
(19) United States
US 2012013 1001A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0131001 A1
BORDEN et al. (43) Pub. Date: May 24, 2012

(54) METHODS AND COMPUTER PROGRAM
PRODUCTS FOR GENERATING SEARCH
RESULTS USING FILE IDENTICALITY

Bruce BORDEN, Los Altos, CA
(US); Russell Brand, Redwood
City, CA (US)

(75) Inventors:

(73) Assignee: Carmenso Data Limited Liability
Company, Dover, DE (US)

(21) Appl. No.: 13/362,891

(22) Filed: Jan. 31, 2012

Related U.S. Application Data

(60) Division of application No. 1 1/783.272, filed on Apr.
6, 2007, which is a continuation-in-part of application
No. 10/443,006, filed on May 22, 2003, now Pat. No.
7,203,711.

Administrative
Controller

File Adminsitration
Interface

Indexing Engine

User
Interface

Information
Entryway

(60) Provisional application No. 60/857,188, filed on Nov.
7, 2006.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl. 707/723; 707/E17.014
(57) ABSTRACT

A method and computer program product for generating pri
oritized search results using file identicality are provided.
Content signatures may facilitate searches for files based on
search requests or specific signatures. A user enters a search
request, which is received at an indexed archive system. All of
the files in the indexed archive system are searched for any
files that include the search request or its equivalent, and a list
is then generated of the files that are identified in the search.
The indexed archive system determines the content signa
tures for each file identified, as well as statistics for the files
identified. These statistics are used to prioritize the list of
identified files. The prioritized list is then returned to the user.

To Users -/

Coupled to
Repositories

To
File Gathering Network or

Interface

Indexing
Repository

Metadata
Repository

Patent Application Publication May 24, 2012 Sheet 1 of 34 US 2012/013 1001 A1

170

Client

Indexed Archive
System

FIG. 1

Patent Application Publication May 24, 2012 Sheet 2 of 34 US 2012/013 1001 A1

110

Indexing Search
Engine Storage Device Back-up System

FIG. 2

Patent Application Publication May 24, 2012 Sheet 3 of 34 US 2012/013 1001 A1

110

TO USerS -

Administrative USer Search
Controller Interface Engine

Coupled to
Repositories

Information SOUrCe
MOcification
COntroller

Information To NetWork
Entryway

Indexing Metadata Content
Engine Engine Engine

Indexing Metadata Content
Repository Repository Repository

FIG. 3

Patent Application Publication May 24, 2012 Sheet 4 of 34 US 2012/013 1001 A1

4 O

170

405
160

150

Client
405

140

440

420 430

405

Indexed Archive Storage Legacy
Device Back-up System System

450

FIG. 4

Patent Application Publication May 24, 2012 Sheet 5 of 34 US 2012/013 1001 A1

430

To Users -

Administrative User
Controller Interface

Coupled to
Repositories

TO
File Adminsitration Information File Gathering Network or

Interface Entryway Interface

Metadata
Engine Indexing Engine

Indexing Metadata
Repository Repository

FIG. 5

Patent Application Publication May 24, 2012 Sheet 6 of 34 US 2012/013 1001 A1

120

Collection Modification
Agent Agent

Agent Controller

FIG. 6

Patent Application Publication May 24, 2012 Sheet 7 of 34 US 2012/013 1001 A1

610

Screening Indexing Activity
Element Interface Monitor

740

Controller

FIG. 7

Patent Application Publication May 24, 2012 Sheet 8 of 34 US 2012/013 1001 A1

810

Back-up files located on information sources

Index the Contents of files and metadata

Store file Content, metadata, file Content index,
and metadata index

FIG. 8

Patent Application Publication May 24, 2012 Sheet 9 of 34

Receive a file

Generate a file Content index

Extract metadata for file

Generate metadata index

Store the received file
COntent

Store the file Content index

Store metadata indeX

Store the metadata

FIG. 9

9 7 O

910

920

930

935

940

950

955

960

US 2012/013 1001 A1

Patent Application Publication May 24, 2012 Sheet 10 of 34

Intercept file information from a
file being stored by a legacy

back-up system

Generate a file Content indeX

Extract metadata for file

Generate metadata index

Store a pointer to location of
intercepted file

Store the file Content index

Store metadata index

Store the metadata

END

FIG. 10

1070

1010

1020

1030

1035

1040

1050

1055

1060

US 2012/013 1001 A1

Patent Application Publication May 24, 2012 Sheet 11 of 34 US 2012/013 1001 A1

1100

1105
Receive a file

1110
Generate a file Content indeX

Compare file Content index to 1115
file Content indexes of stored

files

Does similarity
between file Content index and at
least One stored file Content indeX

exceed threshold

1125
Compare differences between

file and closest matches

1130

Determine closest match to file

FIG. 11A

Patent Application Publication May 24, 2012 Sheet 12 of 34 US 2012/013 1001 A1

1100

1135
Create delta file of differences between file and

closest match

1140
Update file identifier for both files to account for

delta

1145

Store delta file

1150
Store received file

COntent

1155
Store file Content index

1160

END

FIG. 11B

Patent Application Publication May 24, 2012 Sheet 13 of 34 US 2012/013 1001 A1

1205

Receive a file

Generate a file Content index

1210

Compare file content index to 1215
file COntent indexes of Stored

files

1220

Does similarity
between file Content index and at
least one stored file Content index

eXCeed threshold

NO

YES
1225

Compare differences between
file and closest matches

1230
Determine ClOSest match to file

(B) (A)

FIG. 12A

Patent Application Publication May 24, 2012 Sheet 14 of 34 US 2012/013 1001 A1

1200

1235

Create delta file of
differences betWen file
and closest match

A 1240
Update file identifier for
closes match to account

for delta

1245

Has
system reached

Storage
threshold

1265
Store delta file/1

NO

Store delta file

Store received file
COntent

Store file Content index

1270

FIG. 12B

Patent Application Publication May 24, 2012 Sheet 15 of 34 US 2012/013 1001 A1

1300

1305

Receive a file

1310
Generate a file Content index

Compare file content index to 1315
file Content indexes of stored

files

Does similarity
between file Content indeX and at

least One stored file Content
indexes exceed threshold

1325
Compare differences between

file and closest matches

1330
Determine Closest match to file

FIG. 13A

Patent Application Publication May 24, 2012 Sheet 16 of 34 US 2012/013 1001 A1

Determine Whether
previously received

versions of received file
Were indexed?

Store links to map
versions

FIG. 13B

Patent Application Publication May 24, 2012 Sheet 17 of 34 US 2012/013 1001 A1

1400

Content Engine

Content Signature Content Signature
Comparator Generator Content Repository

FIG. 14

Patent Application Publication

Administrative
Controller

Information Source
Modification
Controller

Indexing Engine

Indexing
Repository

May 24, 2012 Sheet 18 of 34

To Users

User
Interface

Information
Entryway

Metadata
Engine

Metadata
Repository

FIG. 15

1500

Search
Engine

US 2012/013 1001 A1

Coupled to
Repositories

TO NetWOrk

Applications
Module

Applications
Registries

Content
Engine

Content
Repository

1430

Content
Signature
Generator

Content
Signature
Comperator

142O
1440

Patent Application Publication May 24, 2012 Sheet 19 of 34 US 2012/013 1001 A1

1600

Collection Agent

Content Signature Applications Application
Generator Module Registries

Screening Indexing Activity
Element Interface Monitor

Controller

Modification Agent

630

Agent Controller

FIG. 16

Patent Application Publication May 24, 2012 Sheet 20 of 34 US 2012/013 1001 A1

1700

1710

Receive a file

1720
Generate a file Content

signature

Compare received file content 1730
signature to existing content

signatures

Does
received file Content
signature exist? NO Yes

Associate received file 1760
metadata with existing

content signature

Store received file
metadata

Store received file
content signature,

metadata and Content
1770

FIG. 17

Patent Application Publication May 24, 2012 Sheet 21 of 34 US 2012/013 1001 A1

1810

Receive a multi-segmented file

Generate content signatures 1820
for files within multi-segmented

file

Compare received file content 1830
signatures for each file within
multi-segmented file to existing

content signatures

content signatures for
NO multi-segmented file

ASSOciate files Within multi- 1860
Store received multi-segmented segmented file with
File content, content signatures existing Content signature
for each file and metadata for

Store metadata for multi
segmented file

multi-segmented file 1870

FIG. 18

Patent Application Publication May 24, 2012 Sheet 22 of 34 US 2012/013 1001 A1

Receive a file

Generate file content signature

Compare received file content
signature to existing Content

signatures

received file Content
signature match Content

ignature on Copyrigh

Increment copy Count for
content signature

Does Copy
Count exceed number of

permitted copies

Initiate Control action

FIG. 19

Patent Application Publication May 24, 2012 Sheet 23 of 34 US 2012/013 1001 A1

Receive a file to be removed

Generate file content Signature
for file to be removed

Compare file Content signature
for file to be removed to

existing content signatures

file content signature
of file to be removed
atch a stored Conte

signature ?

ldentify all information source
clients. Where file exists

Send delete instructions to
information Source clients

Generate deletion report

FIG. 20

Patent Application Publication May 24, 2012 Sheet 24 of 34 US 2012/013 1001 A1

2100

Receive file to be blocked

Generate file content Signature
for file to be blocked

Compare file content signature
for file to be blocked to existing

Content signatures

file content signature
of file to be blocked
atch a stored COnte

signature ?

ldentify all information source
agents where file exists

Send block instructions to
Information source agents

Where file exists

FIG. 21

Patent Application Publication May 24, 2012 Sheet 25 of 34 US 2012/013 1001 A1

22OO

Establish registry of
COnfidential document COntent

signatures

Enroll registry participants

Transmit Content signatures
from registry participants

Compare Content signatures
from participants to content
signatures in confidential

document registry

file content signature
from participant device match

a Confidential Content
signature ?

Take Control action

FIG. 22

Patent Application Publication May 24, 2012 Sheet 26 of 34 US 2012/013 1001 A1

230

2310
Determine information Source

client group of interest

Generate content signature 2320
summary for each information

Source client

Determine commonality of 2330
Content signatures acroSS

clients

ldentify outlier files

Take Control action

2360

2340

2350

FIG. 23

Patent Application Publication May 24, 2012 Sheet 27 of 34 US 2012/013 1001 A1

2400

2410
Determine information Source

client group of interest

ldentify content signatures 2420
having a particular

characteristic

Take Control action

2460

2430

FIG. 24

Patent Application Publication May 24, 2012 Sheet 28 of 34 US 2012/013 1001 A1

2510

Receive search request

2520
Conduct search

Generate Content signatures 25.30
for all or most significant

documents in Search results

Determine usage and change
statistics for documents

Prioritize search results based
on usage and change statistics

Prioritize search results based
on usage and change statistics

2560

2540

2550

2550

FIG. 25

Patent Application Publication May 24, 2012 Sheet 29 of 34 US 2012/013 1001 A1

2600

2610

Receive file under investigation

2620 Generate content signature for
file under investigation

ldentify information source 2630
clients that possess file under

investigation

2640 ldentify all information source
clients that formerly contained

file under investigation

Generate document
investigation report

2660

2650

FIG. 26

Patent Application Publication May 24, 2012 Sheet 30 of 34

Receive file to be Watched

Generate content signature for
file to be Watched

Add content signature of file to
be Watched to Watch file

registry

When receive new Content
signature Compare new content

signature against Content
signature watch list

When match OCCurs between
new content signature and
signature on watch list, take

Control action

FIG. 27

US 2012/013 1001 A1

2700

Patent Application Publication May 24, 2012 Sheet 31 of 34 US 2012/013 1001 A1

2800

Review new version of file

ASSOCiate new version of file
with existing content signature

ldentify all information source
clients that had existing content

signature

Notify all users that new
version of previous file having
existing Content signature is

available

FIG. 28

Patent Application Publication May 24, 2012 Sheet 32 of 34 US 2012/013 1001 A1

2900

2910

Request Web Page

Receive a set of Content 2920
signatures associated with web

page

Compare Web page Content 2930
signatures to existing content

signatures

2940 Fetch links for Content
signatures that currently do not

exist

2950

FIG. 29

Patent Application Publication

No

Receive a file

Generate file content signature

Compare received file content
signature to existing Content

Signatures

Does received file
content signature

exists?

Was received
file newly created?

Initiate Control action

FIG. 30

May 24, 2012 Sheet 33 of 34 US 2012/013 1001 A1

OOO

Patent Application Publication May 24, 2012 Sheet 34 of 34 US 2012/013 1001 A1

31 OO 1.

3110

PrOCeSSOr

3130

3140

3120

Secondary Memory

Network Hard Disk Drive
Interface

Removable Removable
Storage Drive Storage Unit

Input/Output
Devices

FIG. 31

US 2012/013 1001 A1

METHODS AND COMPUTER PROGRAM
PRODUCTS FOR GENERATING SEARCH
RESULTS USING FILE IDENTICALITY

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a divisional of U.S. application
Ser. No. 11/783.272 filed on Apr. 6, 2007, which is a continu
ation-in-part of U.S. patent application Ser. No. 10/443,006
filed on May 22, 2003, now U.S. Pat. No. 7,203,711, which
are both incorporated by reference herein in their entireties.
0002 U.S. application Ser. No. 1 1/783.272 also claims the
benefit under 35 U.S.C. S 119(e) to U.S. Provisional Patent
Application No. 60/857,188 filed on Nov. 7, 2006, which is
incorporated by reference herein in its entirety.

BACKGROUND OF THE INVENTION

0003 1. Field of the Invention
0004. The invention relates to distributed content storage
and management, and more particularly, to content signatures
for back-up and management of files located on electronic
information sources.
0005 2. Background of the Invention
0006 Distributed content storage and management pre
sents a significant challenge for all types of businesses—
Small and large, service and products-oriented, technical and
non-technical. As the Information Age emerges, the need to
be able to efficiently manage distributed content has
increased, and will continue to increase. Distributed content
refers to files that are distributed throughout electronic
devices within an organization. For example, an organization
may have a local area network with twenty desktop comput
ers connected to the network. Each of the desktop computers
will contain files program files, data files, and other types of
files. The business may also have users with personal digital
assistants (PDAs) and/or laptops that contain files. These files
collectively represent the distributed content of the organiza
tion.
0007 Essentially, two disparate approaches to distributed
content storage and management have emerged. One
approach relates to backing-up files, principally for the pur
pose of being able to restore files if a network or computer
crashes. Under the back-up approach, the focus is on preserv
ing the data by copying data and getting the data “far away.”
from its original location, so that it can not be accidentally or
maliciously destroyed or damaged. Generally, this has meant
that back-up files are stored on tape or otherforms of detached
storage devices, preferably in a separate physical location
from the original source of the file. Given the desire to keep
the data safe or “far away, file organization is by file name or
Volume where the data is stored, and accessing or retrieving
files stored in a back-up system is often slow or difficult—and
in Some cases, practically impossible. Furthermore, because
the backed-up files are not regularly accessed or used, when a
back-up system does fail, often no one will notice and data
can potentially be lost.
0008. The other approach to distributed content manage
ment relates to content management of files. The content
management approach is focused on controlling the creation,
access and modification of a limited set of pre-determined
files or groups of files. For example, one approach to content
management may involve crude indexing and recording
information about user created document files, such as files

May 24, 2012

created with Microsoft Word or Excel. Within current content
management approaches, systems typically require a choice
by a user to Submit a file to the content management system.
An explicit choice requirement by a user, Such as this, limits
the ability of a system to capture all appropriate files and
makes it impossible for an organization to ensure that it has
control and awareness of all electronic content within the
organization.
0009 Neither approach fully meets the growing need to
effectively manage distributed content. In user environments
where only a back-up system is in place, easy access to stored
files is difficult and access to information about a specific file
is often impossible. In user environments where only a con
tent management system exists, many files are left unpro
tected (i.e., not backed-up) and the indexing and searching
capabilities are limited. In user environments where a back
up system and a content management system are both used,
cost inefficiencies are introduced through redundancies.
Moreover, even when both a back-up system and a content
management system as are in use today are in place, the
ability to manage and control the electronic content of an
organization remains limited.
0010 Patent Application 006 addressed these challenges,
by disclosing a system to cost-effectively store and manage
all forms of distributed content and provided efficient meth
ods to store distributed content to reduce redundant and inef
ficient storage of backed-up files. Additionally, the 006
Patent Application disclosed efficient methods to gather data
related to file content that will spawn further user applications
made possible by the Sophisticated indexing of the invention.
0011. Another challenge arises that involves determining
whether content stored is the same as other sets of stored
content. For example, when content is placed into a content
storage device, it is very difficult to determine if the content is
the same as other sets of content in storage devices. This
problem has been addressed in limited environments using
checksums. For example, to determine that the bits in a
PROM are not corrupt or tampered with, a checksum is cal
culated on the PROM's content and the result compared
against the known checksum for the PROM. Determining that
two files are identical is more complicated because there is
little foreknowledge about which files might be identical.
0012. In the past few years, the industry has accepted
computer “backup’ as a necessary part of computer manage
ment. Backup basically involves copying all content from
“online' storage to some form of “offline' storage, such as
tapes or writeable optical media. Since tape or optical disk
mounting is a very slow process, even for an automated juke
box, it has always been preferable to collect all of the files for
a particular system together on the same media to facilitate
restore. That is, even if it were possible to know that a copy of
a file was already stored on Some media in the archives, it
would be impractical to restore a system from tens or hun
dreds or even thousands of different tapes or optical disks.
0013 Now that inexpensive disk storage is available, it is
possible to rethink computerbackup. Rather than move every
“file' to offline media, simply copy it to disks in a “near-line'
environment. This is becoming common, with devices, for
example, from Network Appliances, EMC and others. In this
environment it is desirable to recognize common file contents
and to store such content only once. Knowing that a file has
identical content to a file content that has already been saved
has tremendous value. However, because finding matching

US 2012/013 1001 A1

files is so expensive, there are very few operations in modern
computing that depend on finding identical files.
0014 Several companies, including for example, Perm
abit, Archivas, BakBone, Commvault, RockSoft, Data
Domain, Undoo Technologies and Avamar have attempted to
address this challenge. They provide file systems or solutions
that are based on recognizing either common blocks or com
mon strings of bits to reduce storage space for files. That is,
when a file is stored, any common blocks or chunks of data
that are common with previously stored files are remembered
with pointers. These types of file systems are good for files
that are not completely identical (e.g., email, log files, data
base files, etc.), but they do not automatically recognize file
identicality. If all the blocks of a new file match the same set
of blocks of an existing file, the files are identical, but this
recognition require additional processing and is not auto
matic. It is possible that the variable length matching algo
rithms can be used to match whole files, but this will be
computationally very expensive.
0015 There have also been a number of projects that
attempt to archive large portions of the Internet Such as, for
example, the Internet Archive project available at http://ar
chive.org. These projects are limited to archiving web con
tent, as opposed to files generally. Furthermore, in storing the
web content they do not use a unique identifier, Such as a
signature. Additionally they are not back-up systems or con
tent management systems. Moreover, they are quite limited in
their searching ability in that they are not searchable by con
tent or content attributes, but rather only by file location and
dates.

0016 What are needed are systems and methods for dis
tributed content storage and management that can effectively
and efficiently identify files that have identical content.

SUMMARY OF THE INVENTION

0017 Embodiments of the present invention are directed
to methods and programs for generating prioritized search
results using file identicality. An indexed archive system is
provided which includes a search application. Search
requests are received from users of the system. All of the files
in the indexed archive system are then searched to identify
any files that include the search term or its equivalent. The
system generates a list of any files identified in the search.
Content signatures for each identified file are created or iden
tified from a content repository in the indexed archive system.
Usage and change statistics are determined for the identified
files which are used to prioritize the list. The prioritized list of
identified files is then sent to the user in response to the
original search request.
0018. Further embodiments, features, and advantages of
the invention, as well as the structure and operation of the
various embodiments of the invention are described in detail
below with reference to accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

0019. The invention is described with reference to the
accompanying drawings. In the drawings, like reference
numbers indicate identical, or functionally or structurally
similar elements. The drawing in which an element first
appears is indicated by the left-most digit(s) in the corre
sponding reference number.

May 24, 2012

0020 FIG. 1 is a diagram of a distributed content storage
and management system, according to an embodiment of the
invention.
0021 FIG. 2 is a diagram of an indexed archive system,
according to an embodiment of the invention.
0022 FIG. 3 is a diagram of an indexed archive system,
according to an embodiment of the invention.
0023 FIG. 4 is a diagram of a distributed content storage
and management system integrated with a legacy back-up
system, according to an embodiment of the invention.
0024 FIG. 5 is a diagram of an indexed archive system
with interfaces to a legacy back-up system, according to an
embodiment of the invention.
0025 FIG. 6 is a diagram of an information source agent,
according to an embodiment of the invention.
0026 FIG. 7 is a diagram of an information source collec
tion agent, according to an embodiment of the invention.
0027 FIG. 8 is a flow chart of a method to store distributed
content, according to an embodiment of the invention.
0028 FIG.9 is a flow chart of a method to store distributed
content, according to an embodiment of the invention.
0029 FIG. 10 is a flow chart of a method to store content
information associated with files stored in a legacy back-up
system, according to an embodiment of the invention.
0030 FIGS. 11A and 11B are flow charts of a method to
store distributed content using a content similarity test,
according to an embodiment of the invention.
0031 FIGS. 12A and 12B are flow charts of a method to
store distributed content and conserve system resources,
according to an embodiment of the invention.
0032 FIGS. 13A and 13B are flow charts of a method to
store distributed content and identify relationships between
files, according to an embodiment of the invention.
0033 FIG. 14 is a diagram of a data management system,
according to an embodiment of the present invention.
0034 FIG. 15 is a diagram of an indexed archive system
that highlights content signature functionality, according to
an embodiment of the invention.

0035 FIG. 16 is a diagram of an information source agent
that highlights content signature functionality, according to
an embodiment of the invention.

0036 FIG. 17 is a flowchart of a method for storing a file
using file identicality, according to an embodiment of the
invention.

0037 FIG. 18 is a flowchart of a method for storing a
multi-segmented file using file identicality, according to an
embodiment of the invention.

0038 FIG. 19 is a flowchart of a method for managing
copyrights using file identicality, according to an embodi
ment of the invention.

0039 FIG. 20 is a flowchart of a method for deleting files
across an entire network using file identicality, according to
an embodiment of the invention.

0040 FIG. 21 is a flowchart of a method for blocking
access to the use of files using file identicality, according to an
embodiment of the invention.

0041 FIG.22 is a flowchart of a method for confidential or
classified document control using file identicality, according
to an embodiment of the invention.

0042 FIG. 23 is a flowchart of a method for identifying
information source clients that have unique file distribution
characteristics, according to an embodiment of the invention.

US 2012/013 1001 A1

0043 FIG. 24 provides a flowchart of a method for taking
control actions based on storage or usage characteristics of
files based on file identicality, according to an embodiment of
the invention.
0044 FIG. 25 is a flowchart of a method for generating
search results using file identicality, according to an embodi
ment of the invention.
0045 FIG. 26 is a flowchart for a method for conducting
computer forensics using file identicality, according to an
embodiment of the invention.
0046 FIG. 27 is a flowchart of a method for watching the
use of files based on file identicality, according to an embodi
ment of the invention.
0047 FIG. 28 is a flowchart of a method for notifying
users that file updates have occurred using file identicality,
according to an embodiment of the invention.
0048 FIG.29 is a flowchart of a method for fetching links
associated with a requested web page, according to an
embodiment of the invention.
0049 FIG. 30 is a flowchart of a method for identifying
when identical files are independently created, according to
an embodiment of the invention.
0050 FIG.31 is a diagram of a computer system on which
the methods and systems herein described can be imple
mented, according to embodiments of the invention.

DETAILED DESCRIPTION OF THE INVENTION

0051 While the invention is described herein with refer
ence to illustrative embodiments for particular applications, it
should be understood that the invention is not limited thereto.
Those skilled in the art with access to the teachings provided
herein will recognize additional modifications, applications,
and embodiments within the scope thereof and additional
fields in which the invention would be of significant utility.
0052 FIG. 1 illustrates distributed storage and content
management system 100, according to an embodiment of the
invention. Distributed storage and content management sys
tem 100 includes information source clients 150, 160 and 170
coupled together through network 140. A local area network,
a wide area network, or the Internet are examples of this
arrangement of information source clients and network. Fur
thermore, network 140 could be a combination of networks,
and the number of information source clients could range
from one to more than tens of millions. Most commonly the
invention will likely be implemented in networks containing
from a few to thousands of information source clients. Net
work 140 can be a wireline or wireless network or a network
with both wireline and wireless connections. Information
Source clients can be any type of device capable of storing
files. Examples of information source clients include desktop
computers, laptop computers, server computers, personal
digital assistants, CDROMs, and printer ROMs. These infor
mation source clients may or may not be connected to a
network.
0053. The content management portions of distributed
storage and content management system 100, include
indexed archive system 110 and information source agents
120A, 120B and 120C. Information source agents 120A,
120B and 120C can be software modules, firmware or hard
ware installed within the information source clients 150, 160
and 170. Information source agents 120A, 120B, and 120C
contain modules to communicate with indexed archive sys
tem 110 over network 140 or over another network not used
for the purpose of networking the information Source clients.

May 24, 2012

The basic functions of information source agents 120A, 120B
and 120C are to transfer files to the indexed archive system, to
generate file information, and to manage files located on the
information source client. In an alternative embodiment,
information source clients may not all have information
Source agents. In this case, the information source agents
would not be local to the information source client, but rather
would be located elsewhere and would gather needed infor
mation remotely.
0054 Indexed archive system 110 has four basic functions
that include backing-up files stored on the information source
clients 150, 160 and 170, storing file information, indexing
file contents, and enabling searching of indexed file informa
tion. The file information can consist of the actual file, por
tions of a file, differences between the file and another file,
content extracted from the file, metadata regarding the file,
metadata indexes, content indexes and a unique file identifier.
0055 As used herein, file is broadly defined to include any
named or namable collection of data located on an electronic
device. Examples of files include, but are not limited to, data
files, application files, system files, and programmable ROM
files. Metadata can consist of a wide variety of data that
characterizes the particular file. Examples of metadata
include, but are not limited to file attributes; such as the file
name, the information source client or client(s) where the file
was located; and the date and time of the back-up of the file.
Additionally, metadata can include, but is not limited to other
information, such as pointers to related versions of the file; a
history of file activity, such as use, deletions and changes; and
access privileges for the file.
0056 FIG. 2 depicts indexed archive system 110, accord
ing to an embodiment of the invention. Indexed archive sys
tem 110 includes back-up system 210, storage device 220,
and indexing search engine 230. Back-up system 210 is
coupled to storage device 220 and indexing search engine
230. Back-up system 210 includes capabilities to gather files
from information source clients, provide file information to
storage device 220 for storage and interface with indexing
search engine 230 to index file information and retrieve file
information based on the searching capabilities of indexing
search engine 230.
0057 Back-up system 210, storage device 220 and index
ing search engine 230 can be implemented on a single device
or multiple devices, such as one or more servers. Similarly,
each of the components—back-up system 210, storage device
220 and indexing search engine 230–can be implemented on
one or multiple devices. For example, storage device 220 can
be implemented on multiple disk drives, multiple tape drives,
memory sticks, floppies disks, CDs, DVDs, paper tape, paper
cards, 2d bar cards, 3d bar cards (e.g., endicia), ROM’s,
network storage devices, flash memory or a combination of
these. Similarly, indexing search engine 230 could be imple
mented on a desktop computer, a laptop computer, or a server
computer or any combination thereof. Moreover, each of the
components can be co-located or distributed remotely from
one another.

0.058 FIG.3 depicts indexed archive system 110, accord
ing to another embodiment of the invention. FIG. 3 provides
one embodiment for implementing the general embodiment
described with reference to FIG. 2. Indexed archive system
110 includes a set of engines: triage engine 305, indexing
engine 310, metadata engine 315 and content engine 320.
Additionally, indexed archive system 110 includes a set of
repositories: indexing repository 335, metadata repository

US 2012/013 1001 A1

340, and content repository 345. Other elements of indexed
archive system 110 are information entryway 325, informa
tion source modification controller 330, user interface 350
and search engine 365. Finally, indexed archive system 110
includes administrative controller 360 that provides overall
administration and management of the elements of indexed
archive system 110.
0059. Information entryway 325 receives file information
from a set of information source client agents, such as agents
120A, 120B, and 120C, over a network, such as network 140.
Information entryway 325 can also receive other forms of
information about information sources and network activity.
Information entryway 325 makes received file information
available to triage engine 305. Information entryway 325 also
transmits control messages to information source client
agents. Information entryway 325 is coupled to triage engine
305 and information source modification controller 330.
0060 Information source modification controller 330 can
send requests through the information entryway 325 to infor
mation source agents to modify files located on the informa
tion Source clients or to request that an information Source
agent transmit file information to information entryway 325.
0061. In addition to being coupled to information entry
way 325, triage engine 305 is coupled to indexing engine 310,
metadata engine 315 and content engine 320. Triage engine
305 monitors information that has arrived at information
entryway 325. Triage engine 305 informs index engine 310
what new content and/or metadata needs to be indexed. Simi
larly, triage engine 305 informs metadata engine 315 and
content engine 320 what data needs to be processed and
stored.
0062 Indexing engine 310 is also coupled to indexing
repository 335. Upon being notified by triage engine 305 that
file information needs to be processed, indexing engine 310
will generate a content index for the file that was received.
The index will then be stored in indexing repository 335.
Indexing repository 335 will contain the searchable attributes
of the file content and/or metadata along with references that
identify the relationship of the file content or metadata to one
or more primary identifiers. A primary identifier is a unique
identifier for a file content.
0063 Metadata engine 315 is also coupled to metadata
repository 340. Upon being notified by triage engine 305 that
file information needs to be processed, metadata engine 315
will generate or update metadata for the file that was received.
Metadata engine 315 also generates a metadata index that can
be used for searching capabilities. The metadata along with
the relationship between the metadata, metadata index, and a
primary identifier will then be stored in metadata repository
340.

0064 Content engine 320 is also coupled to content
repository 345. Upon being notified by triage engine 305 that
file information needs to be processed, content engine 320
will store the file content that was received. The file content
along with the relationship between the content data and a
primary identifier will be stored in content repository 345.
0065. User interface 350 enables users to control and
access indexed archive system 110. User interface 350 can
support general and administrative use. User interface 350
can include access privileges that allows users various control
levels of indexed archive system 110. Access privileges can
be set to allow administrative control of indexed archive
system 110. Such control can allow an administrator to con
trol all functions of the system, including changing basic

May 24, 2012

operating parameters, setting access privileges, defining
indexing and search functions, defining the frequency of file
back-ups, and other functions typically associated with
administrative control of a system. Additionally, access privi
leges can be set to enable general purpose use of indexed
archive system 110, such as reviewing file names for files
backed-up, and using search functions to find a particular file
or files that meet search criteria.
0066. Within user interface 350, a retrieval user interface
can exist that facilitates the bulk restoring of an information
source client or restoral of individual files. Similarly, within
user interface 350, an indexing user interface can exist that
enables a user to search for file information or content based
on indexed criteria (content and/or metadata).
0067. User interface 350 is coupled to administrative con
troller 360 and to search engine 365. Additionally user inter
face 350 can be coupled to an external terminal or to a net
work to allow remote user access to indexed archive system
110. A graphical user interface will typically be employed to
enable efficient use of user interface 350.
0068. Search engine 365 is coupled to user interface 350
and to indexing repository 335, metadata repository 340 and
content repository 345. Search engine 365 enables a user to
search the repositories for files and information about files. A
search engine. Such as that used by Google, can be employed
within the system.
0069 Administrative controller 360 is coupled to all ele
ments within indexed archive system 110. Administrative
controller 360 provides overall system management and con
trol.
(0070. Each of the elements of indexed archive system 110
can be implemented in Software, firmware, hardware or a
combination thereof. Moreover, each of the elements can
reside on one or more devices, such as server computers,
desktop computers, or laptop computers. In one configura
tion, the repositories can be implemented on one or more
storage devices such as, for example, multiple disk drive,
multiple tape drives, memory sticks, floppies disks, CDs,
DVDs, paper tape, paper cards, 2d bar cards, 3d bar cards
(e.g., endicia), ROM's, network Storage devices, flash
memory or a combination of these. The other elements can be
implemented within a server computer or multiple server
computers.
0071 FIG. 4 provides a diagram of distributed storage and
content management system 400 integrated with a legacy
back-up system, according to an embodiment of the inven
tion. The difference between distributed storage and content
management system 400 and distributed Storage and content
management system 100 is that within distributed storage and
content management system 400 a legacy back-up system
exists. Legacy back-up system refers to a file back-up system
that currently exists. Example legacy back-up systems
include Legato Networker 6 and Veritas storage management
systems. Legacy back-up system also refers to any existing or
future back-up system that backs-up files.
0072. As shown in FIG.4, indexed archive system 430 can
be implemented to work with legacy back-up system 410 to
reduce redundant activities and provide an easy integration of
indexed archive system 430 with a customer's network that
may already be using a legacy back-up system.
0073. As in distributed storage and content management
system 100, distributed Storage and content management sys
tem 400 includes information source clients 150, 160 and 170
coupled together through network 140. The content manage

US 2012/013 1001 A1

ment portions of distributed storage and content management
system 400, include legacy back-up system 410, Storage
device 420, indexed archive system 430, proxy 440, and
agents 405A, 405B and 405C. Information source agents
405A, 405B, 405C are located within the information source
clients, and are agents associated with legacy back-up system
410 that facilitate the transfer of files.

0074 Legacy back-up system 410 is coupled to storage
device 420. Legacy back-up system 410 gathers files from
information Source clients, and backs-up files by storing the
files on storage device 420. Proxy 440 resides between legacy
back-up system 410 and network 140. Proxy 440 provides a
passive interface that allows indexed archive system 430 to
gather files or file information as files are collected by legacy
back-up system 410. Indexed archive system 430 is coupled
to proxy 440 over connection 460. Indexed archive system
430 can also be coupled to legacy-back up system 410 over
connection 450. As discussed more thoroughly with respect
to FIG. 5, indexed archive system 430 may or may not also
store back-up copies of the files being backed up by legacy
back-up system 410.
0075 Indexed archive system 430 has four basic functions
that include backing-up files stored on the information Source
clients 150, 160 and 170, storing file information, indexing
file contents, and enabling searching of indexed file informa
tion. As discussed previously, depending on the amount of
redundancy desired, indexed archive system 430 may or may
not store entire files for back-up in this embodiment. If
indexed archive system 430 does not store actual file back
ups, a pointer will be created identifying where the file is
stored.

0076 FIG. 5 is a diagram of indexed archive system 430,
according to an embodiment of the invention. Indexed archive
system 430 is similar to indexed archive system 110, except
that it does not include a content engine or a content reposi
tory, and it does include file gathering interface 355 and file
administration interface 370.

0077. As in the case of indexed archive system 110,
indexed archive system 430 includes triage engine 305,
indexing engine 310 and metadata engine 315. Additionally,
indexed archive system 430 includes indexing repository 335
and metadata repository 340. Other elements of indexed
archive system 430 are information entryway 325, user inter
face 350 and search engine 365. Finally, indexed archive
system 430 includes administrative controller 360 that pro
vides overall administration and management of the elements
of indexed archive system 430.
0078. As mentioned above, indexed archive system 430
also includes file gathering interface 355. File gathering inter
face 355 enables indexed archive system 430 to gather files
from a proxy, such as proxy 440, to obtain them directly from
a legacy back-up system, Such as legacy back-up system 450,
or to obtain files through some other means, such as Sniffing
a network on which files are transferred to a back-up system.
File gathering interface 355 is coupled to information entry
way 325 and provides gathered files and file information to
information entryway 325. Additionally, indexed archive sys
tem 430 includes file administration interface 370. File
administration interface 370 provides coupling with a legacy
back-up system for accessing files backed-up and exchanging
administrative data with the legacy back-up system. In
another embodiment, file administration interface 370 may
not be included.

May 24, 2012

(0079 Information entryway 325 receives file information
from file gathering interface 355. Information entryway 325
can also receive otherforms of information about information
sources and network activity. Information entryway 325
makes received file information available to triage engine
305.

0080. In addition to being coupled to information entry
way 325, triage engine 305 is coupled to indexing engine 310
and metadata engine 315. Triage engine 305 monitors infor
mation that has arrived at information entryway 325. Triage
engine 305 informs index engine 310 what new content and/
or metadata needs to be indexed. Similarly, triage engine 305
informs metadata engine 315 what data needs to be processed
and stored.

I0081 Indexing engine 310 is also coupled to indexing
repository 335. Upon being notified by triage engine 305 that
file information needs to be processed, indexing engine 310
will generate a content index for the file that was received.
The index will then be stored in indexing repository 335.
Indexing repository 335 will contain the searchable attributes
of the file content and/or metadata along with references that
identify the relationship of the file content or metadata to one
or more primary identifiers.
I0082 Metadata engine 315 is also coupled to metadata
repository 340. Upon being notified by triage engine 305 that
file information needs to be processed, metadata engine 315
will generate or update metadata for the file that was received.
Metadata engine 315 will also generate a metadata index for
the received file (or update an existing one). The metadata
along with the relationship between the metadata and a pri
mary identifier will then be stored in metadata repository 340.
0083. In an alternate embodiment, where indexed archive
system 430 is also backing up files, a content engine and a
content repository can be included within indexed archive
system. In this case, the content engine would be coupled to
triage engine 305 and to the content repository. Upon being
notified by triage engine 305 that file information needs to be
processed, content engine 345 would store the file content
that was received. The file content along with the relationship
between the content data and a primary identifier will be
stored in the content repository.
I0084 As in the case of indexed archive system 430, user
interface 350 enables users to control and access indexed
archive system 110. User interface 350 can support general
use and administrative use. Within user interface 350, a
retrieval user interface can exist that facilitates the bulk restor
ing of an information Source client or restoral of individual
files. Similarly, within user interface 350, an indexing user
interface can exist that enables a user to search for file infor
mation or content based on indexed criteria (content and/or
metadata).
I0085 User interface 350 is coupled to administrative con
troller 360 and to search engine 365. Additionally user inter
face 350 can be coupled to an external terminal or to a net
work to allow remote user access to indexed archive system
430. A graphical user interface will typically be employed to
enable efficient use of user interface 350.

I0086) Search engine 365 is coupled to user interface 350
and to indexing repository 335 and metadata repository 340.
Search engine365 enables a user to search the repositories for
files and information about files. A search engine, such as that
used by Google, can be employed within the system.

US 2012/013 1001 A1

I0087 Administrative controller 360 is coupled to all ele
ments within indexed archive system 430. Administrative
controller 360 provides overall system management and con
trol.

0088. Each of the elements of indexed archive system 430
can be implemented in Software, firmware, hardware or a
combination thereof. Moreover, each of the elements can
reside on one or more devices, such as server computers,
desktop computers, or laptop computers. In one configura
tion, the repositories can be implemented on one or more
storage devices such as, for example, on disk drives, tape
drives, memory sticks, floppies disks, CDs, DVDs, paper
tape, paper cards, 2d bar cards, 3d bar cards (e.g., endicia),
ROM's, network storage devices, flash memory or a combi
nation of these. The other elements can be implemented
within a server computer or multiple server computers.
0089 FIG. 6 is a diagram of information source agent 120,
according to an embodiment of the invention. Information
source agent 120 includes collection agent 610, modification
agent 620 and agent controller 630. Collection agent 610 and
modification agent 620 are coupled to agent controller 630.
Collection agent 610 computes, gathers and/or transports file
information and other data to an information entryway, Such
as information entryway 325. Modification agent 620 honors
requests to make modifications to the information source,
including, but not limited to deleting files, replacing outdated
files with current files, replacing files with links or references
(e.g., a symbolic link within Unix or a short cut using Win
dows) to files located elsewhere, and marking the file in a
manner visible to other programs. Security measures are
included within information Source agent to prevent unautho
rized use, particularly with respect to modification agent 620.
Agent controller 630 controls the overall activity of informa
tion Source agent 120. In an alternative embodiment, infor
mation Source agent 120 does not include modification agent
620.

0090 FIG. 7 is a diagram of an information source collec
tion agent 610. Information source collection agent 610
includes screening element 710, indexing interface 720,
activity monitor 730 and controller 740. Screening element
710, indexing interface 720, and activity monitor 730 are
coupled to controller 740. Screening element 710 assesses
whether a file should be transmitted to an indexed archive
system, such as indexed archive system 110. Indexing inter
face 720 communicates with an indexing system, and can
index files locally on the information Source client. In an
alternate embodiment, information source collection agent
610 does not include indexing interface 720. Activity monitor
730 gathers information about file activity, such as creation,
usage, modification, renaming, persons using a file, and dele
tion. Activity monitor 730 can also gather information about
intermediate content conditions of files between times when
files are backed up.
0091 Information source client agent 120 can be imple
mented in Software, firmware, hardware or any combination
thereof. Typically, information source client agent 120 will be
implemented in Software.
0092 FIG. 8 provides a flow chart of method 800 to store
distributed content, according to an embodiment of the inven
tion. Method 800 begins in step 810. In step 810, files located
on information source clients are backed-up. For example, in
one embodiment indexed archive system 110 would back-up
the files located on information source clients 150, 160, and
170. In step 820 metadata and file content are indexed. For

May 24, 2012

example, in one embodiment indexed archive system 110
would generate metadata for files received from information
source clients 150, 160, and 170. Indexed archive system 110
would then index the metadata and file content. In step 830,
file content, metadata, metadata indexes, and content indexes
are stored. For example, in one embodiment indexed archive
system 110 would store the file content, metadata, and
indexes for both. In step 840, method 800 ends.
(0093 FIG. 9 provides a flow chart of method 900 to store
distributed content, according to an embodiment of the inven
tion. Method 900 begins in step 910. In step 910, a file is
received. For example, indexed archive system 110 can
receive a file from information source agent 120A. In step 920
a file content index is generated for the received file. For
example, indexing engine 310 can generate a content index
for a received file. In step 930, metadata for the received file
is extracted. For example, metadata engine 315 can extract
metadata from a received file. In step 935, a metadata index is
generated. In one example, metadata engine 315 can generate
a metadata index based on metadata extracted from a received
file. In step 940, the received file is stored. For example, in one
case content engine 320 could store the received file content
in content repository 345. In step 950, the file content index is
stored. For example, indexing engine 310 could store the file
content index in index repository 335. In step 955, the meta
data index is stored. In step 960, the metadata is stored. For
example, metadata engine 315 can store both the metadata
index and the metadata in metadata repository 340. In step
970, method 900 ends.
(0094 FIG. 10 provides a flow chart of method 1000 to
store content information associated with files stored in a
legacy back-up system, according to an embodiment of the
invention. Method 1000 begins in step 1010. In step 1010 file
information from a file being stored by a legacy back-up
system, Such as legacy back-up system 410, is intercepted. In
one example, the file information can be intercepted through
the use of a proxy, such as proxy 440, in which a file gathering
interface, such as file gathering interface 355 gathers the file
information. In another example, a file gathering interface,
Such as file gathering interface 355, can employ a Sniffing
routine to monitor and gather information transmitted via a
network to a legacy back-up system, Such as legacy back-up
system 410 to gather file information. The remaining steps are
similar to the comparable steps in method 900, and can
employ similar devices to perform the steps. In step 1020 a
file content index is generated for the received file. In step
1030, metadata for the received file is extracted. In step 1035,
a metadata index is generated. In step 1040, the received file
is stored. In step 1050, the file content index is stored. In step
1055, the metadata index is stored. In step 1060, the metadata
is stored. In step 1070, method 1000 ends.
(0095 FIGS. 11A and 11B provide a flow chart of method
1100 to store distributed content using a content similarity
test, according to an embodiment of the invention. Method
1100 begins in step 1105. In step 1105, a file is received. For
example, the file could be received by indexed archive system
110. In step 1110, a file content index is generated. For
example, indexing engine 310 can generate a file content
index. In step 1115, the file content index for the received file
is compared to the file content indexes of stored files. In one
example, the file content indexes are stored in content reposi
tory 345 and indexing engine 310 does the comparison. In
step 1120, a determination is made whether the similarity of
the file content index for the received file and at least one

US 2012/013 1001 A1

stored file content index exceeds a similarity threshold. In one
example, indexing engine 310 makes this determination.
0096. If the similarity threshold is not exceeded, method
1100 proceeds to step 1150. If the similarity threshold is
exceeded, method 1100 proceeds to step 1125. In step 1125,
the differences between the received file and files that
exceeded the similarity threshold are compared. In one
example, the differences are determined by indexing engine
310. In step 1130, the file that most closely matches the
received file is identified. In step 1135, a delta file of the
differences between the received file and the closest match
file is created. The delta file that is created can be generated
either by forward or backward differencing, or both, between
the received and stored file. In one example, content engine
320 can create the delta file. In step 1140, a file identifier for
the received file and its closest match is updated to identify the
existence of the delta file. If both differencing approaches are
used, two delta files can be stored. In one example, these steps
can be done by content engine 320. In step 1145, the delta file
is stored. In one example, content engine 320 can store the
delta file in content repository 345. In step 1150, the received
file content is stored. In step 1155, the file content index for
the received file is stored. In one example, indexing engine
310 stores the file content index in index repository 335.
0097. In an alternative embodiment of method 1100, delta

files can be created for all stored files that exceed a similarity
threshold. In this case, their file identifiers would be updated
to reflect the similarity, and a delta file for each of the stored
files that exceeded a similarity threshold would be stored.
0098 FIGS. 12A and 12B provide a flow chart of method
1200 to store distributed content and conserve system
resources, according to an embodiment of the invention.
Method 1200 begins in step 1205. In step 1205, a file is
received. For example, a file can be received by index archive
system 110. In step 1210 a file content index is generated. In
one example, indexing engine, Such as index engine 310,
generates the file content index. In step 1215, the file content
index for the received file is compared to the file content
indexes of stored files. In step 1220, a determination is made
whether the similarity of the file content index for the received
file and at least one stored file content indeX exceeds a simi
larity threshold. In one example, indexing engine 310 con
ducts the comparison and determines whether a similarity
threshold has been met.

0099. If the similarity threshold is not exceeded, method
1200 proceeds to step 1255, and method 1200 proceeds as
discussed below. If the similarity threshold is exceeded,
method 1200 proceeds to step 1225. In step 1225, the differ
ences between the received file and files that exceeded the
similarity threshold are compared. In one example, the dif
ferences are determined by indexing engine 310. As in
method 1100, either or both forward and backward differenc
ing can be used. In step 1230, the file that most closely
matches the received file is determined. In step 1235, a delta
file of the differences between the received file and the closest
match file is created. In one example, content engine 320 can
create the delta file. In step 1240, a file identifier for the
received file and its closest match is updated to identify the
existence of the delta file. In step 1245, a determination is
made whether a storage factor, Such as a storage threshold,
has been reached. In one example, storage thresholds can be
set for the indexing repository 335, metadata repository 340
or content repository 345, or any combination thereof. The
storage threshold can be set to be equal to a percentage of the

May 24, 2012

total storage capacity of the devices. In alternative embodi
ments, other factors can be used to determine whetherafile or
a portion of a file should be saved. Such factors can be based
on the type of file, the user of the file, the importance of the
file, and any combination thereof, for example.
0100 If a determination is made that a storage threshold
has been met or exceeded, method 1200 proceeds to step
1265. In step 1265, the delta file is stored. Method 1200 then
proceeds to step 1270 and ends. If, on the other hand, in step
1245 a determination is made that a storage threshold has not
been met, method 1200 proceeds to step 1250. In step 1250,
the delta file is stored. In step 1255, the received file content
is stored. In step 1260, a file content index for the received file
is stored. In step 1270, method 1200 ends.
0101 FIGS. 13A and 13B provides a flow chart of method
1300 to store distributed content and identify relationships
between files, according to an embodiment of the invention.
Method 1300 begins in step 1305. In step 1305, a file is
received. For example, the file can be received by indexed
archive system 110. In step 1310 a file content index is gen
erated. For example, indexing engine 310 can generate a file
content index. In step 1315, the file content index for the
received file is compared to the file content indexes of stored
files. In step 1320, a determination is made whether the simi
larity of the file content index for the received file and at least
one stored file content index exceeds a similarity threshold. In
one embodiment, the comparison and determination is made
by indexing engine 310.
0102) If the similarity threshold is not exceeded, method
1300 proceeds to step 1345 and ends. If the similarity thresh
old is exceeded, method 1300 proceeds to step 1325. In step
1325, the differences between the received file and files that
exceeded the similarity threshold are compared. In one
embodiment, the differences are determined by indexing
engine 310. As in method 1100 or 1200, either or both for
ward and backward differencing can be used. In step 1330,
the file that most closely matches the received file is deter
mined. In step 1335, a determination whether previously
received versions of the received file were indexed is made. In
one example, indexing engine 310 can be used to determine
whether previously received versions of the received file were
indexed. In step 1340, links to map previous versions of the
received file with the received file are stored. In one example,
metadata engine 315 can store the links in metadata reposi
tory 340. In step 1345, method 1300 ends. In an alternative
embodiment, a link can be stored to identify that the received
file shares content indexes exceeding a similarity threshold
with one or more files that are not previous versions of the
received file.

Content Signatures and File Identicality
(0103) The ability to efficiently identify files that have iden
tical content has tremendous value. For example, if the file
content of a new file for storage matches the file content of a
file that has already been stored and this is known before the
file is sent to a backup server, then the file does not need to be
sent to a backup server. In this situation only its metadata need
be sent, which is typically much smaller than the file contents,
thereby saving significant storage space.
0104. In another example, within a large corporation there
are often thousands of computers running the same version of
Windows. The first computer to be backed up will send all of
its files to the backup server (e.g., indexed archive system
110)—as the server has not yet seen any file contents. This

US 2012/013 1001 A1

will take as long as a current full backup takes today. The
second computer, on the other hand, will have thousands of
files that are identical to the first computer, such as, the
operating system, application, configuration, and common
documents and data files, with perhaps only a few configura
tion or hardware specific files that are different. Those files
that are identical will not need to have their content stored.
Thus, the backup will take much less time. As more comput
ers are backed up, the occurrence of new, unique content files
will trend downward.
0105 New content tends to come to a computer two ways.
Content can be created by the user (e.g., a new or modified
document, spreadsheet, presentation, etc.), or content arrives
over the network either via email or through a file copy from
Some network device. If one user creates a new presentation
and sends it to 50 other people, those 50 copies are identical
to the original on the creator's system. In these situations,
only new content needs to be fully backed up, thus significant
storage space and back-up processing time can be reduced.
010.6 Additionally, the knowledge of file identicality (i.e.,
whether files have identical content) is tremendously power
ful. As explained below, having knowledge of file identifical
ity enables powerful new business methods for managing
data. These business methods include, but are not limited to,
Sarbannes-Oxley compliance (ie., efficiently storing and
retrieving files that must be saved or controlled under the
Sarbannes-Oxley legislation), virus detection, copyright
management, and pornographic material control.

Systems for Distributed Data Storage and Management
Using Content Signatures to Implement File Identicality
Based Business Methods

0107 FIG. 14 provides a diagram of a file management
system 1400, according to an embodiment of the present
invention. File management system 1400 includes content
engine 1410, content repository 1420, content signature gen
erator 1430 and a content signature comparator 1440.
0108 Content engine 1410, like content engine 320, stores

file content that was received. As explained with reference to
content engine 320 in FIG. 3, the file content along with the
relationship between the content data and a primary identifier
are stored in a content repository, such as content repository
1420. Content signature generator 1420 generates a content
signature that serves as a primary identifier. In an embodi
ment, content signature generator 1420 computes the content
signature based on the particular content. The primary iden
tifier is a unique identifier for the file content that can be
referred to as the content signature. In an embodiment, con
tent signature generator 1430 generates a hash function sig
nature for a file, which serves as a unique identifier for the file.
0109 While hashing functions generally require a com
plex computation, computing hash function signatures as
content signatures for files is well within the capabilities of
present day computers. Hashing functions are inherently
probabilistic and any hashing functions might possibly pro
duce incorrect results when two different data files happen to
have the same value. In embodiments, the present invention
uses well known hashing functions, such as SHA-1, MD2,
MD4, MD5, HAVAL, RIPEMD-128, RIPEMD-256, RIP
EMD-160, RIPEMD-320, Tiger, SHA-2 (SHA-224, SHA
256, SHA-384, and SHA-512), Panama, and Whirlpool algo
rithms, to reduce the probability of collision down to
acceptable levels that are far less than error rates tolerated in
other computer operations and file management systems. In

May 24, 2012

the case of MD5, the hash signature and length of the file can
be used as the unique content signature. By using the length,
this can further improve the integrity of the signature. The
invention is not limited to the use of these hash functions.
Furthermore, since a given signature method might be "bro
ken' at some point in the future, several different signature
methods can be used on each content piece. Thus, if one
signature method is broken, the system can still be used
effectively.
0110. In an alternative embodiment, content signature
generator 1430 can assign a content signature, rather than
computing one as described above. One such form of an
assigned signature can be a sequence number. Under this
approach there are several computationally reasonable ways
to determine whether a file content already has a sequence
number or key.
0111. The first is the use of a hash table, which is different
than the type of hashing referred to above with the computed
content signature approach. In this case, the simpler hashes
that will be used will generally have more collisions (e.g.,
more than one file potentially having the same hash key). The
second approach is to use a finite state machine based on the
file contents analyzed and applying the finite state machine on
each new file content received to recognize whether it has
been seen before. The final approach is to sort the file contents
that have been seen and using a fast look up based on the
sorting. Using the assigned signature embodiment limits the
functionality of the system with respect to the types of appli
cations that can be implemented. In particular, functionalities
Such as finding/counting/deleting files will work. Addition
ally, functionalities related to reporting on filenames that have
Surprising content (e.g., virus infected files; someone trying
to hide a file content by giving it the name of a common
system file) and registries internal to an organization will also
work. Lastly, functions related to controlled file copies (e.g.,
classified, blocked, obsolete) will work as well. Functions
that do not work as well include cross organization registries
(e.g., lists related to classified files) Applications based on
identicality and file signatures are discussed further below.
0112 Content signature comparator 1440 compares con
tent signatures. For example, when a new file is received by
content engine 1410 content signature generator 1430 gener
ates a content signature for the new file. Content signature
comparator 1440 then compares the content signature for the
new file to existing content signatures for the file content
already stored in content repository 1420. File management
system 1400 can then take an appropriate action based on the
result of the comparison. In one instance, if the content sig
nature of the new file matches a content signature for an
existing file then the file management system does not need to
store the new content. Rather file management system 1400
can provide an indication to an indexed archive system, such
as indexed archive system 110 to only store metadata associ
ated with the new file along with an association with the
existing content signature.
0113. In an embodiment, as illustrated in FIG. 15, file
management system 1400 can form a portion of indexed
archive system 110. Indexed archive system 1500 is the same
as indexed archive system 110, except that content signature
generator 1430 and content signature comparator 1440 are
explicitly identified. Content engine 1410 is the same as con
tent engine 320 and content repository is the same as content
repository 345. While content signature generator 1430 and
content signature comparator 1440 are identified as separate

US 2012/013 1001 A1

functional blocks in FIG. 15 for ease of illustration, one or
both of these functional blocks can be included within content
engine 1410.
0114. Additionally, indexed archive system 1500 includes
applications module 1510 and application registries 1520.
Applications module 1510 includes applications to manage
files and implement the various methods as described below
with respect to FIGS. 17 through 30. For example, applica
tions module 1510 can include, but is not limited to a file
update application, a information source client characteriza
tion application, and a search application that use content
signatures to implement the applications by using file identi
cality. Applications registries 1520 store registries of content
signature lists that Support various applications. For example,
applications registries 1520 can include, but is not limited to,
a blocked file content signature registry, a pornographic file
content signature registry, a copyright file content signature
registry, and a confidential document content signature reg
istry. These applications and registries are described more
completely with reference to FIGS. 17-30 below.
0115. In an alternative approach, the functionality togen
erate and compare content signatures can be located within an
information Source client agent, Such as information Source
client agent 120.
0116 FIG. 16 provides a diagram of information source
agent 1600, according to an embodiment of the invention.
Information source agent 1600 is the same as information
Source agent 120 with the exception that content signature
generator 1610 and content signature comparator 1620 are
explicitly shown. Information source agent 1600 includes
information Source collection agent 610, modification agent
620 and agent controller 630.
0117. As discussed above, information source collection
agent 610 includes screening element 710, indexing interface
720, activity monitor 730 and controller 740. Screening ele
ment 710, indexing interface 720, and activity monitor 730
are coupled to controller 740. Screening element 710 assesses
whether a file should be transmitted to an indexed archive
system, Such as indexed archive system 110. Screening ele
ment 710 is coupled to content signature generator 1610.
Content signature generator 1610 generates the primary iden
tifier. As discussed above with respect to content signature
generator 1610, the primary identifier is a unique identifier for
the file content that can be referred to as the content signature.
In an embodiment, as in the case of content signature genera
tor 1430, content signature generator 1610, generates a hash
function signature for a file, which serves as a unique identi
fier for the file. While content signature generator 1610 is
shown as a separate functional block, the functionality of
content signature generator 1610 can be included within
indexing interface 720 or other functional blocks.
0118 Indexing interface 720 communicates with an
indexing system, and can index files locally on the informa
tion source client. When an information source receives, cre
ates or modifies a file, indexing interface 720 transmits the
content signature generated by content signature generator
1430 to a data storage system, Such as indexed archive system
1500. Indexed archive system 1500 compares the content
signature for the new or modified file to content signatures of
stored files, then requests that information source agent 1600
either transmit the file contents for the new or modified file or
simply transmit metadata information if the file contents are
already stored on indexed archive system 1600. Indexing
interface 720 receives instructions based on the content sig

May 24, 2012

nature from indexed archive system 1500, and performs the
appropriate action. For example, indexed archive system
1500 may request that the file and metadata be transferred. In
which case, indexing interface 720 transmits both the file and
metadata. Or indexed archive system 1500 may request that
only the meta data be transferred if the content signature
already exists on indexed archive system 1500. In this case,
indexing interface 720 only transmits the file metadata.
0119) Activity monitor 730 gathers information about file
activity, Such as creation, usage, modification, renaming, per
sons using a file, and deletion. Activity monitor 730 can also
gather information about intermediate content conditions of
files between times when files are backed up.
I0120 Additionally, as in the case of indexed archive sys
tem 1500, information source client 1600 includes applica
tions module 1620 and application registries 1630. Applica
tions module 1620 includes applications to manage files and
implement the various methods as described below with
respect to FIGS. 17 through 30. For example, applications
module 1620 can include, but is not limited to a file update
application, an information source client characterization
application, and a search application that use content signa
tures to implement the applications by using file identicality.
Applications registries 1630 store registries of content signa
ture lists that Support various applications. For example,
applications registries 1630 can include, but are not limited
to, a blocked file content signature registry, a pornographic
file content signature registry, a copyright file content signa
ture registry, and a confidential document content signature
registry. These applications and registries are described more
completely with reference to FIGS. 17-30 below.
I0121 Information source agent 1600 can also record or
count file reads and report that information to indexed archive
system 1500. In this way, an administrator can know which
files are commonly read instead of just knowing which are
stored, present or deleted. Furthermore, information source
agent 1600 can make a copy of a file before it is modified or
deleted and save the original copy until indexed archive sys
tem 1500 has archived the original. This allows indexed
archive system 1500 to save all file contents even those that
are short-lived that were not present long enough to see a
back-up cycle. Information source agent 1600 can also make
a copy of any file being read from external media even if the
file is not copied onto the hard drive of the information source
client. This allows indexed archive system 1500 to know
about all files that an employee reads on a company machine
even if it is from a non-company data source. This concept can
be extended such that information source agent 1600 can
make a copy of everything on an external media device.
I0122) Information source agent 1600 can be implemented
in software, firmware, hardware or any combination thereof.
Typically, information source agent 1600 will be imple
mented in software.

Methods to Store a Data File Using File Identicality
(0123 FIG. 17 provides a flowchart of method 1700 for
storing a file using file identicality, according to an embodi
ment of the invention. Method 1700 begins in step 1710. In
step 1710 a file is received. A file includes, but is not limited
to a data file, application file, system file and/or program
mable ROM file. For example, indexed archive system 1500
can receive a file that was transmitted from information
Source agent 1600. Alternatively, information source agent
120 can receive a file. In step 1720 a content signature is

US 2012/013 1001 A1

generated for the received file. A content signature is a unique
file identifier that can be generated by applying a hashing
function to the received file using an algorithm that includes,
but is not limited to, the SHA-1, MD2, MD4, MD5, HAVAL,
RIPEMD-128, RIPEMD-256, RIPEMD-160, RIPEMD-320,
Tiger, SHA-2 (SHA-224, SHA-256, SHA-384, and SHA
512), Panama, and Whirlpool hashing algorithms. For
example, content signature generator 1430 can generate a
content signature for the received file.
0.124. In step 1730 the content signature for the received

file is compared to the content signatures for existing files. For
example, content signature comparator 1440 compares the
received file content signature to all content signatures for
files already stored within content repository 1420.
0.125. In step 1740 a determination is made whether the
received content signature matches any previously stored
content signatures. For example, content signature compara
tor 1440 determines whether the received file content signa
ture matches any of the content signatures stored in content
repository 1420. If a match does not exist, method 1700
proceeds to step 1750.
0126. In step 1750, the file content signature and content
for the received file are stored. For example, indexed archive
system 1500 stores the file content signature and content for
the received file in content repository 1420. Indexed archive
system 1500 also stores metadata for the received file in
metadata repository 340. In an embodiment one or more
relational databases is used to store the file content, file con
tent signatures and/or metadata. Method 1750 then proceeds
to step 1780 and ends.
0127. Referring back to step 1740, if a match does exist,
method 1700 proceeds to step 1760. In step 1760 metadata for
the received file is associated with the existing content signa
ture that matches the received file content signature. For
example, metadata engine 315 generates metadata for the
received file. Alternatively, metadata can be generated by an
information source agent, such as information source agent
1600, that transmits the metadata to indexed archive system
1500. Metadata engine 315 associates the metadata for the
received file to the content signature and content that already
exists within content repository 1420.
0128. In step 1770 metadata for the received file is stored.
For example, metadata engine 315 stores the metadata in
metadata repository 340. No content for the received file is
stored, because it already exists based on the determination
that a matching content signature was determined. Method
1700 proceeds to step 1780 and ends.

Methods for Storing Multi-Segmented Content Using Con
tent Signatures

0129. An extension to above method 1700 for storing files
using content signatures to improve storage efficiency
involves the storage of multi-segmented content. Separate
content signatures can be generated for each content segment
within multi-segmented content such as a mail file, a fmail
file, a compressed file archive (e.g., Zip, rar, or compressed
tar), a non-compressed file archive (e.g., shar or tar), an enter
tainment collection (e.g., audio, video, audio video, and/or
computer games), a multi-part web page, a multi-page pre
sentation, a multi-part Office document, a multi-page image
file, image files with OCR, speech files with audio transcripts,
system paging file, Swap file, a log file, a database, a table, an
append only file, an instant messenger archive, a chat archive,
a history file, a journal, a virtual file system, and a revision

May 24, 2012

control repository including SVN archives or ramdisk file.
For example, when someone Zips a set of files, it is possible to
know that the new Zip file contains a set of already known
content signatures. The Zip file can actually be stored by its
content signatures and path data for the Zip file. Storing only
the content signatures for the files contained within a zip file
significantly reduces storage needs.
I0130 FIG. 18 provides a flowchart of method 1800 for
storing a multi-segmented file using file identicality, accord
ing to an embodiment of the invention. Method 1800 begins
in step 1810. In step 1810 a multi-segmented file is received.
A multi-segmented file includes, but is not limited to a Zip file,
tar files and mailbox files. For example, indexed archive sys
tem 1500 can receive a multi-segmented file that was trans
mitted from information source agent 1600. Alternatively,
information source agent 1600 can receive a file. In step 1820
a content signature is generated for each file within the
received multi-segmented file. For example, content signa
ture generator 1430 or content signature generator 1610 can
generate a content signature for the received file.
I0131. In step 1830 the content signatures for each of the
files within the received multi-segmented file are compared to
the content signatures for existing files. For example, content
signature comparator 1440 compares the received file content
signature to all content signatures for files already stored
within content repository 1420.
0.132. In step 1840 a determination is made whether the
received content signatures match previously stored content
signatures. For example, content signature comparator 1440
determines whether all of the file content signatures for files
within the received multi-segmented file match content sig
natures stored in content repository 1420. If all content sig
natures for the received multi-segmented file do not match
existing content signatures, method 1800 proceeds to step
1850.

I0133. In step 1850 the file content signatures for each of
the files within the multi-segmented file are stored and con
tent for the received multi-segmented file is stored. For
example, indexed archive system 1500 stores the file content
signatures and content for the received multi-segmented file
in content repository 1420. Indexed archive system 1500 also
stores metadata for the received multi-segmented file in meta
data repository 340. Alternatively, indexed archive system
1500 can store metadata for each of the files within the
received multi-segmented file. Method 1850 then proceeds to
step 1880 and ends.
0.134 Referring back to step 1840, if a match exists for all
content signatures for files within the received multi-seg
mented file, method 1800 proceeds to step 1860. In step 1860
metadata for the received file is associated with the existing
content signature that match the received file content signa
tures. For example, metadata engine 315 generates metadata
for each of the received files within the multi-segmented file.
Metadata is also generated for the received multi-segmented
file that identifies at least the content signatures of the files
contained with the multi-segmented file and path data.
0.135 Alternatively, metadata can be generated by an
information Source agent, such as information source agent
1600, that transmits the metadata to indexed archive system
1500. Metadata engine 315 associates the metadata for the
received file to the content signature and content that already
exists within content repository 345.
0.136. In step 1870 metadata for the received multi-seg
mented file and each of the files contained within the multi

US 2012/013 1001 A1

segmented file is stored. For example, metadata engine 315
stores the metadata in metadata repository 340. No content
for the received file is stored, because it already exists based
on the determination that a matching content signature was
determined for each of the files within the received multi
segmented file. Method 1800 proceeds to step 1880 and ends.

Methods for Copyright Management Using File Identicality
0.137 In a further aspect of the invention, the invention
provides methods for copyright management or licensed data
file materials using file identicality. Content signatures for
known copyrighted materials (e.g., programs, music, videos,
text files) can be stored within indexed archive system 1500.
By comparing content signatures of files received on comput
ers within a network to content signatures of known copy
righted materials, copyright tracking and practice procedures
can effectively be put into place. Similar controls can be put
into place on a network to block pornography from being
stored on computers. Specifically, the National Institute of
Standards and Technology (NIST) publishes checksums
(MD5) for all known pornography. Content signatures for
files received can be compared to these known signatures, and
an appropriate control action can take place. Such as blocking
these files from all computers, or notifying management
when they appear on a computer.
0138 FIG. 19 provides a flowchart of method 1900 for
managing copyrights using file identicality, according to an
embodiment of the invention. Method 1900 begins in step
1910. In step 1910 a file is received. For example, indexed
archive system 1500 can receive a file that was transmitted
from information source agent 1600. Alternatively, informa
tion source agent 1600 can receive a file. In step 1920 a
content signature is generated for the received file. For
example, content signature generator 1420 can generate a
content signature for the received file.
0.139. In step 1930 the content signature for the received

file is compared to the content signatures for copyrighted
files. For example, indexed archive system 110 can maintain
a table or a copyright file content signature registry of content
signatures for known copyrighted materials. Content signa
ture comparator 1440 compares the received file content sig
nature to all content signatures for content signatures within
the copyright file content signature registry.
0140. In step 1940 a determination is made whether the
received content signature matches a content signature for a
copyrighted material. For example, content signature com
parator 1440 determines whether the received file content
signature matches any of the content signatures stored in the
copyright content signature table. If a match does not exist,
method 1900 proceeds to step 1980 and ends. If a match does
exist, method 1900 proceeds to step 1950.
0141. In step 1950, the count is incremented for the num
ber of copies located on the network supported by indexed
archive system 110. For example, the copyrighted content
signature registry can include a column that identifies the
number of copies stored on the network. This value would be
incremented by 1 when a new file is received with a content
signature matching a copyright content signature.
0142. In step 1960 a determination is made whether the
count for copies of the copyright materials on the network
exceed the allowable number of copyrights for the material.
For example, the copyrighted content signature table can
include a column that identifies the number of allowable
copies to be stored on the network. This value can be com

May 24, 2012

pared against the actual number of files for the particular
copyright content signature. If a determination is made that
the number of copies on the network does not exceed the
allowable number of copies, then method 1900 proceeds to
step 1980 and ends. Otherwise, method 1900 proceeds to step
1970 and a control action is initiated. The control action can
include notifying management that the copyright amount has
been exceeded or may disable the application or file that was
received that caused the copyright limit to be exceeded. In
step 1980, method 1900 ends.
0.143 A similar process can be used to monitor porno
graphic files. In this case, indexed archive system 1500 can
include a list of content signatures for known pornographic
files and applications. In this case, when a received file has a
content signature that matches one that is listed on the por
nographic files content signature list, a control action can be
initiated. Such as notifying management and/or deleting the
file from the user's computer, while saving a copy of the file
for investigative purposes.

Methods for Document Retention Using File Identicality
0144. Knowing that file content is identical allows opera
tions that are currently impossible. For example, there are
many contracts that require the recipient of information to
destroy documents related to the contract and all copies when
the contract ends. If the information is a set offiles, it is nearly
impossible today to find all copies, particularly if one of the
recipients renamed the files. If the content was copied onto a
computer and then emailed to tens or hundreds of other
employees with a “need to know,” there are no cost effective
ways of finding all of the copies.
0145 The present invention addresses this challenge. FIG.
20 provides a flowchart of method 2000 for deleting files
across an entire network using file identicality, according to
an embodiment of the invention. Method 2000 begins in step
2010. In step 2010 a file to be removed is received. Alterna
tively, a content signature can be received or generated for a
file to be removed. For example, indexed archive system 1500
can receive a file that was transmitted from a contract admin
istrator with a request that all such files that exist on the
company's network be deleted. The file could be, for
example, a draft version of a contract or a confidential docu
ment that was used in the development of the contract. In step
2020 a content signature is generated for the received file to be
removed. For example, content signature generator 1430 can
generate a content signature for the received file.
0146 In step 2030 the content signature for the received

file to be removed is compared to the content signatures
within content repository 1420.
0.147. In step 2040 a determination is made whether the
content signature for the file to be removed matches a stored
content signature. For example, content signature comparator
1440 determines whether the received file content signature
matches any of the content signatures stored in content
repository 1420.
0.148. If a match does not exist, method 2000 proceeds to
step 2070. In step 2070, a deletion report is generated that
indicates that no copies of the document were found within
the network. In step 2080, method 2000 ends.
0149. If a match does exist, method 2000 proceeds to step
2050. In step 2050, all information source clients where the
file exists are determined. For example, metadata within
metadata repository 340 can be reviewed to determine what
information source clients contain the file to be removed.

US 2012/013 1001 A1

Alternatively, the content signatures within content reposi
tory 1420 can include an identifier for each of the information
Source clients that contain the file having the particular con
tent signature. A determination of where copies of the file to
be removed can then be made simply by reviewing the content
signatures contained within content repository 1420.
0150. In step 2060, a delete instruction is sent to all infor
mation Source clients which have been determined to contain
the file to be deleted. For example, indexed archive system
1600 transmits a delete instruction to each of information
source agents 120. Information source agents 120 will then
proceed to delete the file from the information source client
that it is associated with. After successful deletion, the infor
mation Source agents transmit a delete confirmation message
back to indexed archive system 1500. Alternatively, the delete
instruction can include a request to the file owner asking the
file owner to delete the file. The delete instruction could also
interface with a general remote administration tool including,
for example, Microsoft SMS, Amdahl A+ edition, and other
system administration tools.
0151. In step 2070, a deletion report is generated. For
example, indexed archive system 1500 can generate a dele
tion report. The deletion report includes, but is not limited to,
identifying the number of copies of the file that were found,
the information source clients where the file existed, confir
mation that the file was deleted and any error situation, for
example, whether a file was unable to be deleted. In step 2080,
method 2000 ends.

Methods to Control File Access. Using File Identicality
0152 Another application of the present invention relates
to controlling file access based on file identicality informa
tion. Using file identicality information, a content block can
be implemented at the individual or group level. For example,
if a determination is made that a computer game is wasting
employee time, it use can be blocked based on its content
signature. Other file types can also be blocked at individual,
group or corporate wide levels. For example, if some game is
wasting employee time, then it can be blocked.
0153 Content signatures can also be used to verify that a
set of files does not have files from anotherset of files, such as,
for example, open source files. By using open source files in
a distribution, a company can lose ownership of some orall of
the distribution. Thus, it is important to be able to identify that
such open source files do not exist within a distribution.
0154 An information technology department may also
want to block any files on production/user systems that have
not gone through an approval process. This can be limited to
classes of files (e.g., DLLs—Dynamically Linked Libraries,
or executables), or to hierarchies (e.g., C:\WINNT). If a user
needs to install something not “authorized then he can get an
authorization from the information technology department,
which will capture all of the relevant signatures and decide
whether this is a single exception, or a set of signatures to
allow everyone to have.
(O155 FIG. 21 provides a flowchart of method 2100 for
blocking access to the use of files using file identicality,
according to an embodiment of the invention, that addresses
the above file access control situations. Method 2100 begins
in step 2110.
0156. In step 2110 a file to be blocked is received. Alter
natively, a content signature can be received or generated for
a file to be blocked. The file that is to be blocked can be, for
example, an application, Such as a game that network users

May 24, 2012

should not run, or a document that network users should not
be able to use. For example, indexed archive system 1500 can
receive a file that was transmitted from a company adminis
trator with a request that all such files that exist on the com
pany's network be blocked. In step 2120 a content signature is
generated for the received file to be blocked. For example,
content signature generator 1430 can generate a content sig
nature for the received file.
0157. In step 2130 the content signature for the received

file to be blocked is compared to the content signatures within
content repository 1420.
0158. In step 2140 a determination is made whether the
content signature for the file to be blocked matches a stored
content signature. For example, content signature comparator
1440 determines whether the received file content signature
matches any of the content signatures stored in content
repository 1420.
0159. If a match does not exist, method 2100 proceeds to
step 2170. In step 2170, method 2100 ends.
0.160) If a match does exist, method 2100 proceeds to step
2150. In step 2050, all information source clients where the
file exists are determined. For example, metadata within
metadata repository 340 can be reviewed to determine what
information source clients contain the file to be blocked.
Alternatively, the content signatures within content reposi
tory 1420 can include an identifier for each of the information
Source clients that contain the file having the particular con
tent signature. A determination of where copies of the file to
be blocked can then be made simply by reviewing the content
signatures contained within content repository 1420.
0.161. In step 2160, a block instruction is sent to all infor
mation source clients which have been determined to contain
the file to be deleted. For example, indexed archive system
1500 transmits a block instruction to each of information
Source agents 120. Transmitting a blocking instruction can
include transmitting a block instruction that moves the file to
be blocked, that deletes the file to be blocked, that replaces the
file to be blocked with another file or that changes file system
permissions to block access to the file to be blocked. Infor
mation source agents 120 will then proceed to block the file
from being accessed by the information source client that it is
associated with. In step 2170, method 2100 ends.
0162. In an alternative approach to method 2100, the con
tent signature of the file to be blocked can be transmitted to
every information source agent within a network. Application
registry 1620 within an information Source agent can main
tain a repository that lists content signatures for files that are
to be blocked. Application module 1620 can include a block
file application or macro that checks the content signature of
each file that is attempted to be accessed or used against the
list of blocked content signatures in the repository of blocked
file content signatures. If a content signature exists in the
registry, then the application will be blocked. Notification to
indexed archive system 1500 can be provided whenever an
attempt is made to access a blocked file.

Methods for Confidential Document Control Using File Iden
ticality

0163 The present invention also enables methods for con
fidential document control. A confidential/secret document
registry of content signatures for known confidential/secret
documents can be established. In one example, a third party or
government agency can maintain a registry for intellectual
property. In this case, when a patent application is filed, a

US 2012/013 1001 A1

content signature for the application can be registered within
the registry. Every customer of the registry would send into
the registry all of its new content signatures on a regular basis,
for example, daily. If one of the new content signatures
matches a registered content signature, then a notice is sent to
both the “offender and the registered holder. The “offender
can remove the document, thus avoiding potential lawsuits,
and the owner will know that a document has leaked.
0164. This concept can be extended to a registry for SRD
(Secret/Restricted Data) for government contractors & oth
ers. The process would be similar to the confidential docu
ment registry. In this scenario, all government contractors
could be required to send content signatures for their files and
documents, by classification (e.g., top secret, restricted, etc),
to a classified document registry. If any content signatures
represent unauthorized material that a contractor should not
have access to, the government could take action to track
down the source of the problem. As contractors gain access to
material, it would be registered for them by their contracting
authority.
(0165 FIG. 22 provides a flowchart of method 2200 for
confidential or classified document control using file identi
cality, according to an embodiment of the invention. Method
2200 begins in step 2210. In step 2210, a registry of confi
dential or classified documents is established. For example, a
confidential document content signature can be established
within indexed archive system 1600 within application reg
istries 1520.
0166 In step 2220 registry participants are enrolled.
Enrollment can take on many forms. For example, within a
controlled corporate network information source clients can
automatically be enrolled. Access rights can be determined by
department, job title, job description, organizational chart,
physical location, clearance level or a combination of any of
the above. When enrolling information source clients differ
ent levels of access can be provided to each information
Source client. For example, within a government defense
contractor certain information source clients can be provided
access to top secret documents, while others may be denied
access. When the registry is established to support multiple
entities, for example, government contractors seeking to do
business with a particular government agency, the agency can
require contractors to register each of their information
Source clients and provide communications via the Internet or
a secured private network to an indexed archive system, Such
as indexed archive system 1500, which contains a confiden
tial document registry.
0167. In step 2230 content signatures from registry par
ticipants are transmitted to an indexed archive system. For
example, contractor information source clients can transfer
content signatures to indexed archive system 1500. During
initial registration of an entity to the registry, all content
signatures from the information source clients from the entity
are transmitted. On an ongoing basis only new content sig
natures from the entity will need to be sent.
0.168. In step 2240 the content signatures for a registry
participant are compared to content signatures that reside in
the confidential document registry. For example, content sig
nature comparator 1440 can compare the received content
signatures against those identified in the confidential docu
ment registry.
0169. In step 2250 a determination is made whether the
content signature from a registry participant matches any
stored content signature in the confidential document registry.

May 24, 2012

For example, content signature comparator 1440 determines
whether the received file content signature matches any of the
content signatures stored in a confidential document registry.
0170 If a match does not exist, method 2200 proceeds to
step 2270. In step 2270, method 2200 ends.
0171 If a match does exist, method 2200 proceeds to step
2260. In step 2260, a control action is initiated. For example,
indexed archive system 1500 can send a violation report to a
party responsible for confidential document control. Addi
tionally, as per method 2100 above, indexed archive system
1500 can transmit a block request to the information source
client where the document was found to prevent further
access to the confidential document. Similarly, a control
action can be implemented based on method 2000 above. In
step 2270, method 2200 ends.

Methods to Monitor Computer Usage and File Usage Using
File Identicality
0172 Statistical analysis of the distribution and use offiles
within a network can provide valuable information. For
example, knowing that a particular document is on more than
half of the computers in an enterprise can be very interesting.
Potentially, even more interesting is knowing which of those
documents have been read recently. Conceivably, if they are
read often and recently they are likely a very relevant docu
ment. Additionally, computers that share operating systems
and job function (e.g., twenty computers located in the
Human Resource Dept.) should have very similar content
files. If they do not, this may be an indication that there are
inappropriate files. Such as music files or pornographic pic
tures, on outlier machines that have different file distribution
and usage characteristics compared to other computers within
the group.
(0173 FIG. 23 provides a flowchart of method 2300 for
identifying information Source clients that have unique file
distribution characteristics, according to an embodiment of
the invention. Method 2300 begins in step 2310. In step 2310
an information source client group of interest is determined.
For example, the group of interest might include all comput
ers within the Human Resources Department.
0.174. In step 2320 a content signature summary for each
information Source client is determined. In one embodiment,
a client characterization application can be loaded into appli
cation module 1510. The client characterization application
can then retrieve all content signatures from content reposi
tory 1420 for each information source client within the group
of interest to generate a Summary of the content signatures for
each information source client.
0.175. In step 2330 commonality of content signatures
across information source clients is determined. For example,
for each content signature a count of how many information
Source clients that the content signature is associated with can
be derived.
(0176). In step 2340 outlier files are identified. In one
embodiment, any files that appear on fewer than a set thresh
old of information source clients can be determined to be
outlier files. Once outlier files are determined, the outlier files
can be analyzed. Alternatively, a determination can be made
whetheran information source client is an outlier device. One
test to identify an outlier device can be based on the total
number of outlier files on a particular information source
client. That is, if the total number of outlier files exceeds a
particular threshold, then the information source client is
determined to be an outlier device.

US 2012/013 1001 A1

0177. In step 2350 a control action is taken. For example,
further investigation can be done of outlier devices and files,
outlier files can be blocked from future access, an outlier
report can be generated. In step 2360 method 2300 ends.
0178. In another aspect of the invention, control actions
can be taken based on storage or usage characteristics of files.
FIG. 24 provides a flowchart of a method 2400 for taking
control actions based on storage or usage characteristics of
files based on file identicality, according to an embodiment of
the invention. Method 2400 begins in step 2410. In step 2410
an information Source client group of interest is determined.
The group of interest can be a department, the whole organi
Zation or any collection of information source clients that may
provide insights into the organization.
0179. In step 2420 content signatures for files associated
with the interest group are analyzed to identify any particular
characteristics. For example, the content signatures can be
analyzed to determine what documents are used most fre
quently, what files are most common, what files were used
most recently, what files were stored most recently, etc.
0180. In step 2430 a control action is taken. For example,
usage reports can be generated. In step 2440, method 2400
ends.
0181 File identicality can also be tied to voting by keeping
counts on reading, copying, deleting, etc of files. These
counts can be used to prioritize search results. For example, if
a document turns up in a search, and there are 50 copies, and
45 of those copies have been read multiple times and few
copies have been deleted, then this can be determined to be a
“relevant” document, especially as compared to a document
that had 50 copies, 45 of which were deleted without being
read.
0182 FIG. 25 provides a flowchart of method 2500 for
generating search results using file identicality, according to
an embodiment of the invention. Method 2500 begins in step
2510. In step 2510, a search request is received. For example,
a search application may reside within applications module
1510. A user can entera search term request that is transmitted
to indexed archive system 110 where the search application
resides. In step 2520, a search is conducted of all files stored
in indexed archive system 110. The search can be conducted
using any of the many known searching algorithms. e.g.,
using a search engine such as Google, MSN or Yahoo’s
engine. The search will generate a list of files for which the
search terms were found.
0183 In step 2530 content signatures are determined for

all or a subset of the documents identified in step 2520.
Content signatures can be identified from content repository
1420, for example.
0184. In step 2540 usage and change statistics are deter
mined for the documents associated with the content signa
tures that were found in step 2520. Example usage statistics
can include number of copies of the documents found, num
ber of recent deletions of the documents found, number of
recent changes, level of usage, etc. These statistics can be
determined by accessing metadata within metadata reposi
tory 340 associated with each of the instances of the docu
ments corresponding to the content signatures.
0185. In step 2550 the search results are prioritized based
on usage and change statistics. For example, the relevancy of
documents can be determined by examining the ratio of num
ber of copies to recent deletions, the average time since last
change to documents, the number of documents, and/or a
combination of these measures. A prioritized list of search

May 24, 2012

results can then be displayed for the search user. Based on the
teachings herein, individuals skilled in the relevant arts will
determine other statistical measures that can be used. In step
2560, method 2500 ends.
0186. Using content signatures to facilitate searching pro
vides the potential for many new applications. For example, a
standard Internet search engine (e.g., Google) could make file
signatures a searchable field. If this was the case, a user could
effectively ask “which web sites have a copy of my copy
righted picture or story' by searching for a particular content
signature.

Methods to Perform Computer Forensics Using File Identi
cality
0187 File identicality knowledge is also invaluable for
computer forensics. For example, if a key document was
leaked to the press, instances of that document on information
search clients can be tracked based on matching content sig
natures. Furthermore, if a backup server, Such as one associ
ated with indexed archive system 1500, is configured to main
tain content deletion, once a computer has had a copy of a file,
then it is even possible to track down someone who had a copy
of the file and subsequently deleted it.
0188 FIG. 26 provides a flowchart for a method 2600 for
conducting computer forensics using file identicality, accord
ing to an embodiment of the invention. Method 2600 begins
in step 2610. In step 2610 a file under investigation is
received. Alternatively, a content signature can be received or
generated for a file under investigation. A file includes, but is
not limited to a data file, application file, System file and/or
programmable ROM file. For example, indexed archive sys
tem 1500 can receive a file that was leaked to the press or a
confidential document that was inappropriately released.
0189 In step 2620 a content signature is generated for the
received file. For example, content signature generator 1430
can generate a content signature for the received file under
investigation.
0190. In step 2630 information source clients that possess
the file under investigation are determined. For example,
indexed archive system 1500 can identify whether any con
tent signatures in content repository 1420 match the content
signature for the file being investigated. If a match exists, then
all information source clients associated with the content
signature are identified.
0191 In step 2640 information source clients that for
merly contained the file under investigation are identified. For
example, metadata contained within metadata repository 340
associated with instances of the content signature of the file
under investigation can identify information source clients
that formerly contained the document having the content
signature under investigation.
0.192 In step 2650 a document investigation report is gen
erated. The report identifies the information source clients
having the document with a content signature that matches
the document under investigation and/or identifies the infor
mation source clients that formerly had the document with a
content signature that matches the document under investi
gation. In step 2660, method 2600 ends.
0193 Another aspect of the present invention uses file
identicality to find systems that have installed specific
devices, such as CD writer or USB disk. When these devices
get installed on a system, known content signature files get
copied into certain directories. These can be monitored to see
who has the capability to take information out of the facility.

US 2012/013 1001 A1

0194 Further, an indexed archive system can maintain a
signature watch list and notify someone if a proscribed docu
ment ever reappears in the organization. Since the backup
system knows file creation and access times for each instance
ofevery file, this knowledge can narrow the Suspect instances.
(0195 FIG. 27 provides a flowchart of method 2700 for
watching the use or presence of files based on file identicality,
according to an embodiment of the invention. Method 2700
begins in step 2710. In step 2710 a file to be watched is
received. Alternatively, a content signature can be received or
generated for a file to be watched. For example, indexed
archive system 110 can receive a file that was transmitted
from a company administrator with a request that the file be
watched. The content signatures to be watched can be for files
that individuals are not permitted to have, for virus/worm/
malware files, for files that require software licenses, for
Software files associated with stolen or missing computers,
and for files related to illegal activity, such as nuclear weapon
design, child pornography or cryptographic Software that
cannot be imported into the United States. In step 2720 a
content signature is generated for the received file to be
watched. For example, content signature generator 1420 can
generate a content signature for the received file to be
watched.
0196. In step 2730 the content signature for the received

file to be watched is added to a watch file content signature
registry within indexed archive system 1500, for example.
The watch file content signature registry can be located within
application registries 1520.
0197) In step 2740 when a new content signature is
received or generated it is compared against the content sig
natures within the content signature watch registry. In step
2750 when a match occurs between a new content signature
and a content signature on the watchlist, a control action takes
place. For example, a notification can be sent to an adminis
trator identifying the appearance of the file to be watched. In
step 2760 method 2700 ends.

Methods to Manage File Updates Using File Identicality
0198 In another aspect of the invention file identicality
can be used to manage file updates. In embodiments, the
present invention notifies users within a network that an old
version of a file is obsolete, advises a local file system to
notify a user when they try to open an old version of a file. In
the latter scenario, this requires cooperation from the local file
system. If a local file system is keeping content signatures for
files, then they can be checked for currency with the server.
0199. This approach improves on the way web page cach
ing works today. When a web page is viewed (copied from a
remote system and displayed), a local copy of the page is put
in a cache (e.g., a local directory). When the page is visited
again, the local copy of the page is used if it is “recent'—e.g.,
fetched today or in the past hour, and if older, then the cached
copy is checked against the remote copy to see if it has
changed. This is currently done by modification date, time
and duration since the last change. The use of content signa
tures improves upon this approach.
(0200 FIG. 28 provides a flowchart of method 2800 for
notifying users that file updates have occurred using file iden
ticality, according to an embodiment of the invention. Method
2800 begins in step 2810. In step 2810 a new version of a file
is received. In step 2820 the new version of the file is associ
ated with an existing content signature. For example, a file
update application can reside in application module 1510 of

May 24, 2012

indexed archive system that provides this association by
reviewing metadata contained within metadata repository
340.

0201 In step 2830 all information source clients that have
the file associated with the content signature identified in step
2820 are identified. In an embodiment, the information
source clients can be identified by reviewing the information
contained within content repository 1420.
0202 In step 2840 all users of the old version of the file are
notified that a new file exists. For example, indexed archive
system 1500 can send a notify message to all information
Source agents that cause to be displayed a message that the file
has been updated. Alternatively, a notify message can be sent
to all information source agents from indexed archive system
1500, such that the next time a user opens the file that has been
updated, the information source agent identifies that the file
has been updated. Alternatively, or in addition, file owners
can be notified via an email, phone call or instant messaging
that a file update has occurred. In another embodiment an
information source agent notifies the owner of the update
upon the next time the file is opened. In step 2850 method
2800 ends.

Methods of Accelerating Web Browsing Using File Identical
ity

0203 As indicated above, in another aspect of the present
invention, the use of content signatures simplifies and accel
erates web browsing. When a web page is fetched, one can
receive a set of content signatures representing the page and
the embedded links. The browser would only have to fetch
those links that did not match cached signatures. Content
signatures are Smaller than urls and timestamps, thus the use
of content signatures would be more efficient that the current
methods of updating web pages within browsers. This pro
cess is illustrated in FIG. 29.

(0204 FIG. 29 provides a flowchart of a method 2900 for
fetching links associated with a requested page, according to
an embodiment of the invention. Method 2900 begins in step
2910. In step 2910 a web page is requested. In step 2920 a set
of content signatures associated with the web page are
received by the user. In step 2930 the content signatures
associated with the web page that are received are compared
to existing content signatures located on the information
source client of the user. In step 2940 links are fetched for
content associated with content signatures that currently do
not exist on the information source client of the user. In step
2950, method 2900 ends.

Methods for Global Content Management Using File Identi
cality

0205 Once a data management system is in place. Such as
indexed archive system 1500 that generates and stores unique
file identifiers, such as content signatures generated and
stored through methods like method 1700 and 1800, file
identicality knowledge enable a variety of global content
management operations.
0206 When multiple users work on common sets of docu
ments (e.g., source files, web pages, etc.), the metadata stored
within indexed archive system 1500 can be used for a variety
of tracking and management functions. For example, the sys
tem can track every file's migration from system to system,
who modified each file, and who is using which versions of

US 2012/013 1001 A1

each file. Combined with indexing, this function can replace
explicit content management systems, such as Imanage.
0207. An individual or group within an organization work
ing in some topic area can find other individuals or groups
with similar interests by looking for copies or access to com
mon files. This could also be automated by the system by
sending out notifications when common usage occurs.
0208 File identicality normally occurs because a single

file has been copied from location to location. It is also pos
sible, however, for file identicality to occur through indepen
dent acts of creation. For all but the smallest acts of file
creation, this is incredibly rare. Because it is so rare, it can
provide interesting results. Simultaneous creation of identical
files might occur for example by two scientists creating the
same new chemical compound or discovering the same gene
Sequence.
0209 FIG. 30 provides a flowchart of method 3000 for
identifying when identical files are independently created,
according to an embodiment of the invention. Method 3000
begins in step 3010. In step 3010 a file is received. For
example, indexed archive system 1500 can receive a file that
was transmitted from information Source agent 120. Alterna
tively, information source agent 1600 can receive a file. In
step 3020 a content signature is generated for the received file.
For example, content signature generator 1440 can generate a
content signature for the received file.
0210. In step 3030 the content signature for the received

file is compared to the content signatures for existing files. For
example, content signature comparator 1440 compares the
received file content signature to all content signatures for
files already stored within content repository 1420.
0211. In step 3040 a determination is made whether the
received content signature matches any previously stored
content signatures. For example, content signature compara
tor 1440 determines whether the received file content signa
ture matches any of the content signatures stored in content
repository 1420. If a match does not exist, method 3000
proceeds to step 3070 and ends. If a match does exist, method
3000 proceeds to step 3050.
0212. In step 3050, a determination is made whether the
received file has been independently created. For example,
content engine 1410 can examine metadata about the received
file to determine its origin and date/time of creation. If a
determination is made that the received file has not been
independently created, then method 3000 proceeds to step
3070 and ends. If a determination is made that the received
file has been independently created, then method 3000 pro
ceeds to step 3060.
0213. In step 3060, a control action is initiated. For
example, indexed archive system 110 may generate an excep
tion report that identifies the meta-data for each of the files
with matching content signatures. These exception reports
can then be used to trigger a manual review of the anomaly to
determine what the cause of the rare event might be (e.g., two
inventors stumbling on the same discovery simultaneously, or
perhaps plagiarism, or simply reentering of a document that
an individual thought had been deleted from the system.) In
step 3070, method 3000 ends.
0214. This approach to determining whether a file has
been independently created is complicated. Furthermore, to
find perfect signature matches, the files would need to be
exact and that will be true in only a very limited number of
cases. A generalization of this approach includes establishing
a set of hashes of interest to a user. If anyone else in an

May 24, 2012

organization has that set of hashes appear, then let the user
know. This is essentially another type of registry, but could be
used to find someone else in an organization that uses an
individual's work, so that original user (or creator) can then
identify collaboration partners.

Methods for Disaster Recovery Using File Identicality

0215. In another aspect of the invention, an outsource
disaster recover site has a content signature set that is a strict
Subset and known portion of the content signature set for
every information source client within a network. Across
multiple customers, there is massive overlap of content sig
natures (ie., many applications and files are the same), thus
the cost to back up a particular customer is quite low, both in
storage and required bandwidth, because only one copy of the
content need be stored no matter how many information
Source clients within many different networks or customers
that the content exists on.

0216 A backup server can mirror servers or maintain a “to
be mirrored file list. As new content signatures arrive at a
backup server, it can queue them for mirroring and in the
background coordinate with one or more mirror servers to
ensure that there is always more than one copy of each file in
disparate geographies. It is not necessary that every file be
mirrored on every server—only that there are at least N cop
ies, where N would typically be between 2 and 4.
0217. With a modified local system, a computer can keep
a non-volatile cache until a backup server acknowledges
backup. That is, something like a memory stick or USB drive
can be used to stage a copy of files to be backed up. Once the
backup server confirms receipt and permanent storage, then
the file can be removed from the cache. This would allow, for
example, a notebook computer to operate off the network, and
then to synchronize completely once re-connected. This also
eliminates the possible loss of data window if the computer
crashes between the time a file is saved and it is backed up to
the server.
0218. It is also possible to keep a subset of files on a local
device Such as a memory Stick, or USB disk. As a document
is being edited, it is quite likely that a recent version will be
useful to the user if they make Some catastrophic editing
mistake. Rather than go all the way to the backup server,
recent versions of the file can be kept on local backup storage.

Methods for Virus Control Using File Identicality
0219. The present invention also provides automatic undo
of viruses—e.g. backup server runs virus scan on new content
and automatically undoes the damage. As a result, there does
not need to be separate virus protection on every computer,
just one on the backup server. This is much more cost effec
tive and easier to maintain, with lower bandwidth to keep the
single virus definition file up to date rather than updating
hundreds or thousands across individual computers.
0220. The content for some files should never vary from
their well-known permitted values. These files include system
binary files, help files, application programs and read only
files on traditional timesharing or well configured worksta
tions. Whenever the content for these files varies from their
well-known permitted values, this indicates that something is
wrong or corrupted with the file. Thus, determining whether
these types of files are corrupted is a relatively straightfor
ward procedure. That is, in an embodiment of the invention,
when a computed content signature changes for these types of

US 2012/013 1001 A1

file, this is indicative that the file has potentially been infected
by a virus or corrupted in Some other manner.
0221. Other files, such as data files (e.g., Microsoft Word
or Excel files), are more fluid. Therefore, when there is a
change to the contents, this does not necessarily mean that a
problem exists. Rather changes to these types of files are the
norm. As a result when a "macro virus' infects data files and
the content signature changes, the fact that the content signa
ture changes cannot in and of itself signify that the file has
been infected.
0222. In embodiments of the present invention, however,
there are alternative approaches to identify when a virus is
impacting files across a network Supported by file manage
ment system 1400. Specifically, file management system
1400 can track when many data files are changed in a short
time. In this case a time threshold and a file change threshold
can be established based on, for example, the number of users
and the number of total files. Whenever file management
system 1400 receives a file, file management system 1400
compares the content signature of the received file to existing
files to determine whether it represents a changed file. If the
file is a changed file, file management system 1400 incre
ments a count of changed files within the last time threshold.
If the count of changed files is greater than the file change
threshold, then a control procedure is implemented to address
the possibility that a virus may have inflicted the network.
0223) In an alternative approach, whenever file manage
ment system 1400 receives a file, file management system
1400 compares the content signature of the received file to
existing files to determine whether it represents a changed
file. If the file is a changed file, file management system 1400
runs a virus check on every changed file.
0224. In either approach, when it is confirmed that a virus
has infected a file, rather than trying to pull the virus out of the
file, which is often difficult, file management system 1400 can
revert to an earlier version of the file. Such an approach is
straightforward with a system, such as file management sys
tem 1400, while impractical in existing systems.
0225. One of the biggest problems with a virus outbreak is
re-infection. Using a system like file management system
1400 files can be marked as “auto revert’ as a way of imple
menting a “read-only' type protection in a work station envi
ronment that does not have an effective way to enforce a read
only concept. When a file was marked as “auto revert,” it
would automatically revert back to a previous uninfected
version, during a period to time designated to control a par
ticular virus outbreak.

Methods to Determine Software Revision Level Using File
Identicality
0226. The present invention also determines the software
revision level using file identicality. For example, every set of
files for a particular revision of a common Software package
will be identical with the same set of files on every other
computer system. Using this knowledge, a determination of
what software revision level each computer is at, whether any
files on a computer were damaged, or whether there is a virus
loose on one of the computers can be readily determined by
examining existing content signatures. Furthermore, this
knowledge can be used to determine ifa particular installation
or upgrade failed or was only partially completed.
Computer System Implementation
0227. In an embodiment of the present invention, the
methods and systems of the present invention described

May 24, 2012

herein are implemented using well known computers, such as
a computer 3100 shown in FIG.31. The computer 3100 can be
any commercially available and well known computer
capable of performing the functions described herein, Such as
computers available from International Business Machines,
Apple, Silicon Graphics Inc., Sun, HP, Dell, Cray, etc.
0228 Computer 3100 includes one or more processors
(also called central processing units, or CPUs), such as pro
cessor 3110. Processor 3100 is connected to communication
bus 3120. Computer 3100 also includes a main or primary
memory 3130, preferably random access memory (RAM).
Primary memory 3130 has stored therein control logic (com
puter software), and data.
0229 Computer 3100 may also include one or more sec
ondary storage devices 3140. Secondary storage devices
3140 include, for example, hard disk drive 3150 and/or
removable storage device or drive 3160. Removable storage
drive 3160 represents a floppy disk drive, a magnetic tape
drive, a compact disk drive, an optical storage device, tape
backup, ZIP drive, JAZZ drive, etc.
0230 Removable storage drive 3160 interacts with
removable storage unit 3170. As will be appreciated, remov
able storage unit 3160 includes a computer usable or readable
storage medium having stored therein computer Software
(control logic) and/or data. Removable storage drive 3160
reads from and/or writes to the removable storage unit 3170 in
a well known manner.
0231 Removable storage unit 3170, also called a program
storage device or a computer program product, represents a
floppy disk, magnetic tape, compact disk, optical storage
disk, ZIP disk, JAZZ disk/tape, or any other computer data
storage device. Program Storage devices or computer pro
gram products also include any device in which computer
programs can be stored. Such as hard drives, ROM or memory
cards, etc.
0232. In an embodiment, the present invention is directed
to computer program products or program storage devices
having software that enables computer 3100, or multiple
computer 3100s to performany combination of the functions
described herein.
0233 Computer programs (also called computer control
logic) are stored in main memory 3130 and/or the secondary
storage devices 3140. Such computer programs, when
executed, direct computer 3100 to perform the functions of
the present invention as discussed herein. In particular, the
computer programs, when executed, enable processor 3110
to perform the functions of the present invention. Accord
ingly, Such computer programs represent controllers of the
computer 3100.
0234 Computer 3100 also includes input/output/display
devices 3180. Such as monitors, keyboards, pointing devices,
etc

0235 Computer 3100 further includes a communication
or network interface 3190. Network interface 3190 enables
computer 3100 to communicate with remote devices. For
example, network interface 3190 allows computer 3100 to
communicate over communication networks, such as LANs,
WANs, the Internet, etc. Network interface 3190 may inter
face with remote sites or networks via wired or wireless
connections. Computer 3100 receives data and/or computer
programs via network interface 3190. The electrical/mag
netic signals having contained therein data and/or computer
programs received or transmitted by the computer 3100 via
interface 3190 also represent computer program product(s).

US 2012/013 1001 A1

0236. The invention can work with software, hardware,
and operating system implementations other than those
described herein. Any software, hardware, and operating sys
tem implementations suitable for performing the functions
described herein can be used.

CONCLUSION

0237 Exemplary embodiments of the present invention
have been presented. The invention is not limited to these
examples. These examples are presented herein for purposes
of illustration, and not limitation. Alternatives (including
equivalents, extensions, variations, deviations, etc., of those
described herein) will be apparent to persons skilled in the
relevant art(s) based on the teachings contained herein. Such
alternatives fall within the scope and spirit of the invention.
What is claimed is:
1. A method comprising:
searching an indexed archive system to find files that

include a search term;
assigning content signatures to the files that include the

search term;
determining statistics related to the files based on the con

tent signatures; and
organizing search results based on the statistics.
2. The method of claim 1, further comprising:
receiving the search term from a user, and
sending a list of the organized search results to the user.
3. The method of claim 1, wherein the assigning further

comprises:
determining that a content repository in the indexed

archive system includes the content signatures for the
files; or

generating the content signature for the files.
4. The method of claim 1, wherein the determining statis

tics further comprises:
accessing a metadata repository in the indexed archive

system; and
identifying metadata associated with the files correspond

ing to the content signatures, wherein the statistics are
based on the identified metadata.

5. The method of claim 1, wherein the determining statis
tics further comprises:

determining a first value for how many of the files include
the search term;

determining a second value for how many of the files have
been deleted;

determining a third value for a number of changes to the
files; or

determining a fourth value for a level of usage of the files.
6. The method of claim 5, wherein the organizing further

comprises:
determining a relevancy of the files that include the search

term, the relevancy based on at least one of
a ratio of the first value to the second value;
an average amount of time since a previous change to the

files that include the search term; and
the first value.

7. The method of claim 1, further comprising:
searching for a user-specified content signature in the

indexed archive system.
8. A non-transitory computer readable medium having

stored thereon in digital form computer-executable instruc

May 24, 2012

tions that, in response to execution by a computing device,
cause the computing device to perform operations compris
ing:

searching an indexed archive system to find files that
include a search term;

assigning content signatures to the files that include the
search term;

determining statistics related to the files based on the con
tent signatures; and

organizing search results based on the statistics.
9. The non-transitory computer readable medium of claim

8, further comprising:
receiving the search term from a user, and
sending a list of the organized search results to the user.
10. The non-transitory computer readable medium of claim

8, wherein the assigning further comprises:
determining that a content repository in the indexed

archive system includes the content signatures for the
files; or

generating the content signatures for the files.
11. The non-transitory computer readable medium of claim

8, wherein the determining statistics further comprises:
accessing a metadata repository in the indexed archive

system; and
identifying metadata associated with the files correspond

ing to the content signatures, wherein the statistics are
based on the identified metadata.

12. The non-transitory computer readable medium of claim
8, wherein the determining statistics further comprises:

determining a first value for how many of the files include
the search term;

determining a second value for how many of the files have
been deleted;

determining a third value for a number of changes to the
files; or

determining a fourth value for a level of usage of the files.
13. The non-transitory computer readable medium of claim

12, wherein the organizing further comprises:
determining a relevancy of the files that include the search

term, the relevancy based on at least one of
a ratio of the first value to the second value;
an average amount of time since a previous change to the

files that include the search term; and
the first value.

14. The non-transitory computer readable medium of claim
8, further comprising:

searching for a user-specified content signature in the
indexed archive system.

15. A method comprising:
receiving, at an indexed archive system, a search term from

a user,
searching all files in the indexed archive system for files

that include the search term;
identifying the files that include the search term;
assigning content signatures to the identified files;
determining statistics related to the identified files based on

the content signatures; and
generating a list of the files that include the search term

based on the statistics.
16. The method of claim 15, wherein the assigning further

comprises:
retrieving the content signatures for the identified from a

content repository in the indexed archive system; or
generating the content signatures for the identified files.

US 2012/013 1001 A1

17. The method of claim 15, wherein the determining sta
tistics further comprises:

accessing a metadata repository in the indexed archive
system; and

identifying metadata associated with the one or more files
corresponding to the content signatures, wherein the
statistics are based on the identified metadata.

18. The method of claim 15, wherein the determining sta
tistics further comprises:

determining a first value for how many of the files include
the search term;

determining a second value for how many of the files have
been deleted;

May 24, 2012

determining a third value for a number of changes to the
files; or

determining a fourth value for a level of usage of the files.
19. The method of claim 15, wherein the organizing further

comprises:
determining a relevancy of the files identified by the search,

the relevancy based on at least one of:
a ratio of the first value to the second value;
an average amount of time since a previous change to the

files that include the search term; and
the first value.

20. The method of claim 15, further comprising:
searching for a user-specified content signature in the

indexed archive system.
c c c c c

