18

Detailed description of preferred embodiments of the invention:

In the following description, the same numerical references refer to similar elements.
The embodiments mentioned and/or configurations and architecture shown in the
figures or described in the present description are embodiments of the present

invention only, given for exemplification purposes only.

Broadly described, the present invention according to a preferred embodiment
thereof, as exemplified in the accompanying drawings, is a version control system for

a IBM Infosphere Datastage™ framework.

As better illustrated in FIG. 4, the version control system 10, in accordance with an
embodiment of the present invention, is designed following a three-tier architecture,
namely comprising: a user interface 12 (also referred to herein as "UlI"), a logical layer
14 (also referred to herein as the 'integration module") and a data storage 16

provided by a database 18.

Three-Tier Architecture: 1.User Interface

Model

In accordance with the present embodiment, the user interface model is very similar
to a LAMP platform (Linux-Apache-MySQL-PHP) for use in conjunction with web
browsers located on client terminal 20. A LAMP configuration is exemplified in FIG. 5.
The source program interface resides on a Unix server 22. An Apache HTTP server
24 acts as a bridge between the source program 14 and user requests. The user
interface code 26 is written in PHP and the data specific to the interface such as user

accounts, images and configurations are stored in a MySQL database 28.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

19

Site Plan

The user interface comprises four (4) main windows, presenting functionalities which
may be summarized as follows:
1. Login window:
a. To create a user account
b. To retrieve a lost password
c. To access the program after successful login
2. Version Control Management window:
a. For creating, maintaining and accessing versions of DataStage™
programs.
b. To consult the history and metadata of a program
c. To create reports on programs
3. Release Management window:
a. To Create and maintain packages of program versions
b. To deploy packages in environments
c. To consult release history
d. To create reports on releases
4. Administration window:
a. To manage users, roles and responsabilities
b. To create and maintain branches and foundation components to
versions and releases.
c. To configure connection settings for DataStage™ servers and

environments
The Unix server 22 designated to host the user interface is preferably provided by
client users. The Apache HTTP Server, the MySQL database and PHP development

framework are licensed under open source and are freely available.

Three-Tier Architecture: 2. Logical Layer

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

20

Model

The pie chart shown in FIG 6, illustrates three main class segments 32, 34, 36 of the

version control system 10 of the present embodiment.

Programmed in object-oriented C++, the logical layer 14 contains classes and
methods 32 interacting with DataStage™ (i.e. ETL) 38. The logical layer 14 further
comprises classes and methods 34 interacting with the database 18 containing
versioned source code and other artefacts. The logical layer 14 further comprises
classes and methods 36 interacting with the user interface 12. Compiled into a library,

the logical layer 14 may be source code protected to avoid accessibility to customers.

ETL Axis

The ETL Axis or '"class segment' 32 contains classes interacting with the
DataStage™ software and/or with other ETL tools. The classes and subclasses of the

ETL axis 32, namely for DataStage™, will now be described with reference to FIG. 7.

Class Details

Abstract ETL class (3200). The embodiment described herein is intended to target
IBM Infosphere DataStage™ programs as well as other ETL suites (for example
Informatica™ 3220 or SSIS™ 3222). For this reason, an abstract class ETL 3200 is
defined above the DataStage class 3202.

DataStage class (3202). This class 3202 inherits from the abstract ETL class 3200 to
instantiate an object of type DataStage™. It does not directly interface with
DataStage™. To do this, each object will instantiate four objects: a DSAPI class 3204

to access methods for the APl methods offered by DataStage™, a DSTools class

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

21

3206 to export and import ETL programs and components, a DSXmeta object 3208 to
query the DataStage™ database and finally, and a DSCompare class 3210 to

analyze and compare different versions of an ETL program.

DSAPI class (3204). The DSAPI class 3204 allows access to methods made
available by the DataStage™ API. The API is offered by DataStage™ to allow access
to certain internal methods of the application. It allows among other things to list
projects and programs. It also allows controls over the execution of
programs. Embodiments of the present invention are intended to further enable the
management of program executions, for example, via methods provided by the

Datastage API in order to launch the execution of Datastage™ programs.

DSTools class (3206). DataStage™ provides ways to extract and create or replace
programs by means of DOS or UNIX commands under either Windows or Unix. This

class 3206 contains the methods required to automate these function calls.

DSXmeta class (3208). The DSXmeta class 3208 queries the DataStage™ database
directly. It can extract the list of ETL programs of an object and other useful
data. Embodiments of the present invention are intended to lock programs for editing,
thus acting as a '"check-out" feature, preventing changes in applications without

having first reserved a version of a program in the integration module.

DSCompare class (3210). The data files extracted from DataStage™ for versioning
do not represent the source code data but rather a list of instructions to build an
instance of a program. This can be likened to a Lego block montage and its set of
instructions. Commonly, software versioning would keep a copy of the actual finished
product. Because of current DataStage™ constraints, only the instructions can be
versioned. DataStage™ protects direct access to source code and provides only a
summary of the program in a proprietary format called dsx or in the form of XML. The

instructions contained in a summary are complex and contain not only the business

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

22

rules, but since ETL program is graphical, the summary also contains all data relating
to the positioning, size and alignment of each object and links. Comparison of two
evolutions (or versions) of a DataStage™ program is rarely useful and provides
virtually no information of interest. A DataStage™ "program" is also referred to as a
Datastage™ "job", and corresponds to an "asset" or "component” in the context of the
present description. This class 3210 provides methods for analyzing summary files
and translate the results into quantity of objects each in turn containing instances of
other child objects of different classes with specific properties. Once analyzed, two
summaries could then be compared by isolating and comparing each sub-component
programs. Different levels of comparison may be provided, in according with
embodiments of the present invention, ranging from surface analysis (where only the
presence and names of modules and children are compared) to in-depth analysis,

where the positioning and alignment of components are also considered.

DSJob class (3212). When analyzing a program summary, an object of this class
3212 represents an ETL program. The latter may consist of objects of the Module
class 3214 and Thread class 3216.

Module class (3214). This class 3214 represents a processing block in a
DataStage™ program. It can be passive if it only reads or writes data from files or
databases or active if it applies transformations to the data. Business rules
application, sorting, filters and data aggregation are some of the operations

performed by a module. Each module contains objects of the Attribute class.

Attribute class (3216). An object of the Attribute class defines an attribute of a

record that is subject to any kind of transformation.

Thread class (3218). A thread connects two modules together and incidentally allows

data flow. Each thread contains one input port and one output port. Each port is

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

23

connected to a module. This class is used to record data transmitted between each

module of a program.

Database Axis

The classes in the database segment 34 allow interactions with the database 18
where versions of components and other artefacts are stored. The classes and
subclasses of the Database axis 34, namely for the Oracle™ database, will now be

described with reference to FIG. 8.

Abstract Database class (3400). Although Oracle is the solution of choice for most
DataStage™ users, some customers might be using DB2 or some other database
product, such as DB2 3410, MySQL 3412 and/or the like. Thus, an abstract class
exists above the Oracle class to allow integration of different databases. The

database class provides data storage and retrieval.

Abstract Oracle (3402). This class inherits from the Database class and allows the
storage and retrieval of source code under an Oracle database. It is not designed to
instantiate objects but to allow the creation of objects of child classes for specific

versions of Oracle.

Oracle11g class (3404). This class 3404 inherits from the abstract class Oracle 3402

and allows interaction with the Oracle Database 11g.

Oracle10g class (3406). This class 3406 inherits from the abstract class Oracle 3402

and allows interaction with the Oracle Database 10g.

Oracle9i class (3408). This class 3408 inherits from the abstract class Oracle 3402

and allows interaction with the Oracle 9i database.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

24

Ul Segment
This class segment 36 interacts with the Ul 12. It interprets requests from the
presentation layer and returns results. At this stage of development, only one class is

included in this segment.
Ul class. A class of interaction with the user interface named Ul will receive user
requests, process these requests by calling methods of and ETL object and methods

of a Database object.

Main Methods Qverview

The main methods found under the Ul class will be described further below, with

reference to the flowcharts shown in FIG. 10 to 13

Three-Tier Architecture: 3. Database Layer

Model

The database 18, better shown in FIG. 9, is a relational database and contains data
related to version control 1810 and release management 1820. The database 18
cooperates with the Ul database 28 (see FIG. 5) which includes administration data
1850, as illustrated in FIG. 9 . Each table in the data model is detailed below with a

summary and description of each column, in according with the present embodiment.

It is to be understood that the database 18, may include the administration data 1850
and/or the Ul database 28, in accordance with alternative embodiments of the present

invention.

Asset table (i.e. component). An Asset table 1802, having columns represented in

TABLE 1 below, contains a list of each entity having at least one versioned instance.

WO 2014/019093

25

PCT/CA2013/050599

An asset may be a DSjob, a routine, a data connection, etc. In other words, any

component that can be exported from Datastage™ as a unit.

A component must have at least one version.

5 » A component can have multiple versions
No [Name Description Type pk |[fk [Unique
1 |Asset_Id Unique identifier NUMBER X X
2 |Name Entity Name VARCHAR2(255) X
3 |Type Asset Type VARCHAR2(50)
4 |Status Usage status VARCHAR2(30)

TABLE 1

Version table. A Version table 1804 is represented in TABLE 2 below. Each version

10

A version belongs to a single asset.

A version can be reserved (checked-out) by a single user.

A version must be associated with a user on creation.

of an entity is a frozen image of a component code at specific point in time.

No Name Description Type pk| fk | Unique
1 Version_Id Unique identifier NUMBER X X

2 Asset_Id Asset identifier VARCHAR2(255) X

3 Version Version identifier VARCHAR2(50)

4 | CheckOutStatus | Job reservation status | VARCHAR2(50)

5 | CheckOutUser_Id| Owner of reservation NUMBER X

10

15

WO 2014/019093 PCT/CA2013/050599
26
No Name Description Type pk| fk | Unique
Actual DataStage™
6 Code o BLOB
program extraction file
Type of file (DSX or
7 Code_Format VARCHAR2(50)
XML)
8 CreatedBy Creation user NUMBER X
_ Original version to
made
TABLE 2

Table BranchVersion (version branch). A BranchVersion table 1822 is represented

in TABLE 3 below and corresponds to an intersection table between versions and

branches.

» A version must belong to one or more branches.

» A branch-version can be associated with any one or more packages.

» A branch may be composed of multiple versions of different components.

» Each component can be associated with a branch by only one of its versions.

No [Name Description Type pk [fk [Unique

1 |BranchVersion_Ild [|Unique identifier NUMBER X X

2 |Branch_Id Branch identifier NUMBER X

3 |Version_lId Version identifier NUMBER X
TABLE 3

Table PackageBranchVersion (version of a set of deployment) A

PackageBranchVersion table 1824 is represented in TABLE 4 below and corresponds

to an intersection table between branch-versions and packages.

WO 2014/019093

27

PCT/CA2013/050599

No [Name Description Type pk |[fk [Unique
1 |BranchVersion_ld |BranchVersion identifier |NUMBER X
2 |Package_lId Package identifier NUMBER X
_ Operation type (insertion,
3 |Operation_Type _ VARCHAR2(30)
update, deletion)

TABLE 4

Table Package (Set of deployment). A Package table 1826 is represented in

5 TABLE 5 below and identifies a group of asset versions to be deployed in a branch as

a bundle.

A package contains a single version of an asset.

A package contains versions from a single branch.

A package can be deployed in a single branch

10 » A package must contain at least one entry in the package status table.
» A package may contain multiple entries in the package status table.
No Name Description Type pk| fk | Unique
1 |Package_Id Unique Identifier NUMBER X X
2 |Branch._ Id Branch identifier (where NUMBER X
deployed)
3 [Name Package name VARCHAR2(50)
4 |Description Contextual description [VARCHAR2(255)
TABLE 5
15 Table PackageStatus (Status of deployment). A PackageStatus 1828 table is

represented in TABLE 5 below. Records in this table keep a history of the changes in

the status of a package.

WO 2014/019093 PCT/CA2013/050599

28

» A package status belongs to only one package.

» A package status must refer to a single user.

No Name Description Type pk| fk | Unique
1 |PackageStatus_Id |Unique identifier NUMBER X X
2 |Package _Id Package identifier NUMBER X

Deployment status
(New, Pending

3 |Status o VARCHAR2(50)
Authorization,

Deployed, Cancelled)

User who updated the

4 |Created_By NUMBER X
status
5 |Created_Dt Record creation date |[TIMESTAMP
TABLE 6
5
Table Branch (Branch). A Branch table 1830 is represented in TABLE 7 below. A
branch is an instance of a project phase: (i.e. development, unit testing, production,
etc.)
» A branch must belong to a tree.
10 * A branch can only belong to one tree.

» A package may have been deployed on a branch.

» A branch must belong to a single development phase.

No Name Description Type pk| fk | Unique
1 |Branch_ld Unique identifier NUMBER X X
2 |Tree_lId Tree identifier NUMBER X

3 |Phase_Id Phase identifier NUMBER X

10

15

WO 2014/019093 PCT/CA2013/050599

29

No Name Description Type pk| fk | Unique

Evolution number of the
branch in relation to

4 |Version other branches of a VARCHAR2(10)
parent tree (1.0.0,
2.1.5etc.)

Read only status
5 |ReadOnlyStatus identifying a dead VARCHAR2(30)

branch.

TABLE 7

Tree table (Project). A Tree table 1832 is represented in TABLE 8 below and
corresponds to an ETL project which groups common tasks.
» A project must have at least one branch.

» A project can have multiple branches.

No Name Description Type pk| fk | Unique
1 [Tree_ld Unique identifier NUMBER X X
2 [Name Project Name VARCHAR2(50)
3 |Status Project Usage status VARCHAR2(30)
TABLE 8

Phase table (Development Phase). A Phase table 1834 is represented in TABLE 9
below and corresponds to a step in the development cycle.

» A phase can be represented by any one or more branches.

» A phase must belong to a single development environment.

» A phase may be referred to as the source of a phase promotion in zero, one or

more phases of promotions.

WO 2014/019093 PCT/CA2013/050599

30

» A phase may be referred to as the target of a phase promotion in zero, one or

more phases of promotions.

No Name Description Type pk| fk | Unique
1 |Phase_ld Unique identifier NUMBER X X
2 |Env_Id Environment identifier (NUMBER X
3 [Name Phase name VARCHAR2(30)
4 |Description Phase description \SI;ARCHARZ(ZS
TABLE 9
5
PhasePromotion Table (Promotion Phase). A PhasePromotion table 1836 is
represented in TABLE 10 below and identifies which phase jumps are allowed when
promoting packages from branches (i.e. development to testing, testing to
production).
10
No Name Description Type pk| fk | Unique
1 [Promotion_lId Unique identifier NUMBER X X
2 |PhaseSrc_Id Source phase identifier [NUMBER X
3 |PhaseTrgt_Id Target phase identifier |INUMBER X

TABLE 10

Table Environment (Development Environment). An Environment table 1838 is
represented in TABLE 11 below and corresponds to a server instance in DataStage™
15 (for example, development or production).

*» An environment has one or more phases of development.

WO 2014/019093 PCT/CA2013/050599

31
No Name Description Type pk| fk | Unique
1 |Environment_Id |Unique identifier NUMBER X X
2 |Domain Server domain name [VARCHAR2(255)
3 |Host Server host name VARCHAR2(255)
4 lport Port number for NUMBER
connexion to the server
TABLE 11

User table (User). A User table 1852 is represented in TABLE 12 below and
identifies user accounts.
5 = A user can be the creator of zero, one or more versions.
» A user can be associated to a checked-out version

» A user can be associated to a package status update

No Name Description Type pk| fk | Unique
1 |User_lId Unique identifier NUMBER X X
2 |FirstName User last name VARCHAR2(50)
3 |LastName User last name VARCHAR2(50)
4 |ActiveStatus User status VARCHAR2(30)
TABLE 12

10
UserRole table (User Role). A UserRole table 1854 is represented in TABLE 13
below and corresponds to an intersection table connecting a user to roles and roles to
users.
» A user must occupy at least one role, but can occupy several.

15 » Arole can be associated with any one or more users.

WO 2014/019093 PCT/CA2013/050599

32
No Name Description Type pk| fk | Unique
1 |User_lId User identifier NUMBER
2 |Role_Id Role identifier NUMBER
TABLE 13

Role Table (Role). A Role table 1856 is represented in TABLE 14 below. Each role

can restrict tasks common to several users of the same type.

5
No Name Description Type Pk| Fk | Unique
1 |Role_lId Unique identifier NUMBER X X
2 [Name Role Name VARCHAR2(50)
3 |Description Role Description VARCHAR2(255)
4 |ActiveStatus Role Status VARCHAR2(30)
TABLE 14

RolePermission table (Permission by role). A RolePermission table 1858 is
represented in TABLE 15 below and corresponds to an intersection table connecting
10 arole to permissions and a permission to roles.
» A role can have zero, one or more permissions.

» Permission may be associated with any one or more roles.

No Name Description Type pk| fk | Unique
1 |Role_lId Unique identifier NUMBER X
2 |Permission_ld Permission identifier NUMBER X

TABLE 15

15
Permission table. A Permission table 1860 is represented in TABLE 16 below. Each

permission provides access to task or the visibility to certain views.

10

15

WO 2014/019093 PCT/CA2013/050599
33
No Name Description Type pk| fk | Unique
1 [Permission_ld Unique identifier NUMBER X X
2 [Name Permission name [VARCHAR2(50)
3 |Description Description VARCHAR2(255)
4 |ActiveStatus Usage status VARCHAR2(30)
Permission type
5 |Type VARCHAR2(30)

(view, action)

TABLE 16

Main Functional Features

FIG. 10 to 13 illustrate the interactions between the three (3) afore-mentioned tiers,

for each of the main functions performed by the version control system, in accordance

an embodiment of the present embodiment. The main functions illustrated are:

e Checking-In of a DataStage™ component (see FIG. 10);

e Checking-Out of a DataStage™ component (see FIG. 11);

¢ Creation and Deployment of a package (see FIG. 12); and

e Component Version Comparison (see FIG. 13).

FIG. 14 shows the components of the system 10. As previously mentioned, the

system 10 comprises a user interface 12, an integration module 14 and a data

storage 16. The integration module 14 is embedded in a processor 13 and is

comprised within a utility application for performing the steps of the methods

described herein.

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

34

Referring to FIG. 10, there is shown a sequence diagram of steps performed by the
version control system, for checking-in a component, according to an embodiment of

the present invention.

Namely, a method 2000 for exporting a program asset from Datastage™ (i.e. ETL
library) 38 is exemplified. The Datastage™ library 38 stores a plurality of said
program assets, each program asset being protected in the Datastage™ library 38.
The method 2000 comprises steps of:

a) receiving at 2034, via a user interface 12, a command for exporting said
program asset;

b) exporting at 2048, by means of an integration module 14, the program asset
from Datastage™ 38 into a digest, the digest comprising instructions for
rebuilding the program asset in Datastage™ 38;

c) storing at 2050, by means of the integration module 14, a new instance of the
digest in the database 18;

d) associating at 2050 in the database 18, by means of the integration module 14,
a new version to said new instance of the digest by:

- querying the database 18 to locate an instance of the digest being
associated to a latest version of the digest; and

- if no instance of the digest is located in the database 18, said new
version is a first version, and otherwise, said new version is obtained by
incrementing an originating version associated to the digest; and

e) by means of the integration module 14, setting at 2050 a checked-in status to

the new instance of the digest in the database 18.

Instances of digests are organized in a tree defining branches. Each branch for a

given digest represents a subset of versions of the corresponding program asset.

Thus, the method 2000 further includes prior to step (d):

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

35

- receiving at 2026 branch information identifying a selected branch in the
database 18 to which the new instance of the digest is to be associated to, and
said new version of step (d) is assigned in association with said selected

branch.

In FIG. 10, steps 2012, 2014, 2016 and table 1852 relate to user authentication; steps
2018, 2020 and table 1812 relate to accessing a screen on the user interface 12,
steps 2022, 2024, 2026, 2028 and table 1830 relate to a branch selection; steps
2030, 2032, 2034, 2036, 2038, 2040 and table 1802 relate to the selection of asset(s)
to check-into the system 10; steps 2042, 2044, 2046, 2048, 2050, 2052 and tables
1814 and 1822 relate to the extraction from the program assets to complete the

exporting of the program asset(s).

It is to be understood that multiple program assets may be exported at once. It is to
be understood that a plurality of digests may be stored in a single file corresponding
to the multiple program assets, so long as each digest (i.e. each program asset) is
associated to its own version information. Alternatively, each digest is stored in a

separate file.

Thus, with reference to FIG. 14, the integration module 14 comprises an exportation
module 3010 having an exportation communication port 3012 for communicating with

the user interface 12.

Referring now to FIG. 11, there is shown a sequence diagram of steps performed by
the version control system, for checking-out a component, according to an

embodiment of the present invention.

Namely, a method 2200 for importing a versioned program asset into Datastage™
(i.e. ETL library) 38 from database 18 is exemplified. The program asset is buildable

in Datastage™ 38 from a corresponding digest of instructions, one or more instance

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

36

of said digest being stored in the database 18, each instance being associated to a

version of the digest. The method 2200 comprises steps of:

a)

b)

receiving at 2226, via a user interface 12, a command for importing said
program asset;

receiving at 2234, via the user interface 12, version information of the program
asset to be imported;

retrieving at 2242 an instance of the digest from the database 18, by means of
the integration module 14, corresponding to the version information received at
step (b);

validating at 2242 whether said instance of digest retrieved, has a checked-out
status, and only if the program asset does not have a checked-out status,
proceeding to the following steps of the method 2200:

at 2244, by means of the integration module 14, setting a checked-out status
to the instance of the digest in the database 18; and

executing at 2246 the instructions of said instance of the digest, by means of
the integration module 14, in order to import the corresponding program asset

in the Datastage™ library 38.

In FIG. 11, steps 2212, 2214, 2216 and table 1852 relate to user authentication; steps

2218,

2220 and table 1812 relate to accessing a screen on the user interface 12 for

prompting the check-out process; steps 2222, 2224, 2226, 2228 and table 1802 relate
to the selection of asset(s) to check-out from the system 10; steps 2230, 2232, 2234,

2036,

and table 1830 relate to a branch selection; steps 2238, 2240, 2242, 2246,

2244 2248 and table 1814 relate to the rebuilding of the program assets to complete

the importation into Datastage ™.

It is to be understood that a single instance of digest may have either a checked-in

status or a checked-out status at any given time. Indeed the checked-in and checked-

out status are mutually exclusive.

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

37

Instances of digests are organized in a tree defining version branches, each version
branch for a given digest representing a subset of versions of the corresponding
program asset. Thus, the version information received at step (b) (2234) further
includes branch information, and the retrieving of step (c) takes into account the

branch information.

Thus, with reference to FIG. 14, the integration module 14 comprises further
comprises an importation module 3020 comprising an importation input port 3022 for
receiving the selection of program asset(s) to be imported into the library and the
corresponding version information; a collector 3024 for retrieving an instance of the
digest from the data storage for each the program asset(s) to be imported; a builder
3026 for executing, for each digest retrieved at step (vii), the instructions to rebuild
the corresponding program asset; and a flagging component 3028 for replacing the

checked-in status of each digest retrieved with the checked-out status.

Referring now to FIG. 12, there is shown a sequence diagram of steps performed by
the version control system 10 (see FIG. 6), for creating and deploying a package in
Datastage™, i.e. an ETL library 38 (see FIG. 6), according to an embodiment of the
present invention. The creation and deploying of a package is useful for example, in
order to promote a group of versioned program assets from a development

environment to a production environment.

Thus, a method 2400 for importing a package of versioned program assets into
Datastage™ 38 from a database 18 is exemplified in FIG. 12. Each of said program
asset is buildable in the Datastage™ 38 from a corresponding digest of instructions.
One or more instance of the digest is stored in the database 18, each instance being
associated to a version of the digest. The method 2400 comprises steps of:

a) receiving at 2422, via a user interface 12, a command for importing a new

package;

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

38

b) receiving at 2438, via the user interface 12, the program assets to be imported
via the new package and corresponding version information at 2430;

c) generating at 2428 the new package in the database 18, by means of an
integration module 14;

d) retrieving at 2444 from the database 18, instances of the digests
corresponding to the program assets to be imported, by means of the
integration module 14, in accordance with the version information received at
step (b) (2438);

e) associating at 2456 in the database 18, the instances retrieved at step (d) with
the new package;

f) at 2456, by means of the integration module 14, setting a deployment status to
the new package in the database 18; and

g) executing at 2458, the instructions of each of said instances associated to the
new package, by means of the integration module, in order to import the

corresponding program assets in Datastage™ 38.

In FIG. 12, steps 2412, 2414, 2416 and table 1852 relate to user authentication; steps
2418, 2420 and table 1812 relate to accessing a screen on the user interface 12 for
accessing a release management user menu; steps 2422, 2424 2426, 2428 and
table 1826 relate to the creation of a package to be deployed in Datastage™:; steps
2430, 2432, 2434, 2436, and table 1830 relate to a version branch selection; steps
2438, 2440, 2442, 2444, and table 1822 relate to versions of digests selected to
include in the package; steps 2446 and 2448 relate to determining a target branch,
namely the target environment in Datastage™ (development, production, test, etc.);
steps 2450, 2452, 2454, 2458, 2456, 2460 and tables 1826, 1824 and 1828 relate to
the deployment of the package in order to import the corresponding assets into

Datastage™.

The one or more instance of the digest are grouped by branches in the database 18.

Each branch corresponds to a subset of versions of the digest. Thus, the version

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

39

information received at step (b) (2442) further includes branch information, and the

retrieving of step (c) (2428) takes into account the branch information.

Thus, with reference to FIG. 14, the importation module 3020 further comprises a
packaging module 3030 for generating a package and associating the package to
import a plurality of the program assets received at the input port 3022, and for setting
a deployed status to the package in the data storage to indicate that the package has

updated the associated program assets in the library.

Referring now to FIG. 13, there is shown a sequence diagram of steps performed by
the version control system, for comparing versions of a Datastage™ component,

according to an embodiment of the present invention.

More particularly, a method 2600 for comparing versions of a given program asset in
Datastage™ (i.e. ETL library) 38 is exemplified in FIG. 12. The given program asset is
protected and buildable from a digest of instructions stored in a database 18, which
stores multiple instances of the digest, each instance corresponding to a version of
the given program asset (i.e. the database 18 stores several versions of a same

program asset).

The method 2600 comprises steps of:

a) receiving at 2626 and 2634, via a user interface 12, instructions to compare
two versions of said given program asset of Datastage™:

b) at 2628, retrieving from the database 18 two instances of the digest
corresponding to said two versions of said given program asset, by means of
an integration module 14;

c) at 2638, by means of an integration module 14, generating comparison
information, by pairing matching components of the two instances; and

d) returning at 2634, by means of the integration module 14, the comparison

information on the user interface 12.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

40

In FIG. 13, steps 2612, 2614, 2216 and table 1852 relate to user authentication; steps
2618, 2620 and table 1812 relate to accessing a screen on the user interface 12 for
prompting the comparison process; steps 2622, 2624, 2626, 2628 and table 1814
relate to the selection of versions of asset(s) to be compared; steps 2630, 2632,
2634, 2636, 2638, 2640 and table 1814 relate to the comparison of the program
assets and the presenting of the resulting comparison information on the user

interface 12.

Thus, with reference to FIG. 14, the integration module 14 further comprises a
comparison module 3040 comprising: a comparison input port 3042 for receiving, a
selection of the digest instances to be compared and corresponding version identifier;
a retriever 3044 for retrieving the instances of the digest corresponding to the
selection received; a comparer 3046 for comparing the content of the instances of the
digest, to generate associated comparison information; and a comparison output port

3048 to send the comparison information for presentation on the user interface 12.

It is to be understood that one or more of a series of steps of the methods illustrated
in FIG. 10 to 13, may be performed within a same user session, i.e. without requiring
a user long-on or even entering separate menu screens for each operation. Indeed,
further to performing a check-in, for example, a user may immediately follow-up with a
check-out operation, a package deployment operation and/or a comparison operation,
or any combination thereof, without requiring to log-on between each operation, as

may be easily understood by a person skilled in the art.

The above-described embodiments are considered in all respect only as illustrative
and not restrictive, and the present application is intended to cover any adaptations or
variations thereof, as apparent to a person skilled in the art. Of course, numerous
other modifications could be made to the above-described embodiments without

departing from the scope of the invention, as apparent to a person skilled in the art.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

Claims:

41

1. A method for managing versions of program assets of a library, each of said

program assets having source code which is protected, the method being

executable by a single utility application having an integration module which is

embedded in a processor, the method comprising the steps of:

)

receiving a selection of one or more program asset to be exported into
the utility application for storage;

extracting from the library and into a digest, for each of the one or more
program asset selected, instructions for building the source code of the
corresponding program asset, by means of the integration module;
storing, by means of the integration module, each digest as a new
instance of the digest in a data storage;

associating in the data storage, by means of the integration module, a
new version identifier to each new instance of digest, the new version
identifier representing a new version of the corresponding program asset;
and

in the data storage, associating a checked-in status to each new instance
of digest stored at step (i), by means of the integration module, to
indicate that each of said new instance of digest is stored in the utility

application.

2. A method according to claim 1, wherein step (iv) comprises, for each digest:

querying the data storage to locate a prior instance of the digest; and

if said prior instance of the digest is located, determining a corresponding
previous version identifier and setting said new version identifier
associated to the digest, by incrementing the previous version identifier, or
otherwise, setting said new version identifier to represent a first instance of

the digest.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

42

A method according to claim 2, wherein the incrementing of step (iv) is

executed in accordance with one or more predefined incrementing rule.

A method according to claim 1 or 2, wherein the data storage stores instances

of previously stored digests which are organized in a format of a tree having

branches, each branch for a given one of the stored digests representing a

subset of versions of the corresponding program asset, the method further

comprising, prior to step (iv):

- receiving a branch selection to which the new instance of the digest is to
be associated with; and

- retrieving branch information identifying the selected branch from the data
storage; and

wherein the new version identifier of step (iv) is set based on said branch

information.

A method according to any one of claims 1 to 4, wherein each digest of step (ii)

is provided in a file.

A method according to any one of claims 1 to 4, wherein the one or more

digest of step (ii) is provided in a same file.

A method according to any one of claims 1 to 3, wherein the data storage

comprises a plurality of said digests, each digest comprising instructions to

rebuild a corresponding program asset in the library, the method further

comprising:

Vi) receiving, via a user interface, a selection of one or more of said program
assets to be imported into the library and the corresponding version

information:;

vii) retrieving an instance of the digest from the data storage for each of said

one or more program asset to be imported, by means of the integration

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

10.

43

module, being associated to the version information received at step (vi);

and

viii) for each digest retrieved at step (vii), executing the instructions to rebuild

the corresponding program asset, by means of the integration module, in
order to import a new version of the corresponding program asset into the
library.

iX) in the data storage, replacing a checked-in status associated each
instance of the digest retrieved at step (vii) with a checked-out status, by
means of the integration module, to indicate that the corresponding one

or more program asset is currently being updated.

A method according to claim 7, further comprising prior to step (viii):
- validating whether said instance of digest retrieved at step (vii), has a
checked-out status, and only if the program asset does not have a

checked-out status, proceeding to the following steps of the method.

A method according to claim 7, wherein instances of digests are organized in
the data storage, in a format of a tree having branches, each branch for a
given digest representing a subset of versions of the corresponding program
asset, wherein the version information received at step (vi) comprises branch

information.

A method according to any one of claims 7 to 9, wherein the selection received
at step (vi) comprises a plurality of said program assets, the method further
comprising:

- generating a package to import the selection of program assets;

- after step (vii), associating in the data storage, the instances retrieved at

step (vii) with the package; and

5

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

11.

12.

13.

44

- after step (viii), setting a deployed status to the new package in the data
storage to indicate that the package has updated the associated program

assets in the library.

A method according to any one of claims 1 to 3, wherein the data storage

comprises a plurality of said digests, each digest comprising instructions to

rebuild a corresponding program asset in the library, the data storage storing

multiple instances of at least one of the digests, each instance corresponding

to a version of the corresponding program asset, the method further

comprising:

- receiving a selection of two or more digest instances of the data storage
and corresponding version identifier, to be compared;

- retrieving from the data storage the instances of the digest corresponding to
the selection received;

- by means of the integration module, comparing the content of the digest
instance, to generate comparison information; and

- returning the comparison information on a user interface component.

A method according to claim 11, wherein said comparison information is
returned as at least one of:

- text comparison of each digest instance to be compared; and

- comparison of program features of the program asset associated to each

digest instance to be compared.

A system for managing versions of program assets of a library, each of said

program assets having source code which is protected, the system comprising:

- a user interface for receiving a selection of one or more program asset to
be exported into a utility application for editing;

- an integration module embedded in a processor which is in communication
with the user interface, the integration module comprising an exportation

module for extracting from the library into a digest, for each of the one or

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

14.

45

more program asset selected, instructions for building the source code of
the corresponding program asset; and

a data storage, in communication with the integration module, for storing
each digest as a new instance of the digest, and for associating a new
version identifier to each new instance of digest, the new version identifier
representing a new version of the corresponding program asset, and for
further associating a checked-in status to each new instance of digest
stored to indicate that each of said new instance of digest is stored in the

utility application.

A system according to claim 13, wherein the data storage comprises a plurality

of said digests, each digest comprising instructions to rebuild a corresponding

program asset in the library, wherein the integration module further comprises

an importation module comprising:

an importation input port for receiving, from the user interface, a selection of
one or more of said program assets to be imported into the library and the
corresponding version information;

a collector for retrieving an instance of the digest from the data storage for
each of said one or more program asset to be imported, being associated
to the version information received by the user interface;

a builder for executing, for each digest retrieved at step (vii), the
instructions to rebuild the corresponding program asset, by means of the
integration module, in order to import a new version of the corresponding
program asset into the library; and

a flagging component for replacing a checked-in status associated with
each instance of the digest retrieved at step (vii) in the data storage with a
checked-out status, in order to indicate that the corresponding one or more

program asset is currently being updated.

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

15.

16.

17.

46

A system according to claim 14, wherein the importation module further

comprises:

a packaging module for generating a package and associating said
package to import a plurality of the program assets received at the input
port, and for setting a deployed status to the package in the data storage to
indicate that the package has updated the associated program assets in the

library.

A system according to any one of claims 13 to 15, wherein the integration

module further comprises a comparison module comprising:

a comparison input port for receiving, from the user interface, a selection of
two or more digest instances of the data storage and corresponding version
identifier, to be compared,;

an retriever for retrieving from the data storage, the instances of the digest
corresponding to the selection received;

a comparer for comparing the content of the instances of the digest, to
generate associated comparison information; and

a comparison output port to send the comparison information for

presentation on the user interface.

A storage medium for managing versions of program assets of a library, each

of said program assets having source code which is protected, the storage

medium being processor-readable and non-transitory, the storage medium

comprising Instructions for execution by a processor, via a single utility

application, to:

)

i)

receive a selection of one or more program asset to be exported into the
utility application for storage;

extract from the library and into a digest, for each of the one or more
program asset selected, instructions for building the source code of the

corresponding program asset, by means of the integration module;

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

18.

19.

20.

47

ii) store, by means of the integration module, each digest as a new instance
of the digest in a data storage;

V) associate in the data storage, by means of the integration module, a new
version identifier to each new instance of digest, the new version identifier
representing a new version of the corresponding program asset; and

V) associated, in the data storage, a checked-in status to each new instance
of digest stored at (iii), by means of the integration module, to indicate

that each of said new instance of digest is stored in the utility application.

A storage medium according to claim 17, wherein the instructions to associate

at (iv) comprise instructions to:

- query the data storage to locate a prior instance of the digest; and

- if said prior instance of the digest is located, determine a corresponding
previous version identifier and set said new version identifier associated to
the digest, by incrementing the previous version identifier, or otherwise, set

said new version identifier to represent a first instance of the digest.

A storage medium according to claim 18, wherein the instructions to increment

are executable in accordance with one or more predefined incrementing rule.

A storage medium according to claim 17, wherein the data storage stores
instances of previously stored digests which are organized in a format of a tree
having branches, each branch for a given one of the stored digests
representing a subset of versions of the corresponding program asset, the
storage medium further comprising instructions to, prior to the associating at
(iv):

- receive a branch selection to which the new instance of the digest is to be

associated with; and
- retrieve branch information identifying the selected branch from the data

storage; and

WO 2014/019093 PCT/CA2013/050599

48

wherein the new version identifier of step (iv) is set based on said branch

information.

21. A storage medium according to claim 17, wherein the instructions to extract at

5 (i) comprise instructions to generate each digest in afile.

22. A storage medium according to claim 17, wherein the instructions to extract at

(i) comprise instructions to generate one or more of said digest in a same file.

10

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

49

AMENDED CLAIMS

received by the International Bureau on 20 December 2013 (20.12.2013)

Claims:

1. A method for managing versions of program assets of a library, each of said

program assets having source code which is protected, the method being

executable by a single utility application having an integration module which is

embedded in a processor, the method comprising the steps of:

)

receiving a selection of one or more program asset to be exported into
the utility application for storage;

extracting from the library and into a digest, for each of the one or more
program asset selected, instructions for building the source code of the
corresponding program asset, by means of the integration module;
storing, by means of the integration module, each digest as a new
instance of the digest in a data storage;

associating in the data storage, by means of the integration module, a
new version identifier to each new instance of digest, the new version
identifier representing a new version of the corresponding program asset;
and

in the data storage, associating a checked-in status to each new instance
of digest stored at step (iii), by means of the integration module, to
indicate that each of said new instance of digest is stored in the utility

application.

2. A method according to claim 1, wherein step (iv) comprises, for each digest:

querying the data storage to locate a prior instance of the digest; and

if said prior instance of the digest is located, determining a corresponding
previous version identifier and setting said new version identifier
associated to the digest, by incrementing the previous version identifier, or
otherwise, setting said new version identifier to represent a first instance of

the digest.

AMENDED SHEET (ARTICLE 19)

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

50

A method according to claim 2, wherein the incrementing of step (iv) is

executed in accordance with one or more predefined incrementing rule.

A method according to claim 1 or 2, wherein the data storage stores instances

of previously stored digests which are organized in a format of a tree having

branches, each branch for a given one of the stored digests representing a

subset of versions of the corresponding program asset, the method further

comprising, prior to step (iv):

- receiving a branch selection to which the new instance of the digest is to
be associated with; and

- retrieving branch information identifying the selected branch from the data
storage; and

wherein the new version identifier of step (iv) is set based on said branch

information.

A method according to any one of claims 1 to 4, wherein each digest of step (ii)

is provided in a file.

A method according to any one of claims 1 to 4, wherein the one or more

digest of step (ii) is provided in a same file.

A method according to any one of claims 1 to 3, wherein the data storage

comprises a plurality of said digests, each digest comprising instructions to

rebuild a corresponding program asset in the library, the method further

comprising:

vi) receiving, via a user interface, a selection of one or more of said program
assets to be imported into the library and the corresponding version

information;

AMENDED SHEET (ARTICLE 19)

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

vii)

viii)

51

retrieving an instance of the digest from the data storage for each of said
one or more program asset to be imported, by means of the integration
module, being associated to the version information received at step (vi);
for each digest retrieved at step (vii), executing the instructions to rebuild
the corresponding program asset, by means of the integration module, in
order to import a new version of the corresponding program asset into the
library; and

in the data storage, replacing a checked-in status associated each
instance of the digest retrieved at step (vii) with a checked-out status, by
means of the integration module, to indicate that the corresponding one

or more program asset is currently being updated.

A method according to any one of claims 1 to 3, wherein the data storage

comprises a plurality of said digests, each digest comprising instructions to

rebuild a corresponding program asset in the library, the method further

comprising:

vi)

vii)

viii)

receiving, via a user interface, a selection of one or more of said program

assets to be imported into the library and the corresponding version

information;

retrieving an instance of the digest from the data storage for each of said

one or more program asset to be imported, by means of the integration

module, being associated to the version information received at step (vi);

and

validating whether said instance of digest retrieved at step (vii), has a

checked-out status, and if the program asset does not have a checked-

out status, proceeding to the steps of:

- for each digest retrieved at step (vii), executing the instructions to

rebuild the corresponding program asset, by means of the
integration module, in order to import a new version of the

corresponding program asset into the library; and

AMENDED SHEET (ARTICLE 19)

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

10.

11.

52

- in the data storage, replacing a checked-in status associated each
instance of the digest retrieved at step (vii) with a checked-out
status, by means of the integration module, to indicate that the
corresponding one or more program asset is currently being

updated.

A method according to claim 7 or 8, wherein instances of digests are organized
in the data storage, in a format of a tree having branches, each branch for a
given digest representing a subset of versions of the corresponding program
asset, wherein the version information received at step (vi) comprises branch

information.

A method according to any one of claims 7 to 9, wherein the selection received

at step (vi) comprises a plurality of said program assets, the method further

comprising:

- generating a package to import the selection of program assets;

- after step (vii), associating in the data storage, the instances retrieved at
step (vii) with the package; and

- after step (viii), setting a deployed status to the new package in the data
storage to indicate that the package has updated the associated program

assets in the library.

A method according to any one of claims 1 to 3, wherein the data storage
comprises a plurality of said digests, each digest comprising instructions to
rebuild a corresponding program asset in the library, the data storage storing
multiple instances of at least one of the digests, each instance corresponding
to a version of the corresponding program asset, the method further
comprising:

- receiving a selection of two or more digest instances of the data storage

and corresponding version identifier, to be compared;

AMENDED SHEET (ARTICLE 19)

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

53

retrieving from the data storage the instances of the digest corresponding to
the selection received;

by means of the integration module, comparing the content of the digest
instance, to generate comparison information; and

returning the comparison information on a user interface component.

12. A method according to claim 11, wherein said comparison information is

returned as at least one of:

text comparison of each digest instance to be compared; and
comparison of program features of the program asset associated to each
digest instance to be compared.

13. A system for managing versions of program assets of a library, each of said

program assets having source code which is protected, the system comprising:

a user interface for receiving a selection of one or more program asset to
be exported into a utility application for editing;

an integration module embedded in a processor which is in communication
with the user interface, the integration module comprising an exportation
module for extracting from the library into a digest, for each of the one or
more program asset selected, instructions for building the source code of
the corresponding program asset; and

a data storage, in communication with the integration module, for storing
each digest as a new instance of the digest, and for associating a new
version identifier to each new instance of digest, the new version identifier
representing a new version of the corresponding program asset, and for
further associating a checked-in status to each new instance of digest
stored to indicate that each of said new instance of digest is stored in the

utility application.

14. A system according to claim 13, wherein the data storage comprises a plurality

of said digests, each digest comprising instructions to rebuild a corresponding

AMENDED SHEET (ARTICLE 19)

10

15

20

25

30

WO 2014/019093 PCT/CA2013/050599

15.

16.

54

program asset in the library, wherein the integration module further comprises

an importation module comprising:

an importation input port for receiving, from the user interface, a selection of
one or more of said program assets to be imported into the library and the
corresponding version information;

a collector for retrieving an instance of the digest from the data storage for
each of said one or more program asset to be imported, being associated
to the version information received by the user interface;

a builder for executing, for each digest retrieved, the instructions to rebuild
the corresponding program asset, by means of the integration module, in
order to import a new version of the corresponding program asset into the
library; and

a flagging component for replacing a checked-in status associated with
each instance of the digest retrieved in the data storage with a checked-out
status, in order to indicate that the corresponding one or more program

asset is currently being updated.

A system according to claim 14, wherein the importation module further

comprises:

a packaging module for generating a package and associating said
package to import a plurality of the program assets received at the input
port, and for setting a deployed status to the package in the data storage to
indicate that the package has updated the associated program assets in the
library.

A system according to any one of claims 13 to 15, wherein the integration

module further comprises a comparison module comprising:

a comparison input port for receiving, from the user interface, a selection of
two or more digest instances of the data storage and corresponding version
identifier, to be compared;

AMENDED SHEET (ARTICLE 19)

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

17.

18.

55

an retriever for retrieving from the data storage, the instances of the digest
corresponding to the selection received;

a comparer for comparing the content of the instances of the digest, to
generate associated comparison information; and

a comparison output port to send the comparison information for

presentation on the user interface.

A storage medium for managing versions of program assets of a library, each

of said program assets having source code which is protected, the storage

medium being processor-readable and non-transitory, the storage medium

comprising instructions for execution by a processor, via a single utility

application, to:

i)

receive a selection of one or more program asset to be exported into the
utility application for storage;

extract from the library and into a digest, for each of the one or more
program asset selected, instructions for building the source code of the
corresponding program asset, by means of the integration module;

store, by means of the integration module, each digest as a new instance
of the digest in a data storage;

associate in the data storage, by means of the integration module, a new
version identifier to each new instance of digest, the new version identifier
representing a new version of the corresponding program asset; and
associated, in the data storage, a checked-in status to each new instance
of digest stored at (iii), by means of the integration module, to indicate

that each of said new instance of digest is stored in the utility application.

A storage medium according to claim 17, wherein the instructions to associate

at (iv) comprise instructions to:

query the data storage to locate a prior instance of the digest; and

AMENDED SHEET (ARTICLE 19)

10

15

20

25

WO 2014/019093 PCT/CA2013/050599

19.

20.

21.

22.

56

- if said prior instance of the digest is located, determine a corresponding
previous version identifier and set said new version identifier associated to
the digest, by incrementing the previous version identifier, or otherwise, set

said new version identifier to represent a first instance of the digest.

A storage medium according to claim 18, wherein the instructions to increment

are executable in accordance with one or more predefined incrementing rule.

A storage medium according to claim 17, wherein the data storage stores

instances of previously stored digests which are organized in a format of a tree

having branches, each branch for a given one of the stored digests

representing a subset of versions of the corresponding program asset, the

storage medium further comprising instructions to, prior to the associating at

(iv):

- receive a branch selection to which the new instance of the digest is to be
associated with; and

- retrieve branch information identifying the selected branch from the data
storage; and

wherein the new version identifier of step (iv) is set based on said branch

information.

A storage medium according to claim 17, wherein the instructions to extract at

(il) comprise instructions to generate each digest in a file.

A storage medium according to claim 17, wherein the instructions to extract at

(il) comprise instructions to generate one or more of said digest in a same file.

AMENDED SHEET (ARTICLE 19)

WO 2014/019093 PCT/CA2013/050599

STATEMENT UNDER ARTICLE 19 (1)

Amendment Statement

Claim 7, 8, 9 and 14 have been amended to correct clerical errors and to address
observations made in the Written Opinion at Box VIII.

WO 2014/019093 PCT/CA2013/050599

FIG. 1
(PRIOR ART)

WO 2014/019093

214

PCT/CA2013/050599

MANUAL EXPORT

MANUAL IMPORT

START EXPORT

Log into Datastage
project where source
programs are located

v

START IMPORT

Log into source control
application

Open Export Utility

Individually

For Each Datastage
Program

As a Bundle

Individually

As a Bundle

For Each Datastage
Program

Select all programs to
export

v

Export file for selected

Export bundle file for
selected version from
source control
application (i.e.
"check-out™)

version from source
control application (i.e.

\

"check-out”)

v

Select single program
to export

Export all programs into
a single DSX or XML
file

Log into target
Datastage project

Log into target
Datastage project

v

v

v

v

Export into a DSX or
XML file

Log into source control
application

Open Import Utility

Open Import Utility

v

v

Log into source control
application

Import file into the
source control
application as a new
version (i.e. "check-in")

Repeat or End

Import file into the
source control
application as a new
version (i.e. "check-in”)

Import program file into

Import bundle file into
target Datastage
project

target Datastage
project

v

Exit Datastage

FIG. 2A

(PRIOR ART)

Repeat or End

v

Exit Datastage

FIG. 2B

(PRIOR ART)

IPCT/CA2013/050599599

WO 2014/019093

3/14

(1¥V HOIdd)
¢ Ol

uodwi |enue -

uoneolddy
|0JJU0D) 824N0S

uodwi |enuely €
g

Xsp'y qor

uodx3 jenuepy L

v qor

JaAJag uolonpold

abejsele(

d qor

v qor

Jonles JuswdojareQ

abejsele(

WO 2014/019093

4/14

PCT/CA2013/050599

User Interface 12

The user interface is the access point to users
where tasks are performed via requests that
are sent to the logical layer and where results
are returned and formated in a visually pleasing
format

> GET VERSIONS

> GET VERSIONS

-version 1.0
-version 1.1

-version 2.0

Logical Layer 14

The ‘brains’ of the application. It coordinates
interactions between the user interface, the
data storage and other third-party applications.

\4

RECQVEI’ list of all

versions :

e,

"~ Group and send
result to Ul

RS }
T D
Request
Data

Data Storage 16

Stores and retrieves data resulting from tasks
performed in the Ul.

18

Database

FIG. 4

WO 2014/019093 PCT/CA2013/050599

5/14

Client Terminal 20

Users access the application via a URL and
web browsers. Each request is intercepted by
the Apache HTTP server

Serveur (Linux / UNIX) 5

A UNIX or Linux server hosts the HTTP
daemon, the PHP code and the database

HTTP Server (Apache) 4 Vv
The HTTP daemon receives client requests, redirects them to the OQ

appropriate program able to process the request and returns results to the
client.

v I
. 26
Language Script (PHP) =
PHP interprets requests, accesses the database and third party
applications to complete the request before sending formated results to the
client.

Database (MySQL) 28

The database stores and retrieves data

FIG. 5

WO 2014/019093 PCT/CA2013/050599

6/14

WO 2014/019093

714

ETL
(abstract)

PCT/CA2013/050599

3200

/32

Inherit — e ——
(_ _Y__ __"A__
Datastage | Informatica™ | | ssis™
3202 I 3220 | I 3222
N R N
(Uses J% l 1
DSAPI DSTOOLS DSXMETA DSCOMPARE
3204 3206 3208 3210
DSJOB
3212
_J
A
\
\
MODULE THREAD
3214 3216
ATTRIBUTE
3218

PCT/CA2013/050599

WO 2014/019093

8/14

7OrE
611

8 9Ol
S07E SOvE
16 6ol
ﬁ sas Q
_|||||J _|||||J
ZIvE | 0TPe | 20V
I qosfiw | I zaa | s[RI
C_ > u__
| § S}UIBYU [

00vE
(1oessqe)
asegele(

18

WO 2014/019093

9/14

1810
/

1850
L

PCT/CA2013/050599

/28

VERSIONNG)

-

| Has

HAasplibersion |
s bestgnrs o8

Warsian, CheckChtlfer

o

ADMIMNISTRATION

£
|
Fisle aiPmmmMm
i

Wamsion_Ehedinkisn

FatkageStates Uset

1820

Bttt Winion:

Bramah, Vi
¥

[
[
¥
oF

Bugnch Pakage

Paseyipe Tranuhidemion 1

4

ikt

Brgnch Fhse

Tema_ Bransh

trplemanted by

. s e o O R

plammented by

‘hase Beavueameat

RELEASE MANAGEMENT

Fakggn Bisnehdetion

i

et S

Padags, Shatus

Frasa T amel

Conceptual Database Model
FIG. 9

PCT/CA2013/050599

WO 2014/019093

404

!

s)nsal ¢s0¢ an3
= synsal OIEPIEA
ISYIA HONVYE E:H_E - pue poyjew 1senba. |
— _Umﬁc__:_m T === — | UPpPayd | B | UPSYD | i UPORYD
g 25 T o)
S sa lleg 7702 (ebueyo
18l 002 weiboud l+ < ov0z 1o} suoseal
abejgeleq < "9'1) s|ieyed
oenxe [en1xejuo)
— gquodxa ml.VMON Jaug
syjnssed sjosSse mat
&_BE vaom Joj Jo8lqo ovomk q
pue abeigeleq sjesse mau
.H T > bsping | (€T T T T > pue e PUEIC | g uppew
- s)o poyjew -paxoayo 0] 19SSy 109|198
08l ssygqieb sjosse sjossy)eb Jsenbay V
8c0z anouel— | @ | 109[0 L 0e0c
< sjossysqleb aalied ¢e0c
S 20T
S synsel F@&ON poyjsw mm mmsoc\EM_ '
OE —_—— e — e — . - _Mm:m_m“ud %Wmm - — - —. - mswocmﬂmu“m - H Mwﬁﬂ%& @ youelg 10998
ocal ayoueigieb aaled NNON.& »
\—8z0z 9coc- Uusa.9s uselIog
.E ||||||||||||||||||| —> DM_%__% > Loisiop $$800Y
pue pjing w_\ONf\ *
z18l 0zoz—
55950 uonesldde
.H ||||||||||||||||||| —> aleplje - 101309
|\ 1EPIEA 924nos ojul 6o
casl 9koe r1oz—"
m = - - Cois
0c81/018l1 ﬂ 0581 ﬂ SS9 ﬂ SSV10 oF 44 ﬂ 0z
ad NOISH3IA adain Isvav.iva d9V1Svivd SSv10 1IN AN3aHMOVvd AN3ILNOYA4
.er_m__._. m_w<m_<._.<DL1. d3lL TVOIDO01 AL || e—
gl 8z e y -7 upyo8eyd Jusuodwos

000¢

PCT/CA2013/050599

WO 2014/019093

. NOISH3A

vigl

HONYdd

0es8l

>

13ssv

|||||

08l

1114

ﬂ 0c8l/ol8l

dd NOISH3IA

lmm_k 3SvavLva »Alo

(ARGJE! ~ =
weiboid
9VcC— | obeigERIEQ | |-
podwy | @ +m:..mms_ wvmm\.‘
— sauoduwi sjeplen
Shinsal pue podw| 1sonbay
......... - uinal pue - — = — - — - P sales @ | INO-odYo no-4o9y9
Ibs piing —in ‘poyiow pues
OXo8yQies R
_ NI ovee wmmm
4444 = RZevee
wmes pue suoUEgIoB sooueg
......... - DS pINg — § - —— — — . = o0 e M%%MN - Uoueig 109198
ayoue.gieh aalied ' d OMNNL
\gezz vezz—/ 2622
synsal poyiaw sjosse
......... winas pue s1955y186) N0-Y28Y9
™ bsping-s| T T T = | elgo urbotoou 0110SSY 1919S
1essygqieb aaleod ' d p
Y, FvNNN ceee
KwNNN 9cce
usaI0s !
usaI9g
.E |||||||||||||||||||| > Aeidsip - UOISIBA SS899Y
pue piing w_\NNr\
cl8l 0222 J #
] uoneoldde
yisn @l4——— — - — — — — — — — — — — — — — — — —» g [0JU09
.I @_:g 204nos ojul 6o
A1) oLze vizz—"
== clee
0g8l * ww<|_0 ww<|_O o¢ ﬂ ce ﬁ 0c ﬁ
aain 3svav.iva 39OV1Sv1ivd SSVY1d0 1N aN3aIXMOovd ANILNOYA
d3IL TvOID071 ® d3lL IN=—
S p NF\ INO-Yo8Y) Juauodwo)

00cc

PCT/CA2013/050599

WO 2014/019093

¢l Old

8¢8l N
.zz-moéoﬁ_ - : 8G1C oboyed < —- +
woly sweibol
vegl NOISHIAHON |\ o _ . __ //l\ obejgeleq || Hodwi poyow @ 09vc E
Yyg 39vMOovd | — ebexoedAoldep Bespegholdop Nm«vN
. s}nsal uinjal wolqo ga
| sovow e P | =) | o | Lo pees Yoo | 08T
QcZsl Aojdep
(@@VN sdaled *
1817 seyoueig youeig
vmvmb onoy wimoy | W jebie) pjeg r9vre
8y
synsal youeig \. 8eve
NO Il pue [bs s})insal uinjol pajos|es ophiou]
ISYIAHONVYE ping —suois | [T T = P> | pueponiw | @ | USUOISION | 0 pojeg
1apyoueigleb > aaied AR :
¢csl .V.V.VN\. crve isenbay ~
0] 474 s 0]%9 74
SHnss poueLu sayouelg
uinjes pue sayoueiglob youeig
I v e [o o
= soyouelgyeb | | N\ T aa eo
S oesl 9erC yeve Zevz #
s})nsal uinjol pouisw 5 \I ceve
JOWIOVd — . — — — . —Pp | puejbsping | f— - — - — . — . . ebexoed)es g |isonbolpuss | | ebexoed
— obeyoedies walqo sjeal)
7] ga 1ied
oz8l aziz . \rZye 4
ussI0s usaIog
.H |||||||||||||||||| —P Kedsip g juswosbeuely N
pue pjing ssesjoy sseooy | QL2
clel ozrz’ A
$5990Y uopeoidde |osuoo
.H |||||||||||||||||| > slepleA > o nos oy Bo
¢q8l ©rvN\\ |\\\
. 14944 l clve
_ 14v1sS
—_ — ¥S 4 — — —
ﬂ 0zcel ﬂ 0ser ﬂ SSYD SSY10 ﬂ ot ﬂ 44 ﬂ 0C ﬂ
ga NOISH3A aa in JOV1isSvivd SSY10 IN aN3IXMOvd AN3LNOYH
d3lL 1vOI901 ® HAIL N —

—

8l 4

S

Y31l Isvaviva /l.IEEI
8

145

00v¢

A

A WswAoldeg pue uoneal) sbexoed

¢l

PCT/CA2013/050599

WO 2014/019093

8c9z— | 'spelqo pjyo
O]UI SUOISIOA poyjow u 0rac ang
sjnsal yloq asied osuedwoo S|Nsal
uinjal pue sq|eo uinjal osediios
[f—r— === —» | |bsping < — — — —. — | SuOIsIon | @ pue u -
. —9po) anaLal osuedwo) H‘\ d
| uolsiop}ob 0} poylawi Hmmscm\r 0€9¢
| ocoz” aa leo (4274
; €92~
s)insal
timal Ewﬁ_mhm m:cm UoISIaA SUOISIOA
- R - ol | e L
718l piing — mo;w_mo ¥29Z~ 90IM0S Pdles
geor 2N 929z~ czae”
3
) uealos TR
A .H ||||||||||||||||||| —> Kejdsip ® UOISI9N SS90y
18l prepid | | groz”
029z~
] uoneo|dde
N.mw_\H ||||||||||||||||||| el 9 _\MM@,; moh:ﬁ%“%cn“ 6o
192~
_ 7 4% T4
'._.m_<._.w
ocar/orer omm: SS90 SSV 19 5% z 02
ad zo_mmm>@ ain 39V1SV.1va M_ FOVISvivd M SS9 [N H aN3XOVE M (NZLNOY
d]1 3SVavly > dl1L TvOI90 — g3l |
8l ¥l y l—Uosuedwo) uoisiap Jusuodwo)

€l 9Old

aledwod
pue yole

009¢

AI.+

PCT/CA2013/050599

WO 2014/019093

14/14

I/n

ﬂlll||||||||||||||||||||||||_
“ _
— —
| 8y0¢ _
| 790¢ ov0¢ |
| Z50¢ b
i Zvoe N opos
— —
|
! s|npow uosuedwo) _
i
_ 0c0¢ _
i
“ Zeoe
F——
! I ™ozoe
“ s
“ _
— —
-
_ Z20¢ _
_ i
_
“ a|npow uonepodx3 _
e T]
r
/) 10SS8201d
vl el

INTERNATIONAL SEARCH REPORT International application No.

PCT/CA2013/050599

A. CLASSIFICATION OF SUBJECT MATTER
IPC: GOGF 9/44 (2006.01)

According to International Patent Classitication (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: GO6F 9/44 (2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the mternational search (name of database(s) and, where practicable, search terms used)
Epoque epodoc and txte: keywords: etl, version, library, protected, digest, extract, transform, datastage. source code, build

totalpatent: source code, digest, library, protected

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Categorv* | Citation of document, with mmdication, where appropriate, of the relevant passages Relevant to claim No.

A US20080082959A1 (Fowler) 03 April 2008 (03-04-2008) 1-22

abstract: par. 0085

A US20100293519A1 (Groves et al) 18 November 2010 (18-11-2010) 1-22

par. 0034, par. 0067

[1 Further documents are listed in the continuation of Box C.

[X] See patent tamily annex.

* Special categories of cited documents

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the mternational
tiling date

“L” document which may throw doubts on priority claim(s) or which is
cited to establigh the publication date of another citation or other
special reason (as specified)

07 document referring to an oral disclosure, use, exhibition or other means

P document published prior to the iternational filing date but later than
the priority date claimed

“T” later document published after the mternational tiling date or priority
date and not in conflict with the aln]lvllgatlon but cited to understand
the principle or theory underlying the invention

X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to mvolve an inventive
step when the document is taken alone

“Y" document of particular relevance; the claimed invention cannot be
considered to mvolve an inventrve step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent tamily

Date of the actual completion of the international search

23 October 2013 (23-10-2013)

Date of mailing of the international search report

25 October 2013 (25-10-2013)

Name and mailing address of the ISA/CA

Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 001-819-953-2476

Authorized officer

Howard Sandler (819) 994-0483

Form PCT/ISA/210 (second sheet) (July 2009)

Page 2 of 3

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/CA2013/050599
Patent Document Publication Patent Family Publication
Cited in Search Report Date Member(s) Date
US20080082959A1 03 April 2008 (03-04-2008) WO2006043012A1 27 April 2006 (27-04-2006)
WO2006043012A9 27 July 2006 (27-07-2006)
US20100293519A1 18 November 2010 (18-11-2010) US8413108B2 02 April 2013 (02-04-2013)

Form PCT/ISA/210 (patent family annex) (July 2009)

Page 3 of 3

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - amend-body
	Page 51 - amend-body
	Page 52 - amend-body
	Page 53 - amend-body
	Page 54 - amend-body
	Page 55 - amend-body
	Page 56 - amend-body
	Page 57 - amend-body
	Page 58 - amend-statement
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - wo-search-report
	Page 74 - wo-search-report

