发明名称
钻具内防喷器抢接装置

摘要
本发明公开了一种钻具内防喷器抢接装置，包括上下位置调节机构、平面位置调节机构、固定机构、上扣机构和对中背斜机构。上下位置调节机构安装在井架上，上下位置调节机构与平面位置调节机构相连，平面位置调节机构与上扣机构和对中背斜机构的任一机构相连。上扣机构一侧安装有固定机构，上扣机构另一侧安装有对中背斜机构，钻具内防喷器固定安装在固定机构内。本发明的有益效果是：装置安装在井架上，当需要抢装钻具内防喷器时，可以远离井口控制操作完成，提高油气井钻修工程的安全。
1. 钻具内防喷器接接装置，其中，包括上下位置调节机构 (1)、平面位置调节机构 (2)、固定机构 (3)、上扣机构 (4) 和对中背锥机构 (5)，所述上下位置调节机构 (1) 与平面位置调节机构 (2) 相连，所述平面位置调节机构 (2) 与上扣机构 (4) 和对中背锥机构 (5) 中的任一机构相连，所述上扣机构 (4) 一侧安装有固定机构 (3)，所述上扣机构 (4) 另一侧安装有对中背锥机构 (5)，所述上下位置调节机构 (1) 调节钻具内防喷器 (701) 的上下位置，所述平面位置调节机构 (2) 调节钻具内防喷器 (701) 的平面位置，所述固定机构 (3) 用于固定钻具内防喷器 (701)，所述上扣机构 (4) 旋转钻具内防喷器 (701)，使钻具内防喷器 (701) 与钻具接头 (801) 螺纹连接，所述对中背锥机构 (5) 在接接钻具内防喷器 (701) 时夹持钻具接头 (801)。

2. 根据权利要求 1 所述的钻具内防喷器接接装置，其中，所述上下位置调节机构 (1) 包括上下伸缩装置 (304)，所述上下伸缩装置 (304) 能伸缩改变长度，所述上下位置调节机构 (1) 上端与天车 (201) 相连，所述上下位置调节机构下端 (1) 与平面位置调节机构 (2) 相连。

3. 根据权利要求 1 所述的钻具内防喷器接接装置，其中，所述平面位置调节机构 (2) 包括摆动架 (409)、外伸缩管 (420)、内伸缩管 (421) 和调节杆 (415)，所述摆动架 (409) 与外伸缩管 (420) 相连，所述内伸缩管 (421) 一端通过调节杆 (415) 与外伸缩管 (420) 相连，所述外伸缩管 (420) 与内伸缩管 (421) 同轴安装，所述内伸缩管 (421) 另一端与上扣机构 (4) 和对中背锥机构 (5) 中的任一机构相连。

4. 根据权利要求 1 所述的钻具内防喷器接接装置，其中，所述固定机构 (3) 包括悬挂接头 (705)，所述悬挂接头 (705) 的下部螺纹与钻具内防喷器 (801) 的上部螺纹连接。

5. 根据权利要求 1 所述的钻具内防喷器接接装置，其中，所述上扣机构 (4) 包括大齿圈 (609)、行星齿轮 (613)、行星轴 (612)、偏心轴头 (610)、行星轴套 (611)、行星架 (608) 和行星架板 (614)，所述大齿轮 (610) 内圈有内齿圈，内齿圈与所述行星齿轮 (613) 啮合，所述行星齿轮 (613) 与行星轴套 (611) 带键轴装配，所述行星轴套 (611) 还与偏心轴头 (610) 键轴装配，所述行星轴套 (611) 内有行星轴 (612)，所述行星轴 (612) 两端分别装配在行星架板 (608) 和行星架板 (614) 轴孔内，所述行星架板 (608) 和行星架板 (614) 分别装配于行星轴 (611) 的两侧，所述上扣机构 (4) 通过偏心轴头 (610) 夹持钻具内防喷器 (701) 并使钻具内防喷器 (701) 与钻具接头 (801) 螺纹连接。

6. 根据权利要求 1 所述的钻具内防喷器接接装置，其中，所述对中背锥机构 (5) 包括左夹持块 (503) 和右夹持块 (504)，所述对中背锥机构 (5) 通过左夹持块 (503) 和右夹持块 (504) 夹持挤压钻具接头 (801)，并使钻具内防喷器 (701) 与钻具接头 (801) 对中。

7. 根据权利要求 1 至 6 任一项所述的钻具内防喷器接接装置，其中，所述上扣机构 (4)、对中背锥机构 (5) 与固定于固定机构 (3) 内的钻具内防喷器 (701) 同轴安装。
钻具内防喷器抢接装置

技术领域
[0001] 本发明涉及钻修井设备装置中的油气井钻修技术领域，尤其是钻具内防喷器抢接装置。

背景技术
[0002] 公知技术中，在实施油气井钻修工程的过程中，由于对地下油气储集层的性质状况不能完全掌握，以及受天然气、伴生气和地层压力的影响，钻修井过程中常常存在井喷，在发生油气井井喷时，必须迅速可靠地关闭钻具内外的流体通道，以控制井筒内的流体。
[0003] 为了控制井筒内的流体，在钻修井工程中在井口装有防喷器，用于控制钻具与套管之间环空的流体；在钻台上存放有钻具内防喷器，当发生井喷时，迅速将钻具内防喷器抢接在井口的钻具接头上，抢接完成后关闭钻具内防喷器，控制住钻具内的流体。
[0004] 当井喷发生的初期，或井喷喷势较弱时，现场操作人员通常能够靠近井口，采用简易的工具就可以成功地抢装钻具内防喷器，以防止和避免更严重的井喷或者井喷。但是，如果喷势较大时，操作人员很难靠近井口，特别是在有硫化氢喷出的天然气井井口，瞬间就使井口周边陷入严重危险状态，操作人员无法靠近井口抢装钻具内防喷器，造成井喷失控的严重态势。即使操作人员在有防护的情况下，冒险到井口也很难完成抢装钻具内防喷器的任务。一旦发生井喷，就会可能造成严重井喷失控或者着火的灾难性事件，事故带来的损失也十分惨重的，不但会造成经济损失，还会造成人员的伤亡事件，对周边环境造成十分严重的污染。
[0005] 现有针对抢接钻具内防喷器的措施通常的做法是发现井喷后工人立即抢装钻具内防喷器，这种措施和方法存在诸多不足之处，一是许多井在发生井口溢流到井喷之间的时间很短，给工人抢装钻具内防喷器反应时间较短，抢接难度大；二是当出现高强度和有毒流体井喷时，工人无法靠近井口抢接钻具内防喷器，从而导致钻具内井喷失控事故。
[0006] 目前由于钻台面上都是工作人员工作活动区域，安全空间相对不足，没有适宜的位置用于安装钻具内防喷器抢接专用设备，同时由于钻具接头在井口平面位置每一次都不固定，也为钻具内防喷器抢接专用设备的设计带来了不少难度，因此目前还没有可靠的远距离操控钻具内防喷器的方法和装置。
[0007] 为了解决现有抢装钻具内防喷器措施存在的不足，发明一种钻具内防喷器抢接装置十分有必要。

发明内容
[0008] 本发明目的是提供一种钻具内防喷器抢接装置，用于在石油天然气钻修工程中，迅速、安全、可靠地完成钻具内防喷器的抢接，防止井喷事故的发生，为油气井的钻修作业提供安全保障。
[0009] 根据本发明的一个方面，提供了一种钻具内防喷器抢接装置，包括上下位置调节机构、平面位置调节机构、固定机构、上扣机构和对中背钳机构。上下位置调节机构与平
面位置调节机构相连，所述平面位置调节机构与上扣机构和对中背钳机构中的任一机构相连，上扣机构一侧安装有固定机构，上扣机构另一侧安装有对中背钳机构，上下位置调节机构调节钻具内防喷器的上下位置，平面位置调节机构调节钻具内防喷器的平面位置，固定机构用于固定钻具内防喷器，上扣机构旋转钻具内防喷器，使钻具内防喷器与钻具接头螺纹连接，对中背钳机构在接抢钻具内防喷器时夹持钻具接头。当需要接抢内防喷器时，通过上下位置调节机构和平面位置调节机构调节钻具内防喷器与钻具接头之间的相对位置，使钻具接头顺利进入对中背钳机构，当钻具接头进入对中背钳机构后，启动对中背钳机构，对中背钳机构挤压夹持钻具接头，使安装固定于固定机构内的钻具内防喷器与钻具接头对中，迫使钻具内防喷器下部螺纹进入钻具接头上部螺纹，钻具内防喷器下部螺纹未进入钻具接头上部螺纹后，启动上扣机构夹持旋转钻具内防喷器，使钻具内防喷器下部螺纹与钻具接头上部螺纹连接，将钻具内防喷器接抢到钻具接头上。由此，本发明可以实现钻具内防喷器的接抢，快速阻止事故的蔓延和扩大。

[0010] 在一些实施方式中，其中上下位置调节机构包括上下伸缩装置，上下伸缩装置能伸缩改变长度，上下位置调节机构上端与天车相连，上下位置调节机构下端与平面位置调节机构相连，通过调节上下伸缩装置的收回和伸出，可以改变钻具内防喷器接抢装置的上下位置。由此，本发明可以实现，在钻具内防喷器接抢装置完成安装后，钻具内防喷器接抢装置处于接抢待命状态时，钻具内防喷器接抢装置与钻台面可以留有一定的高度距离，保证了作业人员在钻台上的安全作业空间；同时也能实现调节钻具内防喷器接抢装置与钻具接头之间的距离。

[0011] 在一些实施方式中，其中平面位置调节机构包括摆动架、外伸缩管和内伸缩管和伸缩调节杆，摆动架与外伸缩管相连，外伸缩管与内伸缩管同轴安装，内伸缩管一端插入外伸缩管并通过伸缩调节杆与外伸缩管相连，内伸缩管另一端与上扣机构和对中背钳机构中的任一机构相连，通过摆动摆动架，旋转伸缩调节杆调节内伸缩管的伸缩长度，改变钻具内防喷器的平面相对位置，由此，本发明可以实现调节钻具内防喷器与钻具接头之间的平面相对位置。

[0012] 在一些实施方式中，其中固定机构包括悬挂接头，悬挂接头的下部螺纹与钻具内防喷器的上部螺纹连接。由此，本发明可以实现将钻具内防喷器固定在钻具内防喷器接抢装置内的功能。

[0013] 在一些实施方式中，其中上扣机构包括大齿轮、行星齿轮、行星轴、偏心锥头、行星轴套、上行星架板和下行星架板，大齿轮内设有内齿轮，内齿轮与行星齿轮啮合，行星齿轮与行星轴套带键轴装配，行星轴套还与偏心锥头带键轴装配，行星轴套内设有行星轴，行星轴两端分别装在上行星架板和下行星架板轴孔内，上行星架板和下行星架板分别装于行星轴的两侧，上扣机构通过偏心锥头夹持钻具内防喷器并使钻具内防喷器与钻具接头螺纹连接。当液压马达旋转时，驱动传动齿轮和大齿轮旋转，大齿轮的内齿轮驱动行星齿轮旋转，行星齿轮驱动行星轴套和偏心锥头旋转，由于摩擦压板和摩擦片压在上行星架板上，摩擦片与上行星架板之间的摩擦力阻止上下行星架板与大齿轮同步旋转，从而使行星齿轮旋转，进而驱动偏心锥头转动并夹持或释放钻具内防喷器。当偏心锥头夹持钻具内防喷器后，摩擦片与上行星架板之间的摩擦力不足以克服行星齿轮传递给上行星架板的扭矩时，大齿轮内全部部件和钻具内防喷器与大齿轮同步旋转，钻具内防喷器旋转实现与钻具接头的螺
纹连接，由此，本发明可以实现钻具内防喷器与钻具接头的接接的效果。同理，当接接完成后，反向旋转液压马达，可以解除上扣机构对钻具内防喷器的夹持。

在一些实施方式中，其中对中基体机构包括基体夹块和右拉点块，对中基体机构通过左夹持块和右夹持块夹持挤压钻具接头并使钻具内防喷器与钻具接头对中。由此，本发明可以实现钻具接头与钻具内防喷器的有效对中，同时对中基体机构夹持钻具接头，可以防止钻具接头在与钻具内防喷器螺纹连接时与钻具内防喷器同时旋转，在螺纹连接时起到夹持的效果。

附图说明

图 1 是本发明实施方式中钻具内防喷器抢接装置组成机构的连接关系示意图；
图 2 是本发明实施方式中安装和整体结构示意图；
图 3 是本发明实施方式中上下位置调节机构示意图；
图 4 是本发明实施方式中平面位置调节机构结构示意图；
图 5 是本发明实施方式中对中基体机构结构示意图；
图 6 是本发明实施方式中上扣机构的结构示意图；
图 7 是本发明实施方式中固定机构结构示意图；
图 8 是本发明实施方式中上扣状态钻具大方向示意图；
图 9 是本发明实施方式中摆动到钻具接头上方上扣方向示意图；
图 10 是本发明实施方式中从上向下移动到钻具接头上方并连接螺纹司钻方向示意图；
图 11 是本发明实施方式中完成接接从下向上离开钻具接头司扣方向示意图；
图 12 是本发明实施方式中摆动离开钻具接头上方钻机大方向示意图。

具体实施方式

下面结合附图对本发明作进一步详细的说明。

图 1 至图 7 示意性地显示了根据本发明的一种实施方式的一种钻具内防喷器抢接装置。该钻具内防喷器抢接装置包括上下位置调节机构 1、平面位置调节机构 2、固定机构 3、上扣机构 4 和对中基体机构 5。

如图 3 所示，上下位置调节机构 2 包括液缸座板 301，钢索 302，钢索插销 303，可改变长度的上下伸缩装置 304、液缸座板 305、液缸耳座板 306、导轨架 307、内滑轨卡板 203、外滑轨卡板 205 和滑轨底板 204。上下伸缩装置 304 采用液压缸结构形式。上下位置调节机构 2 的内滑轨卡板 203 和外滑轨卡板 205 前后卡住导轨架 307 的边缘，内滑轨卡板 203、外滑轨卡板 205 和滑轨底板 204 用螺栓连接，外滑轨卡板 205 和滑轨底板 204 夹住中间井架背梁 202，将钻具内防喷器抢接装置固定在井架上。钢缆 302 上端套在天车 201 上，钢缆 302 下
端穿导轨架 307 与上下伸缩装置 304 用钢索链 303 链接，上下伸缩装置 304 与液缸耳座 306 用液缸销 305 链接，液缸耳座 306 焊接在液缸座板 301 上，液缸座板 301 与导轨架 307 焊为一体。上下位置调节机构 1 用钢索 302 悬挂在钻机的天车 201 上，承受钻具内防喷器接
接装置内所有机构的重量。内滑轨板 203 和外滑轨板 205 前后卡住导轨架 307 边沿，
使钻具内防喷器接接装置只能在滑轨板内上下滑动，不会前后倾侧。外滑轨板 205 和
滑轨底板 204 用螺栓夹住中间井架背梁 202，将钻具内防喷器接接装置固定在井架上，使钻
具内防喷器接接装置不能在井架背梁 202 上左右移动。上下伸缩装置 304 向外伸出时，钻
具内防喷器接接装置在重力作用下向下移动。上下伸缩装置 304 向内收缩时，拉动钻具内
防喷器接接装置向上移动。由此，钻具内防喷器接接装置在安装完成后与钻台面之间可以
留有一定距离，不占用操作人员在钻台上作业的安全活动空间，上下位置调节机构 1 可
以调节钻具内防喷器 701 与钻具接头 801 之间的上下相对位置。

[0031] 如图 4 所示，平面位置调节机构 2 包括摆动缸 401、摆动缸底板 402、摆动轴
轴 403、摆动轴轴套 404、摆动轴轴套 405、摆动轴轴套 406、摆动轴轴套 407、摆动轴
轴套 408、摆动轴轴套 409、轴套上支板 410、轴接轴 411、轴套下支板 412、止翻螺
栓 413、调节杆限位法兰 414、调节杆 415、法兰螺栓 416、滑动轴套 417、滑动轴
418、水平螺帽 419、外伸缩管 420 和内伸缩管 421。摆动缸底板 402 焊在导轨架 307 上，摆动缸底板 402 与摆动缸 401 螺栓连接。摆动
缸 401 与摆动轴 407 带键轴连接，摆动轴 407 上部与摆动轴套 403 销轴连接，摆动轴轴套 404 与摆动轴轴套 403 螺纹连接并顶住摆动轴 407，摆动轴 407 上部与摆动轴套 403 轴向台
阶之间套有摆动轴轴套 405。摆动轴 407 中部外套有摆动轴轴套 406、摆动轴轴套 406 装在
摆动轴套 408 内，摆动轴套 408 塔下两端分别与轴套上支板 410、轴套下支板 412 焊接，轴
套上支板 410、轴套下支板 412 周边与导架 307 焊接。动轴 407 下端与摆动架 409 带键
轴连接，摆动架 409 与外伸缩管 420 上部用铰接轴 411 铰接，外伸缩管 420 一侧内套内伸缩
管 421，外伸缩管 420 另一端与摆动架 409 用止翻螺栓 413 固定，外伸缩管 420 和内伸缩管
421 相对的两端分别装有一根滑动轴 418，一根滑动轴 418 两端与外伸缩管 420 侧板焊接，
另一根滑动轴 418 两端与内伸缩管 421 侧板焊接，滑动轴 418 外分别套有滑动轴套 417；内
伸缩管 421 内部有一由立板分隔的空腔，空腔内放置有一被轴向限位且能旋转的水平螺
帽 419，水平螺帽 419 接在有外螺纹的调节杆 415 的一端，调节杆 415 的另一端带有台
阶，台阶轴向外端压有调节杆限位法兰 414，调节杆限位法兰 414 与外伸缩管 420 螺栓接
平。平面位置调节机构 2 通过摆动液缸 401 传动摆动轴 407、摆动轴 407 传动摆动架 409、摆动
架 409 传动外伸缩管 420、外伸缩管 420 传动内伸缩管 421 摆动，由于内伸缩管 421 与对中背
键机构 5 的夹持外壳 502 焊为一体，对中背键机构 5 的夹持外壳 502 上部与上扣机构 4 的
上壳体 601 焊接，固定机构 3 的悬挂筒 702 与上扣机构 4 的上盖板 605 螺栓连接，故可以通
过摆动液缸传动对中背键机构 5、上扣机构 4、固定机构 3 在平面上以摆动轴 407 为轴做扇
形摆动，从而可以改变上扣机构 4、对中背键机构 5 以及安装在固定机构 3 中的钻具内防喷
器 701 与钻具接头 801 之间的平面位置关系。在另一些实施例中也可以是内伸缩管 421 与
上扣机构 4 的上壳体 601 焊接或螺栓连接。

[0032] 外伸缩管 420 与内伸缩管 421 同轴安装，内伸缩管 421 内有伸缩调节杆 415，伸缩
调节杆 415—端有螺纹且外旋水平螺帽 419，水平螺帽 419 在帽内伸缩管 421 内被轴向限位
且不能旋转，在伸缩调节杆 415 另一端的台阶卡在外伸缩管 420 与调节杆限位法兰 414 之
间，调节杆限位法兰 414 对伸缩调节杆 415 轴向限位，因而伸缩调节杆 415 在外伸缩管 420 内做旋转运动时不能轴向运动。旋转伸缩调节杆 415 驱动水平螺帽 419 左右移动，水平螺帽 419 推拉内伸缩管 421 左右移动，调节内伸缩管 421 与外伸缩管 420 之间的伸缩长度，也可以调节上扣机构 4，对中背钳机构 5 和安装在固定机构 3 中的钻具内防喷器 701 与钻具接头 801 之间的平面位置关系。

[0033] 如图 5 所示，对中背钳机构 5 包括夹持液缸 501、夹持外壳 502、左夹持块 503、右夹持块 504、对夹齿轮 505、对夹轴 506、夹持上板 507 和夹持下板 508。夹持液缸 501 一端与内伸缩管 421 螺栓连接，另一端与左夹持块 503 螺纹连接，左夹持块 503 上下两侧均有一块右夹持块 504、左夹持块 503 和右夹持块 504 在一端开有两槽孔，左夹持块 503 槽孔的内边铣有齿条，右夹持块 504 的槽孔与左夹持块 503 齿条相对边铣有齿条，槽孔内有与齿条相啮合的对夹齿轮 505、对夹齿轮 505 内有装对夹轴 506，对夹轴 506 上下两侧分别穿在夹持上板 507、夹持下板 508 螺孔里，夹持上板 507 和夹持下板 508 分别与夹持外壳 502 焊接，夹持外壳 502 与内伸缩管 421 焊接为一体。左夹持块 503、右夹持块 504、对夹齿轮 505、夹持上板 507、夹持下板 508 装在夹持外壳 502 内部方形腔室中。夹持液缸 501 伸缩时，驱动左夹持块 503 左右移动，左夹持块 503 驱动对夹齿轮 505 旋转，对夹齿轮 505 驱动右夹持块 504 作相对或相反运动。在抢接时，当左夹持块 503 和右夹持块 504 相向动作时，左夹持块 503 和右夹持块 504 碰到钻具接头 801 后挤压钻具接头 801 向左夹持块 503 和右夹持块 504 的夹持中心靠拢，由于上扣机构 4，对中背钳机构 5 与固定在固定机构 3 内的钻具内防喷器 701 同轴线安装，因而可以实现钻具内防喷器 701 与钻具接头 801 的对中。对中背钳机构 5 夹持钻具接头 801 承受钻具内防喷器 701 与钻具接头 801 螺纹连接时的反扭矩，起到背钳作用的效果。通过夹持液缸 501 驱动左夹持块 503 和右夹持块 504 做相反运动也可实现将钻具接头 801 的对中背钳机构 5 中释放。

[0034] 如图 6 所示，上扣机构 4 包括上壳体 601、传动齿轮 602、扶正圈 603、液压马达 604、上盖板 605、摩擦压板 606、摩擦片 607、上行星架板 608、大齿圈 609、偏心键轴 610、行星轴套 611、行星轴 612、行星齿轮 613、下行星架板 614 组成。上壳体 601 焊接在内伸缩管 421 上，液压马达 604 与上壳体 601 螺栓固定，液压马达 604 轴上用键固定有传动齿轮 602，传动齿轮 602 与大齿圈 609 咬合，大齿圈 609 上部外套扶正圈 603，大齿圈 609 内侧有内齿圈，内齿圈与行星齿轮 613 咬合，行星齿轮 613 与行星轴套 611 下端键连接，行星轴套 611 上部与偏心键轴 610 键接，行星轴套 611 内装行星轴 612，行星轴 612 上下两端分别装入上行星架板 608 和下行星架板 614 轴孔内，上行星架板 608 上部压有摩擦片 607，摩擦片 607 上部与摩擦压板 606 螺栓连接，摩擦压板 606 上部与上盖板 605 螺栓连接，上盖板 605 用螺栓固定在上壳体 601 上端面。当液压马达 604 旋转时，驱动传动齿轮 602 和大齿圈 609 旋转，大齿圈 609 的内齿圈驱动行星齿轮 613 旋转，行星齿轮 613 驱动行星轴套 611 和偏心键轴 610 旋转，由于摩擦压板 606 和摩擦片 607 压在上行星架板 608 上，摩擦片 607 与上行星架板 608 之间的摩擦力阻止上行星架板 608 与大齿圈 609 同步旋转，从而使行星齿轮 613 旋转，进而驱动偏心键轴 610 转动并夹持或释放钻具内防喷器 701。当偏心键轴 610 夹持钻具内防喷器 701 后，摩擦片 607 与上行星架板 608 之间的摩擦力不足以克服行星齿轮 46 传递给上行星架板 608 的扭矩时，大齿圈 609 内全部部件和钻具内防喷器 701 与大齿圈 609 同步旋转，钻具内防喷器 701 旋转与钻具接头 801 螺纹连接，从而实现钻具内防喷器 701 与钻
具接头 801 接接。同理，当接接完成后，反向旋转液压马达 604，可以解除上扣机构 4 对钻具内防喷器 701 的夹持。

【0035】如图 7 所示，固定机构 3 包括悬挂筒 702、压杆 703、把手 704 和悬挂接头 705。悬挂接头 705 下部螺纹与钻具内防喷器上部螺纹连接，钻具内防喷器 701 内没有单流阀芯 706 和压缩弹簧 707。悬挂筒 702 下部与上盖板 605 螺栓连接，悬挂筒 702 内部有台阶，台阶上下分别装有悬挂接头 705 和钻具内防喷器 701，悬挂接头 705 与钻具内防喷器 701 螺纹连接中间卡住悬挂筒 702 内部台阶，悬挂接头 705 两侧分别螺纹安装有把手 704，把手 704 伸出悬挂筒 702 壁外，悬挂接头 705 上部有内螺纹并与压杆 703 螺纹连接。压杆 703 向下顶住钻具内防喷器 701 的单流阀芯 706 挤压压缩弹簧 707 可以打开钻具内防喷器 701 内部流体通道。

【0036】悬挂接头 705 下部螺纹与钻具内防喷器 701 上部螺纹连接，中间卡住悬挂筒 702 内部台阶，使钻具内防喷器 701 固定在固定机构 3 内，由此实现将钻具内防喷器 701 固定在钻具内防喷器接装装置内的功能；压杆 703 向下顶住钻具内防喷器 701 的单流阀芯 706 并打开钻具内防喷器 701 内部流体通道，有利于钻具内防喷器 701 的接装。接接钻具内防喷器 701 时，当钻具内防喷器 701 的螺纹不断旋入钻具接头 801 的螺纹时，悬挂接头 705 与钻具内防喷器 701 连接螺纹不断退出，当钻具内防喷器 701 与钻具接头 801 完成螺纹连接时，悬挂接头 705 与钻具内防喷器 701 之间螺纹实现完全退出，悬挂接头 705 与钻具内防喷器 701 分离，压杆 703 与单流阀芯 706 之间距离增大并脱离接触，钻具内防喷器 701 内的单流阀芯 706 在压缩弹簧 707 的作用下向上运动并关闭钻具内防喷器 701。

【0037】本发明通过如下过程实现钻具内防喷器的接装：

【0038】本发明一实施方式中待命状态如 2 和图 8 所示，作业工作前，钻具内防喷器接装装置通过钢索 302 挂在天车 201 上，导轨架 307 被内滑轨卡片 203 和外滑轨卡片 205 约束在井架背景 202 上，导轨架 307 可以在内滑轨卡片 203 和外滑轨卡片 205 组成的滑轨之间上下滑动，但导轨架 307 不能在滑轨内水平移动和前后倾斜，此时固定在固定机构 3 里的钻具内防喷器 701 远离井口，钻具内防喷器接装装置的上扣机构紧靠钻机臂架位置，不影响井口的正常作业操作。

【0039】如图 9 所示，当需要接装钻具内防喷器 701 时，启动摆动液缸 401 驱动摆动轴 408、摆动架 409、外伸缩管 420、外伸缩管 421 以及固定机构 3、上扣机构 4 和对中背钳机构 5 以及摆动轴 408 为轴线摆动，使固定在固定机构 3 里的钻具内防喷器 701 从井架背景 202 方向水平摆动到钻具接头 801 上方。

【0040】如图 10 所示，当钻具内防喷器 701 摆动到钻具接头 801 上方后，上下伸缩装置 304 向外伸长，钻具内防喷器接装装置在重力作用下向下移向钻具接头 801，当钻具接头 701 插入到对中背钳机构 5 后，启动夹持液缸 501 驱动左夹持块 503 和右夹持块 504 相对运动，挤压钻具接头 801 使之与钻具内防喷器 701 对中，实现钻具内防喷器 701 公螺纹进入到钻具接头 801 母螺纹中，同时保持对钻具接头 801 的夹持。完成对中和夹持后，启动液压马达 604 驱动大齿轮 613、行星齿轮 6111 和偏心凸轮 610 转动，夹持并旋转钻具内防喷器 701，连接钻具内防喷器 701 到钻具接头 801 螺纹上，实现钻具内防喷器 701 的接装。由于与悬挂接头 705 螺纹连接的把手 704 被悬挂筒 702 限制不能旋转，钻具内防喷器 701 在与钻具接头 801 螺纹连接时悬挂接头 705 也不能旋转，因而钻具内防喷器 701 在与钻具接
说明 书

头 801 螺纹连接的同时，钻具内防喷器 701 上部螺纹从悬挂接头 705 的螺纹向外退出。当
钻具内防喷器 701 与钻具接头 801 螺纹连接完成时，钻具内防喷器 701 上部螺纹从悬挂接
头 705 的螺纹中向外完全退出，钻具内防喷器 701 与悬挂接头 705 分离，压杆 703 与钻具内
防喷器 701 的单流阀芯 706 脱离接触，单流阀芯 706 在压缩弹簧 707 作用下向上移动，钻具
内防喷器 701 关闭，完成钻具内防喷器 701 在抢接完成后自动关闭。

如图 11 所示，当完成钻具内防喷器 701 抢接关闭后，反向启动夹持续液压缸 501 和
液压马达 604，从钻具内防喷器抢接装置中释放钻具内防喷器 701 与钻具接头 801。启动上
下伸缩装置 304 向内收缩，向上提起钻具内防喷器抢接装置，钻具内防喷器 701 从抢接装置
内脱出并已连接在钻具接头 801 上。

如图 12 所示，当钻具内防喷器抢接装置提升到一定高度后，启动摆动液压缸 401，将
钻具内防喷器抢接装置摆离井口上方，回位到抢接待命工位，完成钻具内防喷器 701 抢接
的全过程。

本实施例中，钻具内防喷器抢接装置还可与自动控制系统相连，实现钻具内防喷
器 701 自动抢接功能。

以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说，在不
脱离本发明创造构思的前提下，还可以做出若干变形和改进，这些都属于本发明的保护范
围。
图 4
图 5
图 7
图 10
图12