本发明公开了一种级联多电平超级电容器储能系统及放电模式控制方法。该系统包括至少两个半桥变换器、超级电容器储能单元、LCL串联电路、电压检测单元以及控制器。每个半桥变换器的输入端都与一个超级电容器储能单元并联，各半桥变换器级联接在公共直流母线的正负极之间。在第一个半桥变换器的输出端正端子与最后一个半桥变换器输出端负端子之间并联LCL串联电路。电压检测单元将公共直流母线正负以及各超级电容器端电压传输至控制器，控制器控制各半桥变换器输出直流功率分量并输出/输入高频交流分量，直流功率分量通过公共直流母线提供给负载，高频交流功率分量在级联半桥变换器和LCL串联电路之间流动用于超级电容器的能量均衡。
1. 电联多电平超级电容器储能系统放电模式控制方法。其特征在于所述系统包括至少两个半桥变换器 (5)，与所述半桥变换器 (5) 数量一致的超级电容器储能单元 (4)。电感 (1)、LC 串联电路 (2)、滤波电容 (3)、电压检测单元 (7) 以及控制器 (6)。所述每个半桥变换器 (5) 的输入端与一个超级电容器储能单元 (4) 并联，所述每个半桥变换器 (5) 输出端的两个端子分别与相邻级联半桥变换器 (5) 的输出端子串联；第一个半桥变换器 (5) 的输出端子正端通过所述电感 (1) 连接到公共直流母线的正极，最后一个半桥变换器 (5) 的输出端子负极连接到公共直流母线的负极；在所述第一个半桥变换器 (5) 的输出端正端子与最后一个半桥变换器 (5) 输出端子负极之间并联所述 LC 串联电路 (2)；在公共直流母线正负极之间并联所述滤波电容 (3)；公共直流母线正极以及所述每个超级电容器储能单元 (4) 的正极均连接到所述电压检测单元 (7)；所述电压检测单元 (7) 将检测到的公共直流母线端电压以及每个超级电容器储能单元 (4) 端电压信号传输至所述控制器 (6)，所述控制器 (6) 输出 PWM 信号到所述每个半桥变换器 (5)。

所述半桥变换器 (5) 包括由两个串联的功率开关器件组成的桥臂；第一功率开关器件 (51) 的集电极与半桥变换器 (5) 输入端的正极以及超级电容器储能单元 (4) 的正极相连，所述第一功率开关器件 (51) 的发射极与第二功率开关器件 (52) 的集电极相连，第二功率开关器件 (52) 的发射极与半桥变换器 (5) 输入端的负极以及超级电容器储能单元 (4) 的负极相连，所述第一功率开关器件 (51) 的基极以及第二功率开关器件 (52) 的基极均连接至所述控制器 (6)。

所述控制器 (6) 包括数字信号微处理器 (61)，以及分别与所述数字信号微处理器 (61) 连接的通讯接口 (62)、电源模块 (63)、模 / 数转换模块 (64) 以及显示模块 (65) 和 PWM 驱动模块 (66)；其中：

所述数字信号微处理器 (61) 用于与所述控制器 (6) 中其余模块进行信号传输，以及计算并输出控制所述各半桥变换器 (5) 的 PWM 信号；

所述通讯接口 (62) 用于完成数字信号微处理器与上位机之间的通讯；

所述电源模块 (63) 用于给所述控制器 (6) 供电；

所述模 / 数转换模块 (64) 用于将所述电压检测单元 (7) 采集的电压信号转换为数字信号，输入至所述数字信号微处理器 (61)；

所述显示模块 (65) 用于对所述控制器 (6) 的运行状态进行显示；

所述 PWM 驱动模块 (66) 用于将所述数字信号微处理器 (61) 输出的 PWM 信号进行放大后用于驱动所述各半桥变换器 (5) 中的功率开关器件；

包括如下步骤：

步骤 (1)，电压检测单元 (7) 采集公共直流端电压并送至控制器 (6) 的模 / 数转换模块 (64) 进行模 / 数转换，并将模 / 数后的数字信号传输至数字信号微处理器 (61)；

步骤 (2)，所述数字信号微处理器 (61) 将公共直流端电压与公共直流母线电压参考值比较后得出误差信号，并将所述误差信号经 PI 调理后计算出第一功率开关器件 (51) 的占空比控制量 D；

步骤 (3)，在数字信号微处理器 (61) 中生成与半桥变换器 (5) 数量一致的高频三角载波，相邻两个半桥变换器 (5) 对应的三角载波之间相位相差为 $\frac{360^\circ}{N}$，其中 N 为半桥变换器
(5) 的数量，将所述占空比控制量 D 与和高频三角波比较后，生成各半桥变换器 (5) 的第一功率器件 (51) 和第二功率器件 (52) 的 PWM 信号；

步骤 (4)，所述 PWM 信号经过 PWM 驱动模块 (66) 驱动各个半桥变换器 (5) 的第一功率开关器件的和第二功率开关器件；

步骤 (5)，所有半桥变换器 (5) 输出电压叠加后经过输出电感 (1) 和滤波电容 (3) 后在公共直流母线上形成稳定的直流电压。

2. 根据权利要求 1 所述级联多电平超级电容器储能系统放电模式控制方法，其特征在于：当电压检测单元 (7) 检测到超级电容器储能单元 (4) 的端电压过低需要进行能量补充时，通过控制器 (6) 控制一个或多个半桥变换器 (5) 的输出电压信号中包含高频分量，所述高频分量的频率为所述 LC 串联电路 (2) 的谐振频率 $\omega = \frac{1}{\sqrt{LC}}$，从而在所述级联半桥变换器 (5) 和 LC 串联电路 (2) 之间形成辅助功率环路，使功率可以在不同半桥变换器 (5) 之间传输，从而完成不同超级电容器储能单元 (4) 之间的能量交换。
一种级联多电平超级电容器储能系统及放电模式控制方法

技术领域

【0001】本发明涉及储能技术领域，尤其涉及的一种级联多电平超级电容器储能系统及放电模式控制方法。

背景技术

【0002】超级电容器是一种新型高能量密度的储能器件，它兼有常规电容器功率密度大、充电电池比能量高的优点，可快速充放电而且寿命长，在电动汽车、应急电源和电力自动化设备领域有着良好的应用前景。

【0003】超级电容器单体的电压较低，一般不超过2.7V，为了满足电压等级的需要，通常将多个单体超级电容器通过串联的方式组成超级电容器储能单元，再与功率变换电路并联构成储能系统，以获得稳定的输出电压。通过将超级电容器储能单元与半桥变换器并联，再由多个半桥变换器串联构成级联多电平储能系统可以获得较高的输出电压，并且可以通过对半桥变换器的控制可以使储能系统工作在DC/DC变换工作模式或逆变工作模式。在逆变工作模式中，级联多电平的结构可以有效降低储能系统输出正弦电压电流波形的谐波畸变率THD。

【0004】由于超级电容器储能单元参数和半桥变换器效率的不一致性，在储能系统充放电过程中会不同储能单元之间能量不平衡的现象，主要表现为端电压的不均衡。使用均压电路可以提高储能装置的利用率，提高储能单元的寿命。现有的均压电路大体可分为两大类：一类是能量消耗型电压均衡方法，把电压达到设定值的储能单体超级电容器的能量消耗在并联的电阻或稳压管上，以避免该单体的电压继续升高。主要有电阻均压、开关电阻均压和稳压管均压法等，能量消耗型均压电路的效率较低，且只能用于在充电过程中进行均压。另一类能量转移型电压均衡方法，利用电感、电容、变压器等作为能量的缓冲，把某些单体上多余的电能转移到其他单体上。能量转移型均压方法效率较高，但是通常需要额外的功率变换电路进行能量转移。上述两种均压方法都是针对直接串联的超级电容器组，而基于级联多电平变换器的超级电容器储能系统，由于超级电容器储能单元之间的通过半桥或H桥变换器串联，因此无法使用传统的均压方法进行能量均衡。有文献提出通过在储能系统工作在并网逆变模式中，通过控制半桥变换器的驱动波形，使端电压低的超级电容器储能单元多充电，少放电，端电压高的超级电容器储能单元少充电，多放电，从而使得不同单元之间能量趋于均衡。但是这种方法需要多个充放电周期才能达到能量的均衡，并且对于DC/DC变换工作模式和孤岛逆变模式效果不佳。

发明内容

【0005】发明目的：针对上述现有技术，提出一种级联多电平超级电容器储能系统及放电模式控制方法，能够通过辅助功率环路完成不同超级电容器储能单元之间功率均衡。

【0006】技术方案：一种级联多电平超级电容器储能系统，所述系统包括至少两个半桥变换器，与所述半桥变换器数量一致的超级电容器储能单元、电感、LC串联电路、滤波电容、
电压检测单元以及控制器；所述每个半桥变换器的输入端都与一个超级电容器储能单元并联，所述每个半桥变换器的输出端正端子通过所述电感连接到公共直流母线的正极，最后一个半桥变换器的输出端负端子连接到公共直流母线的负极；在所述第一个半桥变换器的输出端正端子与最后一个半桥变换器输出端正端子之间并联所述 LC 串联电路；在公共直流母线正极之间并联所述滤波电容；公共直流母线正极以及所述每个超级电容器储能单元的正负极均连接到所述电压检测单元；所述电压检测单元将检测到的公共直流母线端电压以及每个超级电容器储能单元端电压信号传输至所述控制器，所述控制器输出 PWM 信号到所述每个半桥变换器。

[0007] 作为本发明的优选方案，所述半桥变换器包括由一个串联的功率开关器件组成的桥臂；所述第一功率开关器件的集电极与半桥变换器输入端的正极以及超级电容器储能单元的正极相连，所述第一功率开关器件的发射极与第二功率开关器件的集电极相连，第二功率开关器件的发射极与半桥变换器输入端的负极以及超级电容器储能单元的负极相连；所述第一功率开关器件的基极以及第二功率开关器件的基极均连接至所述控制器。

[0008] 作为本发明的优选方案，所述第一功率开关器件的和第二功率开关器件为电力场效应管、电力晶体管或绝缘栅双极晶体管的半导体开关管。

[0009] 作为本发明的优选方案，所述每个超级电容器储能单元包含若干串联的单体超级电容器，所述单体超级电容器为双电层型超级电容器或赝电容型超级电容器。

[0010] 作为本发明的优选方案，所述控制器包括数字信号微处理器，以及分别与所述数字信号微处理器连接的通讯接口、电源模块、模 / 数转换模块以及显示模块和 PWM 驱动模块；其中：

[0011] 所述数字信号微处理器用于与所述控制器中其余模块进行信号传输，以及计算并输出控制所述各半桥变换器的 PWM 信号；

[0012] 所述通讯接口用于完成数字信号微处理器与上位机之间的通讯；

[0013] 所述电源模块用于给所述控制器供电；

[0014] 所述模 / 数转换模块用于将所述电压检测单元采集的电压信号转换为数字信号，输入至所述数字信号微处理器；

[0015] 所述显示模块用于对所述控制器的运行状态进行显示；

[0016] 所述 PWM 驱动模块用于将所述数字信号微处理器输出的 PWM 信号进行放大后用于驱动所述各半桥变换器中的功率开关器件。

[0017] 一种级联多电平超级电容器储能系统放电模式控制方法，包括如下步骤：

[0018] 步骤 (1)，电压检测单元采集公共直流端电压并送至控制器的模 / 数转换模块进行模 / 数转换，并将模 / 数后的数字信号传输至数字信号微处理器；

[0019] 步骤 (2)，所述数字信号微处理器将公共直流端电压与公共直流母线电压参考值比较后得出误差信号，并将所述误差信号经 PI 调理后计算出第一功率开关器件的占空比控制量 D；

[0020] 步骤 (3)，在数字信号微处理器中生成与半桥变换器数量一致的高频三角载波，相邻两个半桥变换器对应的三角载波之间相位相差为 $\frac{360^\circ}{N}$，其中 N 为半桥变换器的数量，将所述占空比控制量 D 与和高频三角载波比较后，生成各半桥变换器的第一功率器件和第二
功率器件的 PWM 信号；
[0021] 步骤 (4)，所述 PWM 信号经过 PWM 驱动模块驱动各个半桥变换器的第一功率开关器件的和第二功率开关器件；
[0022] 步骤 (5)，所有半桥变换器输出电压叠加后经过输出电感和滤波电容后在公共直流母线上形成稳定的直流电压。
[0023] 作为本发明的优选方案，当电压检测单元检测到超级电容器储能单元的端电压过低需要进行能量补充时，通过控制器控制一个或多个半桥变换器的输出电压信号中包含高频分量，所述高频分量的频率为所述 LC 串联电路的谐振频率 \(f_0 = \frac{1}{\sqrt{LC}} \)，从而在所述级联半桥变换器和 LC 串联电路之间形成辅助功率环路，使功率可以在不同半桥变换器之间传输，从而完成不同超级电容器储能单元之间的能量交换。
[0024] 有益效果：通过本发明的级联多电平超级电容器储能系统以及储能系统工作在放电模式的控制方法，使得可以在充放电过程中，通过控制各个半桥变换器的 PWM 开关信号，在半桥变换器的输出直流电压中包含一个高频分量，从而使得级联多电平变换器和 LC 串联电路之间形成一个辅助功率环路。辅助功率环路中传输着高频功率，一部分半桥变换器输出该高频功率，另一部分半桥变换器吸收该高频功率。由于 LC 串联电路的选频作用，高频功率不会泄露到公共直流母线上，从而在不影响公共直流母线的直流电压输出的前提下，实现不同半桥变换器之间的功率交换。通过功率交换，端电压较高的超级电容器储能单元中的能量可以转移到端电压较低的超级电容器储能单元中去。

附图说明
[0025] 图 1 是本发明储能系统的总体结构示意图；
[0026] 图 2 是本发明的半桥变换器与超级电容器储能单元连接示意图；
[0027] 图 3 是本发明超级电容器储能单元结构以及与电压检测单元连接示意图；
[0028] 图 4 是本发明控制器结构示意图。

具体实施方式
[0029] 下面结合附图对本发明做更进一步的解释。
[0030] 如图 1 所示，一种级联多电平超级电容器储能系统，该系统包括至少两个半桥变换器 5、与半桥变换器 5 数量一致的超级电容器储能单元 4、电感 1、LC 串联电路 2、滤波电容 3、电压检测单元 7 以及控制器 6。每个半桥变换器 5 的输入端都与一个超级电容器储能单元 4 并联，每个半桥变换器 5 输出端的两个端子分别与相邻级联半桥变换器 5 的输出端端子串联。第一个半桥变换器 5 的输出端额定电压通过所述电感 1 连接到公共直流母线的正极，最后一个半桥变换器 5 的输出端额定电压接到公共直流母线的负极。在第一个半桥变换器 5 的输出端额定电压与最后一个半桥变换器 5 输出端额定电压之间并联 LC 串联电路 2。在公共直流母线正负极之间并联滤波电容 3。公共直流母线正极以及每个超级电容器储能单元 4 的正负极均连接到电压检测单元 7。电压检测单元 7 将检测到的公共直流母线端电压以及每个超级电容器储能单元 4 端电压信号传输至控制器 6，控制器 6 输出 PWM 信号到每个半桥变换器 5。
其中，如图2所示，半桥变换器5包括由两个串联的功率开关器件组成的桥臂以及两个整流二极管。第一功率开关器件51的集电极与半桥变换器5输入端的正极以及超级电容器储能单元4的正极相连，第一功率开关器件51的发射极与第二功率开关器件52的集电极相连。第二功率开关器件52的发射极与半桥变换器5输入端的负极以及超级电容器储能单元4的负极相连。第一功率开关器件51的基极以及第二功率开关器件52的基极均连接至控制器6。第一功率开关器件51和第二功率开关器件52的发射极和集电极之间分别并联一个整流二极管。第一功率开关器件51的和第二功率开关器件52为电力场效应管、电力晶体管或绝缘栅双极晶体管的半导体开关管。

如图3所示，每个超级电容器储能单元4包含若干串联的单体超级电容器。单体超级电容器为双电层型超级电容器或赝电容型超级电容器。

控制6包括数字信号微处理器61，以及分别与数字信号微处理器61连接的通讯接口62，电源模块63，模/数转换模块64以及显示模块65和PWM驱动模块66。其中，

数字信号微处理器61用于与控制器6中其余模块进行信号传输，以及计算并输出控制所述各半桥变换器5的PWM信号；通讯接口62用于完成数字信号微处理器6与上位机之间的通讯；电源模块63用于给控制器6供电；模/数转换模块64用于将电压检测单元7采集的电压信号转换为数字信号，输入至数字信号微处理器61；显示模块65用于对控制器6的运行状态进行显示；PWM驱动模块66用于将数字信号微处理器61输出的PWM信号进行放大后用于驱动所述各半桥变换器5中的功率开关器件。

根据上述的级联多电平超级电容器储能系统放电模式控制方法，具体步骤如下：

步骤(1)，电压检测单元7采集公共直流端电压并送至控制器6的模/数转换模块64进行模/数转换，并将模/数后的数字信号传输至数字信号微处理器61；

步骤(2)，所述数字信号微处理器(61)将公共直流端电压与公共直流母线电压参考值比较后得出误差信号，并将所述误差信号经PI调节后计算出第一功率开关器件(51)的占空比控制量D；

步骤(3)，在数字信号微处理器(61)中生成与半桥变换器(5)数量一致的高频三角载波，相邻两个半桥变换器(5)对应的三角载波之间相位相差为$\frac{360^\circ}{N}$，其中N为半桥变换器(5)的数量，将所述占空比控制量D与和高频三角载波比较后，生成各半桥变换器(5)的第一功率器件(51)和第二功率器件(52)的PWM信号；

步骤(4)，PWM信号经过PWM驱动模块66驱动各个半桥变换器5的第一功率开关器件和和第二功率开关器件；

步骤(5)，所有半桥变换器5输出电压叠加后经过输出电感1和滤波电容3后在公共直流母线上形成稳定的直流电压。

当电压检测单元7检测到某一超级电容器储能单元4的端电压过低需要进行能量补偿时，通过控制器6控制一个或多个半桥变换器5的输出电压信号中包含高频分量，该高频分量的频率为所述LC串联电路2的谐振频率$\omega = \frac{1}{\sqrt{LC}}$，从而在级联半桥变换器5和LC串联电路2之间形成辅助功率环路，使功率可以在不同半桥变换器5之间传输。从而完成
同超级电容器储能单元 4 之间的能量交换。具体步骤如下:

【0042】当电压检测单元 7 检测到某一超级电容器储能单元 4 的端电压过低需要进行能量补充时，控制器 6 根据该超级电容器储能单元 4 端电压及超级电容器额定端电压参考值之间的误差生成一个高频正弦信号，该高频正弦信号的频率为串联 LC 支路的谐振频率

\[\omega = \frac{1}{\sqrt{LC}} \]

该频度为电压误差信号的 PI 调节器，并将该高频正弦信号叠加在控制量 D 上形成调制波，经过端电压最高的超级电容器储能单元 4 并联半桥变换器 5 的三角载波进行比较后驱动该半桥变换器的功率器件。同时，该高频正弦信号输出 180°相移后，叠加在控制量 D 上形成调制波，经过与需要补充能量的超级电容器储能单元 4 并联半桥变换器 5 的三角载波进行比较后驱动该半桥变换器的功率器件。由于高频正弦信号的频率与 LC 串联电路 2 的谐振频率一致，因此半桥变换器输出电压中的高频分量将在级联半桥变换器与 LC 串联电路 2 构成的辅助功率环路中流动，同时由于端电压最高和最低的超级电容器储能单元 4 并联半桥变换器调制波中高频正弦信号相位相差 180°，因此端电压最高的超级电容器储能单元 4 将通过半桥变换器 5 输出功率到辅助功率环路中，而端电压最低的超级电容器储能单元 4 将通过半桥变换器 5 从辅助功率环路中吸收功率，直到其端电压满足要求。

【0043】以上所述仅是本发明的实施方式，应当指出，对于本技术领域的普通技术人员来说，在不脱离本发明原理的前提下，还可以做出若干改进和润饰，这些改进和润饰也应视为本发明的保护范围。
图 4