Title: HUMAN BODY SUPPORTING STRUCTURE, PARTICULARLY BICYCLE SADDLE AND METHOD OF MAKING SAME

Abstract: A human body" supporting structure (1), particularly a bicycle saddle, comprises a load-bearing shell (4) having a topside (5) designed to face towards a user and an underside (6) designed to face a bicycle frame. The shell (4) comprises at least one continuous sheet element (7) having at least one differently deformable portion (8, 8', 8") located at particularly stressed regions of the user's body. The sheet element (7) is formed of a thermoplastic resin matrix with reinforcement fibers embedded therein. The differently deformable portions (8, 8', 8") have a smaller thickness (S) and a locally greater average density (\(\rho \)) than the rest of the extension of the shell (4), said portions (8, 8', 8") are formed in a thermoforming step wherein a local thickness reduction is carried out by compression and by heating said sheet element (7) to a temperature near the melting temperature of the thermoplastic matrix. A method of making such support structure (1) is further provided.
HUMAN BODY SUPPORTING STRUCTURE, PARTICULARLY BICYCLE SADDLE AND METHOD OF MAKING SAME

Field of the invention

The present invention finds application in the art of sport and leisure and particularly relates to a human body supporting structure and a method of making same.

Particularly, a human body supporting structure may be a bicycle saddle, a seating surface of a chair, a human body protection device, a shoe insole, a helmet, a glove and the like.

Background Art

Human body supports, particularly bicycle saddles, are known to include a shell for supporting a user's weight. Certain types of supports are further known to include a load-bearing shell having one or more differently deformable portions, i.e. having a higher resilience as compared with the rest of the shell.

These higher resilience portions, usually located in the areas of contact between the shell and certain sensitive areas of the user, may be formed using a variety of methods.

EP1305203, in the name of the same applicant, discloses a bicycle saddle structure having all the features of the preamble of claim 1. The saddle specifically comprises a load-bearing shell formed from multiple thermoformed sheet elements of composite material which are designed to create differently deformable portions. These portions are formed by interleaving a continuous thermoplastic base sheet element between or among two or more sheet elements of thermosetting composite material, in which apertures have been formed, while taking care that the various layers are laid one above the other to match the apertures.
This prior art method has a few apparent drawbacks.

First, the method is of very difficult implementation, because the apertures of the various sheet elements have to match almost perfectly.

Furthermore, an adequate mechanical strength can be only obtained by laying a considerable number of sheet elements one above the other, wherefore the final product is excessively heavy and poorly cost-effective.

Summary of the invention

The object of the present invention is to overcome the above drawbacks, by providing a support structure that is highly efficient and relatively cost-effective.

A particular object is to provide a support structure that also has a low weight and a sturdy construction.

Another object is to provide a method of making a support structure whereby light and sturdy products can be manufactured in a simple and repeatable manner.

These and other objects, as better explained hereinafter, are fulfilled by a human body supporting structure as claimed in claim 1, which comprises a load-bearing shell having a topside designed to face towards a user and an underside designed to face a bicycle frame. The shell comprises at least one continuous sheet element of predetermined extension having at least one differently deformable portion located at intensively stressed regions of the usebody. The shell is further formed of a thermoplastic resin matrix wherein reinforcement fibers are embedded. The differently deformable portions have a smaller thickness and a locally greater average density than the rest of the extension of the shell.

By providing the differently deformable portion of the sheet element of the shell with a locally smaller thickness and a locally greater density as compared with the
rest of its extension, improved mechanical strength and resilience may be imparted to the sheet element at the differently deformable portion.

Thus a shell with differently deformable portions can be provided, which shell is much lighter than prior art shells of the same type, having the same mechanical strength.

According to another aspect of the invention, a method is provided for making the above mentioned support structure in accordance with claim 9, which method includes the following steps of: providing at least one continuous sheet element formed of a thermoplastic matrix having a predetermined average density in which reinforcement fibers are embedded; forming the sheet element in such a manner as to define at least one differently deformable portion located at intensively stresses regions of the user's body.

The forming step comprises thermoforming and local reduction of the thickness of the at least one sheet element at the differently deformable portions to locally increase the average density of said at least one differently deformable portion, thereby imparting a higher resilience to the continuous sheet element at such portions.

Advantageous embodiments of the invention are defined in accordance with the independent claims.

Brief description of the drawings

Further features and advantages of the invention will be more apparent from the detailed description of a preferred, non-exclusive embodiment of a bicycle saddle structure and method of making same according to the invention, which is described by way of a non-limiting example with reference to the annexed drawings, in which:

FIG. 1 is an axonometric view of a first embodiment of the saddle structure
of the invention;

FIG. 2 is a bottom view of the embodiment of FIG. 1;

FIG. 3 is a sectional view of the embodiment of FIG. 1, as taken along a plane // - III;

FIG. 4 is an axonometric view of a second embodiment of the saddle structure of the invention;

FIG. 5 is a sectional view of the embodiment of FIG. 4, as taken along a plane V - V;

FIG. 6 is an axonometric view of a first operating step of the method of the invention;

FIGS. 7, 8 and 9 are sectional views of certain operating steps of the method of the invention;

FIG. 10 is an enlarged view of certain details of FIG. 9.

Detailed description of a preferred embodiment

Referring to the above figures, the human body supporting structure of the invention will be described by way of a non-limiting example as a bicycle saddle, and the method will be particularly designed for making same. Nevertheless, it is understood that the human body supporting structure of the invention may be embodied in other forms, such as a seating surface of a chair, a human body protection device, a shoe insole, a helmet, a glove and the like, without departure from the scope of the invention, as defined by the contents of the annexed claims.

The bicycle saddle, generally designated by numeral 1, may substantially include a support body 2 for supporting a seated user and rails 3 for attachment of the saddle structure 1 to a movable or stationary frame, such as a bicycle frame, not shown as being well known per se.

The support body 2 comprises a load-bearing shell 4 having a topside 5 designed to face towards the user and an underside 6 with the rails 3 fixed thereto for attachment to the bicycle frame.
In the non limiting examples shown hereinafter, two embodiments of the shell 4 are described and depicted in Figures 2-3 and 4-5 respectively. In all cases, the shell 4 comprises at least one continuous sheet element 7 of predetermined surface extension made from a thermoplastic composite material composed of a thermoplastic resin matrix wherein reinforcement fibers, such as carbon, glass, kevlar®, titanium, steel, nitinol®, dynema® HEPP (High Engineered PolyPropylene) sold by Milliken® fibers, natural fibers (jute, linen, wool, etc.) or the like are embedded.

As used herein, the term "continuous sheet element" is intended to mean an element having a substantially planar extension, i.e. having two dimensions prevailing over the other and substantially continuous, i.e. with no apertures or the like.

The sheet element 7 has at least one differently deformable portion 8 throughout its extension, located at intensively stressed regions of the user's body, such as in the ischial and/or prostatic and/or peripheral areas of the shell.

As used herein, the term "ischial area" or the like is intended to designate the area of the shell that is designed to support the region corresponding to the ischial bones of the user, and the term "prostatic area" or the like is intended to designate the area of the shell that is designed to support the region corresponding to the prostate of the user.

Also, as used herein, the term "differently deformable portion" or the like is meant to designate an area within the surface of the load bearing shell 4 that, under a load, has a remarkably different deformability than that provided by at least another area having the same surface when subjected to the same load.

One peculiar feature of the invention is that the differently deformable portion 8 has a locally smaller thickness Si and a locally greater average density pi than the rest of the surface extension of the load bearing shell 4.
By this arrangement a higher resilience may be imparted to the sheet element 7 at
the differently deformed portion 8, as compared with the other areas of the shell 4.

This is apparent in Figures 3 and 5, which show two different embodiments of the
invention. These embodiments include a plurality of differently deformed areas.
Unless otherwise stated, reference will be made to one of the differently
deformable portions 8 only, its characteristics being intended to be also provided
in the other differently deformable portions.

Figure 3 shows a first embodiment of the invention, in which the shell 4 is made up
of one sheet element 7 only. Nevertheless, it shall be understood that the shell 4
may also consist of multiple sheet elements of the same type, without departure
from the inventive scope as defined in the annexed claims. This embodiment
includes three differently deformable portions, with the first two portions,
designated by numerals 8, 8' being formed at the ischial area and the other,
designated by numeral 8", being formed at the prostatic area.

In this embodiment, the thickness S_i of the differently deformable area 8 is smaller
than the thickness S_2 of the other areas of the sheet element 7, e.g. the central
area 9. Also, the average density p_i of the differently deformable portion 8 is
greater than the average density p_2 of the central area 9. The combination of
these two characteristics will impart a higher deformability to the differently
deformable portion 8 as compared to that of the central portion 9, which will be
thus less resilient and deformable.

Figure 5 shows a second embodiment of the invention, in which the shell 4 is
formed of a continuous sheet element 7 interposed between two discontinuous
sheet elements 10, 11 having apertures 12, 12' and 13, 13' coincident with the
differently deformable portions 8, 8'.

In this embodiment, the thickness S_i of the differently deformable area 8 is smaller
than the thickness S_2 of the other areas of the sheet element 7, e.g. the central
area 9. Also, the average density p_i of the differently deformable portion 8 is greater than the average density p_2 of the central area 9.

Advantageously, the discontinuous sheet elements 10, 11 may be formed of the same material as the continuous sheet element 7 and may have a different color from the latter, to create a pleasant color effect.

The ratio between the average thickness S_i of the continuous sheet element 7 at the differently deformable portion 8 and the average thickness S_2 of the rest of the extension thereof may fall in a range from 0.1 to 0.9 and is preferably about 0.7. Experimental tests showed that these values ensure the best ratio between the mechanical properties and the weight of the shell 4.

Suitably, the thickness change of the sheet element 7 at the differently deformable portion 8 may occur in a gradual and substantially continuous manner, This will ensure the best distribution of load stresses over that area.

Conveniently, the shell 4 may be obtained by thermoforming the sheet element 7, whereas the differently deformable portions may be formed by locally reducing the thickness of such sheet element 7 at the differently deformable portions during thermoforming.

This method includes the steps of providing the continuous sheet element 7 which has a substantially constant thickness S_3 upstream from the thermoforming process, and of subsequently thermoforming it. During the thermoforming process, the thickness of the continuous sheet element is reduced at the differently deformable portion 8, which changes from the initial thickness S_3 to the thickness S_i.

As used herein, the term "providing" and derivatives thereof, designates the preparation of a relevant element for a relevant process step, including any preventive treatment designed for optimal performance of such relevant step, from...
simple collection and possible storage to thermal and/or chemical and/or physical
and the like pre-treatments.

Suitably, the thermoforming and local thickness reduction step on the continuous
sheet element 7 may be carried out by heating the latter to a temperature near the
melting temperature of the thermoplastic matrix, thereby reducing its viscosity.

Thus, as the continuous sheet element 7 is compressed, its thickness will be
locally reduced, changing from thickness S_3 to S_1, wherefore the resin thereat,
which has highly viscous properties upstream from thermoforming, will migrate to
other areas.

In a preferred, non exclusive embodiment, the method of the invention is
implemented through the steps as shown in Figures 6 to 9. While this method has
been only described with reference to the first embodiment of the saddle structure
of the invention, as shown in Figures 2-3, it shall be understood that it is also
applicable to the other embodiment of the support structure of the invention, as
shown in Figures 4-5.

Figures 6 and 7 show the step of introducing the continuous sheet element 7, of
fabric or unwoven fabric type, preimpregnated with the thermoplastic resin and
having an initial thickness S_3, in a suitable mold 14 composed of male and female
members 15, 16. The female member 16 has a cavity 17 whose shape is
substantially complementary to the topside of the thermoformed shell 4, whereas
the male member 15 has a pressing portion 18 adapted to cooperate therewith to
compress the continuous sheet element 7 to cause reduction of its thickness. The
male member 15 has a pair of surface projections 19, 19' that are designed to
compress the continuous sheet element 7 coincident with the differently
deformable portions 8, 8'.

The next step, as shown in Figure 8, provides closing of the mold 14 by coupling
the male member 15 with the female member 16. Thus, the sheet element 7 is
compressed therebetween.

Later, the mold is heated to the incipient melting temperature of the thermoplastic resin, which melts and thence loses some of its viscosity. The pressing portion 18 of the male member 15 will compress the sheet element 7 at its topside 20, whereas the upper surface 21 of the cavity 17 of the female member 16 will act as an abutment therefor. The surface projections 19, 19' will compress the sheet element 7 at the differently deformable portions 8, 8', to cause a local thickness reduction from S_2 to S_i and resin migration to the surrounding areas, as described above.

It will be understood that, for the thermoformed sheet element to have the thicknesses S_2 and S_i, as shown in Figures 3 and 5, the gap 22 between the male member 15 and the female member 16 of the mold 14 must have substantially corresponding dimensions. Similarly, to obtain the above mentioned compression ratio, the ratio between the thickness of the gap 22 at the thickness reduction area and the rest of the sheet element 7 shall fall in a range from 0.1 to 0.9 and is about 0.7.

Now, the mold 14 is cooled while keeping the male and female members 15 and 16 in position until the resin hardens, so that resin cannot flow into the areas 8, 8' that will maintain the thermoforming thickness S_i, while the other areas will maintain the thickness S_2.

In order that the areas 8, 8' may be formed as shown in Figure 3, i.e. be defined by a recess at the lower surface of the sheet element 7, the upper surface 21 of the cavity 17 of the female member 16 opposite to the projections 19, 19' is free of any projection and/or recess.

The above disclosure clearly shows that the support structure and method of the invention fulfill the intended objects.
The support structure and method of the invention are susceptible to a number of changes or variants, within the inventive concept disclosed in the appended claims. All the details thereof may be replaced by other technically equivalent parts, and the materials may vary depending on different needs, without departure from the scope of the invention.

While the support structure and method have been described with particular reference to the accompanying figures, the numerals referred to in the disclosure and claims are only used for the sake of a better intelligibility of the invention and shall not be intended to limit the claimed scope in any manner.
CLAIMS

1. A human body supporting structure, such as a bicycle saddle, which comprises a load-bearing shell (4) having a topside (5) designed to face towards a user and an underside (6) susceptible of being attached to a movable or stationary frame, wherein said shell (4) comprises at least one continuous sheet element (7) of predetermined extension, said at least one continuous sheet element (7) having at least one differently deformable portion (8, 8', 8") located at intensively stressed regions of the user's body and being formed of a resin matrix with reinforcement fibers embedded therein, characterized in that said resin matrix is of thermoplastic type, said at least one differently deformable portion (8, 8', 8") having a smaller thickness (Si) and a locally greater average density (pi) as compared with the rest of its extension, thereby imparting to said continuous sheet element (7) an higher mechanical strength and resilience at said at least one differently deformable portion (8, 8', 8").

2. Structure as claimed in claim 1, wherein said shell (4) is obtainable by thermoforming of said sheet element (7), said at least one differently deformable portion (8, 8', 8") being obtainable by local reduction of the thickness of said sheet element (7) at said areas during thermoforming.

3. Structure as claimed in claim 1, wherein the ratio between the average thickness of the shell (4) in correspondence of said at least one differently deformed thickness (8, 8', 8") and the rest of said extension falls in a range from 0.1 to 0.9 and is preferably about 0.7.

4. Structure as claimed in any preceding claim, wherein the thickness of said sheet element (7) changes at said at least one differently deformable portion (8, 8', 8") in a gradually and substantially continuous manner.

5. Structure as claimed in any preceding claim, wherein said shell (4) has a plurality of differently deformable portion (8, 8', 8") located at the ischial and/or
prostatic and/or peripheral areas of the shell.

6. Structure as claimed in any preceding claim, wherein said shell (4) comprises at least one discontinuous sheet element (10, 11) superposed to said at least one continuous sheet element (7), said at least one discontinuous sheet element (10, 11) having at least one aperture (12, 12', 13, 13") at said at least one differently deformable portion (8, 8'; 8").

7. Structure as claimed in claim 6, wherein said at least one discontinuous sheet element (10, 11) is made of the same material as said continuous sheet element (7).

8. Structure as claimed in claim 6, wherein said at least one discontinuous sheet element (10, 11) has a different color from said continuous sheet element (7).

9. A method for making a human body supporting structure, such as a bicycle saddle, as claimed in one or more of claims 1 to 8, comprising the following steps:
 - providing at least one continuous sheet element (7) formed of a thermoplastic matrix having a predetermined average density, and reinforcement fibers embedded therein;
 - forming said sheet element (7) to define at least one differently deformable portion (8, 8', 8") in correspondence of intensively stressed regions of the user's body;
 - wherein said forming step comprises thermoforming and local reduction of the thickness of said at least one sheet element (7) at said differently deformable portions (8, 8', 8") to locally increase the average density (pi) of said at least one differently deformable portion (8, 8', 8"), thereby imparting a higher resilience to said continuous sheet element at such portions.

10. Method as claimed in claim 9, wherein said step of local reduction of the thickness of said sheet element (7) is carried out by compression.
11. Method as claimed in any preceding claim, wherein said thermoforming and local thickness reduction step is carried out by heating said sheet element to a temperature near the melting temperature of the thermoplastic matrix.

12. Method as claimed in any one of claims 9 to 11, wherein said thermoforming step is carried out by introducing said sheet element (7) in a mold (14) which comprises a female member (16) having a cavity (17) with a shape substantially complementary to the topside (5) of said thermoformed shell (4) and a male member (15) with a pressing portion (18) adapted to cooperate with said cavity (17).

13. Method as claimed in any one of claims 9 to 12, wherein said male member (15) has at least one surface projection (19, 19’) which is designed to compress said sheet element (7), thereby reducing its thickness at said at least one differently deformable portion (8, 8\ 8’).

14. Method as claimed in claim 13, wherein the surface (21) of said female mold (16) opposite to said at least one projection (19, 19’) of said male element (15) is free of any projection and/or recess.

15. Method as claimed in claim 12, wherein the ratio between the thickness of the gap between said male member (15) and said female member (16) of said mold (14) at said thickness reduction and the rest of the sheet element (7) falls in a range between 0,1 to 0,9 and is about 0,7.

16. Method as claimed in any one of claims 9 to 15, wherein said sheet element (7) is of the thermoplastic resin preimpregnated type.
A. CLASSIFICATION OF SUBJECT MATTER

INV. B62J1/00

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B62J A43B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2006/092678 A (SElle ROYAL SPA [IT]; SEGATO STEFANO [IT])</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>8 September 2006 (2006-09-08) page 5, lines 24-31; claims 1,12; figure 4</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 2005/121951 A1 (YU TSAY-YUN [TW])</td>
<td>1,3-8</td>
</tr>
<tr>
<td></td>
<td>9 June 2005 (2005-06-09) paragraphs [0017] - [0020]; figures 1-7</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 7 096 605 B1 (KOZO MARIA J [US] ET AL)</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>29 August 2006 (2006-08-29) column 4, lines 61-67; figures 1-13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 5, lines 1-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 6, lines 45-67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 7, lines 1-21</td>
<td></td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C ☑ See patent family annex

- Special categories of cited documents

 - A document defining the general state of the art which is not considered to be of particular relevance
 - E earlier document but published on or after the international filing date
 - L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - O document referring to an oral disclosure use, exhibition or other means
 - P document published prior to the international filing date but later than the priority date claimed

- T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- X document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

- Y document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art

- S document member of the same patent family

Date of the actual completion of the international search: 9 July 2008

Date of mailing of the international search report: 18/07/2008

Name and mailing address of the ISA:

European Patent Office, P B 5818 Patentlaan 2, NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx 31651 epo nl
Fax (+31-70) 340-3016

Authorized officer: Carneiro, Joaquim
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2006092678 A</td>
<td>08-09-2006</td>
<td>EP 1846282 A2</td>
<td>24-10-2007</td>
</tr>
<tr>
<td>US 2005121951 A1</td>
<td>09-06-2005</td>
<td>TW 233903 B</td>
<td>11-06-2005</td>
</tr>
<tr>
<td>US 7096605 B1</td>
<td>29-08-2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2002112379 A1</td>
<td>22-08-2002</td>
<td>AT 298209 T</td>
<td>15-07-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 779654 B2</td>
<td>03-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7627201 A</td>
<td>08-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0106636 A</td>
<td>16-04-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1383362 A</td>
<td>04-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0200051 A1</td>
<td>03-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 20110084 U1</td>
<td>15-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1294247 A1</td>
<td>26-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2241845 T3</td>
<td>01-11-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3710782 B2</td>
<td>26-10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004500936 T</td>
<td>15-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200200348 A</td>
<td>15-01-2003</td>
</tr>
</tbody>
</table>