METHOD OF MANUFACTURING A POLISHING PAD
VERFAHREN ZUM HERSTELLEN VON EINEM POLIERKISSEN
PROCEDE DE FABRICATION D'UN TAMPON DE POLISSAGE

(84) Designated Contracting States:
DE FR GB IT

(30) Priority: 06.08.1997 US 54906 P

(43) Date of publication of application:
28.06.2000 Bulletin 2000/26

(73) Proprietor: Rodel Holdings, Inc.
Wilmington, DE 19899 (US)

(72) Inventors:
• ROBERTS, John, V., H.
Newark, DE 19702 (US)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention.)
BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to a method of manufacturing a polishing pad as per the preamble of claim 1. An example of such a method is disclosed by document WO 94/04599 A.

Discussion of the Related Art

[0002] Integrated circuit fabrication generally requires polishing of one or more substrates, such as silicon, silicon dioxide, tungsten or aluminium. Such polishing is generally accomplished, using a polishing pad in combination with a polishing fluid.

[0004] The semiconductor industry has a need for precision polishing to narrow tolerances, but unwanted "pad to pad" variations in polishing performance are quite common. A need therefore exists in the semiconductor industry for polishing pads which exhibit more predictable performance during high precision polishing operations.

SUMMARY OF INVENTION

[0005] The present invention provides a method of manufacturing a polishing pad, the polishing pad comprising a pad material being a hydrophilic material having: i. a density greater than 0.5 g/cm³; ii. a critical surface tension greater than or equal to 34 mN/m; iii. a tensile modulus of 0.02 to 5 GPa; iv. a ratio of tensile modulus at 30°C to tensile modulus at 60°C of 1.0 to 2.5; v. a hardness of 25 to 80 Shore D; vi. a yield stress of 2.1 to 41 MPa (300-6000 psi); vii. a tensile strength of 6.9 to 103 MPa (1000 to 15,000 psi); viii. an elongation to break less than or equal to 500%, said hydrophilic material comprising at least one moiety from the group consisting of: 1. a urethane; 2. a carbonate; 3. an amide; 4. an ester; 5. an ether; 6. an acrylate; 7. a methacrylate; 8. an acrylic acid; 9. a methacrylic acid; 10. a sulphone; 11. an acrylamide; 12. a halide; and 13. a hydroxide; said hydrophilic material having a polishing surface, said surface having a plurality of features, said features having at least one dimension of greater than 0.01 mm to facilitate the flow of a polishing fluid, and facilitate chemical-mechanical polishing of a semiconductor device or a precursor to a semiconductor device; wherein said method comprises the steps of: thermoforming said plurality of features into the polishing surface; and characterised by: extruding said pad material upon a second material.

[0006] The polishing materials of the present invention do not include felt-based polishing pads created by coalescing a polymer onto a fiber substrate, as described in U.S. Pat. No. 4,927,432 to Budinger, et al.

[0007] The polishing surface has a topography produced by a thermoforming process. The topography consists of large and small features that facilitate the flow of polishing fluid and facilitate smoothing and planarizing.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0008] It should be noted that the term "polish" (and any form thereof) as used throughout this application, is intended to include "planarize" (and any corresponding forms).

[0009] The present invention is innovative because it: 1) recognizes the detrimental effect on precision polishing that occurs from damage caused by the incorporation of surface features into prior art pads; 2) recognizes how the damage is created during the fabrication of polishing pads; 3) teaches how to manufacture pads having low levels of damage; 4) teaches how to manufacture pads with highly reproducible surface features and therefore more predictable pad performance relative to conventional pads produced by cutting or skiving; and 5) teaches novel means to incorporate surface features into a pad during manufacture. None of these aspects of the present invention were heretofore appreciated in the art and are truly a significant contribution to the art of precision polishing.

[0010] The polishing pads manufactured by the method of the present invention comprise a highly reproducible and advantageous surface topography with a minimum of surface damage such as indentations and protrusions often created during pad fabrication.

[0011] Pad fabrication that includes cutting or skiving creates damage that tends to vary from pad to pad. Prior art pad fabrication may include cutting sections of a polymer cake to form pads. As a blade cuts through the cake it typically leaves directional surface damage, including indentations and protrusions from the pad surface. The damage generally varies from pad to pad as the cutting edge dulls.

[0012] Another step in pad fabrication is the incorporation of channels or other features into the pad surface to
facilitate polishing fluid flow. Prior art pads generally have these features cut or machined into the pad. This also generally, tends to leave damage on the pad surface and within the cuts. Other factors, such as temperature, humidity and line speed changes cause variations in the pad surface characteristics. These variations cause performance variations from pad to pad, making it difficult to delineate optimum polishing parameters.

[0013] The pads manufactured by the method of the present invention are created with little or no cutting, machining or similar type fracturing of the polishing surface. Unwanted directional patterns such as those generated by skiving are generally eliminated. Surface features or a portion thereof are applied onto (or into) the pad, also without fracturing of the polishing surface. This eliminates the problems associated with prior art techniques.

[0014] Surface features incorporated after the formation of the pad are created, at least in part, by thermoforming. Thermoforming is any process whereby the surface of the pad is heated and is permanently deformed by some means such as pressure or stress. Thermoforming reduces the extent of damage relative to conventional pads. Thermoforming also provides more reproducible features than cutting or machining because of the consistency of the surface of the thermoforming die. Therefore, pads manufactured by the method of the present invention exhibit more predictable performance and allow for optimum polishing parameters to be delineated.

[0015] Surface features are incorporated into the surface of the polishing pad, by heating the pad surface until it softens and then forming, or shaping it, utilizing a die and pressure. The features preferably comprise one or more indentations having an average depth and/or width of greater than about 0.05 millimeters and preferably greater than about 0.1 millimeters. These features facilitate the flow of polishing fluid and thereby enhance polishing performance. One embodiment of the present invention is thermal forming. The pad material is placed in a die. The pad material is then compressed which causes it to flow throughout the mold. It then solidifies and is released from the mold. In a preferred embodiment of the present invention, surface features are embossed with a chilled roller employed to ensure that plastic flow subsequent to embossing is eliminated or significantly reduced. This creates very reproducible embossed indentations, generally reducing pad-to-pad variations typically found in pads produced by many conventional methods. This reproducibility is also a result of the embossing die surface remaining generally the same for each pad produced by it. This translates to more predictable pad performance. Predictability of performance is an important aspect of a precision polishing pad. Pad consistency allows for more exacting standard operating procedures and, therefore, more productive polishing operations. Furthermore, use of a roller to produce surface features allows pads to be manufactures in continuous sheets.

[0017] The pad material is extruded upon a second solid or semi-solid material, thereby causing the extruded material to be bonded to the second material after it has solidified. The second material provides reinforcement to the pad so that the solidified, extruded material need not be self-supporting. In addition, the second material can provide structural integrity to the pad, thereby providing improved performance, longevity and/or greater flexibility in manufacturing.

[0018] In a preferred embodiment of the present invention, surface features are embossed with a chilled roller employed to ensure that plastic flow subsequent to embossing is eliminated or significantly reduced. This creates very reproducible embossed indentations, generally reducing pad-to-pad variations typically found in pads produced by many conventional methods. This reproducibility is also a result of the embossing die surface remaining generally the same for each pad produced by it. This translates to more predictable pad performance. Predictability of performance is an important aspect of a precision polishing pad. Pad consistency allows for more exacting standard operating procedures and, therefore, more productive polishing operations. Furthermore, use of a roller to produce surface features allows pads to be manufactures in continuous sheets.

[0019] In addition to surface features traditionally cut or machined into a pad, smaller features (less than 50µm) are necessary for optimum polishing performance. These small scale features are often incorporated prior to the first use of the pad and periodically during pad use. This is referred to as "conditioning". When conditioning is performed prior to use it is referred to as "preconditioning" and during use as reconditioning. During pad use the small scale features can experience unwanted plastic flow and can be fouled by debris. By conditioning, small scale features are regenerated. It has been surprisingly discovered that the polishing pads of the present invention generally require less reconditioning during use relative to conventional polishing pads. This is yet further evidence that the pads manufactured by the method of the present invention are generally superior to conventional pads.

[0020] Pads manufactured by the method of the present invention may be conditioned with an abrasive material. The small scale features may be created by moving the polishing surface against the surface of an abrasive material. In one embodiment, the abrasive material is a rotating structure (the abrasive material can be round, square, rectangular, oblong or of any geometric configuration) having a plurality of rigid particles embedded (and preferably, permanently affixed) upon the surface. The movement of the rigid particles against the pad surface causes the pad surface to undergo plastic flow, fragmentation or a combination thereof (at the point of contact with the particles). The abrasive surface need not rotate against the pad surface; the abrasive surface can move against the pad in any one of a number of ways, including vibration, linear movement, random orbitals, rolling or the like.

[0021] The resulting plastic flow, fragmentation or combination thereof (due to the abrasive surface), creates small scale features upon the pad's outer surface. The small scale features can comprise an indentation with a protrusion adjacent to at least one side. In one embodiment, the protrusions provide at least 0.1 percent of the surface area of the pad's polishing surface, and the indentations have an average depth of less than 50 microns, more preferably less than 10 microns, and the protrusions have an average height of less than 50 microns and more preferably less than 10 microns. Preferably, such surface modification with an abrasive surface will cause minimal abrasion removal of the polishing surface, but rather merely plows furrows into the pad without causing a substantial amount, if any, of pad
material to separate from the polishing surface. However, although less preferred, abrasion removal of pad material is acceptable, so long as small scale features are produced.

[0022] The preferred abrasive surface for conditioning is a disk which is preferably metal and which is preferably embedded with diamonds of a size in the range of 1 micron to 0.5 millimeters. During conditioning, the pressure between the conditioning disk and the polishing pad is preferably between 0.1 and about 25 pounds per square inch. The disk's speed of rotation is preferably in the range of 1 to 1000 revolutions per minute.

[0023] A preferred conditioning disk is a four inch diameter, 100 grit diamond disk, such as the RESI™ Disk manufactured by R. E. Science, Inc. Optimum conditioning was attained when the downforce was 10 lb. per square inch, platen speed was 75 rpm, the sweep profile was bell-shaped, the number of conditioning sweeps prior to use was 15 and the number of re-conditioning sweeps between wafers was 15.

[0024] Optionally, conditioning can be conducted in the presence of a conditioning fluid, preferably a water based fluid containing abrasive particles.

[0025] All or some of the small scale features may be created during a thermoforming process by use of an innovative thermoforming die. Through the selective release of the pad from the die by a differential affinity to the pad material, desired small scale features can be obtained.

[0026] The thermoforming die may have a differential affinity for the pad material. Portions of low affinity allow release of the pad with little or no disruption to the surface. Portions of higher affinity inhibit release of the pad from the die, thereby causing plastic flow or fracturing of the surface in those areas. This process creates the desired small scale features. The differential affinity can be achieved by use of different materials, different die coatings or physical features of the die.

[0027] In one embodiment the thermoforming die is comprised of two or more materials having different affinities to the pad material. Upon release, portions of the pad surface adjacent to areas of high affinity are disrupted causing desirable surface features. In another embodiment, the die surface is coated to create areas of low and high affinity. In yet another embodiment, protrusions are incorporated into the die that have a shape that grabs the pad material in certain areas, causing creation of small scale features. In yet another embodiment, this grabbing effect is created by the protrusion material as opposed to the protrusion shape.

[0028] Formation of surface features during the fabrication of the pad can diminish or even negate the necessity for preconditioning. Such formation also provides more controlled and faithful replication of the small scale features as compared to surface modification by abrasive means.

[0029] Any prepolymer chemistry can be used in accordance with the present invention, including polymer systems other than urethanes, provided the final product exhibits the following properties: a density of greater than 0.5g/cm³, more preferably greater than 0.7g/cm³ and yet more preferably greater than about 0.9g/cm³; a critical surface tension greater than or equal to 34 milliNewtons per meter; a tensile modulus of 0.02 to 5 GigaPascals; a ratio of the tensile modulus at 30°C to the modulus at 60°C in the range of 1.0 to 2.5; hardness of 25 to 80 Shore D; a yield stress of 300 to 6000 psi; a tensile strength of 500 to 15,000 psi, and an elongation to break up to 500%. These properties are possible for a number of materials useful in extrusion and similar-type processes, such as: polycarbonate, polysulfone, nylon, ethylene copolymers, polyethers, polyesters, polyether-polyester copolymers, acrylic polymers, polymethyl methacrylate, polyvinyl chloride, polycarbonate, polyethylene copolymers, polyethylene imine, polyurethanes, polyether imide, polyketones, and the like, including photochemically reactive derivatives thereof.

[0030] In a preferred embodiment, the pad material is sufficiently hydrophilic to provide a critical surface tension greater than or equal to 34 milliNewtons per meter, more preferably greater than or equal to 37 milliNewtons per meter and most preferably greater than or equal to 40 milliNewtons per meter. Critical surface tension defines the wettability of a solid surface by noting the lowest surface tension a liquid can have and still exhibit a contact angle greater than zero degrees on that solid. Thus, polymers with higher critical surface tensions are more readily wet and are therefore more hydrophilic. Critical surface tension of common polymers are provided below:

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Critical Surface Tension (mN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polytetrafluoroethylene</td>
<td>19</td>
</tr>
<tr>
<td>Polydimethylsiloxane</td>
<td>24</td>
</tr>
<tr>
<td>Silicone Rubber</td>
<td>24</td>
</tr>
<tr>
<td>Polybutadiene</td>
<td>31</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>31</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>33</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>34</td>
</tr>
<tr>
<td>Polyester</td>
<td>39-42</td>
</tr>
<tr>
<td>Polyacrylamide</td>
<td>35-40</td>
</tr>
</tbody>
</table>
In one embodiment, the pad matrix is derived from at least:

1. an acrylated urethane;
2. an acrylated epoxy;
3. an ethylenically unsaturated organic compound having a carboxyl, benzyl, or amide functionality;
4. an aminoplast derivative having a pendant unsaturated carbonyl group;
5. an isocyanurate derivative having at least one pendant acrylate group;
6. a vinyl ether,
7. a urethane
8. a polyacrylamide
9. an ethylene/ester copolymer or an acid derivative thereof;
10. a polyvinyl alcohol;
11. a polymethyl methacrylate;
12. a polysulfone;
13. an polyamide;
14. a polycarbonate;
15. a polyvinyl chloride;
16. an epoxy;
17. a copolymer of the above; or
18. a combination thereof.

Preferred pad materials comprise urethane, carbonate, amide, sulfone, vinyl chloride, acrylate, methacrylate, vinyl alcohol, ester or acrylamide moieties. The pad material can be porous or non-porous. In one embodiment, the matrix is non-porous; in another embodiment, the matrix is non-porous and free of fiber reinforcement. The pad material may also contain abrasives.

In a preferred embodiment, the polishing material comprises: 1. a plurality of rigid domains which resists plastic flow during polishing; and 2. a plurality of less rigid domains which is less resistant to plastic flow during polishing. This combination of properties provides a dual mechanism which has been found to be particularly advantageous in the polishing of silicon dioxide, dielectric materials and metal.

The rigid phase size in any dimension (height, width or length) is preferably less than 100 microns, more preferably less than 50 microns, yet more preferably less than 25 microns and most preferably less than 10 microns. Similarly the non-rigid phase is also preferably less than 100 microns, more preferably less than 50 microns, more preferably less than 25 microns and most preferably less than 10 microns. Preferred dual phase materials include polyurethane polymers having a soft segment (which provides the non-rigid phase) and a hard segment (which provides the rigid phase). The domains are produced as the material is formed by a phase separation, due to incompatibility between the two (hard and soft) polymer segments.

Other polymers having hard and soft segments could also be appropriate, including ethylene copolymers, copolyester, block copolymers, polysulfones copolymers and acrylic copolymers. Hard and soft domains within the pad material can also be created: 1. by hard and soft segments along a polymer backbone; 2. by crystalline regions and non-crystalline regions within the pad material; 3. by alloying a hard polymer with a soft polymer; or 4. by combining a polymer with an organic or inorganic filler.

The polishing materials of the present invention do not include felt-based polishing pads created by coalescing a polymer onto a fiber substrate, as described in U.S. Pat. No. 4,927,432 to Budinger, et al.

The pads manufactured by the method of the present invention are preferably used in combination with a polishing fluid, which may include abrasive particles. During polishing, the polishing fluid is placed between the pad's polishing surface and the workpiece to be polished. As the relative position between the pad and substrate change,
the surface features allow for improved polishing fluid flow along the interface between the pad and the substrate to be polished and facilitate smoothing and planarizing. The improved flow of polishing fluid and interaction between the pad and workpiece generally allows for more efficient and effective polishing performance.

[0038] In use, the pads manufactured by the method of the present invention are preferably attached to a platen and then brought sufficiently proximate with a workpiece to be polished. Surface irregularities are removed from the workpiece at a rate which is dependent upon a number of parameters, including: pad pressure on the workpiece surface (or vice versa); the speed at which the pad and workpiece move in relation to one another; and the components of the polishing fluid. Generally, the pressure between the workpiece and the polishing pad surface is greater than 0.1 kilograms per square meter.

[0039] The polishing fluid is preferably water based and may or may not require the presence of abrasive particles, depending upon the composition of the pad material. For example, a material comprising abrasive particles may not require abrasive particles in the polishing fluid.

[0040] The following Examples show the utility of polishing pads wherein the polishing surfaces are embossed.

Example 1

[0041] This example illustrates the utility of an embossed pad of low hardness for polishing a soft metal such as aluminum.

A thermoplastic polyurethane (MP-1880 from J. P. Stevens) of hardness 85 Shore A was extruded at temperature into a 25 mil sheet of material. This sheet was then subsequently embossed at elevated temperature with a hexagonal pattern such that the surface of the sheet consisted of raised hexagonal areas. In order to facilitate slurry flow across the surface each hexagonal area also contained finer grooves. The hexagonal areas were approximately 5 mm across and separated by 0.5 mm channels. The embossed sheet of polyurethane was laminated to pressure sensitive adhesive and cut into a circle shape, thus enabling it to be used as a polishing pad. The resulting pad was used for aluminum CMP polishing on a Westech 372U polisher. Using typical polishing conditions of downforce, carrier and platen speeds, removal rates of aluminum and oxide were 2280 and 70 A/min, giving an Al:Ox selectivity of 32:1.

Example 2

[0042] This example illustrates the utility of an embossed pad of high hardness for polishing an oxide inner-layer dielectric.

A thermoplastic polyurethane (Texin 470D from Miles Inc.) of hardness 70 Shore D was extruded at temperature into a 50 mil sheet of material. This sheet was then subsequently embossed at elevated temperature using a similar pattern to that described in Example 1.

The embossed sheet of polyurethane was laminated to pressure sensitive adhesive and cut into a circle shape, thus enabling it to be used as a polishing pad. The resulting pad, in conjunction with ILD1300 slurry (made by Rodel Inc.), was used for Thermal Oxide CMP polishing on a Westech 372U polisher. Using typical polishing conditions of downforce, carrier and platen speeds, oxide removal rate was greater than 2000A/min and non-uniformity across the wafer less than 10%.

[0043] The preceding description and examples are not meant to be restrictive in any way. The scope of this invention is to be determined solely from the claims.

Claims

1. A method of manufacturing a polishing pad, the polishing pad comprising a pad material being a hydrophilic material having:

 i. a density greater than 0.5 g/cm³;
 ii. a critical surface tension greater than or equal to 34 milliNewton per meter;
 iii. a tensile modulus of 0.2 to 5 GigaPascals;
 iv. a ratio of tensile modulus at 30°C to tensile modulus at 60°C of 1.0 to 2.5;
 v. a hardness of 25 to 80 Shore D;
 vi. a yield stress of 2·1-14MPa (300-6000 psi);
 vii. a tensile strength of 6.9 to 103MPa (1000 to 15,000 psi); and
 viii. an elongation to break less than or equal to 500%,

 said hydrophilic material comprising at least one moiety from the group consisting of: 1. a urethane; 2. a carbonate;
3. an amide; 4. an ester; 5. an ether; 6. an acrylate; 7. a methacrylate; 8. an acrylic acid; 9. a methacrylic acid; 10. a sulphone; 11. an acrylamide; 12. a halide; and 13. a hydroxide, and said hydrophilic material having a polishing surface, said surface having a plurality of features, said features having at least one dimension of greater than 0.01 millimeters to facilitate the flow of a polishing fluid, and facilitate chemical-mechanical polishing of a semiconductor device or a precursor to a semiconductor device; wherein said method comprises the steps of:

thermoforming said plurality of features into the polishing surface; and

classified by:

extruding said pad material upon a second material.

2. The method in accordance with Claim 1, wherein said hydrophilic material further comprises a plurality of soft domains and a plurality of hard domains, said hard domains and said soft domains having an average size of less than 100µ.

3. The method in accordance with Claim 2, wherein said hard domains and said soft domains are produced by a phase separation as said hydrophilic material is formed, said hydrophilic material comprising a polymer having a plurality of hard segments and a plurality of soft segments.

4. The method in accordance with Claim 1, wherein said hydrophilic material consists essentially of a two phase polyurethane.

5. The method in accordance with Claim 1, wherein said hydrophilic material consists essentially of a material selected from the group consisting of: polymethyl methacrylate, polyvinyl chloride, polysulfone, nylon, polycarbonate polyurethane, ethylene copolymer, polyether imide, polyethylene imine, polyketone and combinations thereof.

6. The method in accordance with Claim 1 wherein the thermoforming is an embossing process.

7. The method in accordance with Claim 1, wherein the surface is softened by an increase in temperature to allow said features to be embossed by pressure exerted by an embossing roller, said embossing roller being cooled to a temperature that allows the polishing material to hold the embossed pattern.

8. The method as in Claim 1 wherein a thermoforming die is used to produce the features, the features including small scale features, having a height, width or depth no greater than 25µm, thermoforming die having portions of low affinity to the pad material and high affinity to the pad material thereby being capable of selectivity releasing portions of the pad to produce all or some of the small scale features.

9. The method as in Claim 1 wherein a thermoforming die is used to produce the features, the features including small scale features, having a height, width or depth no greater than 25µm, the thermoforming die having protrusions having a shape which when surrounded by the pad material inhibits release of the material thereby being capable of selectively releasing portions of the pad to produce all or some of the small scale features.

10. The method as in Claim 1 wherein a thermoforming die is used to produce the features, the features including small scale features, having a height, width or depth no greater than 25µm, the thermoforming die having protrusions comprised of a material having a greater affinity to the pad material thereby being capable of selectively releasing portions of the pad to produce all or some of the small scale features.
iv. ein Verhältnis von Zugmodul bei 30°C zu Zugmodul bei 60°C von 1,0 bis 2,5,
v. eine Härte von 25 bis 80 Shore D,
vi. eine Streckspannung von 2,1 bis 41 MPa (300-6.000 psi),
vii. eine Zugfestigkeit von 6,9 bis 103 MPa (1.000-15.000 psi) und
viii. eine Dehnung bei Bruch von weniger als oder gleich 500% aufweist,

wobei das hydrophile Material mindestens ein Einheit aus der Gruppe, bestehend aus: 1. einem Urethan, 2. einem Carbonat, 3. einem Amid, 4. einem Ester, 5. einem Acrylat, 7. einem Methacrylat, 8. einer Acrylsäure, 9. einer Methacrylsäure, 10. einem Sulfon, 11. einem Acrylamid, 12. einem Halogenid und 13. einem Hydroxid, umfaßt und das hydrophile Material eine Polieroberfläche aufweist, wobei die Oberfläche eine Vielzahl von Merkmalen aufweist, wobei die Merkmale mindestens eine Dimension von größer als 0,01 Millimetern aufweisen, um den Fluß einer Polierflüssigkeit zu erleichtern und das chemisch-mechanische Polieren einer Halbleitervorrichtung oder einem Vorläufer für eine Halbleitervorrichtung zu erleichtern,

wobei das Verfahren die Schritte umfaßt:

Thermoformen der Vielzahl von Merkmalen in die Polieroberfläche, und gekenzeichnet durch:

Extrudieren des Kissenmaterials auf ein zweites Material.

2. Verfahren nach Anspruch 1, wobei das hydrophile Material weiter eine Vielzahl von weichen Bereichen und eine Vielzahl von harten Bereichen umfaßt, wobei die harten Bereiche und die weichen Bereiche eine Durchschnittsgröße von weniger als 100 µm aufweisen.

4. Verfahren nach Anspruch 1, wobei das hydrophile Material im wesentlichen aus einem Zweiphasen-Polyurethan besteht.

6. Verfahren nach Anspruch 1, wobei das Thermoformen ein Prägeverfahren ist.

7. Verfahren nach Anspruch 6, wobei die Oberfläche durch einen Anstieg in der Temperatur erweicht wird, um zuzulassen, daß die Merkmale durch Druck, der durch eine Prägewalze ausgeübt wird, geprägt werden, wobei die Prägewalze auf eine Temperatur abgekühlt wird, die zuläßt, daß das Poliermaterial das geprägte Muster erhält.

8. Verfahren nach Anspruch 1, wobei eine Thermoformmatrize verwendet wird, um die Merkmale zu erzeugen, wobei die Merkmale kleinformative Merkmale mit einer Höhe, Breite oder Tiefe von nicht größer als 25 µm einschließen, wobei die Thermoformmatrize Bereiche niedriger Affinität zu dem Kissenmaterial und hoher Affinität zu dem Kissenmaterial aufweist, wodurch sie befähigt ist, selektiv Bereiche des Kissen freizulassen, um sämtliche oder einige der kleinformativen Merkmale zu erzeugen.

9. Verfahren nach Anspruch 1, wobei eine Thermoformmatrize verwendet wird, um die Merkmale zu erzeugen, wobei die Merkmale kleinformative Merkmale mit einer Höhe, Breite oder Tiefe von nicht größer als 25 µm einschließen, wobei die Thermoformmatrize Erhebungen mit einer Form aufweist, welche, wenn von dem Kissenmaterial umgeben, das Freilassen des Materials inhibiert, wodurch sie befähigt ist, selektiv Bereiche des Kissen freizulassen, um sämtliche oder einige der kleinformativen Merkmale zu erzeugen.

10. Verfahren nach Anspruch 1, wobei eine Thermoformmatrize verwendet wird, um Merkmale zu erzeugen, wobei die Merkmale kleinformative Merkmale mit einer Höhe, Breite oder Tiefe von nicht größer als 25 µm einschließen, wobei die Thermoformmatrize Erhebungen aufweist, die ein Material mit einer größeren Affinität zu dem Kissenmaterial umfassen, wodurch sie befähigt ist, selektiv Bereiche des Kissen freizulassen, um sämtliche oder einige der kleinformativen Merkmale zu erzeugen.
Revendications

1. Procédé de fabrication d'un tampon de polissage, tampon de polissage comprenant un matériau pour tampon consistant en un matériau hydrophile ayant :
 i. une densité supérieure à 0,5 g/cm³ ;
 ii. une tension de surface critique supérieure ou égale à 34 millinewtons par mètre ;
 iii. un module d'élasticité en traction de 0,02 à 5 gigapascals ;
 iv. un rapport entre le module d'élasticité en traction à 30° C et le module d'élasticité en traction à 60° C de 1,0 à 2,5 ;
 v. une dureté Shore D de 25 à 80 ;
 vi. une limite apparente d'élasticité de 2,1 à 41 Mpa (300 à 6000 psi) ;
 vii. une résistance à la traction de 6,9 à 103 Mpa (1000 à 15000 psi) ; et
 viii. un allongement à la rupture inférieur ou égal à 500 %,

lequel matériau hydrophile comprenant au moins un fragment du groupe consistant en : 1. un uréthanne, 2. un carbonate, 3. un amide, 4. un ester, 5. un acrylate, 7. un méthacrylate, 8. un acide acrylique, 9. un acide méthacrylique, 10. une sulfone, 11. un acrylamide, 12. un halogénure et 13. un hydroxyde ; et

ledit matériau hydrophile possédant une surface de polissage, ladite surface possédant plusieurs caractéristiques, et lesdites caractéristiques ayant au moins une dimension de plus de 0,01 millimètre de manière à faciliter l'écoulement d'un fluide de polissage, et à faciliter le polissage chimique-mécanique d'un dispositif à semi-conducteur ou d'un précurseur de dispositif à semi-conducteur,

quant ledit procédé comprend l'étape de thermoformage desdites caractéristiques dans la surface de polissage, et est caractérisé par l'extrusion dudit matériau pour tampon sur un second matériau.

2. Procédé, selon la revendication 1, dans lequel ledit matériau hydrophile comprend en outre plusieurs domaines mous et plusieurs domaines durs, lesdits domaines durs et lesdits domaines mous ayant une taille moyenne de moins de 100 µm.

3. Procédé, selon la revendication 2, dans lequel lesdits domaines durs et lesdits domaines mous sont produits par séparation de phase lorsque ledit matériau hydrophile est formé, ledit matériau hydrophile comprenant un polymère ayant plusieurs segments durs et plusieurs segments mous.

4. Procédé, selon la revendication 1, dans lequel ledit matériau hydrophile se compose essentiellement d'un polyuréthane à deux phases.

5. Procédé, selon la revendication 1, dans lequel ledit matériau hydrophile se compose essentiellement d'un matériau choisi dans le groupe consistant en méthacrylate de polyméthyle, chlorure de polyvinyle, polysulfone, nylon, polyuréthane de polycarbonate, copolymère d'éthyène, imide de polyéther, imine de polyéthylène, polyacétone et des combinaisons de ces derniers.

6. Procédé, selon la revendication 1, dans lequel le thermoformage est un procédé de gaufrage.

7. Procédé, selon la revendication 11, dans lequel la surface est ramollie en accroissant la température de manière que lesdites caractéristiques puissent être gaufrées par la pression exercée par un rouleau de gaufrage, ledit rouleau de gaufrage étant refroidi à une température qui permet au matériau de polissage de conserver le motif gaufré.

8. Procédé, selon la revendication 1, dans lequel une matrice de thermoformage est utilisée pour produire les caractéristiques, les caractéristiques incluant des caractéristiques à petite échelle ayant une hauteur, une largeur
ou une profondeur ne dépassant pas 25 µm, la matrice de thermoformage possédant des parties de faible affinité envers le matériau pour le tampon et des parties de grande affinité envers le matériau pour le tampon, permettant ainsi de décoller sélectivement des parties du tampon de manière à produire la totalité ou quelques-unes des caractéristiques à petite échelle.

9. Procédé, selon la revendication 1, dans lequel une matrice de thermoformage est utilisée pour produire les caractéristiques, les caractéristiques incluant des caractéristiques à petite échelle ayant une hauteur, une largeur ou une profondeur ne dépassant pas 25 µm, la matrice de thermoformage possédant des protubérances ayant une forme qui, lorsqu'elles sont entourées par le matériau pour le tampon, empêche le décollement du matériau, permettant ainsi de décoller sélectivement des parties du tampon de manière à produire la totalité ou quelques-unes des caractéristiques à petite échelle.

10. Procédé, selon la revendication 1, dans lequel une matrice de thermoformage est utilisée pour produire les caractéristiques, les caractéristiques incluant des caractéristiques à petite échelle ayant une hauteur, une largeur ou une profondeur ne dépassant pas 25 µm, la matrice de thermoformage possédant des protubérances comprenant un matériau ayant une plus grande affinité envers le matériau pour le tampon, permettant ainsi de décoller sélectivement des parties du tampon de manière à produire la totalité ou quelques-unes des caractéristiques à petite échelle.