(54) 发明名称
防辐射服装面料

(57) 摘要
本发明公开了一种防辐射服装面料，所述防辐射服装面料是由经纱和纬纱交织而成的，所述经纱为不锈钢长丝包芯纱与涤纶纤维的混纺纱，所述纬纱为不锈钢长丝包芯纱，其中，所述经纱占面料重量的50%-60%，所述纬纱占面料重量的40%-50%。通过上述方式，本发明能够降低生产成本，提高面料的服用舒适性。
1. 一种防辐射服装面料，其特征在于，所述防辐射服装面料是由经纱和纬纱交织而成的，所述经纱为不锈钢长丝包芯纱与涤纶纤维的混纺纱，所述纬纱为不锈钢长丝包芯纱，其中所述经纱占面料重量的 50%~60%，所述纬纱占面料重量的 40%~50%。

2. 根据权利要求 1 所述的防辐射服装面料，其特征在于，所述经纱中不锈钢长丝包芯纱的含量为 60%~70%，涤纶纤维的含量为 30%~40%。

3. 根据权利要求 1 或 2 所述的防辐射服装面料，其特征在于，所述不锈钢长丝包芯纱是在不锈钢金属纤维的外面包覆棉纤维，其中，所述不锈钢金属纤维含量为 15%~30%，所述棉纤维含量为 70%~85%。

4. 根据权利要求 3 所述的防辐射服装面料，其特征在于，所述不锈钢金属纤维的直径为 22~30 μm。
防辐射服装面料

技术领域
[0001] 本发明涉及纺织面料领域，特别是涉及一种防辐射服装面料。

背景技术
[0002] 随着信息时代到来，手机、电脑以及家用电器的普及，电磁辐射问题随之而生，防电磁辐射的服装受到了消费者的青睐。
[0003] 最早的防电磁辐射服装是通过在经纬向间隔一定距离镶嵌金属长丝的方法，使得面料中形成纵横交错的金属丝网来起到电磁屏蔽的作用。为了减少编织过程中的断头，一般选择比较粗的金属丝，从而导致面料和服装的手感粗硬，服用性能很差。其后，人们利用涂层技术，把导电导磁粉末混入到涂层浆内，开发了金属涂层织物，但是金属涂层织物的透气性差，手感粗硬，服用性能也很差，而且金属涂层和织物之间的结合力较小，金属涂层容易脱落，使织物的屏蔽效能降低。且这些面料的生产成本都较高。
[0004] 后来人们采用金属丝短纤维开发金属丝混纺纱，这种产品使金属丝在面料和服装中的密度增加，面料的电磁屏蔽效果提高了，但是服装手感粗硬的情况并未得到有效改变。而且，这种纱线的金属丝有部分暴露在面料表面，会影响人体穿着的触感，从而影响服用性能。

发明内容
[0005] 本发明主要解决的技术问题是提供一种防辐射服装面料，能够降低生产成本，提高面料的服用舒适性。
[0006] 为解决上述技术问题，本发明采用的一个技术方案是：提供一种防辐射服装面料，所述防辐射服装面料是由经纱和纬纱交织而成的，所述经纱为不锈钢长丝包芯纱与涤纶纤维的混纺纱，所述纬纱为不锈钢长丝包芯纱，其中，所述经纱占面料重量的50%~60%，所述纬纱占面料重量的40%~50%。
[0007] 在本发明一个较佳实施例中，所述经纱中不锈钢长丝包芯纱的含量为60%~70%，涤纶纤维的含量为30%~40%。
[0008] 在本发明一个较佳实施例中，所述不锈钢长丝包芯纱是在不锈钢金属纤维的外面包裹棉纤维，其中，所述不锈钢金属纤维含量为15%~30%，所述棉纤维含量为70%~85%。
[0009] 在本发明一个较佳实施例中，所述不锈钢金属纤维的直径为22~30 μm。
[0010] 本发明的有益效果是：采用较细的不锈钢长丝与精梳棉纺制成包芯纱，避免了将不锈钢长丝进行牵切加工的工序，大大降低了生产成本；由于不锈钢长丝被包裹在精梳棉纤维中，避免了不锈钢长丝暴露在织物表面，使加工的面料更加柔软，轻薄，提高了面料的服用舒适性。

具体实施方式
[0011] 下面对本发明的较佳实施例进行详细阐述，以使本发明的优点和特征更易于被
本领域技术人员理解，从而对本发明的保护范围做出更为清楚明确的界定。[0012] 本发明实施例包括：

一种防辐射服装面料，所述防辐射服装面料是由经纱和纬纱交织而成的，所述经纱为不锈钢长丝包芯纱与涤纶纤维的混纺纱，所述纬纱为不锈钢长丝包芯纱，其中，所述经纱占面料重量的50%-60%，所述纬纱占面料重量的40%-50%。
[0013] 其中，所述经纱中不锈钢长丝包芯纱的含量为60%-70%，涤纶纤维的含量为30%-40%。
[0014] 所述不锈钢长丝包芯纱是在不锈钢金属纤维的外面包覆棉纤维，其中，所述不锈钢金属纤维含量为15%-30%，所述棉纤维含量为70%-85%。
[0015] 所述不锈钢金属纤维的直径为22-30μm。
[0016] 实施例一：

一种防辐射服装面料，所述防辐射服装面料是由经纱和纬纱交织而成的，所述经纱为不锈钢长丝包芯纱与涤纶纤维的混纺纱，所述纬纱为不锈钢长丝包芯纱，其中，所述经纱占面料重量的60%，所述纬纱占面料重量的40%。
[0017] 其中，所述经纱中不锈钢长丝包芯纱的含量为60%，涤纶纤维的含量为40%。
[0018] 所述不锈钢长丝包芯纱是在不锈钢金属纤维的外面包覆棉纤维，其中，所述不锈钢金属纤维含量为25%，所述棉纤维含量为75%。
[0019] 所述不锈钢金属纤维的直径为25μm。
[0020] 实施例二：

一种防辐射服装面料，所述防辐射服装面料是由经纱和纬纱交织而成的，所述经纱为不锈钢长丝包芯纱与涤纶纤维的混纺纱，所述纬纱为不锈钢长丝包芯纱，其中，所述经纱占面料重量的55%，所述纬纱占面料重量的45%。
[0021] 其中，所述经纱中不锈钢长丝包芯纱的含量为65%，涤纶纤维的含量为35%。
[0022] 所述不锈钢长丝包芯纱是在不锈钢金属纤维的外面包覆棉纤维，其中，所述不锈钢金属纤维含量为30%，所述棉纤维含量为70%。
[0023] 所述不锈钢金属纤维的直径为30μm。
[0024] 本发明的防辐射服装面料经试验证明，电磁波屏蔽效能可达35db以上，屏蔽率可达99.95%以上，不仅具有很好的防辐射性能，而且具有质地柔软、吸湿性强、透气性好、穿着舒适、耐水洗等优点。
[0025] 本发明揭示了一种防辐射服装面料，采用较细的不锈钢长丝与精梳棉纺制成包芯纱，避免了将不锈钢长丝进行牵切加工的工序，大大降低了生产成本，由于不锈钢长丝被包覆在精梳棉纤维中，避免了不锈钢长丝暴露在织物表面，使加工的面料更加柔软、轻薄，提高了面料的服用舒适性。
[0026] 以上所述仅为本发明的实施例，非此因此限制本发明的专利范围，凡是利用本发明说明书内容所作的等效结构或等效流程变换，或直接或间接运用在其他相关的技术领域，均同理包括在本发明的专利保护范围内。