
US 2002O066081A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2002/0066081 A1

Duesterwald et al. (43) Pub. Date: May 30, 2002

(54) SPECULATIVE CACHING SCHEME FOR Related U.S. Application Data
EAST EMULATION THROUGH STATICALLY
PREDICTED EXECUTION TRACES IN A (63) Non-provisional of provisional application No.
CACHING DYNAMIC TRANSLATOR 60/184,624, filed on Feb. 9, 2000.

(76) Inventors: Evelyn Duesterwald, Somerville, MA Publication Classification
(US); Vasanth Bala, Sudbury, MA 7
(US); Sanjeev Banerjia, Cambridge, (51) Int. Cl.' ... GO6F 9/44
MA (US) (52) U.S. Cl. .. 717/128; 717/141

Correspondence Address: (57) ABSTRACT
HEWLETTPACKARD COMPANY A System and method for growing a hot trace in a program
Intellectual Property Administration during the program's execution in a dynamic translator,
P.O. BOX 272400 comprising the Steps of identifying an initial block as the
Fort Collins, CO 80527-2400 (US) first block in a trace to be Selected; until an end-of-trace

condition is reached, applying Static branch prediction rules
(21) Appl. No.: 09/756,019 to the terminating branch of a last block in the trace to

identify a next block to be added to the Selected trace; and
(22) Filed: Jan. 5, 2001 adding the identified next block to the Selected trace.

input 160

instruction y Stream

120

H. Trace Selector Interpreter

11 O

Code Cache

Code Generator Trace Optimizer

140 150

Patent Application Publication May 30, 2002 Sheet 1 of 3 US 2002/0066081 A1

Fig. 1

input

instruction 5 Stream

Interpreter K-1 Trace Selector

11 O

Code Cache

12O

Trace Optimizer

150

Code Generator

140

May 30, 2002 Sheet 2 of 3 US 2002/0066081 A1 Patent Application Publication

seÁ
OVõ ou

OZZ

Z · 61-I

Patent Application Publication May 30, 2002 Sheet 3 of 3 US 2002/0066081 A1

Fig. 3
24 Next = hot Code address

Add Next to Hot
Trace

Predict branch as
is Hot Trace TAKEN: Next =

of length >Korhas branch target address
Confidence Counter

Reached N

Predict branch as
NOT TAKEN: Next =

ls next instruction
Next a branch Next = next address
instruction? instruction address

Rule 1:
ls the branch
unconditional

direct?

Rule 2:
Can We Taken = symbolic

symbolically evaluate evaluation of the Taken - TRUE2

Can a Heuristic

the branch? branch

Change Confidence
Counter

Rule be Applied to
this branch? Next = Address

of link point

Rule 4: HaS Has the
is this there been a link register

Branch a Corresponding branch been modified since
Procedure and link On this the branch
Return? trace? and link?

Rule 3:

251 Terminate and return Hot Trace

US 2002/0066081 A1

SPECULATIVE CACHING SCHEME FOR FAST
EMULATION THROUGH STATICALLY
PREDICTED EXECUTION TRACES IN A
CACHING DYNAMIC TRANSLATOR

0001. This application claims the benefit of priority of
provisional application No. 60/184,624, filed on Feb. 9,
2000, the content of which is incorporated herein in its
entirety.

FIELD OF THE INVENTION

0002 The present invention relates to techniques for
identifying portions of computer programs that are fre
quently executed. The present invention is particularly use
ful in dynamic translators needing to identify candidate
portions of code for caching and/or optimization.

BACKGROUND

0003) Dynamic emulation is the core execution mode in
many Software Systems including Simulators, dynamic trans
lators, tracing tools and language interpreters. The capability
of emulating rapidly and efficiently is critical for these
Software Systems to be effective. Dynamic caching emula
tors (also called dynamic tranlators) translate one sequence
of instructions into another Sequence of instructions which is
executed. The Second Sequence of instructions are native
instructions-they can be executed directly by the machine
on which the translator is running (this machine may be
hardware or may be defined by Software that is running on
yet another machine with its own architecture). A dynamic
translator can be designed to execute instructions for one
machine architecture (i.e., one instruction Set) on a machine
of a different architecture (i.e., with a different instruction
Set). Alternatively, a dynamic translator can take instructions
that are native to the machine on which the dynamic
translator is running and operate on that instruction Stream
to produce an optimized instruction Stream. Also, a dynamic
translator can include both of these functions (translation
from one architecture to another, and optimization).
0004. A traditional emulator interprets one instruction at
a time, which usually results in excessive overhead, making
emulation practically infeasible for large programs. A com
mon approach to reduce the excessive overhead of one
instruction-at-a-time emulators is to generate and cache
translations for a consecutive Sequence of instructions Such
as an entire basic block. A basic block is a Sequence of
instructions that Starts with the target of a branch and
extends up to the next branch.
0005 Caching dynamic translators attempt to identify
program hot spots (frequently executed portions of the
program, Such as certain loops) at runtime and use a code
cache to Store translations of those frequently executed
portions. Subsequent execution of those portions can use the
cached translations, thereby reducing the overhead of
executing those portions of the program.
0006 Accordingly, instead of emulating an individual
instruction at Some address X, an entire basic block is fetched
Starting from X, and a code Sequence corresponding to the
emulation of this entire block is generated and placed in a
translation cache. See B Cmelik, D. Keppel, “Shade: A fast
instruction-Set Simulator for execution profiling.” Proceed
ings of the 1994 ACM SIGMETRICS Conference on Mea

May 30, 2002

Surement and Modeling of Computer Systems. An address
map is maintained to map original code addresses to the
corresponding translation block addresses in the translation
cache. The basic emulation loop is modified Such that prior
to emulating an instruction at address X, an address looked
up determines whether a translation exists for the address. If
So, control is directed to the corresponding block in the
cache. The execution of a block in the cache terminates with
an appropriate update of the emulator's program counter and
a branch is executed to return control back to the emulator.

0007 As noted above, a dynamic translator may take
instructions in one instruction Set and produce instructions in
a different instruction Set. Or, a dynamic translator may
perform optimization: producing instructions in the same
instruction Set as the original instruction Stream. Thus,
dynamic optimization is a special native-to-native case of
dynamic translation. Or, a dynamic translator may do both
converting between instruction Sets as well as performing
optimization.

0008. In general, the more sophisticated the hot spot
detection Scheme, the more precise the hot Spot identifica
tion can be, and hence (i) the Smaller the translated code
cache Space required to hold the more compact Set of
identified hot spots of the working Set of the running
program, and (ii) the less time spent translating hot spots
into native code (or into optimized native code). The usual
approach to hot Spot detection uses an execution profiling
Scheme. Unless Special hardware Support for profiling is
provided, it is generally the case that a more complex
profiling Scheme will incur a greater overhead. Thus,
dynamic translators typically have to Strike a balance
between minimizing overhead on the one hand and Selecting
hot Spots very carefully on the other.

0009. Depending on the profiling technique used, the
granularity of the Selected hot spots can vary. For example,
a fine-grained technique may identify single blocks (a
Straight-line Sequence of code without any intervening
branches), whereas a more coarse approach to profiling may
identify entire procedures. A procedure is a Self-contained
piece of code that is accessed by a call/branch instruction
and typically ends with an indirect branch called a return.
Since there are typically many more blocks that are executed
compared to procedures, the latter requires much less pro
filing overhead (both memory space for the execution fre
quency counters and the time spent updating those counters)
than the former. In Systems that are performing program
optimization, another factor to consider is the likelihood of
useful optimization and/or the degree of optimization oppor
tunity that is available in the selected hot spot. A block
presents a much Smaller optimization Scope than a procedure
(and thus fewer types of optimization techniques can be
applied), although a block is easier to optimize because it
lacks any control flow (branches and joins).
0010 Traces offer yet a different set of tradeoffs. Traces
(also known as paths) are single-entry multi-exit dynamic
Sequences of blocks. Although traces often have an optimi
Zation Scope between that for blockS and that for procedures,
traces may pass through Several procedure bodies, and may
even contain entire procedure bodies. Traces offer a fairly
large optimization Scope while Still having simple control
flow, which makes optimizing them much easier than a
procedure. Simple control flow also allows a fast optimizer

US 2002/0066081 A1

implementation. A dynamic trace can even go past Several
procedure calls and returns, including dynamically linked
libraries (DLLS). This ability allows an optimizer to perform
inlining, which is an optimization that removes redundant
call and return branches, which can improve performance
Substantially.
0.011) Unfortunately, without hardware support, the over
head required to profile hot traces using existing methods
(such as described by T. Ball and J. Larus in “Efficient Path
Profiling”, Proceedings of the 29th Symposium on Micro
Architecture (MICRO-29), December 1996) is often pro
hibitively high. Such methods require instrumenting the
program binary (invasively inserting instructions to Support
profiling), which makes the profiling non-transparent and
can result in binary code bloat. Also, execution of the
inserted instrumentation instructions Slows down overall
program execution and once the instrumentation has been
inserted, it is difficult to remove at runtime. In addition, Such
a method requires Sufficiently complex analysis of the
counter values to uncover the hot paths in the program that
such method is difficult to use effectively on-the-fly while
the program is executing. All of these factors make tradi
tional Schemes inefficient for use in a caching dynamic
translator.

0012 Hot traces can also be constructed indirectly, using
branch or basic block profiling (as contrasted with trace
profiling, where the profile directly provides trace informa
tion). In this Scheme, a counter is associated with the Taken
target of every branch (there are other variations on this, but
the overheads are similar). When the caching dynamic
translator is interpreting the program code, it increments
Such a counter each time a Taken branch is interpreted.
When a counter exceeds a preset threshold, its correspond
ing block is flagged as hot. These hot blockS can be Strung
together to create a hot trace. Such a profiling technique has
the following shortcomings:

0013 1. A large counter table is required, since the
number of distinct blockS executed by a program can
be very large.

0014 2. The overhead for trace selection is high.
The reason can be intuitively explained: if a trace
consists of N blocks, this scheme will have to wait
until N counters all exceed their thresholds before
they can be Strung into a trace.

SUMMARY OF THE INVENTION

0.015 Briefly, the present invention comprises, in one
embodiment, a method for growing a hot trace in a program
during the program's execution in a dynamic translator,
comprising the Steps of identifying an initial block, and
Starting with the initial block, growing the trace block-by
block by applying Static branch prediction rules until an
end-of-trace condition is reached.

0016. In a further aspect of the present invention, a
method is provided for growing a hot trace in a program
during the program's execution in a dynamic translator,
comprising the Steps of identifying an initial block as the
first block in a trace to be Selected; until an end-of-trace
condition is reached, applying Static branch prediction rules
to the terminating branch of a last block in the trace to
identify a next block to be added to the Selected trace; and
adding the identified next block to the Selected trace.

May 30, 2002

0017. In a further aspect of the present invention, the
method includes the Step of Storing the Selected traces in a
code cache.

0018. In a yet further aspect of the present invention, the
end-of-trace condition includes at least one of the following
conditions: (1) no prediction rule applies; (2) a total number
of instructions in the trace exceeds a predetermined limit; (3)
cumulative estimated prediction accuracy has dropped
below a predetermined threshold.
0019. In a further aspect of the present invention, the
prediction rules include both rules for predicting the out
comes of branch conditions and for predicting the targets of
branches.

0020. In yet a further aspect of the present invention, an
initial block is identified by maintaining execution counts
for targets of branches and when an execution count exceeds
a threshold, identifying as an initial block, the block that
begins at the target of that branch and extends to the next
branch.

0021. In a further aspect of the present invention, the set
of Static branch prediction rules comprises: determining if
the branch instruction is unconditional; and if the branch
instruction is unconditional, then adding the target instruc
tion of the branch instruction and following instructions
through the next branch instruction to the hot trace.
0022. In a further aspect of the present invention, the set
of Static rules comprises: determining if a target instruction
of the branch instruction can be determined by symbolically
evaluating a branch condition of the branch instruction; and
if the target instruction of the branch instruction can be
determined symbolically, then adding the target instruction
and following instructions through the next branch instruc
tion to the hot trace.

0023. In a further aspect of the invention, the set of static
rules comprises: determining if a heuristic rule can be
applied to the branch instruction; and if a heuristic rule can
be applied to the branch instruction, then the branch instruc
tion is determined to be Not Taken.

0024. In a yet further aspect of the present invention, the
method further comprises the Step of changing a count in a
confidence counter if a heuristic rule can be applied to the
branch instruction; and determining whether the confidence
counter has reached a threshold level.

0025. In yet a further aspect of the invention, the set of
Static rules comprises: determining whether the branch
instruction is a procedure return; and if the branch instruc
tion is a procedure return, then determining if there has been
a corresponding branch and link instruction on the hot trace;
if there has been a corresponding branch and link instruc
tion, then determining if there is an instruction in the hot
trace between the corresponding branch and link instruction
and the procedure return that modifies a value in a link
register associated with the corresponding branch and link
instruction; and if there is no instruction that modifies the
value in the link register between the corresponding branch
and link instruction and the procedure return, then adding an
address of a link point and following instructions up through
a next branch instruction to the hot trace.

0026. In a further aspect of the present invention, the
method further comprises the Steps of: Storing a return

US 2002/0066081 A1

address in a program Stack, wherein the Step of determining
if there is an instruction that modifies the value in the link
register comprises forward monitoring hot trace instructions
between the corresponding branch and link instruction and
the return for instructions that change a value in a link
register associated with the corresponding branch and link
instruction.

0027. In a further aspect of the present invention, the
method further comprises maintaining a confidence count
that is incremented or decremented by a predetermined
amount based on which Static branch prediction rule has
been applied; and if the confidence count has reached a
Second threshold level, ending the growing of the hot trace.
0028. In a further aspect of the present invention, the
identifying an initial block Step comprises associating a
different count with each different target instruction in a
Selected Set of target instructions and incrementing or dec
rementing that count each time its associated target instruc
tion is executed; and identifying the target instruction as the
beginning of the initial block if the count associated there
with exceeds a hot threshold. The selected set of target
instructions may include target instructions of backwards
taken branches and target instructions from an exit branch
from a trace in a code cache.

0029. In a further embodiment of the present invention, a
dynamic translator is provided for growing a hot trace in a
program during the program's execution in a dynamic
translator, comprising: first logic for identifying an initial
block as the first block in a trace to be selected; Second logic
for, until an end-of-trace condition is reached, applying
branch prediction rules to the terminating branch of the last
block in the trace to identify a next block to be added to the
Selected trace; and third logic for adding the identified next
block to the Selected trace.

0.030. In yet a further embodiment of the present inven
tion, a computer program product is provided, comprising:
a computer usable medium having computer readable pro
gram code embodied therein for growing a hot trace in a
program during the program's execution in a dynamic
translator, comprising first code for identifying an initial
block as the first block in a trace to be Selected; Second code
for, until an end-of-trace condition is reached, applying
branch prediction rules to the terminating branch of the last
block in the trace to identify a next block to be added to the
Selected trace; and third code for adding the identified next
block to the Selected trace.

BRIEF DESCRIPTION OF THE DRAWING

0031. The invention is pointed out with particularity in
the appended claims. The above and other advantages of the
invention may be better understood by referring to the
following detailed description in conjunction with the draw
ing, in which:
0.032 FIG. 1 is a block diagram illustrating the compo
nents of a dynamic translator Such as one in which the
present invention can be employed;
0033 FIG. 2 is a flowchart illustrating the flow of
operations in accordance with the present invention; and
0034 FIG. 3 is a flowchart illustrating the flow of
operations in accordance with the present invention.

May 30, 2002

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

0035) Referring to FIG. 1, a dynamic translator includes
an interpreter 110 that receives an input instruction Stream
160. This “interpreter' represents the instruction evaluation
engine; it can be implemented in a number of ways (e.g., as
a Software fetch-decode-eval loop, a just-in-time compiler,
or even a hardware CPU).
0036). In one implementation, the instructions of the input
instruction Stream 160 are in the same instruction Set as that
of the machine on which the translator is running (native
to-native translation). In the native-to-native case, the pri
mary advantage obtained by the translator flows from the
dynamic optimization 150 that the translator can perform. In
another implementation, the input instructions are in a
different instruction Set than the native instructions.

0037. A trace selector 120 is provided to identify instruc
tion traces to be stored in the code cache 130. The trace
Selector is the component responsible for associating
counters with interpreted program addresses, determining
when a "hot trace' has been detected, and growing the hot
trace.

0038. Much of the work of the dynamic translator occurs
in an interpreter-trace selector loop. After the interpreter 110
interprets a block of instructions (i.e., until a branch), control
is passed to the trace Selector 120 So that it can Select traces
for Special processing and placement in the cache. The
interpreter-trace Selector loop is executed until one of the
following conditions is met: (a) a cache hit occurs, in which
case control jumps into the code cache, or (b) a hot start
of-trace is reached.

0039 When a hot start-of-trace is found, the trace selec
tor 120 then begins to grow the hot trace. When an end-of
trace condition is reached, then the trace Selector 120
invokes the trace optimizer 150. The trace optimizer is
responsible for optimizing the trace instructions for better
performance on the underlying processor. After optimization
is completed, the code generator 140 emits the trace code
into the code cache 130 and returns to the trace selector 120
to resume the interpreter-trace Selector loop. For an appli
cation on Similar technology, See "Low Overhead Specula
tive Selection of Hot Traces in a Caching Dynamic Trans
lator,” by Vasanth Bala and Evelyn Duesterwald, Ser. No.
09/312,296, filed on May 14, 1999.
0040 FIG. 2 illustrates operation of an implementation
of a dynamic translator employing the present invention.
The solid arrows represent flow of control, while the dashed
arrow represents the generation of data. In this case, the
generated “data' is actually executable Sequences of instruc
tions (traces) that are being stored in the translated code
cache 130.

0041 After trace selection by the trace selector 245, the
trace Selected is translated into a native instruction Stream
and then stored in the translated code cache 130 for execu
tion, without the need for interpretation the next time that
portion of the program is executed (unless intervening
factors have resulted in that code having been flushed from
the cache).
0042. The trace selector 245 is exploited in the present
invention as a mechanism for identifying the extent of a

US 2002/0066081 A1

trace; not only does the trace Selector 245 generate data
(instructions) to be stored in the cache, it plays a role in trace
Selection process itself. The present invention initiates trace
Selection based on limited profiling: certain addresses that
meet Start-of-trace conditions are monitored, without the
need to maintain profile data for entire traces. A trace is
Selected based on a hot start-of-trace condition. At the time
a start-of-trace is identified as being hot (based on the
execution counter exceeding a threshold), the extent of the
instructions that make up the trace is not known.
0.043 Referring to FIG. 2, the dynamic translator starts
by interpreting instructions until a taken branch is inter
preted at block 210. At that point, a check is made to see if
a trace that Starts at the target of the taken branch exists in
the code cache 215. If there is Such a trace (i.e., a cache
hit), execution control is transferred to block 220 to the top
of that version of the trace that is stored in the cache 130.

0044) When, after executing instructions stored in the
cache 130, control exits the cache via an exit branch, a
counter associated with the exit branch target is incremented
in block 235 as part of a “trampoline' instruction sequence
that is executed in order to hand execution control back to
the dynamic translator. In this regard, when the trace is
formed for storage in the cache 130, a set of trampoline
instructions is included in the trace for each exit branch in
the trace. These instructions (also known as translation
"epilogue') transfer execution control from the instructions
in the cache back to the interpreter trace Selector loop. An
exit branch counter is associated with the trampoline corre
sponding to each exit branch. Like the Storage for the
trampoline instructions for a cached trace, the Storage for the
trace exit counterS is also allocated automatically when the
native code for the trace is emitted into the translated code
cache. In the illustrative embodiment, as a matter of con
Venience, the exit counters are Stored with the trampoline
instructions; however, the counter could be stored else
where, Such as in an array of counters. Note that these exit
branch/trampoline instructions are considered to be start-of
trace instructions.

0045 Referring again to 215 in FIG. 2, if, when the
cache is checked for a trace Starting at the target of the taken
branch, no Such trace exists in the cache, then a determina
tion is made as to whether a “start-of-trace’ condition exists
230. In the illustrative embodiment, the start-of-trace con
dition is when the just interpreted branch was a backward
taken branch, based on the Sequence of the original program
code. AS noted above, another start-of-trace instruction
condition is met by the target of an exit branch/trampoline
instruction causing the exit of control from a translation in
the code cache. Alternatively, a System could employ dif
ferent start-of-trace conditions that may be combined with or
may exclude backward taken branches, Such as procedure
call instructions, exits from the code cache, System call
instructions, or machine instruction cache misses (if the
hardware provided Some means for tracking Such activity).
0046) A backward taken branch is a useful start-of-trace
condition because it exploits the observation that the target
of a backward taken branch is very likely to be (though not
necessarily) the start of a loop. Since most programs spend
a significant amount of time in loops, loop headers are good
candidates as possible hot spot entrances. Also, Since there
are usually far fewer loop headers in a program than taken

May 30, 2002

branch targets, the number of counters and the time taken in
updating the counterS is reduced significantly when one
focuses on the targets of backward taken branches (which
are likely to be loop headers) and the exit branches for traces
that are already Stored in the cache, rather than on all branch
targets.

0047. If the start-of-trace condition is not met, then
control re-enters the basic interpreter state in block 210 and
interpretation continues. In this case, there is no need to
maintain a counter; a counter increment takes place only if
a start-of-trace condition is met. This is in contrast to
conventional dynamic translator implementations that main
tain counters for each branch target. In the illustrative
embodiment counters are only associated with the address of
the backward taken branch targets and with targets of
branches that exit the translated code cache; thus, the present
invention permits a System to use leSS counter Storage and to
incur leSS counter increment overhead.

0048 If the determination of whether a “start-of-trace”
condition exists at block 230 is that the start-of-trace con
dition is met, then, if a counter for the target does not exist,
one is created or if a counter for the target does exist, that
that counter is incremented in block 235.

0049. If the counter value for the branch target does not
exceed the hot threshold in block 240, then control re-enters
the basic interpreter State and interpretation continues at
block 210.

0050. If the counter value does exceed a hot threshold
240, then this branch target is the beginning of what will be
deemed to be a hot trace. At this point, that counter value is
no longer needed, and that counter can be recycled (alter
natively, the counter Storage could be reclaimed for use for
other purposes). This is an advantage over profiling Schemes
that involve instrumenting the binary.
0051 Because the profile data that is being collected by
the start-of-trace counters is consumed on the fly (as the
program to be translated is being executed), these counters
can be recycled when its information is no longer needed; in
particular, once a start-of-trace counter has become hot and
has been used to Select a trace for Storage in the cache, that
counter can be recycled. The illustrative embodiment
includes a fixed size table of Start-of-trace counters. The
table is associative-each counter can be accessed by means
of the Start-of-trace address for which the counter is count
ing. When a counter for a particular Start-of-trace is to be
recycled, that entry in the table is added to a free list, or
otherwise marked as free.

0.052 The lower the threshold in block 240, the less time
is spent in the interpreter, and the greater the number of
Start-of-traces that potentially get hot. This results in a
greater number of traces being generated into the code cache
(and the more speculative the choice of hot traces), which in
turn can increase the pressure on the code cache resources,
and hence the overhead of managing the code cache. On the
other hand, the higher the threshold, the greater the inter
pretive overhead (e.g., allocating and incrementing counters
associated with start-of-traces). Thus the choice of threshold
has to balance these two forces. It also depends on the actual
interpretive and code cache management overheads in the
particular implementation. In our specific implementation,
where the interpreter was written as a Software fetch
decode-eval loop in C, a threshold of 50 was chosen as the
best compromise.

US 2002/0066081 A1

0.053 If the counter value does exceed the hot threshold
in block 240, then, as indicated above, the address corre
sponding to that counter will be deemed to be the Start of a
hot trace and the execution of the program being executed is
temporarily halted. At the time the trace is identified as hot,
the extent of the trace remains to be determined (by the trace
selector described below). Also, note that the selection of the
trace as 'hot' is speculative, in that only the initial block of
the trace has actually been measured to be hot.
0054) Referring now to FIG. 3, there is shown a flow
diagram for a program and method for growing a hot trace,
which method may be used during this halt in the execution
of the program being translated, or alternatively, during
program runtime. The intent of the invention is to extend the
ideal of caching to speed up emulators by using much larger
and non-consecutive code regions in the cache for transla
tion. In accordance with the present invention, when creat
ing a hot trace, the emulator or dynamic translator Speculates
on the future outcome of branches using Static branch
prediction rules. By the term “static branch prediction” is
meant that the program text is inspected and used to make
branch predictions, but dynamic information Such as runt
ime execution histories, are not used to make predictions.
Accordingly, only the program code is inspected in order to
implement the present invention. It should be noted that the
terms “control” and “execution control” during this tempo
rary halt period mean execution of the trace Selector pro
gram, and not the program being translated. The benefits of
this scheme depend on how well future branch behavior is
predicted. Each hot trace to be stored in the cache Starts at
the target of a branch and extends acroSS Several basic
blocks. A list of instructions or basic blocks to be added to
the hot trace is constructed based on Statically predicted
branch outcomes. The list is grown in up to K Steps. During
each Step the terminating branch of the basic block that was
last collected for the hot trace is inspected. Depending on the
nature of the branch, a prediction is made to determine the
branch outcome and the corresponding Successor block
instruction or block in the trace. The trace growing proceSS
terminates after K Steps, or if a branch is encountered for
which no prediction rules apply. There are two types of
branch prediction rules: rules for predicting the outcome of
direct branches and rules for predicting the target of indirect
branches. The rules for direct branches are either local or
global direct prediction rules.
0.055 Alocal direct branch prediction rule considers each
branch in isolation and arrives at a prediction Solely based on
the condition code and operands of the branch. For example,
See Ball and Larus, “Branch Prediction for Free', Proceed
ings of the 1993 ACM SIGPLANC Conference on Program
ming Language Design and Implementation. Note that most
programs use branches that test whether a value is less than
Zero to identify error conditions, which is an unlikely event.
The corresponding prediction rule is to predict every branch
that tests whether a value is less than Zero as Not Taken.
Unconditional direct branches are always predicted as taken.
0056 Global direct branch prediction rules take branch
correlation into account. Thus, a branch prediction is made
based on the branches that have previously been inspected,
i.e., a Semantic correlation exists among branch outcomes.
For example, if the outcome of one branch implies the
outcome of a later branch, then this is a Semantic correlation.
By way of example, consider a branch that tests whether the

May 30, 2002

value in a register is less than Zero and assume that this
branch was predicted as Not Taken. Assume that the next
branch encountered along the fall-through Successor (the
target Not Taken) is a branch that tests whether the same
register value is greater than or equal to Zero. Clearly this
later branch must be Taken in view of the previous predic
tion that the register value is not less than Zero. Accordingly,
it can be seen that with global direct branches, the outcome
can be predicted Simply by looking at the predicted out
comes of earlier branches.

0057. In contrast, indirect branches have targets that
cannot be immediately predicted by decoding the branch
condition. By way of example, an indirect branch instruction
might jump to a location given by the value in register A.
Since the value in register A can be different for each
different execution, the target for this branch cannot be
immediately predicted. Thus, indirect branch targets are not
predicted unless they represent procedure returns that can be
inlined. The inline rule assumes a calling convention using
a branch and link instruction, wherein a dedicated register
called the link register is used as a return pointer for the
procedure. If the procedure calls and returns do not follow
the assumed calling convention, inlining opportunities will
be missed, but the generated translation will Still be correct
and valid.

0058. In order to inline, because the program being
translated is temporarily halted So that the contents of the
link register cannot be read, it is necessary to walk back
through the code in the hot trace until the link and return
instruction is encountered that is associated with the par
ticular return instruction of interest. Note that in most
Situations, the return address, i.e., link point, will be the next
instruction contiguously following the associated branch
and link instruction. It is also necessary to determine the
validity of the return address, because it is possible that one
of the instructions following the link and return instruction
changes the value held in the link register. Accordingly, the
validity of the return address can be ensured by checking/
inspecting the instructions during the backwards pass/walk
back through the hot trace instruction during the Search for
the associated branch and link instruction. If this inspection
identifies an instruction that modifies the contents of the link
register, then the return address in the link register is invalid
and the hot trace growing program is terminated.
0059. In accordance with a further aspect of the present
invention, to Speed the inlining of procedure calls and
returns, a return address Stack in the trace growing program
is provided. Each time a procedure call/branch and link is
encountered during the trace Selection and the return address
Stack is not empty, the corresponding return address to jump
to once the execution of the procedure is completed is
pushed onto the return address Stack. The use of a return
address Stack is an optimization to avoid the need to walk
back through the code in the hot trace. AS noted above, in
most situations, the return address/link point will be the next
instruction contiguously following the branch and link
instruction. When an indirect branch that represents a pro
cedure return is encountered, the indirect branch target is
determined by Simply popping the return address from the
return address stack. The validity of the return address is
ensured by checking/inspecting the instructions that follow
the branch and link instruction up to the corresponding
return instruction in order to determine whether any of these

US 2002/0066081 A1

inspected instructions modifies the contents of the link
register. This inspection takes place during a forward pass
through the instructions following the branch and link
instruction during the trace growing program. If this inspec
tion identifies an instruction that modifies the contents of the
link register, then this return address Stack is invalidated.
Otherwise, the value in the return address stack is valid.

0060 Referring more specifically to FIG. 3, the starting
address for the hot trace which has been identified in block
240 (shown in FIG. 2), is applied via line 241 to block 300.
Note that this starting address is designated as Next. The
block 300 causes the execution to add this Next address to
the hot trace being constructed in a buffer. The next Step in
the trace Selection execution is to determine whether the hot
trace being constructed in the buffer is of a length which is
greater than Kand to also determine whether the confidence
counter has reached N. K represents a predetermined num
ber of instructions which is set in order to prevent errors
Such as unlimited growth in the trace which, for example,
can result from unfolding loops. The confidence counter
determination will be discussed during a later execution
Step. If the hot trace has a length greater than K or the
confidence counter has reached N, then the execution ter
minates the hot trace creation and the output of the hot trace
instructions are applied on line 251 to the optimize native
instruction trace block 255 in FIG. 2. If the hot trace is not
of a length greater than K or the confidence counter has not
reached N, then the execution moves to block 302.

0061 Block 302 is a decision step to determine if this
Next instruction is a branch instruction. If the Next instruc
tion is not a branch instruction, then Next is made equal to
the next contiguous instruction address following the current
Next instruction address in block 304. This new Next
instruction address is added to the hot trace in block 300 and
the procedure begins again. Alternatively, if the Next
instruction is a branch instruction, then the execution moves
to block 306.

0062) Block 306 is a decision block which determines if
the branch instruction is an unconditional direct branch. If
the branch instruction is an unconditional direct branch, then
the execution moves to block 308 which determines that the
branch is TAKEN and the Next is set equal to the target
address for this unconditional branch instruction. This new
Next instruction is then moved to the execution block 300
and is added to the hot trace in the buffer. Alternatively, if the
branch instruction is conditional, then the execution moves
to block 310.

0063 Block 310 is a decision block which determines
whether the condition of the branch instruction can be
Symbolically evaluated. By way of example, is the condition
evaluated directly or by implication by an earlier instruction.
For example, if a previous branch had tested whether a given
register value is less than Zero and that was predicted as Not
Taken, then for a condition of whether the same register
value is greater than or equal to Zero, that condition can now
be symbolically evaluated and the branch determined as
Taken. If it is determined in block 310 that the condition of
the branch can be Symbolically evaluated, then the execution
moves to block 312 wherein the symbolic evaluation is
determined. Then the trace Selection program execution
moves to decision block 314 to determine whether the
symbolic evaluation yielded information that the branch is

May 30, 2002

Taken. If the branch is Taken, then the execution moves to
block 308 and the branch is predicted as Taken, Next is set
equal to the branch target address, and the execution moves
to block 300 where the new Next is added to the hot trace
in the buffer. Alternatively, if the decision in block 314 is
that the branch is Not Taken, then the execution moves to
block 318.

0064. Block 318 predicts that the branch is Not Taken and
Next is Set equal to the next instruction address contiguously
following the branch instruction under consideration. This
new Next is then applied to block 300 where it is added to
the hot trace in the buffer and the cycle begins again.
0065 Referring again to block 310, if it is determined
that the branch instruction cannot be Symbolically evaluated,
then the execution moves to block 320. This decision block
320 determines whether a heuristic rule can be applied to the
branch. Heuristic rules apply to conditional direct branch
instructions. All heuristic rules are local and Static, that is,
only the branch instruction itself is inspected and no addi
tional information is used to make the prediction. Examples
of heuristic rules are as follows:

0066 Comparison against Zero: if the branch con
dition compares a register value against Zero, then
predict the branch as Not Taken;

0067 Forward Branch Rule: if the branch target is
nearby, that is for example, within the next six
instructions forward, predict the branch as Not
Taken;

ulatW eSt. If the branch COndition COm 0068 Equality Test: if the branch diti
pares two registers for equality predict the branch as
Not Taken;

0069. Inequality Test: if the branch condition com
pares two registers for inequality predict the branch
as Taken.

0070 If a heuristic rule can be applied to the branch, then
the execution moves to block 322 wherein a confidence
counter is changed. Note that the confidence counter may be
incremented by various values including “1”. The purpose of
this confidence counter is to indicate how many predictions
have been made for heuristic branch conditions. When the
number of predictions for heuristic branches reaches N, then
it is preferred that the hot trace be ended, based on the
assumption that when the number of heuristic branch pre
dictions reaches N, then the confidence level in the predic
tions begins to drop Significantly.

0071. The execution then moves from block 322 to block
318, wherein it is predicted that the branch is Not Taken and
Next is Set equal to the next contiguous instruction following
the branch instruction address. The execution then moves to
the block 300 wherein this new Next is added to the hot trace
in the buffer. Note that the count in the Confidence Counter
is tested in the decision block 302, as previously noted.
0072. Note that a generic confidence counter may be
utilized that is incremented or decremented by an amount for
each, or for only a predetermined Set, of branch predictions
made, and/or it may be incremented using a function that
depends on the current branch prediction rule and one or
more previously applied branch prediction rules. This
generic confidence counter may be incremented or decre
mented by different amounts, depending on the branch

US 2002/0066081 A1

prediction rule, with the amounts reflecting the degree of
risk/uncertainty associated with the branch prediction made
according to that rule.
0073) If it is determined in block 320 that a heuristic rule
cannot be applied to the branch instruction, then the execu
tion moves to block 324. This decision block 324 determines
whether this branch instruction is a procedure return. If it is
determined that this branch instruction is a procedure return,
then the trace Selection program execution moves to block
326 wherein it is determined whether there is a correspond
ing branch and link instruction associated with the return on
the hot trace. If the determination is that there is no corre
sponding branch and link instruction, then the execution
terminates the creation of the hot trace and the execution
moves to block 255. Alternatively, if block 326 determines
that there has been a corresponding branch and link instruc
tion, then the execution moves to block 328. Note that Such
a branch and link instruction would be indicated in the
preferred embodiment, by the presence of a value in the
return stack. Block 328 determines whether the link register
asSociated with the branch and link instruction has been
modified Since the branch and link instruction. In this regard,
the instructions in the hot trace between the branch and link
instruction and the return instruction are inspected by Step
ping backwards through the instructions from the branch
that is a procedure return to the branch and link instruction
that is associated with this procedure return to determine
whether any instructions in this interim group of instructions
causes the link register associated with this branch and link
instruction to be modified. Alternatively, in the preferred
embodiment, the validation could be performed after push
ing the return value onto the return Stack and inspecting the
instructions between the branch and link instruction and the
return instruction in a forward pass. If the link register
containing the return point address has not been modified
Since the branch and link instruction, then the execution
moves to block 330 wherein Next is set equal to the address
of the instruction set forth in the link register. The execution
then moves to block 300 wherein this new Next instruction
is added to the hot trace in the buffer and the cycle begins
again.

0074 Alternatively, if it is determined in block 328 that
the link register has been modified Since the associated
branch and link instruction, then the execution terminates
the creation of the hot trace and the execution moves to
block 255 in FG, 2.

0075). If it is determined in block 324 that the branch
instruction is not a procedure return, then the execution
terminates the creation of the hot trace and the execution
moves to block 255 in FIG. 2.

0.076 It should be noted that after a list of instructions in
the hot trace has been constructed, a trace translation is
obtained by translating each instruction. The predicted
branches are adjusted to follow the direction of the trace as
follows: (1) direct unconditional branches are simply elimi
nated; (2) direct conditional branches that are predicted
Taken, are translated by inverting the Sense of the branch
condition and updating the new target as the original fall
through address; and (3) indirect branches Such as a proce
dure that has a predicted return point can be eliminated.
0077. It should be noted that the present description of
FIG. 3 has been made in the context of instructions. How

May 30, 2002

ever, it should be understood by one of ordinary skill in the
art that this description can be viewed in terms of basic
blocks, with each basic block of instructions ending with a
branch instruction.

0078. The present invention significantly speeds up emu
lation by improving execution time of the translated code,
rather than by reducing emulation overhead. By predicting
and fetching Sequences of instructions/basic blocks, the
predicted blocks do not have to become hot individually
before being placed into the cache. Thus, profiling overhead
can be reduced compared with a block based caching
Scheme. Importantly, no additional profiling information is
needed in order to Select the traces Since trace Selection is
based entirely on Static prediction rules.
0079 Independent of the prediction based static selection
mechanism, translating larger traces rather than Single basic
blockS opens up three important performance advantages.
First, the blocks that constitute a hot region are likely to be
contained in the same traces, thereby improving the code
locality in the translation cache.
0080 Second, translating traces across basic block
boundaries leads to a new layout of the code. By re-laying
out branches in the translation cache, the translation predic
tion Scheme offers the opportunity to improve the branching
behavior of the executing program compared to a block
based caching translator, and even compared to the original
binary. When considering only basic blocks, a block does
not have a fall-through Successor, So that each block termi
nates with two branches and exactly one of them will take.
When considering hot traces constructed in accordance with
the present invention, each internal block in the hot trace has
a fall-through Successor and a branch is only taken when
exiting the trace. Moreover, if a procedure call had been
inlined, call and return branches entirely disappear within
the trace. Thus, the trace prediction Scheme will always lead
to fewer branches being executed compared to a block based
translation Scheme, in the presence of call and return inlin
ing, and possibly even compared to the original binary.
Depending on the quality of the predictions, execution will
follow more or less the direction of the hot traces. Thus, the
prediction Scheme may also lead to fewer branches being
taken, which, depending on the underlying platform, may be
an additional performance advantage.
0081. The third advantage of using sequences of basic
blocks created in the hot trace of the present invention is that
optimization opportunities are exposed that only arise acroSS
basic block boundaries and are thus not available to the basic
block translator. Procedure call and return inlining is an
example of Such an optimization. Other optimization oppor
tunities arising from the use of a dynamic translator using
the hot trace creation of the present invention include
classical compiler optimizations Such as redundant load
removal. These trace optimizations provide a further per
formance boost to the emulator.

0082 The limit K on the number of instructions in a trace
is chose to avoid excessively long traces. In the illustrative
embodiment, this is 1024 instructions, which allows a con
ditional branch on the trace to reach its extremities (this
follows from the number of displacement bits in the condi
tional branch instruction on the PA-RISC processor, on
which the illustrative embodiment is implemented).
0083. The illustrative embodiment of the present inven
tion is implemented as Software running on a general

US 2002/0066081 A1

purpose computer, and the present invention is particularly
Suited to Software implementation. Special purpose hard
ware can also be useful in connection with the invention (for
example, a hardware interpreter, hardware that facilitates
collection of profiling data, or cache hardware).
0084. The foregoing has described a specific embodiment
of the invention. Additional variations will be apparent to
those skilled in the art. For example, although the invention
has been described in the context of a dynamic translator, it
can also be used in other Systems that employ interpreters or
just-in-time compilers (JITs). Further, the invention could be
employed in other Systems that emulate any non-native
System, Such as a simulator. Thus, the invention is not
limited to the Specific details and illustrative example shown
and described in this Specification. Rather, it is the object of
the appended claims to cover all Such variations and modi
fications as come within the true Spirit and Scope of the
invention.

We claim:
1. A method for growing a hot trace in a program during

the program's execution in a dynamic translator, comprising
the Steps of:

identifying an initial block, and
Starting with the initial block, growing the trace block

by-block by applying Static branch prediction rules
until an end-of-trace condition is reached.

2. A method for growing a hot trace in a program during
the program's execution in a dynamic translator, comprising
the Steps of:

identifying an initial block as the first block in a trace to
be selected;

until an end-of-trace condition is reached, applying Static
branch prediction rules to the terminating branch of a
last block in the trace to identify a next block to be
added to the Selected trace, and

adding the identified next block to the Selected trace.
3. The method as defined in claim 2, in further comprising

the Step of Storing the Selected traces in a code cache.
4. The method of claim 2, in which the end-of-trace

condition includes at least one of the following conditions:
(1) no prediction rule applies; (2) a total number of

instructions in the trace exceeds a predetermined limit;
(3) cumulative estimated prediction accuracy has
dropped below a predetermined threshold.

5. The method as defined in claim 2, in which the
prediction rules include both rules for predicting the out
comes of branch conditions and for predicting the targets of
branches.

6. The method as defined in claim 2, in which an initial
block is identified by maintaining execution counts for
targets of branches and when an execution count exceeds a
threshold, identifying as an initial block, the block that
begins at the target of that branch and extends to the next
branch.

7. The method claim 2, wherein said set of prediction
rules comprises:

for the branch instruction, determining whether to add a
target instruction of the branch instruction to the hot
trace based on Said Set of Static branch prediction rules.

May 30, 2002

8. The method as defined in claim 7, wherein said set of
Static branch prediction rules comprises:

determining if Said branch instruction is unconditional;
and

if said branch instruction is unconditional, then adding the
target instruction of the branch instruction and follow
ing instructions through the next branch instruction to
the hot trace.

9. The method as defined in claim 7, wherein said set of
Static rules comprises:

determining if a target instruction of Said branch instruc
tion can be determined by Symbolically evaluating a
branch condition of Said branch instruction; and

if Said target instruction of Said branch instruction can be
determined Symbolically, then adding the target
instruction and following instructions through the next
branch instruction to the hot trace.

10. The method as defined in claim 7, wherein said set of
Static rules comprises:

determining if a heuristic rule can be applied to Said
branch instruction; and

if a heuristic rule can be applied to Said branch instruction,
then the branch instruction is determined to be Not
Taken.

11. The method as defined in claim 9, wherein said set of
Static branch prediction rules comprises:

determining if a heuristic rule can be applied to said
branch instruction; and

if a heuristic rule can be applied to Said branch instruction,
then the branch instruction is determined to be Not
Taken.

12. The method as defined in claim 10, further comprising
the Step of changing a count in a confidence counter if Said
heuristic rule can be applied to the branch instruction; and
determining whether said confidence counter has reached a
threshold level.

13. The method as defined in claim 7, wherein said set of
Static rules comprises:

determining whether Said branch instruction is a proce
dure return; and

if Said branch instruction is a procedure return, then
determining if there has been a corresponding branch
and link instruction on Said hot trace;

if there has been a corresponding branch and link instruc
tion, then determining if there is an instruction in the
hot trace between said corresponding branch and link
instruction and the procedure return that modifies a
value in a link register associated with the correspond
ing branch and link instruction; and

if there is no instruction that modifies the value in said
link register between Said corresponding branch and
link instruction and the procedure return, then adding
an address of a link point and following instructions up
through a next branch instruction to the hot trace.

14. The method as defined in claim 11, wherein said set
of Static rules comprises:

determining whether Said branch instruction is a proce
dure return; and

US 2002/0066081 A1

if Said branch instruction is a procedure return, then
determining if there has been a corresponding branch
and link instruction on Said hot trace; and

if there has been a corresponding branch and link instruc
tion, then determining if there is an instruction in the
hot trace between Said corresponding branch and link
instruction and the procedure return that modifies a
value in a link register associated with the correspond
ing branch and link instruction; and

if there is no instruction that modifies the value in said
link register between Said corresponding branch and
link instruction and the procedure return, then adding
an address of a link point and following instructions up
through the next branch instruction to the hot trace.

15. The method of claim 13, further comprising the steps:
Storing a return address in a program Stack;
wherein Said Step of determining if there is an instruction

that modifies the value in the link register comprises
forward monitoring hot trace instructions between the
corresponding branch and link instruction and the
return for instructions that change a value in a link
register associated with Said corresponding branch and
link instruction.

16. The method of claim 2, further comprising a confi
dence count that is incremented or decremented by a pre
determined amount based on which Static branch prediction
rule has been applied; and

if Said confidence count has reached a Second threshold
level, ending the growing of the hot trace.

17. The method of claim 2, wherein said identifying an
initial block Step comprises associating a different count
with each different target instruction in a Selected Set of
target instructions and incrementing or decrementing that
count each time its associated target instruction is executed;
and

identifying Said target instruction as the beginning of Said
initial block if the count associated there with exceeds a
hot threshold.

May 30, 2002

18. The method of claim 17, wherein said selected set of
target instructions includes target instructions of backwards
taken branches and target instructions from an exit branch
from a trace in a code cache.

19. The method of claim 2, wherein the end-of-trace
condition comprises when a total number of instructions in
the trace exceeds a predetermined limit.

20. A dynamic translator for growing a hot trace in a
program during the program's execution in a dynamic
translator, comprising:

first logic for identifying an initial block as the first block
in a trace to be Selected;

Second logic for, until an end-of-trace condition is
reached, applying Static branch prediction rules to the
terminating branch of the last block in the trace to
identify a next block to be added to the selected trace;
and

third logic for adding the identified next block to the
Selected trace.

21. A computer program product, comprising:

a computer usable medium having computer readable
program code embodied therein for growing a hot trace
in a program during the program's execution in a
dynamic translator, comprising

first code for identifying an initial block as the first block
in a trace to be Selected;

Second code for, until an end-of-trace condition is
reached, applying Static branch prediction rules to the
terminating branch of the last block in the trace to
identify a next block to be added to the selected trace;
and

third code for adding the identified next block to the
Selected trace.

