**EUROPEAN PATENT APPLICATION**

**Designated Contracting States:**
- AT
- BE
- BG
- CY
- CZ
- DE
- DK
- EE
- ES
- FI
- FR
- GB
- GR
- HU
- IE
- IT
- LI
- LT
- LU
- MC
- NL
- PL
- PT
- RO
- SE
- SI
- SK
- TR

**Designated Extension States:**
- AL
- BA
- HR
- LV
- MK
- YU

**Applicant:** Universitätsklinikum Freiburg
79106 Freiburg (DE)

**Inventors:**
- Elsässer-Beile, Ursula
  79211 Denzlingen (DE)
- Wolf, Philipp
  79194 Gundelfingen (DE)
- Gierschner, Dorothee
  79331 Teningen (DE)
- Bühler, Patrick
  79114 Freiburg (DE)
- Wetterauer, Ulrich
  79100 Freiburg (DE)

**Representative:** Keller, Günter et al
Lederer & Keller
Patentanwälte
Prinzregentenstrasse 16
80538 München (DE)

**Int Cl.:**
- C12N 15/13 (2006.01)
- A61K 47/48 (2006.01)
- C07K 16/30 (2006.01)

**Monoclonal antibodies and single chain antibody fragments against cell-surface prostate specific membrane antigen**

**Isolated monoclonal antibodies or an antigen binding portion thereof which bind to prostate specific membrane antigen in its native form occurring on the surface of tumor cells characterized in that it is linked to a label or a cytotoxic agent or constructed as a part of a bispecific antibody or a recombinant diabody.**
Cancer of the prostate is the most commonly diagnosed cancer in men and the second most common cause of death in the Western civilization. No curative treatment currently exists for this tumor after progression beyond resectable boundaries. Because of the significant mortality and morbidity associated with disease progression, there is an urgent need for new targeted treatments. In contrast to cancer in other organ systems, prostate cancer represents an excellent target for antibody therapy for a number of reasons, that include i) the prostate expresses tissue specific antigens, ii) the prostate is a non-essential organ and its destruction will not harm the host, iii) the sites of metastasis are lymph nodes and bone that receive high levels of circulating antibodies, and iv) the PSA serum levels provide a means to monitor therapeutic response.

Among several candidate markers that have been identified for prostate cancer, prostate specific membrane antigen (PSMA) seems to be most prominent. This type II transmembrane glycoprotein of about 100 KD consists of a short intracellular segment (amino acids 1 - 18), a transmembrane domain (amino acids 19 - 43), and an extensive extracellular domain (amino acids 44 - 750). PSMA may serve as a useful target for immunotherapy because it meets the following criteria: i) expression is primarily restricted to the prostate, ii) PSMA is abundantly expressed as protein at all stages of disease, iii) it is presented at the cell surface but not shed into the circulation, iv) expression is associated with enzymatic or signaling activity. PSMA is also expressed in the neovasculature of most other solid tumors, and therefore may be a target for specific anti-angiogenic drug delivery.

Because of their target-oriented specificities, a lot of emphasis has been put on the development of monoclonal antibodies (mAbs) for diagnostic and therapeutic applications in cancer medicine. However, the in vivo use of mAbs is associated with serious problems, because of their size and immunogenicity. Therefore, research has focused on the development of smaller therapeutic antibodies with fewer side effects, better tumor accessibility and faster clearance rates. Genetic engineering has made it possible to construct single chain antibody fragments (scFv) which are potentially powerful tools for cancer therapy. These small antibodies are composed of the variable domains of the light chain (\(\gamma\)) and the heavy chain (\(\gamma\)) connected by a linker peptide. They show little immunogenicity, almost no toxic effects, an increased clearance rate, an improved uptake by the tumor and a better penetration into the tumor cells. Recombinant murine scFv can be established according to standard methods using either expression libraries from hybridomas or spleen cells of specifically immunized mice [Chowdhury et al., Mol. Immunol. 4 (1997), p. 9-20].

The first published mAb (7E11-C5) against PSMA targets at the intracellular domain of the protein and was shown to be highly prostate specific [Horoszewicz et al., Anticancer Res. 7 (1987), p. 927-935]. Also, monoclonal antibodies against the extracellular domain of PSMA have been raised after immunization with the antigen. However, there is still a discrepancy between binding to the antigen on fixed cells and histological sections on the one hand and binding to viable tumor cells on the other hand.

Prostate specific membrane antigen (PSMA) is a prostate marker that is highly expressed in normal prostate as well as in prostate cancer. Its expression is increased in prostate cancer and is found primarily in the prostate.

Prostate specific membrane antigen (PSMA) is a unique membrane bound cell protein which is over expressed manifold on prostate cancer as well as in the neovasculature of many other solid tumors, but not in the vasculature of the normal tissues. This unique expression of PSMA makes it an important marker as well as a large extracellular target of imaging agents.

PSMA can serve as target for delivery of therapeutic agents such as cytotoxins or radionuclides. PSMA has two unique enzymatic functions, folate hydrolase and NAALADase and it is found to be recycled like other membrane bound receptors through clathrin coated pits.

A radio-immuno-conjugate form of the anti-PSMA monoclonal antibody (mAb) 7E11, is commercially available as "ProstaScint\textsuperscript{™}" which is currently being used to diagnose prostate cancer metastasis and recurrence. The PSMA epitope recognized by monoclonal antibody 7E11-C5.3 is located in the cytoplasmic domain of the prostate specific membrane antigen.

There are, however, also reports describing PSMA expression in non-prostatic tissues including kidney, liver and brain. A possible explanation therefore is provided by O'Keefe et al. (Prostate, 2004, February 1; 58 (2) 200-10), namely that there is a PSMA-like gene which possesses 98% identity to the PSMA gene at the nucleotide level, which is expressed in kidney and liver under the control of a different promoter to the PSMA gene.

WO 01/009192 describes the development of human monoclonal antibodies to prostate-specific membrane antigen. Human anti-PSMA monoclonal antibodies were generated by immunizing mice with purified PSMA. Such purified antigen is a denatured PSMA since it has been purified by immunoabsorption.

It is one object of the present invention to provide superior means which help to differentiate with higher reliability between tumor cells and healthy cells which do express PSMA or a similar protein but which are not cancer cells. Such constructs can be used to target more specifically tumor cells but not healthy cells.

Prostate specific membrane antigen (PSMA) is an attractive target for immunotherapy of prostate cancer. However, on prostate cells PSMA is expressed with a specific tertiary and quaternary structure and antibodies elicited
with isolated denatured PSMA do not efficiently recognize PSMA expressing tumor cells. Antibodies and scFv binding to denatured PSMA can be obtained after immunization with the isolated purified antigen. The present invention, however, allows the generation of high affinity antibodies and scFv against native cellular PSMA by a different immunization method which gives only a poor yield of positive clones. Only the later antibodies elicited with native PSMA may react with cell-surface PSMA and can be used as diagnostic and therapeutic tools.

[0013] Monoclonal antibodies (mAbs) and single chain antibody fragments (scFv) of the present invention were prepared according to conventional methods from mice spleen cells. However, the mice had been immunized with LNCaP cells and LNCaP cell lysate containing full-length native PSMA. In a preferred embodiment of the present invention the antigen, namely the full length native PSMA has been obtained after treatment of the cells, preferably LNCaP cells with a special lysis buffer called M-PER, mammalian protein extraction reagent which is commercially available from Pierce, Roquefort, Illinois. The M-PER buffer uses a proprietary detergent in 25 mM bicine buffer (pH 7.6). Hybridomas and scFv were screened and selected by flow cytometry on PSMA-positive LNCaP cells after absorption with PSMA-negative DU 145 prostate cells. Additionally, they were tested for reactivity with purified PSMA. Resulting monoclonal antibodies and scFv were characterized by flow cytometry on LNCaP and PSMA-transfected DU 145 and by western blot with purified glycosylated and deglycosylated PSMA. In addition, immunocytology with LNCaP cells and immunohistochemistry on paraffin sections of prostate cancer samples was prepared.

[0014] In the course of the present invention three mAbs (3/F11, 3/A12 and 3/E7) could be obtained, that were reactive with viable LNCaP cells and PSMA-transfected DU 145 cells but not with other cell lines not expressing PSMA. Binding to LNCaP cells was very strong. At saturation concentrations (100 nM) the mean PE fluorescence intensity (MFI) was between 1000 and 1600. Reactivity with purified PSMA was stronger with the native form (ELISA) than with the denatured and deglycosylated protein (western blot). Immunohistochemistry on paraffin sections was specifically positive for epithelial cells with mAb E7.

[0015] From the mAb 3/A12 two scFv, called E8 and A5, were obtained by selection of recombinant phages on LNCaP cells and purified PSMA. The sequence of scFv E8 was identical to a scFv A4, which was obtained from the B-cell library of the same mouse. ScFv E8 was strongly reactive with LNCaP cells showing a MFI of about 100 at saturation concentrations, whereas the MFI of scFv A5 was only about 40 under the same conditions. No or minimal binding was seen with other cell lines lacking PSMA expression. Binding of both scFv to purified denatured glycosylated and deglycosylated PSMA was weak.

[0016] In the present application we describe three mAb, which are different from those published by other authors with respect to high binding affinity and high staining of PSMA expressing prostate cancer cells. The antibodies 3/F11, 3/A12 and 3/E7 do not only show a strong binding activity but also internalization into LNCaP cells as shown by immunofluorescence cytology and detection with confocal laser scanning microscopy. These mAbs were obtained after immunisation with full length native PSMA, which is in contrast to different published immunisation methods.

[0017] After immunization with purified denatured PSMA mAbs were obtained which were highly specific for the antigen, but had only a limited binding to PSMA expressing LNCaP cells and also were not internalized into the cells. These control data are not shown in the present application. There are a few anti-PSMA mAb described in literature. However, the mean fluorescence intensity values were much lower than with the antibodies of the present invention.

[0018] Similarly to the mAb, anti-PSMA scFv were generated after immunisation with denatured and native PSMA. With the denatured PSMA we obtained scFv highly specific to the antigen, but not binding to LNCaP cells (data not shown in the present application). In contrast, with native PSMA we obtained scFv with a high cell binding activity, but a poor binding to the isolated denatured antigen.

[0019] Because most toxins are intracellularly reactive, only anti-PSMA mAb and scFv that are internalized may be used for generating immunotoxins. There is one publication describing immunotoxins with three anti-PSMA mAbs chemically cross-linked to ricin A-chain [Fracasso et al., Prostate (2002), p. 9-23].

[0020] However, the problems identified in this and other trials with chemically linked immunotoxins are the development of antibodies against the immunotoxins, liver toxicity and vascular leak syndrome and also difficulties in producing large quantities of defined material. These problems are, at least in part, overcome by using recombinant DNA technology which makes the construction of less immunogenic and smaller immunotoxins feasible, and more easily permits the production of immunotoxins in large quantities. It is also believed that penetration into tumors should be better for smaller proteins than large conjugates. Therefore, two recombinant immunotoxins were engineered by fusing the coding sequence of the scFv E8 and A5 and the toxin PE40. The central finding was that both recombinant immunotoxins effectively killed cultured prostate cancer cells in a dose dependent manner. Strong killing was found not only with the highly binding E8- with IC50 of about 0.05 nM, but also with the lower binding A5-fusion protein with IC50 of about 0.09 nM. Killing of not PSMA expressing prostate cancer cells was 2000-fold less (IC50 = 200 nM). The term IC50 is defined as the concentration in nM of the toxin which reduces cells proliferation to 50% of the cell proliferation without adding a toxin.

[0021] The antibodies and scFv described in this application specifically bind to native cell-surface PSMA and therefore will have value in diagnostic and therapeutic applications focusing on PSMA as a target antigen for prostate cancer.

[0022] Since PSMA is expressed on prostate cancer cells with a specific tertiary and quaternary structure, only anti-
bodies against this cellular conformation may recognize and strongly bind to viable prostate cancer cells and PSMA-expressing tissue. Therefore, the aim of the present study was to generate such mAbs and scFv that can be used for therapeutic and diagnostic targeting of prostate cancer.

[0023] The present invention provides therefore an isolated monoclonal antibody or an antigen binding portion thereof which binds to prostate specific membrane antigen in its native form occurring on the surface of tumor cells which is linked to a label or a cytotoxic agent.

[0024] The term “isolated monoclonal antibody” refers to a glycoprotein comprising at least two heavy (H) chains and two light (L) chains interconnected by disulfid bonds. Each heavy chain is comprised of a heavy chain variable region (abbreviated as V_H) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, namely CH1, CH2 and CH3. Each light chain contains a light chain variable region (V_L) and a light chain constant region (C_L). The V_H and V_L regions can be further subdivided into regions of hypervariability, which are also called complementarity determining regions (CDR) interspersed with regions that are more conserved. Those regions are also called framework regions (FR). Each V_H and V_L region is composed of three CDRs and four FRs arranged from amino terminus to carboxy terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The variable regions of the heavy and light chains contain a binding domain that interacts with an antigen.

[0025] In Figures 13 and 14 the CDRs are marked by grey boxes. Those areas are important for the binding of the monoclonal antibody or the antigen binding portion thereof. Other areas are framework regions which can be replaced by other sequences. Monoclonal antibodies derived from mouse may cause unwanted immunological side-effects due to the fact that they contain a protein from another species which may elicit antibodies. In order to overcome this problem the monoclonal antibodies or the antigen binding portions thereof may be humanized. The process of humanizing monoclonal antibodies is known to the person skilled in the art. The framework regions of a mouse mAb are replaced by the corresponding human framework regions. In order to maintain the preferred binding properties the sequences of the CDRs should be maintained as far as possible. It may be required, however, to perform some amino acid changes in order to optimise the binding properties. This can be performed by the person skilled in the art by standard proceedings.

Furthermore by introducing a human framework it may be necessary to perform amino acid changes and/or deletions in order to improve the properties of the construct.

[0026] The term “antigen binding portion” of the monoclonal antibody refers to one or more fragments of such an antibody which retained the ability to specifically binding to the prostate specific membrane antigen in its native form. Examples of antigen binding portions of the antibody include a Fab fragment, a monovalent fragment consisting of the V_L, V_H, C_L and C_H1 domains, an F(ab')_2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfid bridge at the hinge region, an Fd fragment consisting of the V_H and C_H2 domain, an Fv fragment consisting of the V_L and V_H domains of a single arm of an antibody, a dAb fragment which consists of a V_H domain and an isolated complementarity determining region (CDR).

[0027] The isolated monoclonal antibody or antigen binding portion thereof according to the present invention can preferably be internalized by a tumor cell if it is used for therapeutic purposes. For diagnostic purposes an internalisation may not be required.

[0028] The isolated monoclonal antibody or an antigen binding portion thereof according to the present invention binds strongly to LNCAP cells but not or only minimally to cells which lack expression of prostate specific membrane antigen.

[0029] The binding of the isolated monoclonal antibody or antigen binding portion thereof is measured by PE fluorescence intensity (MFI) which is preferably higher than 40 for an scFv and preferably higher than 1000 for an mAb at saturating concentrations.

[0030] The binding properties of the isolated monoclonal antibodies or an antigen binding portion thereof to the native PSMA were compared by treating LNCAP cells with increasing concentrations of the first step anti-PSMA Ab followed by incubation with the second step PE-labeled antibody. From the resulting saturation curves the antibody concentration reaching 50% saturation of PSMA sites can be read. The three mAb 3/F11, 3/A12 and 3/E7 showed a high binding activity reaching 50% saturation of PSMA sites at approximately 16 nM (3/F11), 2 nM (3/A12) and 30 nM (3/E7). With the scFv a 50% saturation of PSMA sites was found at 10 nM (E8) and 60 nM (A5).

[0031] In order to determine the binding strength the PE (phycoerythin) fluorescence intensity (MFI) was measured. The MFI values were plotted against the antibody (or binding fragments thereof) concentration whereby the plateau value of MFI corresponds to 100% saturation with antigen. After having determined the top value (plateau corresponding to 100% saturation of antigen) the value corresponding to 50% of saturation can be easily determined. By using the graph the corresponding concentration of the antibodies or binding fragments thereof in nM can be seen.

[0032] The isolated monoclonal antibody or an antigen binding portion thereof comprises a label which may be a particle which emits radioactive radiation. This particle may be a radioactive element in a form which can be linked to the construct, preferably in the form of a complex. For example an mAb labeled with 111Indium may be used as a radioimmunoscinography agent in the detection of distant metastatic tumors in prostate cancer patients.

[0033] Alternatively the isolated monoclonal antibody or antigen binding portion thereof may comprise a cytotoxic agent which is a cell toxic substance selected from the group consisting of toxins, for example taxol, cytocalasin B,
gramicidin D, ethidium bromid, emetine, mitomycin, etopside, vincristine, vinblastine, colchinic, doxorubicin, daunorubicin, dihydroxy antracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosteron, glycocorticoids, procain, tetracaine, lidokaine, propranolol and/or puromycin.

In a preferred embodiment of the present invention an isolated monoclonal antibody or an antigen binding portion thereof comprises a partial amino acid sequence of at least 10 consecutive amino acids of SEQ ID NO:1 (scFv E8) or SEQ ID NO:10 (scFv A5). In a preferred embodiment the monoclonal antibody or antigen binding protein thereof comprises at least 25 and more preferred at least 50 consecutive amino acids of SEQ ID NO:1 or SEQ ID NO:10, respectively.

In a preferred embodiment the isolated monoclonal antibody or antigen binding portion thereof comprises at least one of the CDRs having SEQ ID NO:2 - SEQ ID NO:7 and/or SEQ ID NO:11 to 16. More preferably such construct comprises at least 3 and more preferably at least 5 of those CDR sequences.

It is a further aspect of the invention to provide DNA sequences which can be used for the preparation of monoclonal antibodies or binding fragments thereof. SEQ ID NO:8 and 9 relate to scFv E8 and SEQ ID NO:17 and 18 relate to scFv A5. The sequences report the coding strand and the complementary strand thereto. SEQ ID NOS:9 and 18 are shown in the 5'→3' orientation. The polynucleotides of the present invention comprise a contiguous sequence of at least 20, preferably 50 and more preferably 100 nucleotides of the group consisting of SEQ ID NOS: 8, 9, 17 and 18. The sequence coding for the CDR are in particular preferred.

It is one aspect of the present invention to provide a pharmaceutical composition comprising an isolated monoclonal antibody or an antigen binding portion thereof as described in the present application. The pharmaceutical composition of the present invention comprises the monoclonal antibody or an antigen binding portion thereof together with pharmaceutically acceptable additives. Preferably such a composition is prepared for intramuscular or intravenous injection. Alternatively the antibody may be provided in a depot formulation which allows the sustained release of the biologically active agent over a certain period of time which may range preferably from one to six months. Such a sustained release formulation may comprise a biodegradable polymer like a polylactide or polylactide/polyglycolide copolymer which is degraded over a prolonged period of time in the human body whereby the antibody or the antigen binding portion thereof preferably having a toxine is released in a controlled manner over a certain period of time.

The isolated monoclonal antibody or an antigen binding portion thereof may be used for the preparation of a medicament for the treatment of cancer, in particular prostate cancer.

Alternatively the invention provides a diagnostic kit for the detection of tumor cells comprising an isolated monoclonal antibody or an antigen binding portion thereof. In such embodiments the label allows the detection of the construct with suitable detection devices.

The invention provides also a method for the in vitro identification of tumor cells by which the tumor cells to be identified are contacted with an isolated monoclonal antibody or an antigen binding portion thereof which carries a label which can be detected by suitable analytical devices. The label allows the diagnostic identification of tumor cells, for example in section of human tissues obtained after surgery or biopsy.

Brief Description of the Figures

Fig. 1: FACS-analysis of the mAb 3/F11, 3/A12 and 3/E7 binding to the surface of PSMA-expressing LNCaP cells at saturation concentrations

Fig. 1a-c: Antigen saturation curves of mAb 3/F11 (a), 3/A12 (b), 3/E7 (c)

Fig. 2: Immunofluorescence cytology: Binding of a) mAb 3/F11 b)mAb 3A/12 c) 3E7 to LNCaP cells. The left pictures show a control staining with 4',6-Diamidino-2-phenylindole (DAPI).

Fig. 3: Immunofluorescence cytology: Internalization of a) mAb 3/F11 b) mAb 3A/12 c) 3E7 in LNCaP cells. The left pictures show control staining with 4',6-Diamidino-2-phenylindole (DAPI).

Fig. 4: Western blot with purified PSMA and the mAbs 3/E7, and 3/A12 and 3/F11

Fig. 5: Western blot with glycosylated and deglycosylated PSMA and mAb 3/A12

Fig. 6: Immunohistochemistry of mAb 3/E7 on a paraffin section of prostate cancer

Fig. 7a/b: FACS-analysis of the scFv E8 (a), and A5 (b) on PSMA-expressing LNCaP cells at saturation concentrations
The present invention is further illustrated by the following examples.

Example 1

a) Preparation of PSMA

[0043] The human prostate carcinoma cell lines LNCaP, DU 145, PC-3 and HeLa as well as the hybridoma 7E11-C5.3 (IgG1-k, PSMA) were purchased from the American Type Culture Collection (ATCC), Rockville, MD, USA. LNCaP, DU 145 and HeLa were cultured in RPMI 1640 medium, PC-3 in F12 Nutrimix medium, both supplemented with penicillin (100 000 U/l), streptomycin (100 mg/l) and 10 % FCS at 37 °C in a humidified atmosphere of 5 % CO₂. For the generation of LNCaP cells expressing unglycosylated PSMA on their surface 2 μg/ml tunicamycin (ICN Biomedicals) were added to the medium for 48 h.

[0044] Fixed LNCaP cells were obtained by treatment with 4 % paraformaldehyde for 10 min at RT, and then thoroughly washing with PBS.

[0045] For preparing purified PSMA, 10⁸ LNCaP cells were washed with PBS and then lysed in PBS containing 1 % IGEPAL for 20 min at room temperature. After centrifugation at 10,000 g the supernatant was given on a 7E11-C5 affinity chromatography column (Amersham Biosciences, Uppsala, Sweden) and PSMA was eluted with 100 mM glycine buffer pH 2.5 containing 1 % Triton X-100. After neutralisation the protein was extensively dialyzed with PBS.

[0046] For preparation of deglycosylated PSMA, 1/10 vol glycoprotein-denaturing buffer (BioLabs), was added to the solution with purified PSMA and heated for 10 min at 100 °C. Then 1/10 vol 10 % NP-40 (10 %) and 50 U PNGase per μg PSMA was added and incubated at 37 °C for 1 h.

[0047] For preparation of a LNCaP cell lysate containing full length native PSMA, cells were lysed with M-PER reagent (Pierce) for 10 min and then centrifuged at 15,000 rpm for 30 min at 4°C. The high molecular fraction (100 to 600 KD) of this lysate was separated by HPLC on a Biosil 250 size exclusion column.

b) Transfection of full length PSMA into DU 145 and PC3 cells

[0048] Full length PSMA was cloned in two fragments (fragment 1 from bp 262 to the unique EcoRI restriction site at bp 1573 and fragment 2 from position 1574 to 2512) into the vector pCR3.1 (Invitrogen). Transient transfection was obtained by adding a mixture of 4 μg DNA and 10 μl Lipofectamine (Invitrogen) in 500 μl RPMI medium to 10⁶ cells according to the manufacturer’s protocol. After 48 h incubation the transient transfected cells were used for testing.

Example 2

[0049] Immunization of mice

[0050] Four-month old female Balb/c mice were immunized intraperitoneally with 300 μg M-PER lysate from LNCaP cells or with the high molecular HPLC fraction of the lysate, or with 10⁶ LNCaP cells, fixed with 2 % paraformaldehyde. These preparations were mixed 1:1 with complete Freund’s adjuvant. Each mouse received 4 or 5 immunizations at 2-week intervals. Four days after the last immunization spleen cells were collected and either used for the preparation of
hybridomas or a B-cell library.

**Example 3**

**Preparation of a B-cell library**

[0051] The mouse spleen was washed in phosphate buffered saline (PBS), minced to small pieces, washed again in PBS and then gently homogenized in a "loose-fitting" hand homogenizer. The resulting single cell suspension was overlaid onto Ficoll (Pharmacia, Freiburg, Germany) and centrifuged at 400 g for 20 min at room temperature. Interphase B cells were isolated with CD19 microbeads according to the manufacturer’s instructions (Miltenyi, Bergisch Gladbach, Germany). $10^6$ B-cells were lysed in 350 $\mu$l of a solution consisting of 4 M guanidine thiocyanate, 25 mM sodium citrate, 0.5 % sodium N-lauroylsarcosinate and 100 mM 2-mercaptoethanol.

**Example 4**

**a) Preparation of Hybridomas**

[0052] The spleen was aseptically removed and a single cell suspension was prepared in RPMI-1640 medium without serum. The splenocytes were added to SP2/0 myeloma cells at a ratio of 10:1 and the fusion and selection was performed to established procedures [Galfre et al., Nature (1979), p. 131-133].

[0053] Hybridoma supernatants were tested by FACS on LNCaP and DU145 cells and by an ELISA with purified PSMA as solid phase. Monoclonal antibodies were purified using a protein G column (Pharmacia).

**b) Isotype determination of the mAbs**

[0054] Ig-isotypes of the anti-PSMA mAbs were determined by ELISA using either unlabelled (solid phase) or peroxidase-labeled (tracer) anti-isotype specific antibodies (Southern Biotechnology Associates, Birmingham, AL).

**c) Isolation and characterization of anti-PSMA conformational monoclonal antibodies**

[0055] From Balb/c mice which were immunized 5 times with the M-PER-lysate from LNCaP cells, spleen cells were fused with SP2/0 cells according to established methods. Positive hybridomas were selected by flow cytometry with LNCaP cells and ELISA on purified PSMA. By this way three positive clones were obtained. The corresponding mAbs with their isotypes were 3/F11 (IgG2a), 3/A12 (IgG1) and 3/E7 (IgG2b).

**d) Characterization of mAbs**

[0056] By flow cytometry it could be observed that the three mAbs and stained LNCaP cells bind very well with a percentage of positive cells ranging from 95% to 98%. The shape of the curves of fluorescence versus number of events suggested that PSMA is homogeneously distributed within the LNCaP cell population (Fig. 1). To evaluate the binding specificity of the anti-PSMA mAbs, PSMA-negative DU145, PC3 cells, HeLa and Jurkat cells were also stained and analyzed by flow cytometry. All three mAbs did not stain the PSMA-negative cells (percentage of positive cells ranging from 0.04% to 2%).

[0057] The binding properties of the three antibodies were compared by treating LNCaP cells with increasing concentrations of the first step anti-PSMA mAb followed by incubation with a saturating amount of a second step PE-(phycocerythrin)-labeled goat antibody followed by cytofluorometry analysis. At antigen saturation concentrations [100 nM] the corrected mean PE (phycocerythrin) fluorescence intensity was about 1000 for mab 3A12, and about 1400 for mAb 3F11 and about 1600 for mAb 3E7. As shown for mAb 3A12 the MFI was 5-fold lower on LNCaP cells expressing unglycosylated PSMA (grown with tunicamycine).

[0058] By immunofluorescence cytology and detection with a laser scanning confocal microscope a strong binding of the three mAbs to LNCaP cells (Fig 2) and also an internalization into these cells could be shown (Fig. 3). All mAbs were positive in an ELISA with purified PSMA as solid phase. With denatured PSMA the mAbs showed a signal at about 100 KD in western blot (Fig 4) whereas the blot with deglycosylated PSMA was weak giving a signal at about 84 KD, which corresponds to literature data (Fig. 5).

[0059] Immunohistochemistry on paraffin sections of prostate cancer was positive with mAb 3/E7 but not with mAbs 3/F11 and 3/A12 (Fig. 6). Data are summarized in Table 1.
From these data it is concluded that the 3 mAbs show a very strong and highly specific binding to native and denatured PSMA. Although the binding to deglycosylated PSMA is weaker, a sugar specificity can be excluded from the fact that no binding is seen to cells that do not express PSMA.

**Example 5**

*Preparation of a scFv expression library in the phagemid pSEX*

From the B-cell library or from hybridoma cells total RNA and mRNA was isolated with silicagel-based membranes (Rneasy, Qiagen, Hilden, Germany) according to the manufacturer’s protocol. cDNA synthesis was performed at 42°C for 60 min in a final volume of 50 μl which contained 25 μl of denatured RNA, 10 μl 5x buffer (Promega, Heidelberg, Germany), 5 μl of 10 mM dNTP (dATP, dCTP, dGTP, dTTP, Promega), 1,5 μl RNAsin (40 U/μl, Promega) 2,5 μl of 150 pM random hexamer primers, and 2,5 μl of AMV reverse transcriptase (10 U/μl, Promega). Then the encoding regions of the heavy-chains and the gamma and kappa chains were amplified by PCR as previously described by Orum et al. [Nucleic Acies Res. (1993), 4491-4498]. For each chain 25 separate reactions were carried out by combining 25 different constant region forward primers with one corresponding reverse primer. The amplified products for the light chains and the heavy chains were purified by agarose gel electrophoresis.

The PCR products for the light chains were digested with Mlul and Notl, and ligated into the phagemid pSEX81 [Dübel et al., Gene (1993), 97-101] using a molar ratio of 1:3 (2 μg vector, 400 ng insert). The products of one ligation were used for the electroporation of 50 μl electrocompetent *E. coli* XL1 blue cells (Stratagene) according to the supplier’s protocol. The bacteria were plated on nine 80 mm diameter agarose plates containing 100 μg/ml ampicillin and 0.1 M glucose (SOB-AG) of and incubated overnight at 30 °C. Bacteria were isolated by adding 3 ml 2xYT medium on each plate, scraping them off with a sterile glass spreader and pelleted at 3,000 g for 15 min. From these bacteria plasmid DNA was isolated which revealed the VI sublibrary. Then the PCR products for the heavy chain and the VI sublibrary were digested with Ncol and HindIII. Ligation was prepared at a ratio of 3:1 (2 μg sublibrary and 400 ng insert). Transformation by electroporation, plating and collection of transformed bacteria was done as described for the VI sublibrary. From nine 80 mm diameter SOB-AG plates a total of 18 ml VHVL library was obtained.

**Example 6**

*Production and selection of antibody-displaying phage*

**a) Production**

In the VHVL library in phagemid pSEX the antibody genes are fused in frame with gene III, which encodes the minor surface protein gIIIp of the filamentous phage. Therefore, production of recombinant phagemid particles displaying the antibody on the surface requires infection of the phagemid-carrying bacterial cell with the replication defective phage M13KO7 [14]. M13KO7 was added to a 10 ml library culture at a multiplicity of 10. After incubation at 37°C for 90 min the cells were pelleted and resuspended in 15 ml 2xYT-medium containing 100 μg/ml ampicillin, 10 μg/ml tetracycline and 50 μg/ml kanamycin. The culture was incubated overnight at 37°C at 250 rpm, then chilled on ice and centrifuged to remove cells. The supernatant containing the phages was mixed with 1/5 volume of an aqueous solution containing 20% PEG 8,000 and 14% NaCl and incubated 1 h at 4°C. Then a centrifugation step of 30 min at 4°C and 6,200 g was performed.
added. The pellet containing the phages was resuspended in 2 ml 10 mM Tris/HCl pH 7.5, 20 mM NaCl, 2 mM EDTA pH 7.5 and used for panning.

b) Panning to select for antigen- and cell-binding clones

Panning on purified PSMA was done in 96 well Maxi-Sorb microwell plates (Nunc) which were coated with a solution of purified PSMA (100 μg/well, 12 μg/ml PSMA in PBS) and blocked with 4% non-fat milk/PBS. One ml of purified recombinant phages (circa 10¹¹) were incubated in 1 ml 4% non-fat milk/PBS supplemented with 15 μl 10% Triton X100 for 15 min and then allowed to bind to 8 wells coated with PSMA for 2 h at 37°C. After 20 rounds of washing with PBS/Tween (0.1%) the bound phages were eluted with 0.1 M Glycin-Puffer pH 2.2. For panning on viable LNCaP cells phages were previously absorbed on DU 145 cells. For this procedure 1 ml (circa 10¹¹) recombinant phages were incubated in 2% non-fat milk/PBS for 15 min and then with 10⁷ DU 145 cells for 1 h at room temperature on a shaker. Then the cells were centrifuged and the supernatant with non absorbed phages was incubated with 10⁶ LNCaP cells for 1 h at room temperature on a shaker. After 10 washing rounds with 2% non-fat milk/PBS and 5 rounds with PBS the bound phages were eluted with 50 mM HCl with subsequent neutralization with 1 M Tris-HCl (pH 7.5). E. coli TG1 cells were infected with the eluted phages, plated on SOB-AG plates and incubated overnight at 30°C. An aliquot of the eluate was used for titration. The selection procedure was repeated three to six times.

c) Small scale phage rescue

From the titration plate 96 individual colonies were isolated and each transferred into one well of a 96-deepwell microtiter plate filled with 500 μl 2xYT medium containing 100 μg/ml ampicillin and 0.1 M glucose (YT-AG) and incubated overnight at 37°C (master plate). Then 40 μl of saturated culture from each well of the master plate were transferred to the corresponding well of a new plate containing 400 μl of 2x YT-AG medium.

d) Phage-ELISA

Microtiter plates were coated with purified PSMA (1.5 μg PSMA/ml PBS) overnight and then blocked with 2% non-fat milk/PBS. To each well 200 μl of rescued phagemids, preincubated 1:1 with 2% nonfat-milk/PBS, were added and incubated for 2 h at room temperature. After five washing steps with PBS-Tween, bound phages were detected with 200 μl /well anti-M13 antibody conjugated to horseradish peroxidase (Pharmacia) for 2 h at room temperature. Development was carried out with 3,3',5',5'-tetramethylbenzidine as substrate.

e) Isolation and characterization of anti-PSMA conformational scFv

For generation of anti-PSMA conformational scFv a V₄₋₁, V₁ library in the phagemid pSEX was constructed from the B cell library of a mouse immunized with M-PER-lysate of LNCaP cells. This library had a complexity of 10⁷. In a similar way a V₄₋₁, V₃ library was prepared from the monoclonal antibody 3/A12, which was obtained from the same mouse immunized with LNCaP lysate. This V₄₋₁, V₃ library had a complexity of 10⁵. To isolate phages displaying cellular PSMA binding scFv on their surface, six rounds of phasing were performed alternatively on LNCaP cells after absorption with DU-145 cells in polystyrene tubes and in microtiter plates coated with 20 μg/ml purified PSMA. After three, four and six phasing rounds isolated phagemid colonies were grown and phage particles were rescued by infection with M13KO7. Analysis of 800 phage clones from the B cell library by flow cytometry with LNCaP cells and ELISA on purified PSMA showed one positive clone called E8. Out of the V₄₋₁, V₃ library from mAb 3/A12 two positive clones were obtained after the fourth phasing round called A4 and A5. By sequencing it was found that A4 was identical to E8.

The coding region of the scFv E8 and A5 were transferred from the phagemid pSEX into the expression vector phOG, containing C-terminal c-myc and His-tags. The sequences with the corresponding CDRs are given in Fig. 13 and Fig. 14. Those regions coding for the CDR’s of the antigen binding portions are marked in Fig. 13 and 14. Those sequences should not be changed whereas the other parts of the sequence which are not marked can be changed. The appropriate three-dimensional structure must, however, be maintained.

The scFv E8 strongly reacted with viable LNCaP cells as measured by flow cytometry with MFI values of about 100 at saturating concentrations, whereas binding of A5 was much weaker with MFI values of about 40 at saturating concentrations (Fig 7). In contrast, binding to purified PSMA as solid phase in an ELISA was weak for E8 and somewhat stronger for A5. A similar pattern was seen in western blots with denatured glycosylated and deglycosylated PSMA (Fig.
8). By immunofluorescence cytology with LNCaP cells and detection by confocal laser microscopy a very good binding of the scFv E8 and internalization could be shown (Fig 9). Data of the scFv are summarized in Table 2.

Table 2: Characterization of 2 scFv against cell-surface PSMA

<table>
<thead>
<tr>
<th>ScFv</th>
<th>Origin</th>
<th>FACS LNCaP [MFI]</th>
<th>FACS PSMA-transf.DU [MFI]</th>
<th>ELISA PSMA</th>
<th>Blot PSMA</th>
<th>Blot degl. PSMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>E8 = A4</td>
<td>B-cell library and mAb A12</td>
<td>100</td>
<td>70</td>
<td>pos</td>
<td>(pos)</td>
<td>(pos)</td>
</tr>
<tr>
<td>A5</td>
<td>MAb A12</td>
<td>40</td>
<td></td>
<td>pos</td>
<td>pos</td>
<td>(pos)</td>
</tr>
</tbody>
</table>

MFI = mean fluorescence intensity at scFv concentration reaching antigen saturation (background staining with secondary antibody alone is subtracted)
(pos) = slightly positive

Example 7

ScFv expression and purification

[0071] ScFv fragments were expressed in *E. coli* XL1-Blue (Stratagene) using the secretion vector pHOG 21 which contains the sequences for the His-6 and c-myc-tag in a C-terminal position of the scFv [Kiprianov et al., J.Immunol.Methods (1997), p. 69-77]. *E. coli* bacteria transformed with pHOG plasmids were grown overnight in 2 x YT-AG-medium, then diluted 1:20 and grown as 600 ml cultures at 37°C. When cultures reached OD 0.8, bacteria were pelleted by centrifugation at 1,500 g for 10 min and resuspended in the same volume of fresh YT medium containing 50 ㎍/ml ampicillin, 0.4 M sucrose and 1 mM IPTG. Then growth was continued at room temperature for 18 to 20 h. Cells were harvested by centrifugation at 5,000 g for 10 min and 4°C. To isolate soluble periplasmic proteins, the pelleted bacteria were resuspended in 5% of the initial volume of ice-cold 50 mM Tris-HCl, 20% sucrose, 1 mM EDTA pH 8.0. After a 1 h incubation on ice, the spheroplasts were centrifuged at 20,000 g at 4°C for 30 min yielding soluble periplasmic extract in the supernatant. The periplasmatic extract was concentrated using Amicon YM10 membranes with a 10 kDa cut-off (Amicon, Witten, Germany) followed by thorough dialysis against 50 mM Tris-HCl, 1 M NaCl, pH 7.0.

[0072] Purification was achieved by immobilized metal affinity chromatography. This was performed using a 1 ml column of chelating Sepharose (Pharmacia) charged with Cu²⁺ and equilibrated with a buffer containing 50 mM Tris-HCl and 1 M NaCl, pH 7.0. The periplasmatic extract was loaded, washed with twenty column volumes of equilibration buffer containing 30 mM imidazole and then eluted with the same buffer containing 250 mM imidazole. Eluted material was dialyzed against PBS.

[0073] Determination of the protein content was performed with the Micro BCA Protein Reagent Kit (Pierce) according to the manufacturer’s instructions.

[0074] Protein induction was obtained with IPTG and the scFv yield from a 600 ml *E. coli* XL1 culture was about 20 ㎍.

Example 8

Flow cytometry

[0075] LNCaP, DU 145, and PC3 cells were freshly harvested from tissue culture flasks and a single cell suspension was prepared in PBS with 3% FCS and 0.1% NaN₃. Approximately 10⁵ cells were incubated with 50 ㎕ of rescued phagemids, preincubated 1:1 with 2% non-fat milk/PBS, 1 h on ice. After 3 rounds of washing with PBS 25 ㎕/well anti-c-myc monoclonal antibody 9E10 (10 ㎍/ml; Becton Dickinson) or when phages were tested 25 ㎕/well anti-M13 antibody (10 ㎍/ml; Pharmacia) were added and incubated 40 min on ice. After washing 3 times with PBS the cells were incubated with 100 ㎕ of PE-labeled goat anti-mouse IgG (Becton Dickinson) for 40 min on ice. The cells were then washed again and resuspended in 100 ㎕ of a solution containing 1 ㎍/ml propidium iodide (Sigma, Deisenhofen) in PBS with 3% FCS and 0.1% NaN₃ in order to exclude dead cells. The relative fluorescence of stained cells was measured using a FACScan flow cytometer and the CellQuest software (Becton Dickinson Mountain View, CA).
Example 9

**Immunofluorescence cytology**

LNCaP cells were grown on glass coverslips for 24 hours. For fixation, cells were treated with 2% paraformaldehyde in PBS for 30 min at RT, which does not permeabilize the cell membrane, washed with 1% BSA-PBS, quenched for 10 min in 50 mM NH₄Cl in PBS, and rinsed with 1% BSA-PBS. Primary monoclonal antibody at 4 μg/ml in 1% BSA-PBS was added and incubated for 60 min at 4°C. FITC-labeled goat anti-mouse secondary antibody (2 μg/ml; Southern Biotechnology Associates Inc. Birmingham, USA) was incubated for 30 min and washed extensively with 1% BSA-PBS. Slides were mounted in Vectashield (Vector Laboratories, Inc. Burlingame, CA).

Example 10

a) **Immunohistochemistry**

Paraffin tissue sections were first deparaffinized and then treated with 0.3% Triton X100 in PBS for antigen retrieval. Kryostat sections were fixed in cold acetone. The sections were treated 30 min at with 3% H₂O₂ and 10% methanol for quenching of endogenous peroxidase. After blocking with 1% BSA-PBS the primary antibody was added at a concentration of 2 μg/ml and incubated for 1 h at RT. For the scFv a secondary mouse-anti-c-myc antibody was added for 1 h at RT. Then a biotinylated goat-anti-mouse antibody was incubated for 30 min at RT and finally developed with ABC-reagent (Vectastain).

b) **Western blot analysis**

Western blot analysis was performed following sodium dodecyl sulfate-polyacrylamide (SDS) gel electrophoresis of purified PSMA and cell lysate from LNCaP cells and transferred to polyvinylidene difluoride membranes. The blots were blocked overnight in PBS containing 5% non-fat milk and incubated with the purified mAbs or scFv at concentrations of 10 μg/ml for 1 h. Then the blots were washed 5 times with PBS-Tween (0.5%) and incubated with horseradish peroxidase conjugated goat anti-mouse IgG for 1 hour at RT. After 5 washes with PBS-Tween (0.5%) the blots were developed by using 3,3',5',5'-tetramethylbenzidine as substrate.

Example 11

**Construction, expression and purification of scFv-PE40 proteins**

The toxin used in our approach was the truncated version of *Pseudomonas* exotoxin (PE40), lacking domain Ia and containing only domains Ib, II, and III [Pastan et al., J.Biol.Chem. (1989), p. 15157-15160]. The DNA with the coding region in the vector pSW200 was obtained from Prof. W. Wels, Frankfurt [Wels et al., Biotechnology (1992), p. 1128-1132]. The DNA fragment from bp position 253 to 613 encoding PE40 was amplified by PCR from plasmid pSW200. The amplified DNA was then ligated into the vector pHOG-His-scFv in a C-terminal position to the scFv using the restriction site XbaI. All cloning steps were performed according to standard methods in *E. coli* XL1 blue and the products were confirmed by sequencing.

**Example 12**

**Cytotoxicity of scFv-PE40 Immunotoxins**

The metabolism of the red tetrazoilium salt WST to a water soluble formazan dye was determined according to the manufacturer’s instructions (Boehringer). Target cells (LNCaP and DU 145 as control) were seeded at 2.5 x 10⁴/well of a 96-well plate and grown for 24 hours until a confluent cell layer was formed. Various dilutions of the recombinant immunotoxins in aliquots of 50 μl/well were added and the plates were incubated for 48 hours at 37°C, 5% CO₂. After this time the cultures were pulsed with 15 μl/well WST reagent and incubated for 90 min at 37°C, 5% CO₂. Then the spectrophotometrical absorbances of the samples were measured at 450 nm (reference 690 nm). The immunotoxin concentration required to achieve a 50% reduction in cell viability relative to that of untreated control cultures (50%
inhibitory concentration = IC50) was calculated.

Cytotoxicity assays (WST) with the immunotoxins E8-P40 and A5-P40 were prepared with PSMA expressing LNCaP cells and DU 145 control cells. As shown in Fig. 11 a high cytotoxic effect could be shown with the immunotoxin E8-PE40 on LNCaP cells with a IC50 value of 0.05 nM. In Fig. 12 the cytotoxic effect of the immunotoxin A5-PE40 is shown with an IC50 of about 0.09 nM. The cytotoxic background on not PSMA expressing DU 145 cells was 5% for the E8 construct and only 0.01% for the A5 construct evidencing a very good therapeutic window.
SEQUENCE LISTING

Universitaetsklinikum Freiburg

Monoclonal Antibodies and Single Chain Antibody Fragments against Cell-Surface Prostate Specific Membrane Antigen as Diagnostic and Therapeutic Tools for Prostate Cancer

ZEE20050222c

PatentIn version 3.2

1

PRT

Artificial

scFv E8

MISC_FEATURE

(103)...

Xaa means Tyr or Ser

1

Met Ala Glu Val Gln Leu Gln Gln Ser Gly Pro Asp Leu Val Lys Pro

1  5 10 15

Gly Ala Ser Met Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr

20 25 30

Asp Tyr Asn Met Asp Trp Val Lys Glu Arg His Gly Lys Ser Leu Glu

35 40 45

Trp Ile Gly Asp Ile Asn Pro Lys Asn Gly Val Thr Ile Tyr Asn Gln

50 55 60

Lys Phe Lys Glycerol Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr

65 70 75 80

Ala Tyr Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr

85 90 95

Tyr Cys Ala Arg Gly Asp Xaa Tyr Gly Asn Tyr Phe Asp Tyr Trp Gly

100 105 110

Gln Gly Thr Ser Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu

115 120 125

Glu Glu Gly Glu Phe Ser Glu Ala Arg Val Asp Ile Gln Met Thr Gln

130 135 140

Ser Pro Ala Ser Leu Ser Val Ser Val Gly Glu Thr Val Thr Ile Thr

145 150 155 160

13
Cys Arg Thr Ser Glu Asn Ile Tyr Ser Asn Leu Ala Trp Tyr Gln Gln
5 165 170 175
Lys Gln Gly Lys Ser Pro Gln Leu Leu Val Tyr Thr Ala Thr Asn Leu
10 180 185 190
   Ala Asp Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln
   195 200 205
Tyr Ser Leu Lys Ile Asn Ser Leu Gln Ser Asp Asp Ser Gly Thr Tyr
15 210 215 220
   Tyr Cys Gln His Phe Trp Gly Thr Pro Tyr Thr Phe Gly Gly Gly Thr
   225 230 235 240
Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Ala
20 245 250

<210> 2
<211> 10
<212> PRT
<213> Artificial
25
<220>
<223> CDR sequence

<400> 2
Gly Tyr Thr Phe Thr Asp Tyr Asn Met Asp
30 1 5 10

<210> 3
<211> 11
<212> PRT
<213> Artificial
35
<220>
<223> CDR sequence

<400> 3
Gly Asp Ile Asn Pro Lys Asn Gly Val Thr Ile
40 1 5 10

<210> 4
<211> 11
<212> PRT
<213> Artificial
45
<220>
<223> CDR sequence

<220>
<221> MISC_FEATURE
<222> (4)...(4)
<223> Xaa means Tyr or Ser

<400> 4
Arg Gly Asp Xaa Tyr Gly Asn Tyr Phe Asp Tyr
1 5 10

<210> 5
<211> 11
<212> PRT
<213> Artificial

<220>
<223> CDR sequence

<400> 5

Arg Thr Ser Glu Asn Ile Tyr Ser Asn Leu Ala
1 5 10

<210> 6
<211> 7
<212> PRT
<213> Artificial

<220>
<223> CDR sequence

<400> 6

Thr Ala Thr Asn Leu Ala Asp
1 5

<210> 7
<211> 9
<212> PRT
<213> Artificial

<220>
<223> CDR sequence

<400> 7

Gln His Phe Trp Gly Thr Pro Tyr Thr
1 5

<210> 8
<211> 753
<212> DNA
<213> Artificial

<220>
<223> scFv E8

<400> 8
atggccccgg tgtacgtcga gcagcctag ccacacccc cccacccctg tgaacccctgg ggcctcaatg 60
aagattaacct gcaagccctc tggatacaca ttcactgact acaacatgga cttgtgaag 120
gagagacatg gaagagccct tgagtggtatt ggcagcttatt attccaaaaa tggcgattact 180
attacaacc agaagttcag gggcaagcc acattgactg tagacaagtc ttccacccaca 240
gccctacctg agtcctccgcat ctcgacactt gaaagactg ttagctatttt tgggtgaaga 300
GGGAGCTGAC TTAGTAACTAC TCTTGGCAAG GCACGACTTC CAGCAGTCCC 360
TCTAGCCAAG CCGACCCCAG GTTGAAGAC TCGGAATTTC TGAAGACGCG 420
cagatgacac agtctcagc ctcctcatct gtatctgtgg gagaaactgt caccatcaca 480
tgtgaacaat gtgagaatatt tacagatatat ttagatgtgg atcagcagaa acaggagaa 540
tctctcagc tctggtctca tactgcaaca aacctagcag atggtgtgccc ctcaggttcc 600
agtgagcagt gatggccgac acagatttcc ctcagatca aagccctgca gttgtgatgat 660
tctggaggct tattactgca acatcttttg ggattactcgt atacgctcgg aggggggacc 720
aagctggaata taaaaccgggc tgatgctgcgg gc 753

<210> 9
<211> 753
<212> DNA
<213> Artificial

<220> reverse and complement of SEQ ID NO:8

<400> 9
ggcgcgcagca tcagccccgtt ttatccctcag cttggtccccc cccctcgaacg tgtacggagt 60
accccaaaaa tgttgacagt aataagtcce ccgagacatca gacttgacggc tgggtgatctt 120
agagggatgcatgtgctcat cttcctggg acctgcagcagc actgagaacctt gagggcacac catctgtgtaa 180
ctgggttgcc gtagagaccc gaggctggag cagatctctt ccgtttctctgct gataccagatc 240
taattaacctgta taatattttct cacttggtgctg acatggtgatgtgcacagttt ctcgacagcag 300
tacagatagag gaggctggag acctgtgtcat cttgattgtct acgcgtgtcct ctgaaaatc 360
acctttctctc aagttggggkg tcggttttggc tgagagactc gtagagactgg tgcctttggcc 420
ccaggttgacca aagtagtttc catagkagtc cctctctggca caataatagca ctgcaatgtcc 480
ttccagatgtc aggctgcaag gctccatgtga ggcttggttg gaggactttgt cgctcatcaca 540
tgtggcctttgg cctctggaact cttggtgtga aatagtaacc gcattttag gattatactc 600
ttccacattgc tcaaggtcctt ttcctgtgctt cttccttggc cagttcatgt gtagtcagtt 660
gaatgtgtact ccagaacgcct tcagaaagat ttcctatttgac gcccccaggct tcacagggct 720
gggtctctagc tgctgcagct gcacccgtggc cat 753

<210> 10
<211> 253
<212> PRT
<213> Artificial

<220> scFv A5

<400> 10

Met Ala Asp Val Lys Leu Val Glu Ser Gly Gly Leu Val Lys Pro
1  5 10 15

Gly Glu Ser Leu Lys Leu Ser Cys Ile Ala Ser Gly Phe Thr Phe Ser
20  25 30

Asp Tyr Tyr Met Tyr Trp Val Arg Gin Thr Pro Glu Lys Arg Leu Glu
35  40 45
<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trp Val Ala Ile Ile Ser Asp Gly Gly Tyr Tyr Tyr Tyr Ser Asp</td>
<td>50</td>
</tr>
<tr>
<td>Ile Ile Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Asn</td>
<td>65</td>
</tr>
<tr>
<td>Leu Tyr Leu Glu Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr</td>
<td>85</td>
</tr>
<tr>
<td>Tyr Cys Thr Arg Gly Phe Pro Leu Leu Arg His Gly Ala Met Asp Tyr</td>
<td>100</td>
</tr>
<tr>
<td>Trp Gly Leu Gly Thr Ser Val Thr Val Ser Ser Thr Lys Thr Thr Pro</td>
<td>115</td>
</tr>
<tr>
<td>Lys Leu Glu Glu Gly Glu Phe Ser Glu Ala Arg Val Asp Ile Gin Met</td>
<td>130</td>
</tr>
<tr>
<td>Thr Glu Ser Pro Lys Phe Met Ser Thr Ser Val Gly Asp Arg Val Ser</td>
<td>145</td>
</tr>
<tr>
<td>Val Thr Cys Lys Ala Ser Gln Asn Val Asp Thr Asn Val Ala Trp Tyr</td>
<td>160</td>
</tr>
<tr>
<td>Gln Gln Lys Pro Gly Gln Ser Pro Lys Ala Leu Ile Tyr Ser Ala Ser</td>
<td>180</td>
</tr>
<tr>
<td>Tyr Arg Tyr Ser Asp Val Pro Asp Arg Phe Thr Gly Ser Glu Ser Gly</td>
<td>195</td>
</tr>
<tr>
<td>Thr Asp Phe Thr Leu Thr Ile Ser Asn Val Gln Ser Glu Asp Leu Ala</td>
<td>210</td>
</tr>
<tr>
<td>Glu Tyr Phe Cys Gln Gln Tyr Asp Ser Tyr Pro Tyr Thr Phe Gly Gly</td>
<td>225</td>
</tr>
<tr>
<td>Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala Ala</td>
<td>245</td>
</tr>
</tbody>
</table>

<210> 11
<211> 9
<212> PRT
<213> Artificial

<220> CDR sequence

<400> 11

Gly Phe Thr Phe Ser Asp Tyr Tyr Met 1 5

<210> 12
Ile Ile Ser Asp Gly Gly Tyr
1  5

Gly Phe Pro Leu Leu Arg His Gly Ala Met Asp Tyr
1  5  10

Lys Ala Ser Gln Asn Val Asp Thr Asn Val Ala
1  5  10

Ser Ala Ser Tyr Arg Tyr Ser
1  5

Gln Gln Tyr Asp Ser Tyr Pro Tyr Thr
1  5
<210> 17
<211> 759
<212> DNA
<213> Artificial

<220>
<223> scFV A5

<400> 17
atggccgacg tgaagttggt ggagtctggg ggagctttag tgaagccttg agaqtccttg  60
aaactctctct gtatagcctc tggattcact ttcaagtgact attatatgta ttggtttcgc  120
cagactccggg aaaaaaggct ggagtggtggc gcgaactatta ggtgtggtgg ttatatcacc  180
tactattcag acattatca a gggcgttcac acaccttcca gagacatgc caagaacaac  240
cctgacctcc aatgacagc tctgacttc cagagacacac ccagtattta cttgtcaaga  300
gtctccttcc ttactagcgc ggaggttctg gactactggg gtctttgaac ctcaagtcacc  360
gtttcttca ccaaaacgcg acccaagccttg gaagaaggtt aatattcaga agcacgcgta  420
gacattcaga tggcccgatc tccaaatattc tagcaggatc gaggcgctgc  480
gtctacgtca aggcagcttg gaatgtggat actaattgat ctttgtatca acagaaacca  540
ggaccaatcc ataaagcact gatattctcg gcatctctac ggtacagtga ctgttcctgt  600
cgcttcagag gcagtggaatc tggagcacag tttactcttc ccaatcagca gttgcaagtc  660
gaagacttgg cagagtttt tgtctgacaggt acacagcaat atccatacag gttcggagg  720
ggacacagc tggaaataaa acgggccgtg agtgcggcgc  799

<210> 18
<211> 759
<212> DNA
<213> Artificial

<220> reverse and complement of SEQ ID NO:17

<400> 18
ggcgcaagcc tcagcgcctt ttatgacccag cttggtccc cccccacaag cgtatggata  60
gctgtcatat tgtgtcagac agaatctctgc caagtctttca gactgcatct gttgtatgct  120
gagagtgaag aatggtctcc ccttgagcgt ctgggtgagcct caagttgatcc  180
gtagagact ctaagagtcgcc cttggtgagcct caagttgatcc  240
tacattgag ctaacatcct gactgtccggt cagagtgcttg aatgtgaccc  300
tggtgacagc aatggtctcc cctggtgagcct caagttgatcc  360
acccctttcag agcctgggggt tgttctttgggt cagaggtgacct atgggttctcc  420
ccagcagagc tatgctccggt ggacgtagtgc ctaaaacctt cttggtcaagat atactagggc  480
tgtagccttcc gacgccacag tgttcatttg ggaatcname ttggtttgcttt tatttctttt  540
ggagatgggtg aatggccccc tgataaggtg cttgatagtac gttataataac caccatcact  600
aatggtgctg cggcactttc gcggtgtcct tggacaacct atatattata aatgtgaccc  660
tgctactgaga tgtatccag aggctatata gcagagccttc atgggtttc ctaacatctcc  720

Claims

1. An isolated monoclonal antibody or an antigen binding portion thereof which binds to prostate specific membrane antigen in its native form occurring on the surface of tumor cells characterized in that it is linked to a label or a cytotoxic agent.

2. Isolated monoclonal antibody or an antigen binding portion thereof according to claim 1 characterized in that it can be internalized by a tumor cell.

3. Isolated monoclonal antibody or an antigen binding portion thereof according to claim 1 or 2 characterized in that it binds strongly to LNCAP cells but not or only minimally to cells which lack expression of prostate specific membrane antigen.

4. Isolated monoclonal antibody or antigen binding portion thereof according to claims 1-3 characterized in that the PE fluorescence intensity (MFI) is higher than 40 at antigen saturation.

5. Isolated monoclonal antibody or antigen binding portion thereof according to claims 1-3 characterized in that the PE fluorescence intensity (MFI) is higher than 1000 at antigen saturation.

6. Isolated monoclonal antibody or an antigen binding portion thereof according to claims 4 and 5 which show a high binding activity to LNCAP cells reaching 50% saturation of PSMA sites at concentrations between 1 nM and 60 nM.

7. Isolated monoclonal antibody or an antigen binding portion thereof according to any of claims 1-6 characterized in that the label is a particle which emits radioactive or fluorescence radiation.

8. Isolated monoclonal antibody or antigen binding portion thereof according to claims 1-6 characterized in that the cytotoxic agent is a cell toxic substance selected from the group consisting of toxins, in particular taxol, cytocalasin B, gramicidin D, ethidium bromid, emetine, mitomycin, etopside, tenopside, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy antracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosteron, glycocorticoids, procaain, tetracaine, lidokaine, propranolol and/or puromycin.

9. Isolated monoclonal antibody or an antigen binding portion thereof according to any of the preceding claims characterized in that it comprises a partial amino acid sequence of at least 10 consecutive amino acids of SEQ ID NO:1.

10. Isolated monoclonal antibody or antigen binding portion thereof according to claim 9, characterized in that it comprises at least one of SEQ ID NO:2 - SEQ ID NO:7.

11. Isolated monoclonal antibody or an antigen binding portion thereof according to any of the preceding claims characterized in that it contains a partial amino acid sequence of at least 10 consecutive amino acids of SEQ ID NO:10.

12. Isolated monoclonal antibody or antigen binding portion thereof according to claim 11, characterized in that it comprises at least one of SEQ ID NO:11 - SEQ ID NO:16.

13. Pharmaceutical composition comprising an isolated monoclonal antibody or an antigen binding portion thereof according to any of the preceding claims.

14. Use of an isolated monoclonal antibody or an antigen binding portion thereof according to any of claims 1-12 for the preparation of a medicament for the treatment of cancer.

15. Diagnostic kit for the detection of tumor cells comprising an isolated monoclonal antibody or an antigen binding portion thereof according to any of claims 1-12.

16. A method for the in vitro identification of tumor cells characterized in that the tumor cells to be identified are
contacted with an isolated monoclonal antibody or an antigen binding portion thereof according to any of claims 1-12.

17. Use of an isolated monoclonal antibody or an antigen binding portion thereof according to any of claims 1 to 12 for the diagnostic identification of tumor cells.

18. Isolated polynucleotide characterized in that it comprises a contiguous sequence of at least 20 nucleotides of any sequence of the group consisting of SEQ ID NOS: 8, 9, 17 and 18.
Fig 1
Fig 1a

Fig 1b

Fig 1c

Fig 1a-c
Fig 5

1) PSMA glycosylated (100 kD)
2) PSMA deglycosylated (84 kD)
Fig 7 a

Fig 7 b

Fig 7 a,b
Fig 7c

Fig 7d

Fig 7c, d
Fig 8
Fig 10
Fig. 11
A5-cmyc-His-PE40 auf LNCaP C4-2
(WST-210405-LNCaP)

Fig. 12
Sequence of scFv A5

Fig. 14
## DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 97/35616 A (PACIFIC NORTHWEST CANCER FOUNDATION) 2 October 1997 (1997-10-02) figures 7A and 7B and page 36, lines 1-6; page 7, line 29-seq; page 46; figure 12A-D; page 9, line 13-25; page 42, lines 18-28; page 5, line 24; page 10, line 9; page 26, lines 24-29</td>
<td>1-8, 13-17</td>
<td>C12N15/13, A61K47/48, C07K16/30</td>
</tr>
<tr>
<td>Y</td>
<td>WO 01/09192 A (MEDAREX, INC; DEO, YASHWANT; GRAZIANO, ROBERT; HUDSON, DEBRA; NORTHWEST) 8 February 2001 (2001-02-08) page 2, line 21; page 6, lines 3-6; page 8, lines 26-30; pages 21-26, line 24; pages 42-43, chapter IV. Antibody conjugates/Immunotoxins; examples 4 and 5, page 62-seq</td>
<td>9-12,18</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>* page 668 - page 676 *</td>
<td>9-12,18</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Place of search: Munich  
Date of completion of the search: 21 November 2005  
Examiner: Renggli, J
**DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>page 20 - page 21 *</td>
<td>9-12,18</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>&quot;Affinity improvement of single antibody VH domains: residues in all three hypervariable regions affect antigen binding&quot;&lt;br&gt;IMMUNOTECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS BV, NL, vol. 2, no. 3, September 1996 (1996-09), pages 169-179, XP004070292&lt;br&gt;ISSN: 1380-2933&lt;br&gt;* abstract *</td>
<td>1-18</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>&quot;Domain antibodies: proteins for therapy&quot;&lt;br&gt;TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 21, no. 11, November 2003 (2003-11), pages 484-490, XP004467495&lt;br&gt;ISSN: 0167-7799&lt;br&gt;* abstract *</td>
<td>1-18</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.
### DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 03/002144 A (IMCLONE SYSTEMS INCORPORATED; ZHU, ZHENPING)</td>
<td>1-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 January 2003 (2003-01-09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* claims 19,21 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 6 255 458 B1 (LONBERG NILS ET AL)</td>
<td>1-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 July 2001 (2001-07-03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>seq ID:368; ex. 41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**The present search report has been drawn up for all claims**

<table>
<thead>
<tr>
<th>Place of search</th>
<th>Date of completion of the search</th>
<th>Examiner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munich</td>
<td>21 November 2005</td>
<td>Renggli, J</td>
</tr>
</tbody>
</table>

**CATEGORY OF CITED DOCUMENTS**

- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but published on, or after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **X**: particularly relevant if taken alone
- **Y**: particularly relevant if combined with another document of the same category
- **A**: technological background
- **O**: non-written disclosure
- **P**: intermediate document
- **F**: member of the same patent family, corresponding document
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 2555297 A</td>
<td>17-10-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2250141 A1</td>
<td>02-10-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 126314 A</td>
<td>31-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001503601 T</td>
<td>21-03-2001</td>
</tr>
<tr>
<td>WO 0109192</td>
<td>08-02-2001</td>
<td>AU 783356 B2</td>
<td>20-10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6374500 A</td>
<td>19-02-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2380783 A1</td>
<td>06-02-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1387539 A</td>
<td>25-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1210374 A1</td>
<td>05-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 20035008029 T</td>
<td>04-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA02000961 A</td>
<td>20-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 517331 A</td>
<td>27-02-2004</td>
</tr>
<tr>
<td>US 2004213791</td>
<td>28-10-2004</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3797697 A</td>
<td>10-02-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9710487 A</td>
<td>17-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2261018 A1</td>
<td>29-01-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1244921 A</td>
<td>16-02-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1673744 A</td>
<td>28-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 4634 B1</td>
<td>24-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1025631 A1</td>
<td>20-05-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002513378 T</td>
<td>06-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 333683 A</td>
<td>28-09-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 5249292 A</td>
<td>24-12-2004</td>
</tr>
<tr>
<td>WO 03002144</td>
<td>09-01-2003</td>
<td>CA 2452058 A1</td>
<td>09-01-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1411983 A1</td>
<td>28-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005518336 T</td>
<td>23-06-2005</td>
</tr>
<tr>
<td>US 6255458</td>
<td>03-07-2001</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description


Non-patent literature cited in the description

- O’KEEFE et al. Prostate, 01 February 2004, vol. 58 (2), 200-10 [0009]
- FRACASSO et al. Prostate, 2002, 9-23 [0019]
- Nucleic Acies Res., 1993, 4491-4498 [0061]