A golf grip comprising two texturized surface patterns formed by outward-extending resiliently pliable protrusions. The first texturized surface pattern encircles an upper portion while the second texturized surface pattern encircles a lower portion of the golf grip. A border region separates the two texturized surface patterns. The border region defines an elongate tongued shape of the first texturized surface pattern extending along the top surface of the golf grip from its butt end and further defines an elliptical wave shape receding toward the butt end of the golf grip the opposite side surfaces of the golf grip. The two texturized surface patterns may be identical wherein each texturized surface pattern comprises a plurality of rows of equidistantly spaced-apart globular protrusions extending outward from the golf grip, each of the rows offset from its adjacent rows whereby the spaced-apart globular protrusions form a honeycomb pattern.
Fig. 5A

Fig. 5B

Fig. 5C
Fig. 7
TEXTURIZED GOLF GRIP SURFACES

TECHNICAL FIELD

[0001] This disclosure relates to grips for golf clubs and putters. More specifically, this disclosure pertains to golf grips having raised textured patterns for improved gripping and grip alignment.

BACKGROUND

[0002] Golf is a popular but not easy sport engaged by a large number of professional players on a number of global tours. Additionally, golf is particularly popular as a recreational activity around the world. There have been many improvements to golf clubs and putters to improve their playability by amateurs, i.e. to enable amateurs to increase their enjoyment of the game by shooting lower scores.

[0003] A successful golf swing requires a golfer to controllably coordinate a variety of twisting and turning biomechanical movements of their torso, hips and shoulders from the beginning of a stroke to the end of a stroke. Prior to commencing a golf swing, the golfer must grip a selected golf club with both hands which requires separation of the fingers and thumb on each hand around the golf grip. A weak grip combined with an open face during the swing causes a slicing ball flight farther to the right than typically occurs when only one of the two alignment problems is manifest. Likewise, a strong grip combined with closed face during the swing causes a hooking ball flight farther to the left than typically occurs when only one of the two alignment problems is manifest.

[0005] Other problems encountered by amateur golfers relate to the tactile sensations they experience in the contact between their hands and golf grips during their setup while addressing a golf ball, and then during their golf swing. There have been numerous innovations to improve the “tackiness” or “stickiness” of golf grips to prevent the golf club from slipping in the golfer’s hands during a swing, and to provide feedback on maintaining a certain selected grip pressure through the execution of a golf swing. However, the problems still remain with the known golf grip innovations with regarding to assisting a golfer to properly align their hands and grip pressure during their golf shot set up, and for balancing the pressures applied by each of their hands onto the golf grip.

SUMMARY

[0006] The exemplary embodiments of the present disclosure generally relate to golf grips having two textured patterns encircling the circumference of the grips in a pattern wherein the first textured pattern extends downward along the grip from its butt end and the second textured pattern extends upward along the grip from its shaft-receiving end. The two textured patterns are separated by an asymmetrical tongue-shaped band extending downward about the circumference of the grip from its butt end that provides a golfer a visual reference plus a tactile reference for repeatedly positioning their upper hand, thumb and fingers on and about the first textured pattern in a selected position, and for repeatedly positioning their lower hand, thumb and fingers on and about the second textured pattern in a position complementary to the selected position for the upper hand.

[0007] According to one aspect, the first texturized pattern at the top of the grip comprises a series of raised elongate protrusions extending outward from grip surface in a repeating herringbone-type pattern around the circumference of the upper portion of the grip. The second texturized pattern comprises a series of raised approximately circular protrusions extending outward from the grip surface around the bottom portion of the grip in a plurality of off-set rows. The two texturized patterns abut a border region that extends the first texturized pattern downward along the top surface portion of the grip, extends the second texturized portion upward along the bottom portion of the grip, and provides a downward-extending elliptical profile along the sides of the grip from its upper surface to its lower surface.

[0008] According to another aspect, an exemplary texturized grip may comprising a pliable resilient material exemplified by polyurethane that may be adhered to a core material forming the grip profile. Suitable core materials are exemplified by ethylene-vinyl acetate compositions, rubber compositions, and the like.

[0009] According to another aspect, the texturized grip surfaces disclosed herein are suitable for producing grips for receiving and engaging the shafts of putters. According to another aspect, the texturized grip surfaces disclosed herein are suitable for disclosed herein are suitable for producing grips for receiving and engaging the shafts of golf irons and/or hybrid clubs and/or fairway woods and/or drivers.
DESCRIPTION OF THE DRAWINGS

0010. The exemplary embodiments of the present disclosure will be described with reference to the accompanying drawings in which:

0011. FIG. 1 is a perspective view of an exemplary embodiment of a golf grip having two exemplary texturized patterns encircling the grip;

0012. FIG. 2(A) is a side view of the exemplary golf grip shown in FIG. 1;

0013. FIG. 2(B) is a front view of the exemplary golf grip shown in FIG. 1;

0014. FIG. 2(C) is a back view of the exemplary golf grip shown in FIG. 1;

0015. FIG. 2(A) is a close-up front view of a portion of the exemplary golf grip shown in FIG. 1 illustrating an exemplary alignment pattern for abutting an exemplary upper texturized pattern to an exemplary lower texturized pattern;

0016. FIGS. 3(B), 3(C), and 3(D) are detail views of the exemplary golf grip shown in FIG. 3(A).

0017. FIG. 4(A) is a cross-sectional view of the exemplary lower texturized pattern shown in FIG. 3;

0018. FIG. 4(B) is a cross-sectional view of an alternative exemplary lower texturized pattern;

0019. FIG. 5(A) is a perspective view of another exemplary embodiment of a golf grip having two separated sets of an exemplary texturized pattern encircling the grip;

0020. FIG. 5(B) is a side view of the golf grip of FIG. 5(A);

0021. FIG. 5(C) is a front view of the golf grip of FIG. 5(A);

0022. FIG. 6(A) is a side view of another exemplary golf grip with exemplary texturized patterns disclosed herein encircling the grip wherein the diameter of the golf grip is narrower at the top of the club and progressively tapers outward toward the bottom of the club;

0023. FIG. 6(B) is a front view of the golf grip shown in FIG. 6(A);

0024. FIG. 6(C) is a back view of the golf grip shown in FIG. 6(A);

0025. FIG. 7 is a perspective view of an exemplary putter grip having two exemplary texturized patterns disclosed herein encircling the grip;

0026. FIG. 8(A) is an end view of an exemplary putter grip;

0027. FIG. 8(B) is an end view of another exemplary putter grip;

0028. FIG. 8(C) is a side view of an exemplary putter grip having two exemplary texturized patterns disclosed herein encircling the grip;

0029. FIG. 8(D) is a front view of the putter grip of FIG. 8(C); and

0030. FIG. 8(E) is a back view of the putter grip of FIG. 8(C).

DETAILED DESCRIPTION

0031. The exemplary embodiments of the present disclosure generally relate to golf grips having two textured patterns encircling the circumference of the grips in a pattern whereby the first textured pattern extends downward along the grip from its butt end and the second textured pattern extends upward along the grip from its shaft-receiving end. The two textured patterns are separated by an asymmetrical tongue-shaped band extending downward about the circumference of the grip from its butt end that provides a golfer a visual reference plus a tactile reference for repeatedly positioning their upper hand, thumb and fingers on and about the first textured pattern in a selected position, and for repeatedly positioning their lower hand, thumb and fingers on and about the second textured pattern in a position complementary to the selected position for the upper hand. The tongue element of the band is positionable along the top surface of the proximal end of a shaft inserted into the grip so that the downward-extending tongue element is squared to the bottom-leading edge of a club head engaged with the distal end of the shaft. The two texturized patterns in combination with the asymmetrical tongue-shaped band provide a golfer a visual reference plus a tactile reference for repeatedly positioning their upper hand, thumb and fingers on and about the first texturized pattern in a selected position, and for repeatedly positioning their lower hand, thumb and fingers on and about the second texturized pattern in a position complementary to the selected position for the upper hand. For example, a golfer would place the thumb of their upper hand extending downward on top of the tongue-shaped element while their fingers encircle the grip with one or more of the finger tips touching the asymmetrical band. After some experimentation and practice with positioning the thumb and fingertips of their upper hand on the grip prior to hitting practice golf balls, the golfer will have an understanding of how to shift the positioning of their upper thumb and fingertips in reference to the visual cues provided by the asymmetrical band to, for example, precisely open or alternatively close the club face prior to swinging and hitting a golf ball.

0032. An exemplary cylindrical grip 10 according to one embodiment of the present disclosure is illustrated in FIGS. 1-4. FIG. 1 is a perspective view of an exemplary embodiment of a golf grip 10 having two exemplary texturized patterns encircling the grip. FIG. 2(A) is a side view of the exemplary golf grip shown in FIG. 1. FIG. 2(B) is a front view of the exemplary golf grip shown in FIG. 1. FIG. 2(C) is a back view of the exemplary golf grip shown in FIG. 1. FIG. 3(A) is a close-up front view of a portion of the exemplary golf grip shown in FIG. 1 illustrating an exemplary alignment pattern for abutting an exemplary upper texturized pattern to an exemplary lower texturized pattern. FIG. 3(B) is a detail view of the region 19 of the exemplary golf grip shown in FIG. 3(A). FIG. 3(C) is a detail view of the region 20 of the exemplary golf grip shown in FIG. 3(A). FIG. 3(D) is a detail view of region 21 of the exemplary golf grip shown in FIG. 3(A). FIG. 4(A) is a cross-sectional view of the exemplary lower texturized pattern shown in FIG. 3(A). FIG. 4(B) is a cross-sectional view of an alternative exemplary lower texturized pattern.

0033. The grip 10 is provided with an orifice (not shown) at its lower end for receiving therethrough and demountably engaging therein the shaft 5 of a golf club (not shown). The opposite end of the grip 10, also commonly referred to as the “butt end”, is provided with an end cap 18.

0034. An exemplary first texturized surface pattern 12 encircling the upper portion of the grip 10 is provided with a plurality of rows of side-by-side elongate protrusions 24 extending outward from the surface 22 of the grip 10 (FIGS. 3(B), 4(A)). Each row of the side-by-side elongate protrusions 24 runs parallel to the longitudinal axis of the grip 10 from the top of the grip 10 to the border region 16. The side-by-side elongate protrusions 24 in each row are equidistantly spaced apart from each other and are offset from perpendicular by the same angle, for example by 2.5°, 5°, 7.5°,
Each elongate projection is slightly inwardly inclined as it projects upward, for example by 1°, 1.25°, 1.5°, 1.75°, 2°, 2.25°, 2.5°, 2.75°, 3°. Each row of side-by-side elongate protrusions 24 is offset from its adjacent rows to form a herringbone pattern running from the top of the grip 10 toward its lower portion, for example by 2.5°, 5°, 7.5°, 10°, 12.5°, 15°, 17.5°, 20°, 22.5°, 25°, 27.5°, 30°, 32.5°, 35°, 37.5°, 40°. The elongate protrusions 24 extend outward equidistantly from the grip surface 22, for example by about 0.25 mm, 0.5 mm, 0.75 mm, 1.0 mm. Each of the elongate protrusions 24 is spaced from its adjacent elongate protrusions 24 by about 0.25 mm, 0.5 mm, 0.75 mm, 1.0 mm, 1.25 mm, 1.5 mm.

[0035] It is optional, if so desired, for the first texturized surface pattern (not shown), to have the ends of the side-by-side protrusions 24 of one row joined to the ends of an adjacent row of side-by-side protrusions 24 to form a single row with a series of V-shaped protrusions extending from the top of the grip toward its lower portion. In this modified pattern, the texturized herringbone surface pattern would comprise a plurality of adjacent spaced-apart rows of side-by-side V-shaped protrusions. Alternatively, if so desired, the ends of the side-by-side protrusions 24 of one row joined to the ends of an adjacent row of side-by-side protrusions 24 to form a single row with a series of inverted V-shaped protrusions extending from the top of the grip toward its lower portion. Alternatively, if so desired, both ends of the side-by-side protrusions 24 of one row to the ends of the side-by-side protrusions 24 of two adjacent rows of protrusions to form a zig-zag pattern running from the top portion of the grip toward the bottom portion.

[0036] An exemplary second texturized surface pattern 14 encircling the lower portion of the grip 10 is provided with a plurality of rows of a plurality of side-by-side approximately globular protrusions 26 extending upwards from the surface 22 of the grip 10 (FIG. 4(B)). Each row of plurality of globular protrusions 26 is positioned to fit into about the junctures of the plurality of circular protrusions 26 in the rows on either side of the row, to form a “honeycomb” appearance. As shown in FIG. 3(D), the globular protrusions 26 may be hexagonal in shape. Alternatively, if so desired, the globular protrusions 26 may be pentagonal, heptagonal, octagonal, nonagonal, decagonal, hendecagonal, dodecagonal in shape. Each globular protrusion 26 may be slightly inwardly inclined as it projects upward, for example by 1°, 1.25°, 1.5°, 1.75°, 2°, 2.25°, 2.5°, 2.75°, 3°. Alternatively, the globular protrusions 26 may be a circular globe or dome or alternatively, an elliptical dome. Such globe-shaped and dome-shaped and elliptical dome-shaped protrusions are also referred to herein as “reverse dimples”. The globular protrusions 26 extend outward equidistantly from the grip surface 22, for example by about 0.25 mm, 0.5 mm, 0.75 mm, 1.0 mm. Each of the elongate protrusions 26 is spaced from its adjacent elongate protrusions 24 by about 0.25 mm, 0.5 mm, 0.75 mm, 1.0 mm, 1.25 mm, 1.5 mm.

[0037] The border region 16 abutted by the first texturized surface pattern 12 and the second texturized surface pattern 14 forms a tongue-shape extending downward along the top of the grip 10 from its upper portion to its bottom portion (FIGS. 1, 3(A)) with a wave-shaped elliptical pattern extending along the sides of the grip 10 from the tip of the “tongue” formed by the first texturized surface pattern 12 on the top of the grip 10 toward the top of the grip 10 (FIGS. 1, 2(A), 2(C)).
dome-shaped and elliptical dome-shaped protrusions are also referred to herein as “reverse dimples”. The globular protrusions 26 extend outward equidistantly from the grip surface 22, for example by about 0.25 mm, 0.5 mm, 0.75 mm, 1.0 mm. Each of the elongate protrusions 26 is spaced from its adjacent elongate protrusions 24 by about 0.25 mm, 0.5 mm, 0.75 mm, 1.0 mm, 1.25 mm, 1.5 mm. The border region 16 comprises the surface 22 of the grip 10 between the first set of texturized surface pattern 14 and the second set of texturized surface pattern 14. The width of the border region 16 may be 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 7.5 mm, 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm.

The base diameter of the globular protrusions in the first set of texturized pattern 14 is about the same as the other globular protrusions in the second set of texturized pattern 14. The diameters of the globular protrusions in the first set of texturized pattern 14 may be the same as the diameters of the globular protrusions in the second set of texturized pattern 14. Alternatively, the diameters of the globular protrusions in the first texturized pattern 14 may be larger than the diameters of the globular protrusions in the second texturized pattern 14. Alternatively, the diameters of the globular protrusions in the first set of texturized pattern 14 may be the smaller than the diameters of the globular protrusions in the second set of texturized pattern 14. The globular protrusions in the first set of texturized pattern 14 may extend outward farther from the grip surface than the globular protrusions in the second set of texturized pattern 14, for example by about 0.25 mm, 0.5 mm, 0.75 mm, 1.0 mm. Alternatively, the globular protrusions in the second set of texturized pattern 14 may extend outward farther from the grip surface than the globular protrusions in the first set of texturized pattern 14, for example by about 0.25 mm, 0.5 mm, 0.75 mm, 1.0 mm. It is optional for the globular protrusions in the first set of texturized pattern 14 to be less resiliently pliable (i.e., “stiffer”) than the globular protrusions in the second set of texturized pattern 14. Alternatively, the globular protrusions in the second set of texturized pattern 14 may be less resiliently pliable (i.e., “stiffer”) than the globular protrusions in the first set of texturized pattern 14.

The two sets of texturized pattern 14 may be globular protrusions in the form of reverse dimples or alternatively may be pentagonal, heptagonal, octagonal, nonagonal, decagonal, hendecagonal, dodecagonal in shape. The shapes and heights of the globular protrusions may be identical in both sets of texturized pattern 14. Alternatively, while the general shape of the globular protrusions may be similar, the globular protrusions in one set of texturized pattern 14 may have larger base diameters than the globular protrusions in the other set of texturized pattern 14 whereby the globular protrusions with the wider bases will have larger top surfaces than the globular protrusions with the wider bases thereby providing two different types of “feel” (i.e., tactile sensations) when gripped with two hands. Similarly, one set of globular protrusions may extend outward from the base surface of the grip about 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm than the other set of globular protrusions thereby providing two different types of “feel” (i.e., tactile sensations) when gripped with two hands.

Another example of two sets of the same texturized pattern abutting the asymmetrical tongue-shaped band may comprise a plurality of side-by-side equidistantly spaced-apart elongate protrusions forming a herringbone pattern 12 as described above and illustrated in FIGS. 1-3. The shapes and heights of the elongate protrusions may be identical in both sets of texturized patterns. Alternatively, while the general shape of the elongate protrusions may be similar, the elongate protrusions in one of the texturized patterns may have larger base diameters than the elongate protrusions in the other of the texturized patterns whereby the elongate protrusions with the wider bases will have larger top surfaces than the elongate protrusions with the wider bases thereby providing two different types of “feel” (i.e., tactile sensations) when gripped with two hands.
the other surface of the golf grips. Suitable materials for making such one-piece grips are exemplified by ethylene-vinyl acetate compositions, natural rubber compositions, blends of natural rubbers, blends of natural rubber with ethylene-propylene-diene rubbers (also referred to as “EPDM”), natural rubber-EPDM blends compounded with one or more of hydrated aluminum silicate powder, magnesium carbonate, barium sulfate, calcium oxide, silicon oxide, and the like.

[0046] The exemplary texturized golf grips disclosed herein are particularly suitable for installation onto the shafts of golf clubs such as golf irons, hybrid clubs, fairway woods, and drivers wherein the grips 40 are tapered inward from the butt end 48 of the shaft 5 toward the head end of the shaft 5 as illustrated in FIGS. 6(A)-6(C) wherein the tongue-shaped first texturized herringbone surface pattern 42 encircling the upper portion of the grip 40 abuts the second texturized honeycomb surface pattern 44 encircling the lower portion of the grip 40 at the border region 46. The design and layout of the border region 46 in cooperation with the tongue-shaped first texturized herringbone surface pattern 42 and the second texturized honeycomb surface pattern 44 provides reference points for a golfer to set up their grip with first their upper hand and followed by their lower hand. A right-handed golfer will first place their left thumb on the top of the tongue of the first texturized herringbone surface pattern 42 (e.g., FIG. 6(B) position “a”) and wrap their left fingers around the grip so that their index, middle, ring, and little fingers (i.e., their 1st, 2nd, 3rd, and 4th fingers) are in contact with or alternatively, abut the “wave-shaped” border region 46 (FIG. 6(A) positions “b”, “c”, “d”, “e” respectively). The right-handed golfer would then place their right palm over their left thumb and wrap their right fingers around the grip. Similarly, a left-handed golfer with begin their setup with their right hand placed about the upper end of the grip with their right thumb extending down on top of the tongue element formed by the top of the tongue of first texturized herringbone surface pattern 62 (e.g., FIG. 6(B) position “a”) and wrap their left fingers around the grip so that their index, middle, ring, and little fingers (i.e., their 1st, 2nd, 3rd, and 4th fingers) are in contact with or alternatively, abut the “wave-shaped” border region 66 (FIG. 6(A) positions “b”, “c”, “d”, “e” respectively). The left-handed golfer would then place their right palm over their left thumb and wrapping their right fingers around the grip. Similarly, a left-handed golfer will then place their right palm over their left thumb and wrap their right fingers around the grip so that their index, middle, ring, and little fingers (i.e., their 1st, 2nd, 3rd, and 4th fingers) are in contact with or alternatively, abut the “wave-shaped” border region on the opposite side of the grip mirroring positions “b”, “c”, “d”, “e” respectively shown in FIG. 6(A) and once their right hand is engaged around the grip, then place their left palm over their right thumb and then engage their left hand around the grip underneath their right hand. The combination of the two texturized patterns and the border region will enable a golfer to routinely reproduce the same putter set up, and the pliable resilience of the two texturized surfaces will provide tactile feedback to the golfer regarding the grip pressure they are exerting and will also, reduce the possibility of grip slippage and rotation within the golfer’s hands during their execution of a golf swing. The reverse taper of this exemplary putter grip (FIGS. 6(A)-6(B)) will assist the golfer to ease up the grip pressure exerted by their lower hand during a putter stroke. Alternatively, a right-handed golfer may wish to begin their setup with their right hand placed about the upper end of the grip with their right thumb extending down on top of the tongue element formed by the top of the tongue of first texturized herringbone surface pattern 62 (e.g., FIG. 6(B) position “a”) and wrap their right fingers around the grip so that their index, middle, ring, and little fingers (i.e., their 1st, 2nd, 3rd, and 4th fingers) are in contact with or alternatively, abut the “wave-shaped” border region on the opposite side of the grip mirroring positions “b”, “c”, “d”, “e” respectively shown in FIG. 6(A) and once their right hand is engaged around the grip, then place their left palm over their right thumb and then engage their left hand around the grip underneath their right hand. Alternatively, a right-handed golfer may wish to use the “claw” grip wherein their left hand is engaged around the upper end of the grip as described while their right hand is placed below the left hand with the four fingers of their right hand open across the front side of the grip with the base of their forefinger abutting the tip of their left thumb and then wrapping their right thumb around the back of the grip. A left-handed golfer would reproduce the “claw” grip in reverse with their right hand at the upper end of the grip and their left hand abutting the tip of their right hand and right forefinger.

[0048] Another exemplary putter grip 80 according to the present disclosure is shown in FIGS. 8(A)-8(B), wherein the front surface 81 of the grip 80 is flat while the sides and the back of the grip 80 are round. The tongue-shaped first texturized herringbone surface pattern 82 encircles the upper portion of the grip 80 and abuts the second texturized honeycomb surface pattern 84 encircling the lower portion of the grip 80 at the border region 86. The design and layout of the border region 86 in cooperation with the tongue-shaped first texturized herringbone surface pattern 82 and the second texturized
honeycomb surface pattern 84 provides reference points for a golfer to set up their putter grip with first their upper hand and followed by their lower hand in reference to the border region 86 as previously described. It is within the scope of the present disclosure to provide different types of end caps at the butt end of the textured grips exemplified herein. For example, a plain end cap such as exemplified by end cap 18 shown in FIG. 1 may be provided. Such plain end caps may be optionally stamped or overlaid with cosmetic designs if so desired. Alternatively, it is optional to provide an end cap that may releasing engage a ball marker as exemplified in FIGS. 8 and 9 by marker end cap 90. It is preferable that the marker end cap 90 is provided with a retaining rim 92 that extends around at least 55% of the circumference of the marker end cap. If so desired, a magnet 94 may be incorporated into the base of the marker end cap 90 to securely engage metallic markers. Alternatively, the marker end cap 90 may simply be provided with a flat base and have a resilient rim 92 for retaining markers therein.

[0049] It is also within the scope of the present disclosure for the exemplary grips to be adapted for securely engaging the shafts of sports equipment wherein alignment of one or both hands around the grip at the butt end of the shaft is a critical element for reproducibly executing desired swing patterns, as exemplified by fishing rods, in particularly fly fishing rods, casting rods and the like, raquet clubs exemplified by tennis raquets, squash raquets, badminton raquets and the like.

1. A texturized golf grip having a proximal butt end and a distal end for receiving thereinto and demountably engaging a golf shaft, the texturized golf grip comprising:
 - two texturized surface patterns formed by outward-extend- ing resiliently pliable protrusions wherein a first textur- ized surface pattern encircles an upper portion of the golf grip and a second texturized surface pattern encircles lower portion of the golf grip; and
 - a border region separating the first texturized surface pat- tern and the second texturized surface pattern, said bor- der region defining an elongate tongue shaped of the first texturized surface pattern extending along the top sur- face of the golf grip from its butt end and further defining an elliptical wave shape receding toward the butt end of the golf grip, said elliptical wave shape receding along the opposite side surfaces of the golf grip.
2. The texturized golf grip of claim 1, wherein the two texturized surface patterns are identical and each texturized surface pattern comprises a plurality of rows of equidistantly spaced-apart globular protrusions extending outward from the golf grip, each of said rows offset from its adjacent rows whereby the spaced-apart globular protrusions form a honeycomb pattern.
3. The texturized golf grip of claim 2, wherein the base diameter of each of the spaced-apart globular protrusions forming the first texturized surface pattern is greater than the base diameter of each of the spaced-apart globular protrusions forming the second texturized surface pattern.
4. The texturized golf grip of claim 2, wherein the base diameter of each of the spaced-apart globular protrusions forming the second texturized surface pattern is greater than the base diameter of each of the spaced-apart globular protrusions forming the first texturized surface pattern.
5. The texturized golf grip of claim 1, wherein the first texturized surface pattern comprises a plurality of rows of equidistantly spaced-apart elongate protrusions extending outward from the golf grip, each of said rows offset from its adjacent rows thereby forming a herringbone pattern, and the second texturized surface pattern comprises a plurality of rows of equidistantly spaced-apart globular protrusions extending outward from the golf grip, each of said rows offset from its adjacent rows thereby forming a honeycomb pattern.
6. The texturized golf grip of claim 1, wherein the first texturized surface pattern has a first colour and the second texturized surface pattern has a second colour.
7. The texturized golf grip of claim 1, configured for demountable engagement with a putter shaft.
8. The texturized golf grip of claim 7, wherein the grip is tapered inward along its length from its proximal end to its distal end.
9. The texturized golf grip of claim 7, wherein the grip is tapered outward along its length from its proximal end to its distal end.
10. The texturized golf grip of claim 7, wherein the grip is cylindrical along its length from its proximal end to its distal end.
11. The texturized golf grip of claim 7, wherein the proximal end of the grip has an end cap component for releasingly engaging a ball marker.
12. The texturized golf grip of claim 11, wherein the proximal end of the grip has an end cap component having a retaining rim that extends partially around the circumference of the end cap.
13. The texturized golf grip of claim 11, wherein the end cap component is fitted with a magnet for magnetically engaging a metallic ball marker.