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CONTEXT OPTIMIZATION FOR LAST SIGNIFICANT
COEFFICIENT POSITION CODING

RELATED APPLICATIONS
[0001] This application claims the benefit of:
U.S. Provisional Application No. 61/557,317, filed November 8, 2011;
U.S. Provisional Application No. 61/561,909, filed November 20, 2011;
U.S. Provisional Patent Application No. 61/588,579, filed January 19, 2012; and
U.S. Provisional Patent Application No. 61/596,049, filed February 7, 2012,

cach of which is hereby incorporated by reference in its respective entirety.

TECHNICAL FIELD
[0002] This disclosure relates to video coding, and more particularly to techniques for

coding transform coefficients.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency
Video Coding (HEVC) standard presently under development, and extensions of such
standards. Video devices may transmit, receive, encode, decode, and/or store digital
video information more efficiently by implementing such video compression
techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.c., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as

treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (1)
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slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring
blocks in the same picture or temporal prediction with respect to reference samples in
other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY

[0006] In general, this disclosure describes techniques for coding video data. In
particular, this disclosure describes techniques for coding transform coefficients.

[0007] In one example of the disclosure, a method of encoding transform coefficients
comprises obtaining a binary string indicating a position of a last significant coefficient
within a block of transform coefficients associated with a video block; determining a
context for a binary index of the binary string based on a video block size, wherein the
context is assigned to at least two binary indices, wherein each of the at least two binary
indices are associated with different video block sizes; and encoding the binary string
using context adaptive binary arithmetic coding (CABAC) based at least in part on the
determined context.

[0008] In another example of the disclosure, a method of decoding transform
coefficients comprises obtaining an encoded binary string indicating a position of a last

significant coefficient within a block of transform coefficients associated with a video



WO 2013/070610 PCT/US2012/063717

block, wherein the encoded binary string is encoded using CABAC; determining a
context for a binary index of the encoded binary string based on a video block size,
wherein the context is assigned to at least two binary indices, wherein each of the at
least two binary indices are associated with different video block sizes; and decoding
the encoded binary string using CABAC based at least in part on the determined
context.

[0009] In another example of the disclosure, an apparatus configured to encode
transform coefficients in a video encoding process comprises means for obtaining a
binary string indicating a position of a last significant coefficient within a block of
transform coefficients associated with a video block means for determining a context for
a binary index of the binary string based on a video block size, wherein the context is
assigned to at least two binary indices, wherein each of the at least two binary indices
are associated with different video block sizes; and means for encoding the binary string
using CABAC based at least in part on the determined context.

[0010] In another example of the disclosure, an apparatus configured to decode
transform coefficients in a video decoding process comprises means for obtaining an
encoded binary string indicating a position of a last significant coefficient within a block
of transform coefficients associated with a video block, wherein the encoded binary
string is encoded using CABAC; means for determining a context for a binary index of
the encoded binary string based on a video block size, wherein the context is assigned to
at least two binary indices, wherein each of the at least two binary indices are associated
with different video block sizes; and means for decoding the encoded binary string
using CABAC based at least in part on the determined context.

[0011] In another example of the disclosure, a device comprises a video encoder
configured to obtain a binary string indicating a position of a last significant coefficient
within a block of transform coefficients associated with a video block; determine a
context for a binary index of the binary string based on a video block size, wherein the
context is assigned to at least two binary indices, wherein each of the at least two binary
indices are associated with different video block sizes; and encode the binary string
using CABAC based at least in part on the determined context.

[0012] In another example of the disclosure, a device comprises a video decoder
configured to obtain an encoded binary string indicating a position of a last significant
cocfficient within a block of transform coefficients associated with a video block,

wherein the encoded binary string is encoded using CABAC; determine a context for a
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binary index of the encoded binary string based on a video block size, wherein the
context is assigned to at least two binary indices, wherein each of the at least two binary
indices are associated with different video block sizes; and decode the encoded binary
string using CABAC based at least in part on the determined context.

[0013] In another example of the disclosure, a non-transitory computer-readable storage
medium has instructions stored thereon that upon execution cause a video encoding
device to obtain a binary string indicating a position of a last significant coefficient
within a block of transform coefficients associated with a video block; determine a
context for a binary index of the binary string based on a video block size, wherein the
context is assigned to at least two binary indices, wherein each of the at least two binary
indices are associated with different video block sizes; and encode the binary string
using CABAC based at least in part on the determined context.

[0014] In another example of the disclosure, a non-transitory computer-readable storage
medium has instructions stored thereon that upon execution cause a video decoding
device to obtain an encoded binary string indicating a position of a last significant
cocfficient within a block of transform coefficients associated with a video block,
wherein the encoded binary string is encoded using CABAC; determine a context for a
binary index of the encoded binary string based on a video block size, wherein the
context is assigned to at least two binary indices, wherein each of the at least two binary
indices are associated with different video block sizes; and decode the encoded binary
string using CABAC based at least in part on the determined context.

[0015] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0016] FIG. 1 is a block diagram illustrating an example video encoding and decoding
System.

[0017] FIGS. 2A-2D illustrate exemplary coefficient value scan orders.

[0018] FIG. 3 illustrates one example of a significance map relative to a block of
coefficient values.

[0019] FIG. 4 is a block diagram illustrating an example video encoder that may

implement the techniques described in this disclosure.
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[0020] FIG. 5 is a block diagram illustrating an example entropy encoder that may
implement the techniques described in this disclosure.

[0021] FIG. 6 is a flowchart illustrating an example of encoding a binary string value
indicating the position of a last significant coefficient according to the techniques of this
disclosure.

[0022] FIG. 7 is a block diagram illustrating an example video decoder that may
implement the techniques described in this disclosure.

[0023] FIG. 8 is a block diagram illustrating an example entropy decoder that may
implement the techniques described in this disclosure.

[0024] FIG. 9 is a flowchart illustrating an example of decoding a binary string value
indicating the position of a last significant coefficient according to the techniques of this

disclosure.

DETAILED DESCRIPTION

[0025] In general, this disclosure describes techniques for coding video data. In
particular, this disclosure describes techniques for coding transform coefficients in a
video encoding and/or decoding process. In block-based video coding, a block of
transform coefficients may be arranged in a two-dimensional (2D) array. A scanning
process may be performed to rearrange the two-dimensional (2D) array of transform
coefficients into an ordered, one-dimensional (1D) array, i.e., vector, of transform
coefficients. One or more syntax elements may be used to indicate a position of a last
significant coefficient (i.e., non-zero coefficient) within the block of transform
coefficients based on a scan order. The position of the last significant coefficient may
be used by a video encoder to optimize the encoding of the transform coefficients.
Likewise, a video decoder may use the position of the last significant coefficient to
optimize the decoding of transform coefficients. Thus, it is desirable to efficiently code
the one or more syntax elements that indicate a position of a last significant coefficient.

[0026] This disclosure describes techniques for coding the one or more syntax elements
that indicate a position of a last significant coefficient. In some examples, all or a
portion of the syntax elements that indicate the position of a last significant coefficient
may be entropy coded according to any one of the following techniques: Context
Adaptive Variable Length Coding (CAVLC), Context Adaptive Binary Arithmetic
Coding (CABAC), Probability Interval Partitioning Entropy Coding (PIPE), or the like.
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In entropy coding techniques that utilize binary indices which may also be referred to as
“bins” or “bin indices”) and context assignments, a common context assignment may be
utilized for bins for different transform block (TU) sizes and/or different color
components. In this manner, the total number of contexts can be reduced. By reducing
the total number of contexts a video encoder and/or video decoder may more efficiently
code syntax elements that indicate a position of a last significant coefficient, as fewer
contexts need to be stored.

[0027] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may be configured to utilize techniques for coding transform coefficients
in accordance with examples of this disclosure. As shown in FIG. 1, the system 10
includes a source device 12 that transmits encoded video to a destination device 14 via a
communication channel 16. Encoded video data may also be stored on a storage
medium 34 or a file server 36 and may be accessed by the destination device 14 as
desired. When stored to a storage medium or file server, video encoder 20 may provide
coded video data to another device, such as a network interface, a compact disc (CD),
Blu-ray or digital video disc (DVD) burner or stamping facility device, or other devices,
for storing the coded video data to the storage medium. Likewise, a device separate
from video decoder 30, such as a network interface, CD or DVD reader, or the like, may
retrieve coded video data from a storage medium and provided the retrieved data to
video decoder 30.

[0028] The source device 12 and the destination device 14 may comprise any of a wide
variety of devices, including desktop computers, notebook (i.e., laptop) computers,
tablet computers, set-top boxes, telephone handsets such as so-called smartphones,
televisions, cameras, display devices, digital media players, video gaming consoles, or
the like. In many cases, such devices may be equipped for wireless communication.
Hence, the communication channel 16 may comprise a wireless channel, a wired
channel, or a combination of wireless and wired channels suitable for transmission of
encoded video data. Similarly, the file server 36 may be accessed by the destination
device 14 through any standard data connection, including an Internet connection. This
may include a wireless channel (e.g., a Wi-Fi connection), a wired connection (e.g.,
DSL, cable modem, etc.), or a combination of both that is suitable for accessing
encoded video data stored on a file server.

[0029] Techniques for coding transform coefficients, in accordance with examples of

this disclosure, may be applied to video coding in support of any of a variety of
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multimedia applications, such as over-the-air television broadcasts, cable television
transmissions, satellite television transmissions, streaming video transmissions, €.g., via
the Internet, encoding of digital video for storage on a data storage medium, decoding of
digital video stored on a data storage medium, or other applications. In some examples,
the system 10 may be configured to support one-way or two-way video transmission to
support applications such as video streaming, video playback, video broadcasting,
and/or video telephony.

[0030] In the example of FIG. 1, the source device 12 includes a video source 18, a
video encoder 20, a modulator/demodulator 22 and a transmitter 24. In the source
device 12, the video source 18 may include a source such as a video capture device,
such as a video camera, a video archive containing previously captured video, a video
feed interface to receive video from a video content provider, and/or a computer
graphics system for generating computer graphics data as the source video, or a
combination of such sources. As one example, if the video source 18 is a video camera,
the source device 12 and the destination device 14 may form so-called camera phones or
video phones. However, the techniques described in this disclosure may be applicable
to video coding in general, and may be applied to wireless and/or wired applications, or
application in which encoded video data is stored on a local disk.

[0031] The captured, pre-captured, or computer-generated video may be encoded by the
video encoder 20. The encoded video information may be modulated by the modem 22
according to a communication standard, such as a wireless communication protocol, and
transmitted to the destination device 14 via the transmitter 24. The modem 22 may
include various mixers, filters, amplifiers or other components designed for signal
modulation. The transmitter 24 may include circuits designed for transmitting data,
including amplifiers, filters, and one or more antennas.

[0032] The captured, pre-captured, or computer-generated video that is encoded by the
video encoder 20 may also be stored onto a storage medium 34 or a file server 36 for
later consumption. The storage medium 34 may include Blu-ray discs, DVDs, CD-
ROMs, flash memory, or any other suitable digital storage media for storing encoded
video. The encoded video stored on the storage medium 34 may then be accessed by
the destination device 14 for decoding and playback.

[0033] The file server 36 may be any type of server capable of storing encoded video
and transmitting that encoded video to the destination device 14. Example file servers

include a web server (e.g., for a website), an FTP server, network attached storage
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(NAS) devices, a local disk drive, or any other type of device capable of storing
encoded video data and transmitting it to a destination device. The transmission of
encoded video data from the file server 36 may be a streaming transmission, a download
transmission, or a combination of both. The file server 36 may be accessed by the
destination device 14 through any standard data connection, including an Internet
connection. This may include a wireless channel (e.g., a Wi-Fi connection), a wired
connection (e.g., DSL, cable modem, Ethernet, USB, etc.), or a combination of both that
is suitable for accessing encoded video data stored on a file server.

[0034] The destination device 14, in the example of FIG. 1, includes a receiver 26, a
modem 28, a video decoder 30, and a display device 32. The receiver 26 of the
destination device 14 receives information over the channel 16, and the modem 28
demodulates the information to produce a demodulated bitstream for the video decoder
30. The information communicated over the channel 16 may include a variety of syntax
information generated by the video encoder 20 for use by the video decoder 30 in
decoding video data. Such syntax may also be included with the encoded video data
stored on the storage medium 34 or the file server 36. Each of the video encoder 20 and
the video decoder 30 may form part of a respective encoder-decoder (CODEC) that is
capable of encoding or decoding video data.

[0035] The display device 32 may be integrated with, or external to, the destination
device 14. In some examples, the destination device 14 may include an integrated
display device and also be configured to interface with an external display device. In
other examples, the destination device 14 may be a display device. In general, the
display device 32 displays the decoded video data to a user, and may comprise any of a
variety of display devices such as a liquid crystal display (LCD), a plasma display, an
organic light emitting diode (OLED) display, or another type of display device.

[0036] In the example of FIG. 1, the communication channel 16 may comprise any
wireless or wired communication medium, such as a radio frequency (RF) spectrum or
one or more physical transmission lines, or any combination of wireless and wired
media. The communication channel 16 may form part of a packet-based network, such
as a local area network, a wide-area network, or a global network such as the Internet.
The communication channel 16 generally represents any suitable communication
medium, or collection of different communication media, for transmitting video data
from the source device 12 to the destination device 14, including any suitable

combination of wired or wireless media. The communication channel 16 may include
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routers, switches, base stations, or any other equipment that may be useful to facilitate
communication from the source device 12 to the destination device 14.

[0037] The video encoder 20 and the video decoder 30 may operate according to a
video compression standard, such as the High Efficiency Video Coding (HEVC)
standard presently being developed by the Joint Collaboration Team on Video Coding
(JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Motion Picture
Experts Group (MPEG), and may conform to the HEVC Test Model (HM). Video
encoder 20 and video decoder 30 may operate according to a recent draft of the HEVC
standard, referred to as “HEVC Working Draft 5 or “WDS5,” is described in document
JCTVC-G1103, Bross et al., “WD5: Working Draft 5 of High efficiency video coding
(HEVC),” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, 7th Meeting: Geneva, CH, November, 2012. Further,
another recent working draft of HEVC, Working Draft 7, is described in document
HCTVC-11003, Bross et al., “High Efficiency Video Coding (HEVC) Text
Specification Draft 7,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 9th Meeting: Geneva, Switzerland, April
27,2012 to May 7, 2012. Alternatively, the video encoder 20 and the video decoder 30
may operate according to other proprictary or industry standards, such as the ITU-T
H.264 standard, alternatively referred to as MPEG-4, Part 10, Advanced Video Coding
(AVC), or extensions of such standards. The techniques of this disclosure, however, are
not limited to any particular coding standard. Other examples include MPEG-2 and
ITU-T H.263.

[0038] Although not shown in FIG. 1, in some aspects, the video encoder 20 and the
video decoder 30 may each be integrated with an audio encoder and decoder, and may
include appropriate MUX-DEMUX units, or other hardware and software, to handle
encoding of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0039] The video encoder 20 and the video decoder 30 each may be implemented as
any of a variety of suitable encoder circuitry, such as one or more microprocessors,
digital signal processors (DSPs), application specific integrated circuits (ASICs), field
programmable gate arrays (FPGAs), discrete logic, software, hardware, firmware or any
combinations thereof. When the techniques are implemented partially in software, a

device may store instructions for the software in a suitable, non-transitory computer-
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readable medium and execute the instructions in hardware using one or more processors
to perform the techniques of this disclosure. Each of the video encoder 20 and the video
decoder 30 may be included in one or more encoders or decoders, either of which may
be integrated as part of a combined encoder/decoder (CODEC) in a respective device.
[0040] The video encoder 20 may implement any or all of the techniques of this
disclosure for coding transform coefficients in a video encoding process. Likewise, the
video decoder 30 may implement any or all of these techniques for coding transform
coefficients in a video coding process. A video coder, as described in this disclosure,
may refer to a video encoder or a video decoder. Similarly, a video coding unit may
refer to a video encoder or a video decoder. Likewise, video coding may refer to video
encoding or video decoding.

[0041] Video encoder 20 and Video decoder 30 of FIG. 1 represent examples of video
coders configured to obtain a binary string indicating a position of a last significant
coefficient within a video block, determine a context for a binary index of the binary
string based on a video block size, wherein the context is assigned to at least two binary
indices, wherein each of the at least two binary indices are associated with different
video block sizes; and code the binary string using context adaptive binary arithmetic
coding (CABAC) based at least in part on the determined context.

[0042] For video coding according to the HEVC standard currently under development,
a video frame may be partitioned into coding units. A coding unit (CU) generally refers
to an image region that serves as a basic unit to which various coding tools are applied
for video compression. A CU usually has a luminance component, denoted as Y, and
two chroma components, denoted as U and V. Depending on the video sampling
format, the size of the U and V components, in terms of number of samples, may be the
same as or different from the size of the Y component. A CU is typically square, and
may be considered to be similar to a so-called macroblock, e.g., under other video
coding standards such as ITU-T H.264. Coding according to some of the presently
proposed aspects of the developing HEVC standard will be described in this application
for purposes of illustration. However, the techniques described in this disclosure may
be useful for other video coding processes, such as those defined according to H.264 or
other standard or proprietary video coding processes. HEVC standardization efforts are
based on a model of a video coding device referred to as the HEVC Test Model (HM).

The HM presumes several capabilities of video coding devices over devices according



WO 2013/070610 PCT/US2012/063717
11

to, e.g., ITU-T H.264/AVC. For example, whereas H.264 provides nine intra-prediction
encoding modes, HM provides as many as thirty-four intra-prediction encoding modes.
[0043] A video sequence typically includes a series of video frames or pictures. A
group of pictures (GOP) generally comprises a series of one or more of the video
pictures. A GOP may include syntax data in a header of the GOP, a header of one or
more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the respective slice. Video encoder 20 typically operates on video blocks
within individual video slices in order to encode the video data. A video block may
include one or more TUs or PUs that correspond to a coding node within a CU. The
video blocks may have fixed or varying sizes, and may differ in size according to a
specified coding standard.

[0044] According to the HM, a CU may include one or more prediction units (PUs)
and/or one or more transform units (TUs). Syntax data within a bitstream may define a
largest coding unit (LCU), which is a largest CU in terms of the number of pixels. In
general, a CU has a similar purpose to a macroblock of H.264, except that a CU does
not have a size distinction. Thus, a CU may be split into sub-CUs. In general,
references in this disclosure to a CU may refer to a largest coding unit of a picture or a
sub-CU of an LCU. An LCU may be split into sub-CUSs, and each sub-CU may be
further split into sub-CUs. Syntax data for a bitstream may define a maximum number
of times an LCU may be split, referred to as CU depth. Accordingly, a bitstream may
also define a smallest coding unit (SCU). This disclosure also uses the term “block™ or
“portion” to refer to any of a CU, PU, or TU. In general, “portion” may refer to any
sub-set of a video frame.

[0045] An LCU may be associated with a quadtree data structure. In general, a
quadtree data structure includes one node per CU, where a root node corresponds to the
LCU. If a CU is split into four sub-CUs, the node corresponding to the CU includes
four leaf nodes, cach of which corresponds to one of the sub-CUs. Each node of the
quadtree data structure may provide syntax data for the corresponding CU. For
example, a node in the quadtree may include a split flag, indicating whether the CU
corresponding to the node is split into sub-CUs. Syntax elements for a CU may be
defined recursively, and may depend on whether the CU is split into sub-CUs. If a CU
is not split further, it is referred as a leaf~-CU. In this disclosure, 4 sub-CUs of a leaf-CU

will also be referred to as leaf-CUs although there is no explicit splitting of the original
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leaf-CU. For example if a CU at 16x16 size is not split further, the four 8x8 sub-CUs
will also be referred to as leaf-CUs although the 16x16 CU was never split.

[0046] Morecover, TUs of leaf-CUs may also be associated with respective quadtree data
structures. That is, a leaf-CU may include a quadtree indicating how the leaf-CU is
partitioned into TUs. This disclosure refers to the quadtree indicating how an LCU is
partitioned as a CU quadtree and the quadtree indicating how a leaf-CU is partitioned
into TUs as a TU quadtree. The root node of a TU quadtree generally corresponds to a
leaf-CU, while the root node of a CU quadtree generally corresponds to an LCU. TUs
of the TU quadtree that are not split are referred to as leaf-TUs.

[0047] A leaf-CU may include one or more prediction units (PUs). In general, a PU
represents all or a portion of the corresponding CU, and may include data for retrieving
a reference sample for the PU. For example, when the PU is inter-mode encoded, the
PU may include data defining a motion vector for the PU. The data defining the motion
vector may describe, for example, a horizontal component of the motion vector, a
vertical component of the motion vector, a resolution for the motion vector (e.g., one-
quarter pixel precision or one-cighth pixel precision), a reference frame to which the
motion vector points, and/or a reference list (e.g., list 0 or list 1) for the motion vector.
Data for the leaf-CU defining the PU(s) may also describe, for example, partitioning of
the CU into one or more PUs. Partitioning modes may differ depending on whether the
CU is uncoded, intra-prediction mode encoded, or inter-prediction mode encoded. For
intra coding, a PU may be treated the same as a leaf transform unit described below.
[0048] As an example, the HM supports prediction in various PU sizes. Assuming that
the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of
2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or
NxN. The HM also supports asymmetric partitioning for inter-prediction in PU sizes of
2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU
is not partitioned, while the other direction is partitioned into 25% and 75%. The
portion of the CU corresponding to the 25% partition is indicated by an “n” followed by
an indication of “Up”, “Down,” “Left,” or “Right.” Thus, for example, “2NxnU” refers
to a 2Nx2N CU that is partitioned horizontally with a 2Nx0.5N PU on top and a
2Nx1.5N PU on bottom.

[0049] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,

e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a
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vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0050] To code a block (e.g., a prediction unit of video data), a predictor for the block is
first derived. The predictor, also referred to as a predictive block, can be derived either
through intra (I) prediction (i.e., spatial prediction) or inter (P or B) prediction (i.c.
temporal prediction). Hence, some prediction units may be intra-coded (I) using spatial
prediction with respect to reference samples in neighboring reference blocks in the same
frame (or slice), and other prediction units may be uni-directionally inter-coded (P) or
bi-directionally inter-coded (B) with respect to blocks of reference samples in other
previously-coded frames (or slices). In each case, the reference samples may be used to
form a predictive block for a block to be coded.

[0051] Upon identification of a predictive block, the difference between the original
video data block and its predictive block is determined. This difference may be referred
to as the prediction residual data, and indicates the pixel differences between the pixel
values in the block to the coded and the pixel values in the predictive block selected to
represent the coded block. To achieve better compression, the prediction residual data
may be transformed, e.g., using a discrete cosine transform (DCT), an integer transform,
a Karhunen-Loeve (K-L) transform, or another transform.

[0052] The residual data in a transform block, such as a TU, may be arranged in a two-
dimensional (2D) array of pixel difference values residing in the spatial, pixel domain.
A transform converts the residual pixel values into a two-dimensional array of transform
coefficients in a transform domain, such as a frequency domain. For further
compression, the transform coefficients may be quantized prior to entropy coding. An
entropy coder then applies entropy coding, such as CAVLC, CABAC, PIPE, or the like,
to the quantized transform coefficients.

[0053] To entropy code a block of quantized transform coefficients, a scanning process
is usually performed so that the two-dimensional (2D) array of quantized transform
coefficients in a block is rearranged, according to a particular scan order, into an
ordered, one-dimensional (1D) array, i.e., vector, of transform coefficients. Entropy

coding is then applied to the vector of transform coefficients. The scan of the quantized
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transform coefficients in a transform unit serializes the 2D array of transform
coefficients for the entropy coder. A significance map may be generated to indicate the
positions of significant (i.c., non-zero) coefficients. Scanning may be applied to scan
levels of significant (i.e., nonzero) coefficients, and/or to code signs of the significant
coefficients.

[0054] In HEVC, position information of the significant transform coefficients (e.g., the
significance map) is first coded for a TU to indicate the location of the last non-zero
coefficient in the scan order. The significance map and the level information (the
absolute values and signs of the coefficients) are coded for each coefficient in an inverse
scan order.

[0055] Following any transforms to produce transform coefficients, video encoder 20
may perform quantization of the transform coefficients. Quantization generally refers to
a process in which transform coefficients are quantized to possibly reduce the amount of
data used to represent the coefficients, providing further compression. The quantization
process may reduce the bit depth associated with some or all of the coefficients. For
example, an r-bit value may be rounded down to an m-bit value during quantization,
where 7 1s greater than m. In some examples, video encoder 20 may utilize a predefined
scan order to scan the quantized transform coefficients to produce a serialized vector
that can be entropy encoded. In other examples, video encoder 20 may perform an
adaptive scan.

[0056] FIGS. 2A-2D illustrate some different exemplary scan orders. Other defined
scan orders, or adaptive (changing) scan orders may also be used. FIG. 2A illustrates a
zig-zag scan order, FIG. 2B illustrates a horizontal scan order, FIG. 2C illustrates a
vertical scan orders, and FIG. 2D illustrates a diagonal scan order. Combinations of
these scan orders can also be defined and used. In some examples, the techniques of
this disclosure may be specifically applicable during coding of a so-called significance
map in the video coding process.

[0057] One or more syntax elements may be defined to indicate a position of a last
significant coefficient (i.e., non-zero coefficient), which may depend on the scan order
associated with a block of coefficients. For example, one syntax element may define a
column position of a last significant coefficient within a block of coefficient values and
another syntax element may define a row position of the last significant coefficient

within a block of coefficient values.
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[0058] FIG. 3 illustrates one example of a significance map relative to a block of
coefficient values. The significance map is shown on the right, in which one-bit flags
identify the coefficients in the video block on the left that are significant, i.e., non-zero.
In one example, given a set of significant coefficients (e.g., defined by a significance
map) and a scan order, a position of a last significant coefficient may be defined. In the
emerging HEVC standard, transform coefficients may be grouped into a chunk. The
chunk may comprise an entire TU, or in some cases, TUs may be sub-divided into
smaller chunks. The significance map and level information (absolute value and sign)
are coded for ecach coefficient in a chunk. In one example, a chunk consists of 16
consecutive coefficients in an inverse scan order (e.g., diagonal, horizontal, or vertical)
for a 4x4 TU and an §x8 TU. For 16x16 and 32x32 TUs, the cocfficients within a 4x4
sub-block are treated as a chunk. The syntax elements are coded and signaled to
represent the coefficients level information within a chunk. In one example, all the
symbols are encoded in an inverse scan order. The techniques of this disclosure may
improve the coding of a syntax clement used to define this position of the last
significant coefficient of a block of coefficients.

[0059] As one example, the techniques of this disclosure may be used to code the
position of the last significant coefficient of a block of coefficients (e.g., a TU or a
chunk of a TU). Then, after coding the position of the last significant coefficient, the
level and sign information associated with transform coefficients may be coded. The
coding of the level and sign information may process according to a five pass approach
by coding the following symbols in inverse scan order (e.g., for a TU or a chunk of the
TU):

significant_coeff flag (abbr. sigMapFlag): this flag may indicate the significance of
cach coefficient in a chunk. A coefficient with a value of one or greater may be
consider to be significant.

coeff abs level greaterl flag (abbr. grlFlag): this flag may indicate whether the
absolute value of the coefficient is larger than one for the non-zero coefficients (i.c.,
coefficients with sigMapFlag as 1).

coeff abs level greater2 flag (abbr. gr2Flag): this flag may indicate whether the
absolute value of the coefficient is larger than two for the coefficients with an absolute

value larger than one (i.e., coefficients with gr/Flag as 1).
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coeff sign_flag (abbr. signFlag): this flag may indicate the sign information for the
non-zero coefficients. For example, a zero for this flag may indicate a positive sign,
while a 1 may indicate a negative sign.

coeff abs level remain (abbr. levelRem): this syntax eclement may indicate the
remaining absolute value of a transform coefficient level. For this syntax element, the
absolute value of the coefficient — x may be coded as (abs(level)-x) for each coefficient
with the amplitude larger than x. The value of x depends on the presence of the gr1Flag
and gr2Flag. If the gr2Flag has been coded, the levelRem value is calculated as
(abs(level)-2). If the gr2Flag has not been coded, but the gr1Flag has been coded, the
levelRem value is calculated as (abs(level)-1).

[0060] In this manner, transform coefficients for a TU or a portion (e.g., chunk) of a TU
can be coded. In any case, the techniques of this disclosure, which concern the coding
of a syntax element used to define the position of the last significant coefficient of a
block of coefficients, may also be used with other types of techniques for ultimately
coding the level and sign information of transform coefficients. The five pass approach
for coding significance, level and sign information is just one example technique that
may be used following the coding of the position of the last significant coefficient of a
block, as set forth in this disclosure.

[0061] After scanning the quantized transform coefficients to form a one-dimensional
vector, video encoder 20 may entropy encode the one-dimensional vector of transform
coefficients. Video encoder 20 may also entropy encode syntax elements associated
with the encoded video data for use by video decoder 30 in decoding the video data.
Entropy encoding may be performed according to one of the following techniques:
CAVLC, CABAC, syntax-based context-adaptive binary arithmetic coding (SBAC),
PIPE coding or another entropy encoding methodology. To perform CAVLC, video
encoder 20 may select a variable length code for a symbol to be transmitted.
Codewords in variable length coding (VLC) may be constructed such that relatively
shorter codes correspond to more probable symbols, while longer codes correspond to
less probable symbols. In this way, the use of VLC may achieve a bit savings over, for
example, using equal-length codewords for each symbol to be transmitted.

[0062] The entropy coding techniques of this disclosure are specifically described as
being applicable to CABAC, although the techniques may also be applicable to
CAVLC, SBAC, PIPE, or other techniques. It should be noted that PIPE uses principles

similar to those of arithmetic coding.
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[0063] In general, coding data symbols using CABAC may involve one or more of the
following steps:

(1) Binarization: If a symbol to be coded is non-binary valued, it is mapped to a
binary sequence, i.¢. a so called “bin string.” Each binary index (i.e., “bin”) in the bin
string can have a value of “0” or “1.”

(2) Context Assignment: In regular mode, each bin is assigned to a context. A
bin may also be coding according to a by-pass mode where a context is not assigned. A
context is a probability model and is often referred to as “context model.” As used
herein, the term context may refer to a probability model or a probability value. A
context determines how a probability of a bin’s value is calculated for a given bin. The
context may associate the probability of a bin’s value based on information such as
values of previously encoded symbols or a bin number. Further, a context may be
assigned to a bin based on higher level (e.g., slice) parameters

(3) Bin encoding: Bins are encoded with an arithmetic encoder. To encode a
bin, the arithmetic encoder requires as an input a probability of the bin’s value, i.c., a
probability that the bin’s value is equal to “0,” and/or a probability that the bin’s value
is equal to “1.” The (estimated) probability may be represented in a context by an
integer value referred to as a “context state.”

(4) State update: The probability (state) for a selected context may be updated
based on the actual coded value of the bin (e.g., if the bin value was “1,” the probability
of a bin being “1” may be increased). The updating of probabilities may be governed
according to the transition rules associated with a context.

[0064] The following is an example binarization technique of the last significant
coefficient syntax elements that may be performed by video encoder 20. The last
significant coefficient syntax elements may include a row and column position of a last
significant coefficient within a two dimensional block (i.e., an x and y coordinate). For
an 8 x § block, there are eight different possibilities for the last position of a coefficient
within a column or row, i.e., 0, 1, ..., 7. Eight different bins are used to represent these
eight row or column positions. For example, bin0 = 1 may indicate that the coefficient
at row or column 0 is the last significant coefficient. In this example, if bin0 = 0, then
the coefficient at location 0 is not the last coefficient. Another bin equal to 1 may
indicate the position of the last significant coefficient. For example, binl = 1 may
indicate that location 1 is the last significant coefficient. As another example, binX = 1

may indicate that location X is the last significant coefficient. As described above, each
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bin may be encoded by two different methods: (1) encode the bin with a context and (2)
encode the bin using bypass mode (without a context).

[0065] Table 1 shows of an example binarization of a position of a last significant
coefficient where some bins are encoded with a context and others are encoded using a
bypass mode. The example in Table 1 provides an example binarization of last
significant coefficient for a 32x32 TU. The second column of Table 1 provides
corresponding truncated unary prefix values for possible values of the position of a last
significant coefficient within a TU of size 7 of defined by the maximum truncated
unary prefix length of 2log,)(T)-1. The third column of Table 1 provides a
corresponding fixed length suffix for each truncated unary prefix. For the sake of
brevity, Table 1 includes X values that indicate either a one or zero bit value. It should
be noted that the X values uniquely map each value sharing a truncated unary prefix
according to a fixed length code. The magnitude of the last position component in
Table 1 may correspond to an x-coordinate value and/or a y-coordinate value. It should
be noted that binarization of the last significant coefficient for a 4x4, 8x8, and 16x16
TU may be defined in a manner similar to the binarization of a 32x32 TU described

with respect to Table 1.

Magnitude of last Truncated unary Fixedbinary | f value
position component (context model) (bypass)
0 1 - 0
1 01 - 0
2 001 - 0
3 0001 - 0
4-5 00001 X 0-1
6-7 000001 X 0-1
8-11 0000001 XX 0-3
12-15 00000001 XX 0-3
16-23 000000001 XXX 0-7
24-31 000000000 XXX 0-7

Table 1. Binarization for a TU of size 32x32, where X means 1 or 0.

[0066] As described above, coding data symbols using CABAC may also involve

context assignment. In one example, context modeling may be used for arithmetic
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encoding of the truncated unary strings portion of the bin string, while context modeling
is not used for arithmetic encoding of the fixed binary strings of the bin string (i.c. the
fixed binary string is bypassed). In the case where truncated unary strings are encoded
using context modeling, a context may be assigned to each of bin index of a binary
string.

[0067] There are several ways in which contexts may be assigned to each bin index of a
binary string. The number of context assignments for a bin string representing the
position of the last significant coefficient may be equal to the number of bin indexes or
length of a truncated unary string for possible TU sizes and color components. For
example, if the possible sizes of a luma component are 4x4, 8x8, 16x16 and 32x32, the
number of context assignments for one dimension may equal 60 (i.e., 4+8+16+32),
when none of the bins are bypassed. Likewise, for each chroma component with
possible sizes of 4x4, 8x8, and 16x16, the number of context assignments may equal 28
(i.e., 4+8+16), when none of the bins are bypassed. Thus, a maximum number of
context assignments may equal 116 (i.e., 60+28+28) for each dimension when the
position of a last significant coefficient is specified using both an x and y coordinate.
The example context assignments below assume some bins will be bypassed according
to the binarization scheme described with respect to Table 1. However, it should be
noted that the context assignment techniques described herein may be applicable to
several binarization schemes. Further, even when it is assumed that some bins will be
bypassed, there are still numerous ways in which contexts may be assigned to bins of a
bin string representing the position of the last significant coefficient.

[0068] In some cases it may be desirable to reduce the total number of contexts relative
to the number of required number of context assignments. In this manner, an encoder or
decoder may not need to store and maintain as many contexts. However, when the
number of contexts is reduced, prediction accuracy may also be reduced, for example, if
contexts are shared for two bins with different probabilities. Further, a particular
context may be updated more frequently, which may affect the estimated probability of
a bin’s value. That is, coding a bin using an assigned context may involve updating a
context. Thus, a subsequent bin assigned to the context may be coded using the updated
context. Further, it should be noted that in some examples context models may be
initialized for on a slice level, such that the values of bins within a slice may not affect
the coding of bins within a subsequent slice, although the bins are assigned the same

context. This disclosure describes techniques for optimizing context assignments, such
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that a number of contexts can be reduced while maintaining accuracy for estimated
probabilities. In one example, the context assignment techniques described herein
include techniques where individual bin indices are assigned the same context.

[0069] Tables 2-13 below illustrate context assignments for the bin indices of a bin
string representing the position of a last significant coefficient within a TU. It should be
noted that for some bins in Tables 2-13 (e.g., bins 5-7 of an 8x8 block) there are no
contexts assigned. This is because it is assumed that these bins will be coded using a
bypass mode, as described above. It should also be noted that the values in Table 2-13
represent an index of a context. In the Tables 2-13 when different bins have the same
context index value they share the same context. The mapping of a context index to an
actual context may be defined according to a video coding standard. Tables 2-13
illustrate how a context may commonly assigned to bins.

[0070] Table 2 illustrates a possible context indexing for each bin of different TU sizes
for the example binarizations provided above with respect to Table 1 above. In the
example in Table 2, adjacent bins are allowed to share the same contexts. For example,

bins 2 and 3 of an 8x&8 TU share the same context.

Bin index | 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2

TU 8x8 3 4 5 5 6

TU 16x16 |7 8 9 9 10 10 11

TU 32x32 | 12 13 14 14 15 15 16 16 17

Table 2: Context assignment for last position coding

[0071] Tables 3-6 each illustrate further examples of context assignments according to

the following rules:

1. First K bins do not share contexts, where K>1. K could be different for each TU

size.

2. One context can only be assigned to consecutive bins. For example, bin 3 — bin5
could use context 5. However, bin3 and bin5 using context 5 and bin4 using

context 6 is not allowed.
3. The last N bin, N>=0, of different TU sizes can share the same context.

4. The number of bins that share the same context increases with TU sizes.
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[0072] Rules 1-4 above may be particularly useful for the binarization provided in
Table 1. However, rules 1-4 may be equally useful for other the binarization schemes
and the actual context assignments may be adjusted accordingly to the binarization

scheme that is implemented.

Bin index 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2

TU 8x8 3 4 5 6 7

TU 16x16 | 8 9 10 11 11 12 12

TU32x32 | 13 14 14 15 16 16 16 16 17

Table 3: Example of last position bins according to Rules 1-4

Bin index 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2

TU 8x8 3 4 5 6 6

TU16x16 |8 9 10 11 11 12 12

TU32x32 | 13 14 14 15 16 16 16 16 17

Table 4: Example of last position bins according to Rules 1-4

Bin index 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2

TU 8x8 3 4 5 6 7

TU 16x16 |8 9 10 11 11 12 12

TU32x32 |13 14 14 15 16 16 16 12 12

Table 5: Example of last position bins according to Rules 1-4

Bin index 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2

TU 8x8 3 4 5 6 7

TU 16x16 |8 9 10 10 11 11 12

TU32x32 | 13 14 14 15 15 15 16 16 16

Table 6: Example of last position bins according to Rules 1-4

[0073] Tables 7-8 below provide example context assignments where last bins from
different block sizes share the same context, which can further optimize the number of
contexts. In one example, direct mapping may be used to determining how contexts are

shared between the last bins of two or more block sizes. For example, for a block A and
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a block B with sizes M and N, respectively, the context of the n-th bin of block A may

use the same context as the n-th bin of block size B

Bin index |0 1 2 3 4 5 6 7 8

TU 4x4 12 13 14

TU 8x8 12 13 14 14 15

TU 16x16 | 12 13 14 14 15 15 16

TU 32x32 | 12 13 14 14 15 15 16 16 17

Table 7: Example of last position bins where block sizes share the same contexts.
[0074] Table 8 shows another example where the last position bins from some block
sizes share the contexts with cach other. In this case, TUs of size 8x8 and 16x16 share

the same contexts.

Bin index | 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2

TU 8x8 7 8 9 9 10

TU 16x16 |7 8 9 9 10 10 11

TU 32x32 | 12 13 14 14 15 15 16 16 17

Table 8: Example of last position bins where some block sizes (8x8 and 16x16)
share the same contexts.

[0075] In another example, the mapping of contexts for last position bins from different
block sizes may be derived using a function f(.). For example, the n-th bin in block size
A may share the same contexts with the m-th bin in block size B, where m is a function
of n (m= f(n)). For example, the function can be linear, i.e., m =n*a + b, where a and b
are parameters of the linear function. Table 9 shows an example wherea=1,b=1, A=

an 8x8 TU and B =a 16x16 TU.

Bin index | 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2

TU 8x8 8 9 9 10 10

TU 16x16 |7 8 9 9 10 10 11

TU 32x32 | 12 13 14 14 15 15 16 16 17

Table 9: Example of last positions bins with shared contexts based on a linear

function
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[0076] It should be noted that when applying the above equation in certain cases, due to
integer operation, there may be rounding involved. For example, 7%0.5 = 3.

[0077] According to the following example, the mapping from location n in an 8x8
block size to a location m in a 4x4 block may be calculated with the following

equation:

m = f(n) = n>>1, which means a = 0.5, b = 0, A=8x8, B=4x4 (1)

[0078] The mapping from location n in a 16x16 block to a location m in a 4x4 block

can be calculated with the following equation:

m = f(n) = n>>2, which means a = 0.5, b =0, A=16x16, B=4x4  (2)

[0079] As described above, equations (1) and (2) are only a couple of examples that
may be used to implement a mapping between blocks of different sizes. Equations (1)
and (2) may be referred to as mapping functions. It should be noted that the “>>" in
equations (1) and (2) may represent a shift operation defined according to a video
coding standard, such as HEVC. Further, other equations may be used to achieve the
same mapping or different mappings.

[0080] Table 10 provides an example context assignment for the last significant

coefficient for 4x4, 8x8, and 16x16 TUs according to equations (1) and (2).

Bin index | 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2

TU 8x8 0 0 1 1 2

TU 16x16 |0 0 0 0 1 1 1

Table 10: Context mapping for Transform Units of Different Size

[0081] Table 11 provides an example of the context assignment of Table 10 where
different context index values are used (i.e., 15-17 instead of 0-2). As described above,
the values of the context indices in Tables 3-12 are not intended to limit the actual

contexts assigned to a binary index.
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Bin index | 0 1 2 3 4 5 6 7 8

TU 4x4 15 16 17

TU 8x8 15 15 16 16 17

TU 16x16 | 15 15 15 15 16 16 16

Table 11: Context mapping for Transform Units of Different Size

[0082] In should be noted that the mapping of contexts in Table 11 is equivalent to the
following mapping function:

ctx_index = (n>>k) + 15 3)

where ctx_index is the index of the context;

n = Bin index

k = log2TrafoDimension-2;

log2TrafoDimension = log2 (width) for last position in x dimension;

log2TrafoDimension = log2 (height) for last position in y dimension.

[0083] In some cases the function defined in (1)-(3) may be used by a coding device to
build a series of tables which may be stored in memory and utilized to look-up context
assignments. In some cases, the tables may be predetermined based on the equations
and rules described herein and stored in both video encoder 20 and video decoder 30.

[0084] Further, in some examples, functions (1)-(3) defined above may be selectively
applied to assign contexts for particular bins. In this manner, different bins may be
assigned a context based on different rule. In one example, the functions, such as those
described above, may only apply for a bin index (i.e., a value of n) that is smaller than a
threshold Th1, and/or larger than a threshold Th2. Table 12 shows an example where
the mapping techniques described above are selectively applied based on the value of

the bin index, i.e., n > Th2 = 2.

Bin index | 0 1 2 3 4 5 6 7 8
TU 4x4 0 1 2

TU 8x8 3 4 9 10 10

TU 16x16 |7 8 9 9 10 10 11

TU 32x32 | 12 13 14 14 15 15 16 16 17

Table 12: Example of last position bins with shared contexts based on a linear

function and a threshold
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[0085] In another example, the threshold value for applying techniques to bin indices
can be different for different block sizes, different frame types, different color
components (Y,U,V), and/or other side information. This threshold can be pre-defined
according to a video coding standard or can be signaled using high level syntax. For
example, the threshold may be signaled in a sequence parameter set (SPS), a picture
parameter set (PPS), an adaptation parameter set (APS), and/or a slice header.

[0086] In another example, a mapping function may be different for different block
sizes, different frame types, different color components (Y, U, and V), and/or other side
information. The mapping function can be pre-defined according to a video coding
standard or can be signaled using high level syntax. For example, the mapping function
may be signaled in an SPS, a PPS, an APS, and/or a slice header.

[0087] In another example, the direct mapping and function mapping techniques
described above may be adaptively applied based on color components, frame type,
quantization parameter (QP) and/or other side information. For example, the direct
mapping or function mapping techniques may only be applied to chroma components.
The rules for this adaptivity can be pre-defined or can be signaled using high level
syntax. For example, the rules for adaptivity may be signaled in an SPS, a PPS, an
APS, and/or a slice header.

[0088] In another example, last position bins for chroma and luma components can
share the same contexts. This may apply for any block size, e.g., 4x4, 8x8, 16x16, or
32x32. Table 13 shows an example where contexts are shared for last position bins of

luma and chroma components for a 4x4 TU.

Bin index 0 1 2 3
Luma TU 4x4 0 1 2
Chroma TU 4x4 0 1 2

Table 13: Example of last position bins for luma and chroma components in a 4x4
TU

[0089] FIG. 4 is a block diagram illustrating an example of a video encoder 20 that may
use techniques for coding transform coefficients as described in this disclosure. For
example, video encoder 20 represents an example of a video encoder configured to
obtain a binary string indicating a position of a last significant coefficient within a video
block; determine a context for a binary index of the binary string based on a video block

size, wherein the context is assigned to at least two binary indices, wherein each of the
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at least two binary indices are associated with different video block sizes; and encode
the binary string using CABAC based at least in part on the determined context. The
video encoder 20 will be described in the context of HEVC coding for purposes of
illustration, but without limitation of this disclosure as to other coding standards or
methods that may require scanning of transform coefficients. The video encoder 20
may perform intra- and inter-coding of CUs within video frames. Intra-coding relies on
spatial prediction to reduce or remove spatial redundancy in video data within a given
video frame. Inter-coding relies on temporal prediction to reduce or remove temporal
redundancy between a current frame and previously coded frames of a video sequence.
Intra-mode (I-mode) may refer to any of several spatial-based video compression
modes. Inter-modes such as uni-directional prediction (P-mode) or bi-directional
prediction (B-mode) may refer to any of several temporal-based video compression
modes.

[0090] As shown in FIG. 4, the video encoder 20 receives a current video block within
a video frame to be encoded. In the example of FIG. 4, the video encoder 20 includes a
mode select module 40, a motion estimation module 42, a motion compensation module
44, an intra-prediction module 46, a reference frame buffer 64, a summer 50, a
transform module 52, a quantization module 54, and an entropy encoding module 56.
The transform module 52 illustrated in FIG. 4 is the module that applies the actual
transform or combinations of transform to a block of residual data, and is not to be
confused with a block of transform coefficients, which also may be referred to as a
transform unit (TU) of a CU. For video block reconstruction, the video encoder 20 also
includes an inverse quantization module 58, an inverse transform module 60, and a
summer 62. A deblocking filter (not shown in FIG. 4) may also be included to filter
block boundaries to remove blockiness artifacts from reconstructed video. If desired,
the deblocking filter would typically filter the output of the summer 62.

[0091] During the encoding process, the video encoder 20 receives a video frame or
slice to be coded. The frame or slice may be divided into multiple video blocks, e.g.,
largest coding units (LCUs). The motion estimation module 42 and the motion
compensation module 44 perform inter-predictive coding of the received video block
relative to one or more blocks in one or more reference frames to provide temporal
compression. The intra-prediction module 46 may perform intra-predictive coding of
the received video block relative to one or more neighboring blocks in the same frame

or slice as the block to be coded to provide spatial compression.
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[0092] The mode select module 40 may select one of the coding modes, intra or inter,
e.g., based on error (i.c., distortion) results for each mode, and provides the resulting
intra- or inter-predicted block (e.g., a prediction unit (PU)) to the summer 50 to generate
residual block data and to the summer 62 to reconstruct the encoded block for use in a
reference frame. Summer 62 combines the predicted block with inverse quantized,
inverse transformed data from inverse transform module 60 for the block to reconstruct
the encoded block, as described in greater detail below. Some video frames may be
designated as I-frames, where all blocks in an I-frame are encoded in an intra-prediction
mode. In some cases, the intra-prediction module 46 may perform intra-prediction
encoding of a block in a P- or B-frame, ¢.g., when the motion search performed by the
motion estimation module 42 does not result in a sufficient prediction of the block.
[0093] The motion estimation module 42 and the motion compensation module 44 may
be highly integrated, but are illustrated separately for conceptual purposes. Motion
estimation (or motion search) is the process of generating motion vectors, which
estimate motion for video blocks. A motion vector, for example, may indicate the
displacement of a prediction unit in a current frame relative to a reference sample of a
reference frame. The motion estimation module 42 calculates a motion vector for a
prediction unit of an inter-coded frame by comparing the prediction unit to reference
samples of a reference frame stored in the reference frame buffer 64. A reference
sample may be a block that is found to closely match the portion of the CU including
the PU being coded in terms of pixel difference, which may be determined by sum of
absolute difference (SAD), sum of squared difference (SSD), or other difference
metrics. The reference sample may occur anywhere within a reference frame or
reference slice, and not necessarily at a block (e.g., coding unit) boundary of the
reference frame or slice. In some examples, the reference sample may occur at a
fractional pixel position.

[0094] The motion estimation module 42 sends the calculated motion vector to the
entropy encoding module 56 and the motion compensation module 44. The portion of
the reference frame identified by a motion vector may be referred to as a reference
sample. The motion compensation module 44 may calculate a prediction value for a
prediction unit of a current CU, e.g., by retrieving the reference sample identified by a
motion vector for the PU.

[0095] The intra-prediction module 46 may intra-predict the received block, as an

alternative to inter-prediction performed by the motion estimation module 42 and the
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motion compensation module 44. The intra-prediction module 46 may predict the
received block relative to neighboring, previously coded blocks, ¢.g., blocks above,
above and to the right, above and to the left, or to the left of the current block, assuming
a left-to-right, top-to-bottom encoding order for blocks. The intra-prediction module
46 may be configured with a variety of different intra-prediction modes. For example,
the intra-prediction module 46 may be configured with a certain number of directional
prediction modes, ¢.g., thirty-four directional prediction modes, based on the size of the
CU being encoded.

[0096] The intra-prediction module 46 may select an intra-prediction mode by, for
example, calculating error values for various intra-prediction modes and selecting a
mode that yields the lowest error value. Directional prediction modes may include
functions for combining values of spatially neighboring pixels and applying the
combined values to one or more pixel positions in a PU. Once values for all pixel
positions in the PU have been calculated, the intra-prediction module 46 may calculate
an error value for the prediction mode based on pixel differences between the PU and
the received block to be encoded. The intra-prediction module 46 may continue testing
intra-prediction modes until an intra-prediction mode that yields an acceptable error
value is discovered. The intra-prediction module 46 may then send the PU to the
summer 50.

[0097] The video encoder 20 forms a residual block by subtracting the prediction data
calculated by the motion compensation module 44 or the intra-prediction module 46
from the original video block being coded. The summer 50 represents the component or
components that perform this subtraction operation. The residual block may correspond
to a two-dimensional matrix of pixel difference values, where the number of values in
the residual block is the same as the number of pixels in the PU corresponding to the
residual block. The values in the residual block may correspond to the differences, i.c.,
error, between values of co-located pixels in the PU and in the original block to be
coded. The differences may be chroma or luma differences depending on the type of
block that is coded.

[0098] The transform module 52 may form one or more transform units (TUs) from the
residual block. The transform module 52 selects a transform from among a plurality of
transforms. The transform may be selected based on one or more coding characteristics,

such as block size, coding mode, or the like. The transform module 52 then applies the
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selected transform to the TU, producing a video block comprising a two-dimensional
array of transform coefficients.

[0099] The transform module 52 may send the resulting transform coefficients to the
quantization module 54. The quantization module 54 may then quantize the transform
coefficients. The entropy encoding module 56 may then perform a scan of the
quantized transform coefficients in the matrix according to a scanning mode. This
disclosure describes the entropy encoding module 56 as performing the scan. However,
it should be understood that, in other examples, other processing modules, such as the
quantization module 54, could perform the scan.

[0100] The inverse quantization module 58 and the inverse transform module 60 apply
inverse quantization and inverse transformation, respectively, to reconstruct the residual
block in the pixel domain, e.g., for later use as a reference block. The motion
compensation module 44 may calculate a reference block by adding the residual block
to a predictive block of one of the frames of the reference frame buffer 64. Reference
frame buffer 64 is sometimes referred to as a decoded picture buffer (DPB). The
motion compensation module 44 may also apply one or more interpolation filters to the
reconstructed residual block to calculate sub-integer pixel values for use in motion
estimation. The summer 62 adds the reconstructed residual block to the motion
compensated prediction block produced by the motion compensation module 44 to
produce a reconstructed video block for storage in the reference frame buffer 64. The
reconstructed video block may be used by the motion estimation module 42 and the
motion compensation module 44 as a reference block to inter-code a block in a
subsequent video frame.

[0101] Once the transform coefficients are scanned into the one-dimensional array, the
entropy encoding module 56 may apply entropy coding such as CAVLC, CABAC,
SBAC, PIPE, or another entropy coding methodology to the coefficients. In some
cases, the entropy encoding module 56 may be configured to perform other coding
functions, in addition to entropy coding. For example, the entropy encoding module 56
may be configured to determine coded block pattern (CBP) values for CU’s and PU’s.
Also, in some cases, the entropy encoding module 56 may perform run length coding of
coefficients. Following the entropy coding by the entropy encoding module 56, the
resulting encoded video may be transmitted to another device, such as the video decoder

30, or archived for later transmission or retrieval.
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[0102] In accordance with the techniques of this disclosure, the entropy encoding
module 56 may select the context used to encode syntax elements based on, for
example, the context assignments described above with respect to Table 2-13 and any
combination of the following: an intra-prediction direction for intra-prediction modes, a
scan position of the coefficient corresponding to the syntax elements, block type,
transform type, and/or other video sequence properties.

[0103] In one example, entropy encoding module 56 may encode the position of a last
significant coefficient using the binarization technique adopted in HEVC described
above with respect to Table 1. In other examples, entropy encoding module 56 may
encode the position of a last significant coefficient using other binarization techniques.
In one example, a codeword for the position of a last significant coefficient may include
a truncated unary code prefix followed by a fixed length code suffix. In one example,
cach magnitude of last position may use the same binarization for all possible TU sizes,
except when the last position is equal to the TU size minus 1. This exception is due to
the properties of truncated unary coding. In one example, the position of a last
significant coefficient within a rectangular transform coefficient may be specified by
specifying an x-coordinate value and a y-coordinate value. In another example, a
transform coefficient block may be in the form of a 1xN vector and the position of the
last significant coefficient within the vector may be specified by a single position value.

[0104] FIG. 5 is a block diagram that illustrates an example entropy encoding module
56 that may implement the techniques described in this disclosure. In one example, the
entropy encoding module 56 illustrated in FIG. 5 may be a CABAC encoder. The
example entropy encoding module 56 may include a binarization module 502, an
arithmetic encoding module 510, which includes a bypass encoding engine 504 and a
regular encoding engine 508, and a context modeling module 506. Entropy encoding
module 56 receives syntax elements, such as one or more syntax elements representing
the position of the last significant transform coefficient within a transform block
coefficients and encodes the syntax element into a bitstream. The syntax elements may
include a syntax element specifying an x-coordinate of the position of a last significant
coefficient within a transform coefficient block and a syntax element specifying a y-
coordinate of the position of a last significant coefficient within a transform coefficient
block.

[0105] Binarization module 502 receives a syntax element and produces a bin string

(i.e., binary string). In one example, binarization module 502 receives syntax elements
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representing the last position of a significant coefficient within a block of transform
coefficients and produces a bin string according to the example described above with
respect to Table 1. Arithmetic encoding module 510 receives a bin string from
binarization module 502 and performs arithmetic encoding on the bin string. As shown
in FIG. 5, arithmetic encoding module 510 may receive bin values from a bypass path
or the regular coding path. Consistent with the CABAC process described above, in the
case where arithmetic encoding module 510 receives bin values from a bypass path,
bypass encoding engine 504 may perform arithmetic encoding on bin values without
utilizing a context assigned to a bin value. In one example, bypass encoding engine 504
may assume equal probabilities for possible values of a bin.

[0106] In the case where arithmetic encoding module 510 receives bin values through
the regular path, context modeling module 506 may provide a context variable (e.g., a
context state), such that regular encoding engine 508 may perform arithmetic encoding
based on the context assignments provided by context modeling module 506. In one
example, arithmetic encoding module 510 may encode a prefix portion of a bit string
using a context assignment and may encode a suffix portion of a bit string without using
context assignments. The context assignments may be defined according to the
examples described above with respect to Tables 2-13. The context models may be
stored in memory. Context modeling module 506 may include a series of indexed
tables and/or utilize mapping functions to determine a context and a context variable for
a particular bin. After encoding a bin value, regular encoding engine 508, may update a
context based on the actual bin values and output the encoded bin value as part of a
bitstream. In this manner, entropy encoding module is configured to encode one or
more syntax elements based on the context assignment techniques described herein.
[0107] FIG. 6 is a flowchart illustrating an example method for determining a context
for a binary string value indicating the position of a last significant coefficient in
accordance with the techniques of this disclosure. The method described in FIG. 6 may
be performed by any of the example video encoders or entropy encoders described
herein. At step 602, a binary string indicating the position of a last significant transform
coefficient within a video block is obtained. The binary string may be defined
according to the binarization scheme described with respect to Table 1. At step 604, a
context is determined for a bin value of the binary string. A context may be assigned to
a bin based on the techniques described herein. The context may be determined by a

video or entropy encoder accessing a look-up table or performing a mapping function.
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The context may be used to derive a particular context variable for a particular bin. A
context variable may be a 7-bit binary value indicating one of 64 possible probabilities
(states) and a most probably state (e.g., “1” or “0”). As described above, in some cases,
bins may share contexts according to the mapping functions and Tables 2-13 described
above. At step 606, a bin value is encoded using an arithmetic encoding process that
utilizes a context variable, such as CABAC. It should be noted that when bins share
contexts, the value of one bin may affect the value of a context variable used to encode
a subsequent bin according to context adaptive encoding techniques. For example, if a
particular bin is “1” a subsequent bin may be encoded based on an increased probability
of being 1. In this manner, entropy encoding the binary string may include updating a
context state of a context model. Further, it should be noted that in some examples
context models may be initialized for on a slice level, such that the values of bins within
a slice may not affect the encoding of bins within a subsequent slice.

[0108] FIG. 7 is a block diagram illustrating an example of a video decoder 30 that may
use techniques for coding transform coefficients as described in this disclosure. For
example, video decoder 30 represents an example of a video decoder configured to
obtain an encoded binary string indicating a position of a last significant coefficient
within a video block, wherein the encoded binary string is encoded using CABAC;
determine a context for a binary index of the encoded binary string based on a video
block size, wherein the context is assigned to at least two binary indices, wherein each
of the at least two binary indices are associated with different video block sizes; and
decode the encoded binary string using CABAC based at least in part on the determined
context.

[0109] In the example of FIG. 7, the video decoder 30 includes an entropy decoding
module 70, a motion compensation module 72, an intra-prediction module 74, an
inverse quantization module 76, an inverse transformation module 78, a reference frame
buffer 82 and a summer 80. The video decoder 30 may, in some examples, perform a
decoding pass generally reciprocal to the encoding pass described with respect to the
video encoder 20.

[0110] The entropy decoding module 70 performs an entropy decoding process on the
encoded bitstream to retrieve a one-dimensional array of transform coefficients. The
entropy decoding process used depends on the entropy coding used by the video
encoder 20 (e.g., CABAC, CAVLC, ctc.). The entropy coding process used by the

encoder may be signaled in the encoded bitstream or may be a predetermined process.
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[0111] In some examples, the entropy decoding module 70 (or the inverse quantization
module 76) may scan the received values using a scan mirroring the scanning mode
used by the entropy encoding module 56 (or the quantization module 54) of the video
encoder 20. Although the scanning of coefficients may be performed in the inverse
quantization module 76, scanning will be described for purposes of illustration as being
performed by the entropy decoding module 70. In addition, although shown as separate
functional modules for ease of illustration, the structure and functionality of the entropy
decoding module 70, the inverse quantization module 76, and other modules of the
video decoder 30 may be highly integrated with one another.

[0112] The inverse quantization module 76 inverse quantizes, i.c., de-quantizes, the
quantized transform coefficients provided in the bitstream and decoded by the entropy
decoding module 70. The inverse quantization process may include a conventional
process, ¢.g., similar to the processes proposed for HEVC or defined by the H.264
decoding standard. The inverse quantization process may include use of a quantization
parameter QP calculated by the video encoder 20 for the CU to determine a degree of
quantization and, likewise, a degree of inverse quantization that should be applied. The
inverse quantization module 76 may inverse quantize the transform coefficients either
before or after the coefficients are converted from a one-dimensional array to a two-
dimensional array.

[0113] The inverse transform module 78 applies an inverse transform to the inverse
quantized transform coefficients. In some examples, the inverse transform module 78
may determine an inverse transform based on signaling from the video encoder 20, or
by inferring the transform from one or more coding characteristics such as block size,
coding mode, or the like. In some examples, the inverse transform module 78 may
determine a transform to apply to the current block based on a signaled transform at the
root node of a quadtree for an LCU including the current block. Alternatively, the
transform may be signaled at the root of a TU quadtree for a leaf-node CU in the LCU
quadtree. In some examples, the inverse transform module 78 may apply a cascaded
inverse transform, in which inverse transform module 78 applies two or more inverse
transforms to the transform coefficients of the current block being decoded.

[0114] The intra-prediction module 74 may generate prediction data for a current block
of a current frame based on a signaled intra-prediction mode and data from previously
decoded blocks of the current frame. The motion compensation module 72 may retrieve

the motion vector, motion prediction direction and reference index from the encoded
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bitstream. The reference prediction direction indicates whether the inter-prediction
mode is uni-directional (e.g., a P frame) or bi-directional (a B frame). The reference
index indicates which reference frame the candidate motion vector is based on. Based
on the retrieved motion prediction direction, reference frame index, and motion vector,
the motion compensation module 72 produces a motion compensated block for the
current portion. These motion compensated blocks essentially recreate the predictive
block used to produce the residual data.

[0115] The motion compensation module 72 may produce the motion compensated
blocks, possibly performing interpolation based on interpolation filters. Identifiers for
interpolation filters to be used for motion estimation with sub-pixel precision may be
included in the syntax clements. The motion compensation module 72 may use
interpolation filters as used by the video encoder 20 during encoding of the video block
to calculate interpolated values for sub-integer pixels of a reference block. The motion
compensation module 72 may determine the interpolation filters used by the video
encoder 20 according to received syntax information and use the interpolation filters to
produce predictive blocks.

[0116] Additionally, the motion compensation module 72 and the intra-prediction
module 74, in an HEVC example, may use some of the syntax information (e.g.,
provided by a quadtree) to determine sizes of LCUs used to encode frame(s) of the
encoded video sequence. The motion compensation module 72 and the intra-prediction
module 74 may also use syntax information to determine split information that describes
how each CU of a frame of the encoded video sequence is split (and likewise, how sub-
CUs are split). The syntax information may also include modes indicating how each
split is encoded (e.g., intra- or inter-prediction, and for intra-prediction an intra-
prediction encoding mode), one or more reference frames (and/or reference lists
containing identifiers for the reference frames) for each inter-encoded PU, and other
information to decode the encoded video sequence.

[0117] The summer 80 combines the residual blocks with the corresponding prediction
blocks generated by the motion compensation module 72 or the intra-prediction module
74 to form decoded blocks. If desired, a deblocking filter may also be applied to filter
the decoded blocks in order to remove blockiness artifacts. The decoded video blocks
are then stored in the reference frame buffer 82, which provides reference blocks for

subsequent motion compensation and also produces decoded video for presentation on a
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display device (such as the display device 32 of FIG. 1). Reference frame buffer 82
may also be referred to as a DPB.

[0118] FIG. 8 is a block diagram that illustrates an example entropy decoding module
70 that may implement the techniques described in this disclosure. Entropy decoding
module 70 receives an entropy encoded bitstream and decodes syntax elements from the
bitstream. In one example, syntax clements may represent the position of the last
significant transform coefficient within a transform block coefficients. The syntax
elements may include a syntax element specifying an x-coordinate of the position of a
last significant coefficient within a transform coefficient block and a syntax element
specifying a y-coordinate of the position of a last significant coefficient within a
transform coefficient block. In one example, the entropy decoding module 70
illustrated in FIG. 8 may be a CABAC decoder. The example entropy decoding module
70 in FIG. 8 includes an arithmetic decoding module 702, which may include a bypass
decoding engine 704 and a regular decoding engine 706. The example entropy
decoding module 70 also includes context modeling unit 708 and inverse binarization
module 710. The example entropy decoding module 70 may perform the reciprocal
functions of the example entropy encoding module 56 described with respect to FIG. 5.
In this manner entropy decoding module 70 may perform entropy decoding based on the
context assignment techniques described herein.

[0119] Arithmetic decoding module 702 receives an encoded bit stream. As shown in
FIG. 8, arithmetic decoding module 702 may process encoded bin values according to a
bypass path or the regular coding path. An indication whether an encoded bin value
should be processed according to a bypass path or a regular pass may be signaled in the
bitstream with higher level syntax. Consistent with the CABAC process described
above, in the case where arithmetic decoding module 702 receives bin values from a
bypass path, bypass decoding engine 704 may perform arithmetic decoding on bin
values without utilizing a context assigned to a bin value. In one example, bypass
decoding engine 704 may assume equal probabilities for possible values of a bin.

[0120] In the case where arithmetic decoding module 702 receives bin values through
the regular path, context modeling module 708 may provide a context variable, such that
regular decoding engine 706 may perform arithmetic decoding based on the context
assignments provided by context modeling module 708. The context assignments may
be defined according to the examples described above with respect to Tables 2-13. The

context models may be stored in memory. Context modeling module 708 may include a
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series of indexed tables and/or utilize mapping functions to determine a context and a
context variable portion of an encoded bitstream. After decoding a bin value, regular
decoding engine 706, may update a context based on the decoded bin values. Further,
inverse binarization module 710 may perform an inverse binarization on a bin value and
use a bin matching function to determine if a bin value is valid. The inverse
binarization module 710 may also update the context modeling module based on the
matching determination. Thus, the inverse binarization module 710 outputs systax
elements according to a context adaptive decoding technique. In this manner, entropy
decoding module 70 is configured to decode one or more syntax elements based on the
context assignment techniques described herein.

[0121] FIG. 9 is a flowchart illustrating an example method for determining a value
indicating the position of a last significant coefficient within a transform coefficient
from a binary string in accordance with the techniques of this disclosure. The method
described in FIG. 9 may be performed by any of the example video decoders or entropy
decoding units described herein. At step 902, an encoded bitstream is obtained. An
encoded bitstream may be retrieved from a memory or through a transmission. The
encoded bitstream may be encoded according to a CABAC encoding process or another
entropy coding process. At step 904, a context is determined for a portion of the
encoded the binary string. A context may be assigned to an encoded bin based on the
techniques described herein. The context may be determined by a video or entropy
decoder accessing a look-up table or performing a mapping function. The context may
be determine based on higher level syntax provide in the encoded bitstream. The
context may be used to derive a particular context variable for a particular encoded bin.
As described above, a context variable may be a 7-bit binary value indicating one of 64
possible probabilities (states) and a most probably state (e.g., “1” or “0”) and in some
cases, bins may share contexts. At step 906, a binary string is decoded using an
arithmetic decoding process that utilizes a context variable, such as CABAC. A binary
string may be decoded on a bin-by-bin basis wherein a context model is updated after
decoding each bin. The decoded bitstream may include syntax elements that are further
used to decode transform coefficients associated with encoded video data. In this
manner, the assignment of contexts to particular bins utilizing the techniques described
above may provide for efficient decoding of encoding video data.

[0122] In one or more examples, the functions described may be implemented in

hardware, software, firmware, or any combination thereof. If implemented in software,
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the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0123] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wircless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0124] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as

used herein may refer to any of the foregoing structure or any other structure suitable for
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implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0125] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0126] Various examples have been described. These and other examples are within the

scope of the following claims.



WO 2013/070610 PCT/US2012/063717
39

WHAT IS CLAIMED IS:

1. A method of encoding transform coefficients for a video block, the method
comprising:

obtaining a binary string indicating a position of a last significant coefficient
within a block of transform coefficients associated with a video block;

determining a context for a binary index of the binary string based on a video
block size, wherein the context is assigned to at least two binary indices, wherein each
of the at least two binary indices are associated with different video block sizes; and

encoding the binary string using context adaptive binary arithmetic coding

(CABAC) based at least in part on the determined context.

2. The method of claim 1, wherein the context is assigned to each of the at least
two binary indices according to a context index (ctx_index) defined by the function:
ctx_index = (n>>logy(T) )+ 15;

wherein n is the binary index and T is a dimension of the video block.

3. The method of claim 1, wherein the context is assigned to a last binary index of

an 16x16 video block and a last binary index of a 32x32 video block.

4. The method of claim 3, wherein a second context is assigned to adjacent binary

indices of the 16x16 video block.

5. The method of claim 1, wherein encoding the binary string using CABAC based
at least in part on the determined context includes updating the context based on the
value of the binary string; and further comprising:

obtaining a second binary string indicating a position of a last significant
coefficient within a second video block, wherein the video block and the second video
block are different sizes; and

encoding the second binary string using CABAC based at least in part on the

updated context.
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6. A method of decoding transform coefficients, the method comprising:

obtaining an encoded binary string indicating a position of a last significant
cocfficient within a block of transform coefficients associated with a video block,
wherein the encoded binary string is encoded using context adaptive binary arithmetic
coding (CABAC);

determining a context for a binary index of the encoded binary string based on a
video block size, wherein the context is assigned to at least two binary indices, wherein
cach of the at least two binary indices are associated with different video block sizes;
and

decoding the encoded binary string using CABAC based at least in part on the

determined context.

7. The method of claim 6, wherein the context is assigned to each of the at least
two binary indices according to a context index (ctx_index) defined by the function:
ctx_index = (n>>1log2(T) )+ 15;

wherein n is the binary index and T is a dimension of the video block.

8. The method of claim 6, wherein the context is assigned to a last binary index of

an 16x16 video block and a last binary index of a 32x32 video block.

9. The method of claim 8, wherein a second context is assigned to adjacent binary

indices of the 16x16 video block.

10.  The method of claim 6, wherein decoding the encoded binary string using
CABAC based at least in part on the determined context includes updating the context
based on the value of the encoded binary string; and further comprising:

obtaining a second encoded binary string indicating a position of a last
significant coefficient within a second video block, wherein the video block and the
second video block are different sizes; and

decoding the second encoded binary string using CABAC based at least in part

on the updated context.
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11.  An apparatus configured to encode transform coefficients for a video block
comprising:

means for obtaining a binary string indicating a position of a last significant
coefficient within a block of transform coefficients associated with a video block;

means for determining a context for a binary index of the binary string based on
a video block size, wherein the context is assigned to at least two binary indices,
wherein each of the at least two binary indices are associated with different video block
sizes; and

means for encoding the binary string using context adaptive binary arithmetic

coding (CABAC) based at least in part on the determined context.

12. The apparatus of claim 11, wherein the context is assigned to each of the at least
two binary indices according to a context index (ctx_index) defined by the function:
ctx_index = (n>>logy(T) )+ 15;

wherein n is the binary index and T is a dimension of the video block.

13.  The apparatus of claim 11, wherein encoding the binary string using CABAC
based at least in part on the determined context includes updating the context based on
the value of the binary string; and further comprising:

means for obtaining a second binary string indicating a position of a last
significant coefficient within a second video block, wherein the video block and the
second video block are different sizes; and

means for entropy coding the second binary string using CABAC based at least

in part on the updated context.
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14.  An apparatus configured to decode transform coefficients for a video block
comprising:

means for obtaining an encoded binary string indicating a position of a last
significant coefficient within a block of transform coefficients associated with a video
block, wherein the encoded binary string is encoded using context adaptive binary
arithmetic coding (CABAC);

means for determining a context for a binary index of the encoded binary string
based on a video block size, wherein the context is assigned to at least two binary
indices, wherein each of the at least two binary indices are associated with different
video block sizes; and

means for decoding the encoded binary string using CABAC based at least in

part on the determined context.

15. The apparatus of claim 14, wherein the context is assigned to each of the at least
two binary indices according to a context index (ctx_index) defined by the function:
ctx_index = (n>>1log2(T) )+ 15;

wherein n is the binary index and T is a dimension of the video block.

16.  The apparatus of claim 14, wherein decoding the encoded binary string using
CABAC based at least in part on the determined context includes updating the context
based on the value of the encoded binary string; and further comprising:

means for obtaining a second encoded binary string indicating a position of a
last significant coefficient within a second video block, wherein the video block and the
second video block are different sizes; and

means for decoding the second encoded binary string using CABAC based at

least in part on the updated context.
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17. A device comprising a video encoder configured to:

obtain a binary string indicating a position of a last significant coefficient within
a block of transform coefficients associated with a video block;

determine a context for a binary index of the binary string based on a video
block size, wherein the context is assigned to at least two binary indices, wherein each
of the at least two binary indices are associated with different video block sizes; and

encode the binary string using context adaptive binary arithmetic coding

(CABAC) based at least in part on the determined context.

18.  The device of claim 17, wherein the context is assigned to each of the at least
two binary indices according to a context index (ctx_index) defined by the function:
ctx_index = (n>>logy(T) )+ 15;

wherein n is the binary index and T is a dimension of the video block.

19.  The device of claim 17, wherein the context is assigned to a last binary index of

an 16x16 video block and a last binary index of a 32x32 video block.

20.  The device of claim 19, wherein a second context is assigned to adjacent binary

indices of the 16x16 video block.

21.  The device of claim 17, wherein encoding the binary string using (CABAC)
based at least in part on the determined context includes updating the context based on
the value of the binary string; and wherein the video encoder is further configured to:
obtaining a second binary string indicating a position of a last significant
coefficient within a second video block, wherein the video block and the second video
block are different sizes; and
encoding the second binary string using CABAC based at least in part on the

updated context.
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22. A device comprising a video decoder configured to:

obtain an encoded binary string indicating a position of a last significant
cocfficient within a block of transform coefficients associated with a video block,
wherein the encoded binary string is encoded using context adaptive binary arithmetic
coding (CABAC);

determine a context for a binary index of the encoded binary string based on a
video block size, wherein the context is assigned to at least two binary indices, wherein
cach of the at least two binary indices are associated with different video block sizes;
and

decode the encoded binary string using CABAC based at least in part on the

determined context.

23.  The device of claim 22, wherein the context is assigned to each of the at least
two binary indices according to a context index (ctx_index) defined by the function:
ctx_index = (n>>logy(T) )+ 15;

wherein n is the binary index and T is a dimension of the video block.

24.  The device of claim 22, wherein the context is assigned to a last binary index of

an 16x16 video block and a last binary index of a 32x32 video block.

25.  The device of claim 24, wherein a second context is assigned to adjacent binary

indices of the 16x16 video block.

26.  The device of claim 22, wherein decoding the encoded binary string using
CABAC based at least in part on the determined context includes updating the context
based on the value of the encoded binary string; and wherein the video decoder is
further configured to:

obtain a second encoded binary string indicating a position of a last significant
coefficient within a second video block, wherein the video block and the second video
block are different sizes; and

decode the second encoded binary string using CABAC based at least in part on
the updated context.
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27. A non-transitory computer-readable storage medium having instructions stored
thereon that upon execution cause one or more processors of a video encoding device
to:

obtain a binary string indicating a position of a last significant coefficient within
a block of transform coefficients associated with a video block;

determine a context for a binary index of the binary string based on a video
block size, wherein the context is assigned to at least two binary indices, wherein each
of the at least two binary indices are associated with different video block sizes; and

encode the binary string using context adaptive binary arithmetic coding

(CABAC) based at least in part on the determined context.

28.  The non-transitory computer-readable storage medium of claim 27, wherein the
context is assigned to each of the at least two binary indices according to a context
index (ctx_index) defined by the function:

ctx_index = (n>>logy(T) )+ 15;

wherein n is the binary index and T is a dimension of the video block.

29.  The non-transitory computer-readable storage medium of claim 27, wherein the
context is assigned to a last binary index of an 16x16 video block and a last binary

index of a 32x32 video block.

30. The non-transitory computer-readable storage medium of claim 29, wherein a

second context is assigned to adjacent binary indices of the 16x16 video block.

31.  The non-transitory computer-readable storage medium of claim 27, wherein
encoding the binary string using CABAC based at least in part on the determined
context includes updating the context based on the value of the binary string; and
wherein the instructions upon execution further cause one or more processors of a video
encoding device to:

obtain a second binary string indicating a position of a last significant coefficient
within a second video block, wherein the video block and the second video block are
different sizes; and

encode the second binary string using CABAC based at least in part on the

updated context.
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32. A non-transitory computer-readable storage medium having instructions stored
thereon that upon execution cause one or more processors of a video encoding device
to:

obtain an encoded binary string indicating a position of a last significant
cocfficient within a block of transform coefficients associated with a video block,
wherein the encoded binary string is encoded using context adaptive binary arithmetic
coding (CABAC);

determine a context for a binary index of the encoded binary string based on a
video block size, wherein the context is assigned to at least two binary indices, wherein
cach of the at least two binary indices are associated with different video block sizes;
and

decode the encoded binary string using CABAC based at least in part on the

determined context.

33. The non-transitory computer-readable storage medium of claim 32, wherein the
context is assigned to each of the at least two binary indices according to a context
index (ctx_index) defined by the function:

ctx_index = (n>>logy(T) )+ 15;

wherein n is the binary index and T is a dimension of the video block.

34. The non-transitory computer-readable storage medium of claim 32, wherein the
context is assigned to a last binary index of an 16x16 video block and a last binary

index of a 32x32 video block.

35. The non-transitory computer-readable storage medium of claim 34, wherein a

second context is assigned to adjacent binary indices of the 16x16 video block.
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36. The non-transitory computer-readable storage medium of claim 32, wherein
decoding the encoded binary string using CABAC based at least in part on the
determined context includes updating the context based on the value of the encoded
binary string; and wherein the instructions upon execution further cause one or more
processors of a video encoding device to:

obtain a second encoded binary string indicating a position of a last significant
coefficient within a second video block, wherein the video block and the second video
block are different sizes; and

decode the second encoded binary string using CABAC based at least in part on

the updated context.
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