

(19) DANMARK

(10) DK/EP 2822341 T3

(12)

Oversættelse af
europæisk patentskrift

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **H 04 L 5/00 (2006.01)** **H 04 W 52/02 (2009.01)**

(45) Oversættelsen bekendtgjort den: **2018-01-08**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2017-11-22**

(86) Europæisk ansøgning nr.: **14178871.1**

(86) Europæisk indleveringsdag: **2008-09-03**

(87) Den europæiske ansøgnings publiceringsdag: **2015-01-07**

(30) Prioritet: **2008-03-25 US 39223 P**

(62) Stamansøgningsnr: **08873561.8**

(84) Designerede stater: **AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC
MT NL NO PL PT RO SE SI SK TR**

(73) Patenthaver: **Telefonaktiebolaget LM Ericsson (publ)**, , 164 83 Stockholm, Sverige

(72) Opfinder: **LINDOFF, Bengt, Öresundsvägen 5, 237 35 Bjärred, Sverige**
Parkvall, Stefan, Hermelinstigen 24, 16757 Bromma, Sverige
Dahlman, Erik, Schelegatan 3, 112 23 Stockholm, Sverige

(74) Fuldmægtig i Danmark: **Zacco Denmark A/S, Arne Jacobsens Allé 15, 2300 København S, Danmark**

(54) Benævnelse: **Timing af komponentbærere i trådløse multibærernettværk**

(56) Fremdragne publikationer:
EP-A-1 895 697
WO-A-2006/090257
WO-A-2006/126085
WO-A-2007/003122
US-A1- 2007 153 729
ATTAR R ET AL: "Evolution of cdma2000 cellular networks: multicarrier EV-DO", IEEE COMMUNICATIONS MAGAZINE, IEEE SERVICE CENTER, PISCATAWAY, US, vol. 44, no. 3, 1 March 2006 (2006-03-01), pages 46-53, XP002415258, ISSN: 0163-6804

DK/EP 2822341 T3

DESCRIPTION

TECHNICAL FIELD

[0001] The disclosed technology relates to timing of component carriers for use in communications between a user equipment and a base station in a wireless network.

BACKGROUND

[0002] Evolution of cellular systems promise significant data rate increase in the future, to 1 Gb/s and higher. Higher data rates typically require larger system bandwidths. For the IMT (International Mobile Telecommunications) advanced (i.e. the fourth generation mobile communication) systems, bandwidths up to 100 MHz are being discussed. Unfortunately, the radio spectrum is a limited resource and since many operators and systems need to share the same radio resource, finding a free 100 MHz contiguous spectrum is problematic.

[0003] One way to address this issue is to aggregate multiple narrow bandwidths (or component carriers) as illustrated in FIG. 1, which can be contiguous or non-contiguous to aggregateately achieve the wide bandwidth. In the example of FIG. 1, a 50 MHz bandwidth spectrum is achieved by aggregating individual narrower bandwidth component carriers, which in this instance are 20MHz, 20MHz, and 10MHz wide component carriers. One benefit of such a solution is that it is possible to generate sufficiently large bandwidth for supporting data rates up to and above 1 Gb/s. Furthermore, this solution also makes it possible to adapt the spectrum parts to various situations and geographical positions thus making such solution very flexible.

[0004] A straightforward evolution of current cellular systems, such as LTE (Long Term Evolution), to support contiguous and non-contiguous spectrum is to introduce multi-carriers. That is, for each spectrum "chunk" representing a "legacy LTE" system carrier, a "4G" user equipment can be made to be capable of receiving multiple number of LTE carriers of different bandwidths transmitted at different carrier frequencies.

[0005] Although this approach seems to be straightforward, it is a non-trivial task to design an LTE advanced capable user equipment. The aggregated spectrum approach implies that the radio receiver architecture for the user equipment will become more complicated than for a user equipment that is capable of only receiving small and contiguous system bandwidths. The reason is that the front end radio needs to be able to suppress blocking signal in between the spectrum "chunks". Different kind of radio architecture can be used to handle this problem, see for example patent application WO 2007/003122. However, they typically accompany drawbacks in terms of power consumption compared to standard continuous system bandwidth receivers.

SUMMARY

[0006] One aspect of the invention is to provide a mechanism for efficient transmission of large amount of DL (download) data from a base station to a user equipment in a multi-carrier environment that minimizes power consumption on the user equipment. In this aspect, the base station is capable of transmitting and the user equipment is capable of receiving signals (control and data) on a plurality of component carriers. One or more of the plurality of carriers are used to carry control signals from the base station to the user equipment. That is, one or more carriers are anchor carriers for the user equipment. On the user equipment side, one or more receivers that are configured to receive signals on the component carriers other than the anchor carriers can be put into a power conservation mode.

[0007] When it is decided that a large amount of DL data needs to be transmitted from the base station to the user equipment in a relatively short time, the base station divides the DL data to a plurality of data parts and transmits each data part over separate component carriers. The data parts can be transmitted to overlap each other in time. That is, the data parts can be transmitted simultaneously.

[0008] To accomplish this task, the base station first notifies the user equipment that the DL data will be transferred over multiple component carriers. If any of the selected carriers is an anchor carrier for the user equipment, then the data part corresponding to the anchor carrier can be transmitted immediately since the user equipment is already actively listening on the carrier.

[0009] However, if any of the selected component carriers is not an anchor carrier, the base station waits a predetermined delay after notifying the user equipment. In effect, a time offset is introduced between the selected anchor and non-anchor carriers. In a simple instance when one anchor carrier and one non-anchor carrier are selected, the time offset between two carriers can be about one-half TTI (transmission time interval).

[0010] The predetermined delay provides sufficient time for the user equipment to prepare itself to receive the DL data over the corresponding non-anchor carrier. For example, the user equipment can turn on or otherwise activate a fixed bandwidth receiver arranged to listen on the corresponding non-anchor carrier. As another example, the user equipment can configure an adaptable bandwidth receiver to receive on the selected non-anchor carrier.

[0011] Other information can be provided to the user equipment by the base station. For example, the base station can provide information regarding the RBs (resource blocks) of the selected component carriers that are allocated to carry the DL data. The information regarding the RBs of the non-anchor carrier can be provided over the anchor carrier or over the corresponding non-anchor carrier. The information on the RBs can be provided on a PDCCH (physical downlink control channel) of the anchor and/or the non-anchor carriers.

[0012] In other instances, it may be decided that no anchor carriers will be used to transfer the DL data. That is, it may be decided that one or more non-anchor component carriers will be used. When this occurs, it is preferred that the base station wait the predetermined delay after notifying the user equipment before transferring the DL data on the non-anchor component carriers. There may be a host of reasons for using the non-anchor component carriers. For example, the quality of the non-anchor carriers may be better than the anchor carriers.

[0013] One advantage of introducing the time offset on the different component carriers is that an optimum trade off between the user equipment power consumption and the DL data throughput can be achieved. Another advantage is that the reliability of the system may be enhanced by allowing transfer over non-anchor carriers.

DESCRIPTION OF THE DRAWINGS

[0014] The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of preferred embodiments as illustrated in the accompanying drawings in which reference characters refer to the same parts throughout the various views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.

FIG. 1 illustrates an example aggregation of multiple narrow bandwidth carriers to an aggregated wide bandwidth carrier;

FIG. 2 illustrates an embodiment of a wireless network in which the component carrier timing can be accomplished;

FIG. 3 illustrates an example timing offset between two component carriers carrying DL data;

FIG. 4 illustrates an example method to determine whether the DL data should be transferred over multiple component carriers;

FIG. 5 illustrates an example method to determine timings of transmissions on different component carriers;

FIG. 6 illustrates an example method to notify the user equipment regarding the resources of the component carriers allocated to transfer the DL data;

FIG. 7 illustrates an example method to transfer the DL data over either an anchor carrier or a non-anchor carrier;

FIG. 8 illustrates an example method to notify the user equipment regarding the resources of the non-anchor component carrier allocated to transfer the DL data;

FIG. 9 illustrates an embodiment of a base station;

FIG. 10 illustrates an example method to receive the DL data from a perspective of the user equipment; and

FIG. 11 illustrates an embodiment of a user equipment.

DETAILED DESCRIPTION

[0015] In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular architectures, interfaces, techniques, etc. in order to provide a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details. That is, those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within the scope of the claims.

[0016] In some instances, detailed descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the present invention with unnecessary detail. All statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.

[0017] Thus, for example, it will be appreciated by those skilled in the art that block diagrams herein can represent conceptual views of illustrative circuitry embodying the principles of the technology. Similarly, it will be appreciated that any flow charts, state transition diagrams, pseudocode, and the like represent various processes which may be substantially represented in computer readable medium and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.

[0018] The functions of the various elements including functional blocks labeled or described as "processors" or "controllers" may be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared or distributed. Moreover, explicit use of the term "processor" or "controller" should not be construed to refer exclusively to hardware capable of executing software, and may include, without limitation, digital signal processor (DSP) hardware, read only memory (ROM) for storing software, random access memory (RAM), and nonvolatile storage.

[0019] In a system such as the LTE, scaleable carrier bandwidths of 5, 10, 15 and 20 MHz are

supported. Component carriers with bandwidths smaller than 5 MHz can be supported for increased flexibility. The downlink transmission scheme can be based on OFDM (orthogonal frequency division multiplex). In an OFDM system, the available component carrier bandwidth is divided into a plurality of sub-carriers that are orthogonal to each other. Each of these sub-carriers is independently modulated by a low rate data stream. In LTE, the normal spacing between adjacent sub-carriers is 15 kHz, that is, $\Delta f = 15$ kHz. Sub-carrier spacing of $\Delta f = 7.5$ kHz is also supported. Downlink access for user equipments can be provided through OFDMA (orthogonal frequency division multiple access) in which different groupings of sub-carriers are allocated to different user equipments.

[0020] Data is allocated to the user equipments in terms of RBs (resource blocks) which is defined in both frequency and time domains. For the normal sub-carrier spacing $\Delta f = 15$ kHz, a physical RB includes 12 consecutive sub-carriers in the frequency domain. In the time domain, the physical block includes 7 consecutive OFDM symbols for a total of 94 REs (resource elements), which is the number of symbols available in a slot (0.5 ms in duration). The resource block size is the same for all bandwidths, therefore the number of available physical resource blocks depends on the bandwidth of the component carrier. Depending on the required DL data rate, each user equipment can be assigned one or more resource blocks in each TTI (transmission time interval) of 1 ms.

[0021] In a wireless network, the base station is able to transmit and the user equipment is able to receive signals (data and control) carried over a plurality of component carriers, where each component carrier can have the characteristics as discussed above. In a multi-carrier system such as LTE, the plurality of component carriers need not be contiguous. That is, there can be at least one gap in a frequency spectrum represented by the plurality of carriers as illustrated in FIG. 1.

[0022] FIG. 2 illustrates an example embodiment of a wireless network 200 in which component carrier timings can be practiced. For simplicity of explanation, the network 200 in FIG. 2 includes one base station 210 and one user equipment 220. Note that the concepts discussed are extendible to multiple base stations 210 and multiple user equipments 220. The bidirectional zigzag arrowed lines between the base station 210 and the user equipment 220 each represent a component carrier of an aggregated wide bandwidth spectrum. In this particular example, there are three component carriers, one of which is being used as an anchor carrier (the solid arrowed line) and two of which are non-anchor carriers.

[0023] The anchor carrier carries control signals, such as the L1/L2 control signals, from the base station 210 to the user equipment 220. The control signals inform the user equipment 220 regarding specific downlink and uplink resources (such as identification of resource blocks of the component carriers) scheduled for the user equipment, modulation scheme to be used, the user equipment transmission power level, and so on.

[0024] In FIG. 2, it is assumed that the user equipment 220 is equipped to receive signals carried over the plurality of component carriers. For example, the user equipment 220 may

include at least three fixed bandwidth receivers each configured to receive signals on one of the three component carriers. Assuming that there is no data being transferred between the base station 210 and the user equipment 220 on the non-anchor carriers, it is desirable to put the receivers that correspond to the non-anchor carriers in a power conservation mode. Power conservation mode includes turning off the receiver, putting the receiver in a periodic monitoring mode, and enabling a DRX (discontinuous reception) mode, and so on.

[0025] In another example, the user equipment 220 may include one or more adaptable bandwidth receivers. An adaptable bandwidth receiver is a receiver whose frequency range can be dynamically adjusted as the need arises. In this instance, putting the receiver into the power conservation mode can also include narrowing the frequency range of the adaptable receiver to exclude the non-anchor carriers. By narrowing the frequency range, less power is consumed. Of course, the user equipment 220 can include both fixed and adaptable bandwidth receivers.

[0026] When it is decided that a large amount of DL (download) data will be transferred from the base station 210 to the user equipment 220 in a relatively short time, that is when it is decided that a large DL data transfer bandwidth is required, multiple carriers can be used for this purpose. For explanation, FIG. 3 illustrates a situation where the DL data is divided into first and second data parts (for ease of explanation) which can be carried over first and second component carriers, respectively. In FIG. 3, frames of component carriers f1 and f2 are illustrated. The component carrier f1 is assumed to be an anchor carrier and the component carrier f2 is assumed to be a non-anchor carrier.

[0027] For explanation purposes, it is assumed that the user equipment 220 is actively listening for signals on the carrier f1 but is not actively listening for signals on the carrier f2. If the user equipment 220 includes multiple fixed bandwidth receivers, then the receiver configured to listen to the carrier f1 (first receiver) can be active and the receiver configured to listen to the carrier f2 (second receiver) can be in the power save mode. If the user equipment 220 includes an adaptable bandwidth receiver, the frequency range of the adaptive receiver can be adjusted to actively listen for the carrier f1 and exclude listening for the carrier f2.

[0028] For LTE carriers, a TTI (transmission time interval) length of 1ms consists of two slots each 0.5ms long. The control signaling such as PDCCH (physical downlink control channel) and PHICH (physical HARQ indicator channel) are provided within first three OFDM (orthogonal frequency division multiplex) symbols. A typical PDCCH decoding time is about 100 - 150 μ s. When a large DL data is to be received, the user equipment 220 can turn on or otherwise active the receiver for the second carrier. In case of adaptable bandwidth receivers, the frequency range of the receiver can be adjusted to include the second carrier.

[0029] It is preferred that the base station 210 wait a predetermined delay prior to transmitting the second data part over the second carrier. In other words, a timing offset should be introduced between the transmission on the anchor carrier and the non-anchor carrier as illustrated in FIG.3. In this particular instance, the timing offsets amounts to one-half TTI.

However, this is not the only possibility. When data parts are to be transferred over non-anchor carriers, it is only necessary for the predetermined delay be at least as long as an amount of time the user equipment 220 needs to prepare to receive signals on that non-anchor carrier.

[0030] FIG. 4 illustrates an example method M400 to determine whether the DL data should be transferred over multiple component carriers. The method M400 is from the perspective of the base station 210. In A410 of the method, the base station 210 establishes a connection with the user equipment 220 over one or more anchor carriers. In this method, it is assumed that a first carrier is one of the anchor carriers.

[0031] In A420, the base station 210 makes a determination whether a wide DL data transfer bandwidth is needed. That is, the base station 210 determines whether the DL data destined to the user equipment 220 should be transferred over the first carrier and additionally over at least a second carrier, which is a non-anchor carrier. If so, then in A430, the base station 210 transmits first and second data parts of the DL data over the first and second carriers, respectively. There is a predetermined delay between the transmissions over the first and second carriers. As explained above, the predetermined delay is an amount of time sufficient for the user equipment 220 to prepare to receive the DL data over the second carrier. As seen in FIG. 3, after the predetermined delay, the first and second data parts are transferred simultaneously which effectively increases the data transfer bandwidth.

[0032] FIG. 5 illustrates an example method to implement A430 of FIG. 4 of transmitting the DL data over the first and second carriers. In A510, the base station 210 splits the DL data into the first and second data parts. Then in A520, the base station 210 notifies the user equipment 220 of the DL data transmission over the first and second carriers. In A530, the first data part is transmitted over the first carrier, and in A540, the second data part is transmitted over the second carrier.

[0033] In A530, the first data part is transmitted immediately after notifying the user equipment 220, i.e., the first data part is transmitted without wait. Since the first carrier is one of the anchor carriers for the user equipment 220, the user equipment 220 is already actively listening for signals on that carrier. Thus, there is no need to wait.

[0034] In contrast, the second carrier is not one of the anchor carriers. Therefore, it is possible that the user equipment 220 is not actively listening on the second carrier due to being in power conservation mode. So in A540, the predetermined delay is waited prior to the base station 210 transmitting the second data part over the second carrier.

[0035] Going back to A520, the base station 210 may choose which component carriers will be used including the first and second carriers to transfer the DL data. To prepare the user equipment 220, the base station notifies the user equipment 220 of the choice of carriers. In the notification, information regarding one or more resource blocks of the second carrier allocated to carry the second data part can be further included.

[0036] FIG. 6 illustrates an example method to implement A520, that is to notify the user equipment 220. In the method, the base station 210 provides the information on the second carrier over the first carrier in A610. Then in A620, the base station also provides the resource block information of the second carrier over either the first or the second carrier.

[0037] In one embodiment, information regarding the second carrier and the RBs (resource blocks) of the second carrier are provided over the first carrier. As an example, the base station 210 may reserve a portion of a PDSCH (physical downlink shared channel) of the first carrier to provide the information. In an embodiment, the base station 210 provides the information over a PDCCH (physical downlink control channel) of the first carrier. In another embodiment, identification of the second carrier is provided over the first carrier (e.g., in the PDSCH or PDCCH) and the information regarding the resource blocks of the second carrier is provided over the second carrier itself, for example, over the PDCCH of the second carrier.

[0038] Referring back to FIG. 4, the base station 210 may determine that the wide DL data transfer bandwidth is not needed in A420. That is, the base station 210 may determine that one of the first or the second component carrier is sufficient for the DL data transfer. When this occurs, the base station 210 transmits the DL data over either the first or the second carrier in A440. If it is decided to transfer the DL data over the first carrier, then the base station 210 may do so without waiting any delay. If it is decided that the second carrier will be used, then the base station 210 can wait before transmitting.

[0039] The base station 210 may decide to transfer the DL data over the second (i.e., non-anchor) carrier instead of over the first (i.e., anchor) carrier even though a wait is involved. There are a host of reasons why such a decision may be made. In general if the non-anchor carrier is better suited, i.e., the quality of the second carrier is better, then it may be advantageous to use the second carrier since it is more reliable. As an example of a quality measurements, a CQI (channel quality indicator) of the second carrier may be higher than the CQI of the first carrier. Other examples of quality measurements can be based on signal-to-interference (SIR) ratio (higher the better), a received signal reference power (RSRP) (higher the better), a data transmission rate (higher the better), an error rate (lower the better), repeat request rate (lower the better), and so on.

[0040] In addition to quality considerations, the network system capacity may also factor into the decision. In one example, the first carrier may be overutilized relative to the second carrier. Thus, a consideration for switching to a second carrier may be that a remaining data carrying capacity of the second carrier is greater than a remaining data carrying capacity of the first carrier by a predetermined amount.

[0041] FIG. 7 illustrates an example method to implement A440 of FIG. 4 of transferring the DL data over either the anchor carrier (the first carrier) or the non-anchor carrier (the second carrier). In A710, the base station 210 decides whether the second carrier should be used to transfer the DL data instead of the first carrier based on the considerations discussed above. If it is decided not to use the second carrier, the base station 210 transmits the DL data over the

first carrier without delay as depicted in A720. If it is decided to use the second carrier, then in A730, the base station 210 notifies the user equipment 220 of the transfer of the DL data over the second carrier. Then after waiting the predetermined delay, the base station 210 transmits the DL data over the second carrier in A740.

[0042] FIG. 8 illustrates an example method to implement A730 to notify the user equipment 220 regarding the transfer of the DL data over the second carrier. In A810, the base station 210 informs the user equipment 220 regarding the second carrier over the first carrier. Then in A820, information on the resource blocks of the second carrier allocated to carry the DL data is provided over either the first carrier (e.g., in the PDSCH or the PDCCH) or second carrier (e.g., in the PDCCH).

[0043] FIG. 9 illustrates the embodiment of the base station 210 depicted in FIG. 2. The base station 210 includes a processing unit 910, a monitoring unit 920 and a communication unit 930. The monitoring unit 920 is arranged to monitor, e.g., loads on the component carriers used by the base station 210. The communication unit 930 is arranged to communicate with the user equipment 220 in the network 200. The processing unit 910 is arranged to control the operations of the components of the base station 210 to perform the methods as described above.

[0044] FIG. 10 illustrates an example method M1000 from the perspective of the user equipment 220, to receive the DL data from the base station 210. In A1010 of the method, the user equipment 220 establishes a connection over one or more anchor carriers with the base station 210 including the first carrier. In A1020, the user equipment 220 receives a notification from the base station 210 regarding the DL data transfer. In A1030, based on the notification, the user equipment 220 determines whether the base station will transfer the DL data over the first carrier and additionally over the second (non-anchor) carrier. If the user equipment 220 makes such determination, then in A1040, the user equipment 220 activates the receivers to receive the first data part of the DL data over the first carrier and the second data part over the second carrier. In A1040, the user equipment 220 actively prepares the receivers so that it can be ready to receive the signals on the second carrier after the predetermined delay.

[0045] If it is determined in A1030 that the DL data will not be carried over multiple component carriers, then the user equipment 220 determines whether the base station 210 will transmit the DL data over the first or the second carrier in A1050. If it is determined that the DL data will be received over the first carrier, then in A1070, the user equipment 220 receives data without delay. However, if it is determined that the DL data will be received over the second carrier, then in A1060, the user equipment 220 actively prepares the receivers so that it is ready to receive the DL data over the second carrier on or before the predetermined delay passes since receiving the notification.

[0046] FIG. 11 illustrates an embodiment of the user equipment 220. The user equipment 220 includes a processing unit 1110 and a communications unit 1120. The communications unit 1120 is arranged to communicate with the base station 210 in the network 200. The

communications unit 1120 can include any combination of fixed narrow bandwidth receivers and adaptable bandwidth receivers. If only fixed bandwidth receivers are considered, then the communications unit 1230 is preferred to include a plurality of receivers, where each receiver is configured to listen on one of the plurality of component carriers. If only adaptable bandwidth receivers are considered, then there can be one or more of these receivers. If a combination is considered, then there can be one or more fixed bandwidth receivers and one or more adaptable bandwidth receivers. The processing unit 1110 is arranged to control the operations of the components of the user equipment 220 to perform the methods described above.

[0047] Although the description above contains many specificities, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly not to be limited. All structural, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are intended to be encompassed hereby. Moreover, it is not necessary for a device or method to address each and every problem described herein or sought to be solved by the present technology, for it to be encompassed hereby. Furthermore, no element, component, or method act in the present disclosure is intended to be dedicated to the public.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO2007003122A [0005]

P a t e n t k r a v

1. Fremgangsmåde i en basisstation (210) i et trådløst netværk (200) til transmission af data til en brugerindretning i det trådløse netværk, hvilken fremgangsmåde omfatter:

5 at etablere (A410) en forbindelse over en eller flere ankerbærere, der indbefatter en første bærer, hvor ankerbærerne anvendes til at tilvejebringe kontrollsignaler fra basisstationen (210) til brugerindretningen (220);

10 at foretage en bestemmelse (A420) med hensyn til, om de data, der er bestemt til brugerindretningen (220), også skal overføres over en anden bærer; og

15 at transmittere (A430) dataene over den første og anden bærer, når det bestemmes, at den anden bærer også skal anvendes, hvilken fremgangsmåde er **KENDETETEGNET VED, AT** handlingen at transmittere (A430) dataene over den første og anden bærer omfatter:

at opdele (A510) dataene i mindst første og anden datadel;

at underrette (A520) brugerindretningen (220) om datatransmissionen, herunder tilvejebringe (A610) en identifikation af den anden bærer over den første bærer,

20 at transmittere (A530) den første datadel over den første bærer; og

at transmittere (A540) den anden datadel over den anden bærer efter at have ventet en forudbestemt ventetid efter underretning af brugerindretningen, hvor den forudbestemte ventetid er et tidsrum, der er tilstrækkeligt til, at brugerindretningen (220) kan forberede modtagelse over den anden bærer.

25 **2. Fremgangsmåde ifølge krav 1, hvor den anden bærer ikke er en af ankerbærerne.**

30 **3. Fremgangsmåde ifølge krav 1, hvor handlingen at underrette (A520) brugerindretningen (220) yderligere omfatter:**

over den første bærer eller den anden bærer at tilvejebringe (A620) informationer om ressourceblokke, RBs, af den anden bærer, der er allokeret til at bære den anden datadel,

35 hvor informationerne om RBs tilvejebringes på en PDSCH, physical downlink shared channel, eller på en PDCCH, physical downlink control channel, af den første bærer eller på PDCCH'en af den anden bærer.

4. Fremgangsmåde ifølge krav 1, yderligere omfattende:

at transmittere (A440) dataene over den første eller den anden bærer, når det bestemmes, at den anden bærer ikke skal anvendes også,

5 hvor, når dataene transmitteres over den anden bærer, så transmitteres dataene efter den forudbestemte ventetid.

5. Fremgangsmåde ifølge krav 4, hvor det i handlingen at transmittere (A440)

dataene over den første eller den anden bærer bestemmes, at dataene skal overføres over den anden bærer, når et eller flere af følgende er sandt:

10 en kanalkvalitet af den anden bærer er højere end en kanalkvalitet af den første bærer,

en signal-interferens-forhold, SIR, for den anden bærer er højere end et SIR for den første bærer,

15 en RSRP, received signal reference power, for den anden bærer er højere end en RSRP for den første bærer,

en datatransmissionshastighed for den anden bærer er højere end en datatransmissionshastighed for den første bærer,

en fejrlate for den anden bærer er lavere end en fejrlate for den første bærer,

20 og

en resterende dataoverføringskapacitet af den anden bærer er højere end en resterende dataoverføringskapacitet af den første bærer.

6. Basisstation (210), der omfatter:

25 en kommunikationsenhed (930), der er indrettet til at kommunikere med en brugerindretning (220); og

en behandlingsenhed (910), der er indrettet til:

30 via kommunikationsenheden (930) at etablere en forbindelse over en eller flere ankerbærere, der indbefatter en første bærer, hvor ankerbærerne anvendes til at tilvejebringe kontrolsignaler fra basisstationen (210) til brugerindretningen (220);

at foretage en bestemmelse med hensyn til, om de data, der er bestemt til brugerindretningen (220), også skal overføres over en anden bærer; og

35 via kommunikationsenheden (930) at transmittere dataene over den første og anden bærer som reaktion på en bestemmelse om, at den anden bærer også skal anvendes,

hvilken basisstation er (210) **KENDETSEGNET VED, AT:**
behandlingsenheden (910), der er indrettet til at transmittere dataene over
den første og anden bærer, omfatter midler til:
at opdele dataene i mindst første og anden datadele, via kommunikationsen-
5 heden (930) at underrette brugerindretningen (220) om datatransmissionen,
herunder tilvejebringe en identifikation af den anden bærer over den første
bærer, og at transmittere den første datadel over den første bærer og den
anden datadel over den anden bærer,
hvor behandlingsenheden er indrettet til at transmittere den anden datadel
10 over den anden bærer efter at have ventet en forudbestemt ventetid efter
uderretningen, og
hvor den forudbestemte ventetid er et tidsrum, der er tilstrækkeligt til, at bru-
gerindretningen (220) kan forberede modtagelse over den anden bærer.

15 7. Basisstation (210) ifølge krav 6, hvor den anden bærer ikke er en af an-
kerbærerne.

8. Basisstation (210) ifølge krav 6, hvor behandlingsenheden (910) er indret-
20 tet til at tilvejebringe, over den første bærer eller den anden bærer, informati-
oner om ressourceblokke, RBs, af den anden bærer, der er allokeret til at
overføre den anden datadel,
hvor informationerne om RBs tilvejebringes på en PDSCH, physical downlink
shared channel, eller på en PDCCH, physical downlink control channel, af
den første bærer eller på PDCCH'en af den anden bærer.

25 9. Basisstation (210) ifølge krav 6, hvor behandlingsenheden (910) er indret-
tet til:
at transmittere dataene over den første eller den anden bærer som reaktion
på en bestemmelse om, at den anden bærer ikke skal anvendes også,
30 hvor behandlingsenheden er indrettet til, som reaktion på en bestemmelse
om, at dataene transmitteres over den anden bærer, at transmittere dataene
efter den forudbestemte ventetid.

10. Basisstation (210) ifølge krav 9, hvor behandlingsenheden (910) er ind-
35 rettet til at bestemme, at dataene skal overføres over den anden bærer som
reaktion på en bestemmelse af, at et eller flere af følgende er sandt:

en kanalkvalitet af den anden bærer er højere end en kanalkvalitet af den første bærer,

et signal-interferens-forhold, SIR, for den anden bærer er højere end et SIR for den første bærer,

5 en RSRP, received signal reference power, for den anden bærer er højere end en RSRP for den første bærer,

en datatransmissionshastighed for den anden bærer er højere end en data-transmissionshastighed for den første bærer,

en fejrate for den anden bærer er lavere end en fejrate for den første bærer,

10 og

en resterende dataoverføringskapacitet af den anden bærer er højere end en resterende dataoverføringskapacitet af den første bærer.

11. Fremgangsmåde i en brugerindretning (220) i et trådløst netværk (200) til modtagelse af data fra en basisstation i det trådløse netværk, hvilken fremgangsmåde omfatter:

at etablere (A1010) en forbindelse over en eller flere ankerbærere, der indbefatter en første bærer, hvor ankerbærerne anvendes af basisstationen (210) til at tilvejebringe kontrolsignaler til brugerindretningen (220);

20 hvilken fremgangsmåde er **KENDETETEGNET VED**:

at modtage (A1020) en underretning fra basisstationen (210) over den første bærer, hvilken underretning indbefatter en identifikation af en anden bærer;

at foretage en bestemmelse (A1030) med hensyn til, om basisstationen (210) også skal anvende en anden bærer til at overføre dataene på basis af underretningen; og

at modtage (A1040) dataene over den første og anden bærer, når det bestemmes, at basisstationen (210) også skal anvende den anden bærer, hvor en første datadel af dataene modtages over den første bærer, og en anden datadel af dataene efter en forudbestemt ventetid efter modtagelsen af underretningen modtages over den anden bærer, hvor den forudbestemte ventetid er tilstrækkelig til, at brugerindretningen (220) kan forberede modtagelse over den anden bærer.

12. Fremgangsmåde ifølge krav 11, yderligere omfattende:

35 når det bestemmes (A1030), at basisstationen ikke skal anvende den anden bærer også, at udføre følgende trin:

at foretage en bestemmelse (A1050) med hensyn til, om basisstationen (210) kun skal anvende den anden bærer til at overføre dataene på basis af underretningen;

5 at modtage (A1060) dataene over den anden bærer efter den forudbestemte ventetid, når det bestemmes, at basisstationen (210) kun skal anvende den anden bærer; og

at modtage (A1070) dataene over den første bærer, når det bestemmes, at basisstationen (210) ikke kun skal anvende den anden bærer.

10 **13.** Fremgangsmåde ifølge krav 11, hvor underretningen indbefatter informationer om ressourceblokke, RBs, af den anden bærer, der er allokeret til data, der overføres over den første bærer eller over den anden bærer, hvor informationerne om RBs tilvejebringes på en PDSCH, physical downlink shared channel, eller på en PDCCH, physical downlink control channel, af den første bærer eller på PDCCH'en af den anden bærer.

15 **14.** Fremgangsmåde ifølge krav 11, hvor den anden bærer ikke er en af ankerbærerne.

20 **15.** Brugerindretning (220) til et trådløst netværk (200), der kan kommunikere med en basisstation (210) over flere bærere, omfattende:

en kommunikationsenhed (1120), der er indrettet til at kommunikere med en basisstation (210); og

en behandlingsenhed (1110), der er indrettet til:

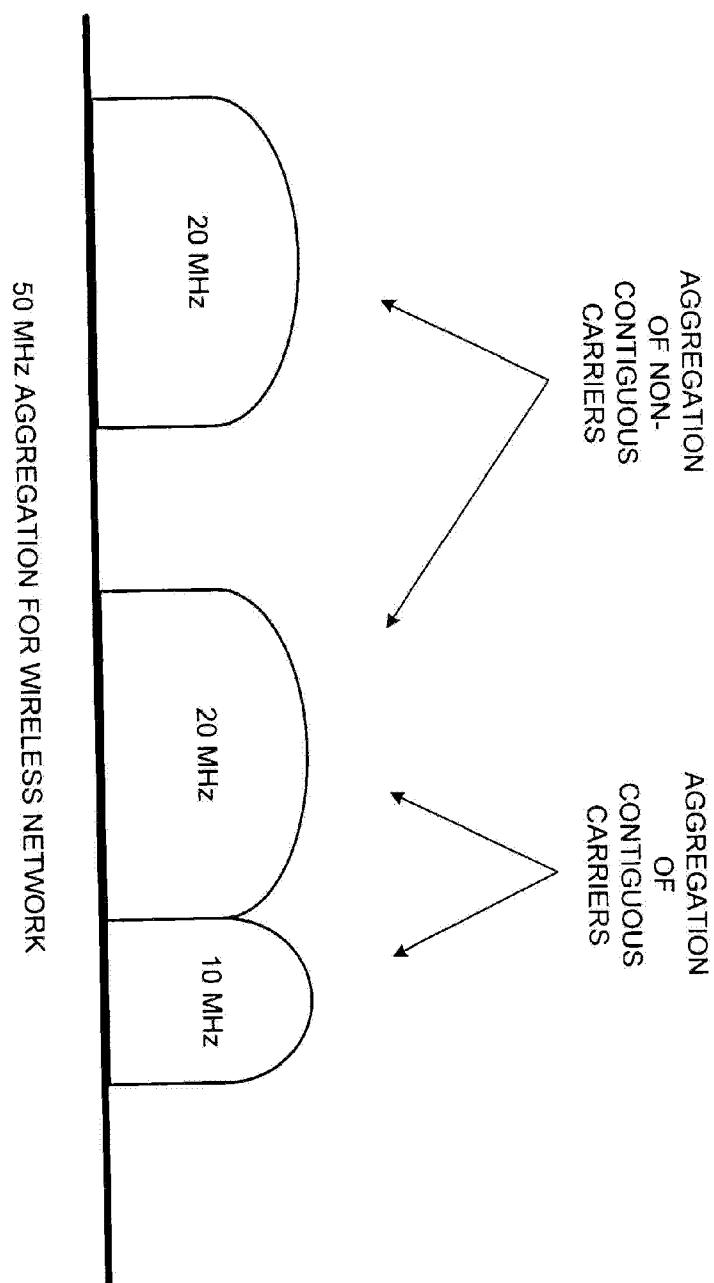
25 via kommunikationsenheden (1120) at etablere en forbindelse over en eller flere ankerbærere, der indbefatter en første bærer, hvor ankerbærerne anvendes af basisstationen (210) til at tilvejebringe kontolsignaler til brugerindretningen (220);

hvilken brugerindretning er **KENDETENGET VED, AT** behandlingsenheden

30 yderligere er indrettet til:

via kommunikationsenheden (1120) at modtage en underretning fra basisstationen (210) over den første bærer, hvilken underretning indbefatter en identifikation af en anden bærer;

35 at foretage en bestemmelse med hensyn til, om basisstationen (210) også skal anvende en anden bærer til at overføre dataene på basis af underretningen; og


via kommunikationsenheden at modtage (1120) dataene over den første og anden bærer som reaktion på en bestemmelse om, at basisstationen (210) også skal anvende den anden bærer, hvor
behandlingsenheten er indrettet til via kommunikationsenheden at modtage
5 en første datadel af dataene over den første bærer og, efter en forudbestemt ventetid efter modtagelsen af underretningen, en anden datadel af dataene over den anden bærer, hvor den forudbestemte ventetid er et tidsrum, der er tilstrækkeligt til, at brugerindretningen (220) kan forberede modtagelse over den anden bærer.

10 **16.** Brugerindretning (220) ifølge krav 15, hvor behandlingsenheten (1110) er indrettet til, som reaktion på en bestemmelse om, at basisstationen ikke skal anvende den anden bærer også:
at foretage en bestemmelse med hensyn til, om basisstationen (210) kun
15 skal anvende den anden bærer til at overføre dataene på basis af underretningen;
via kommunikationsenheden at modtage (1120) dataene over den anden bærer efter den forudbestemte ventetid som reaktion på en bestemmelse om, at basisstationen (210) kun skal anvende den anden bærer; og
20 via kommunikationsenheden at modtage (1120) dataene over den første bærer som reaktion på en bestemmelse om, at basisstationen (210) ikke kun skal anvende den anden bærer.

25 **17.** Brugerindretning (220) ifølge krav 15, hvor underretningen indbefatter informationer om ressourceblokke, RBs, af den anden bærer, der er allokeret til data, der overføres over den første bærer eller over den anden bærer, hvor informationerne om RBs tilvejebringes på en PDSCH, physical downlink shared channel, eller på en PDCCH, physical downlink control channel, af den første bærer eller på PDCCH'en af den anden bærer.

30 **18.** Brugerindretning (220) ifølge krav 15, hvor den anden bærer ikke er en af ankerbærerne.

DRAWINGS

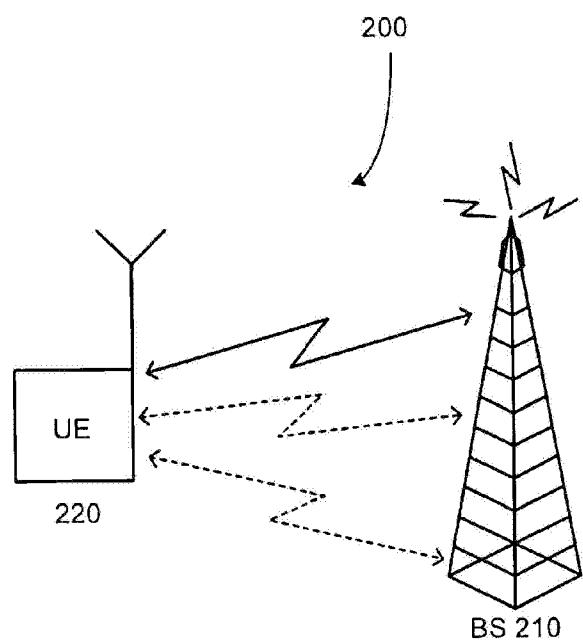


FIG. 2

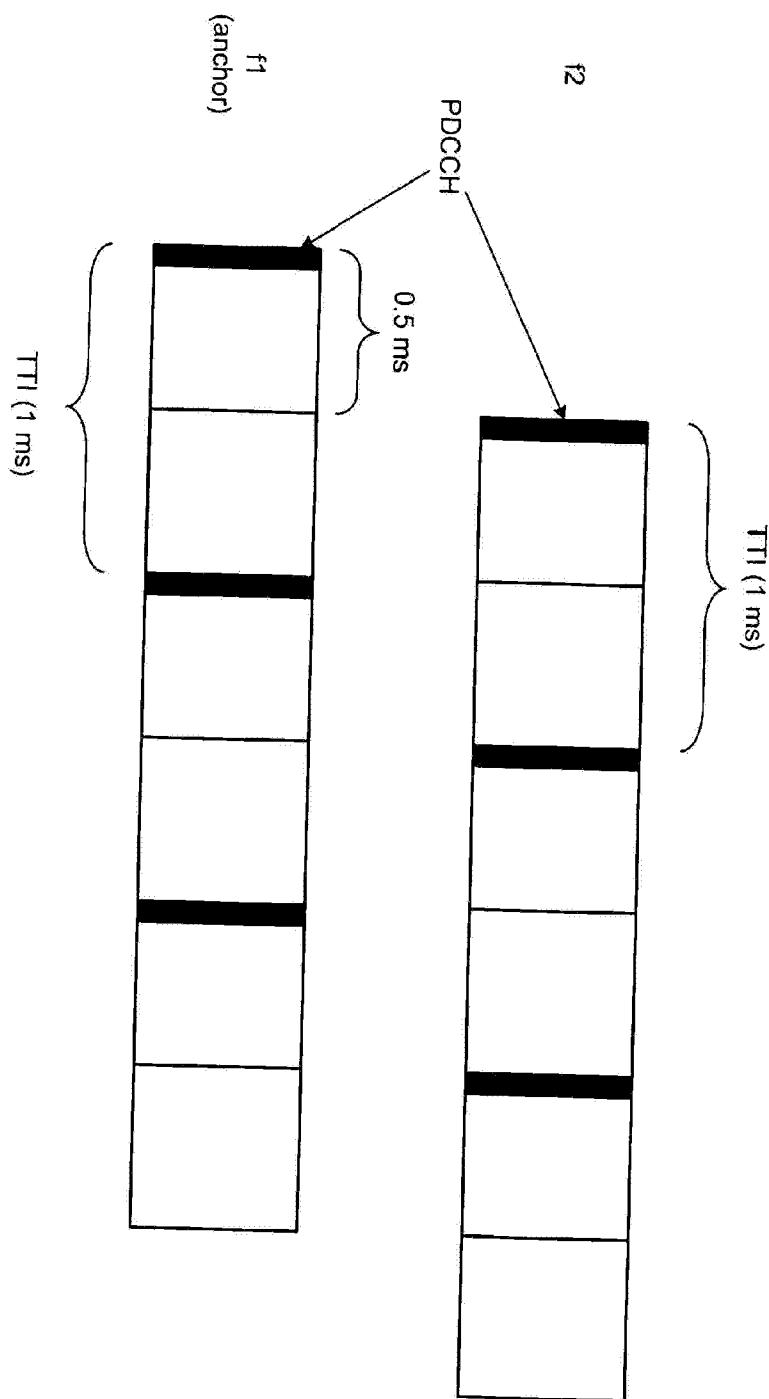


FIG. 3

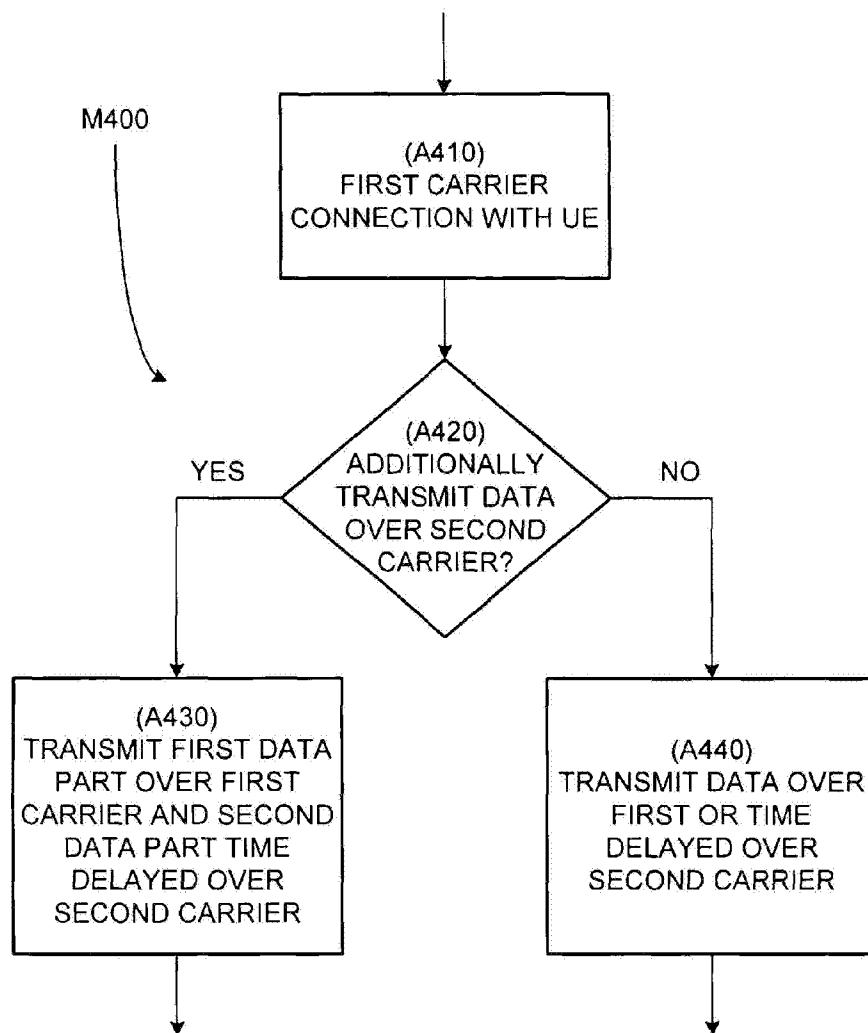


FIG. 4

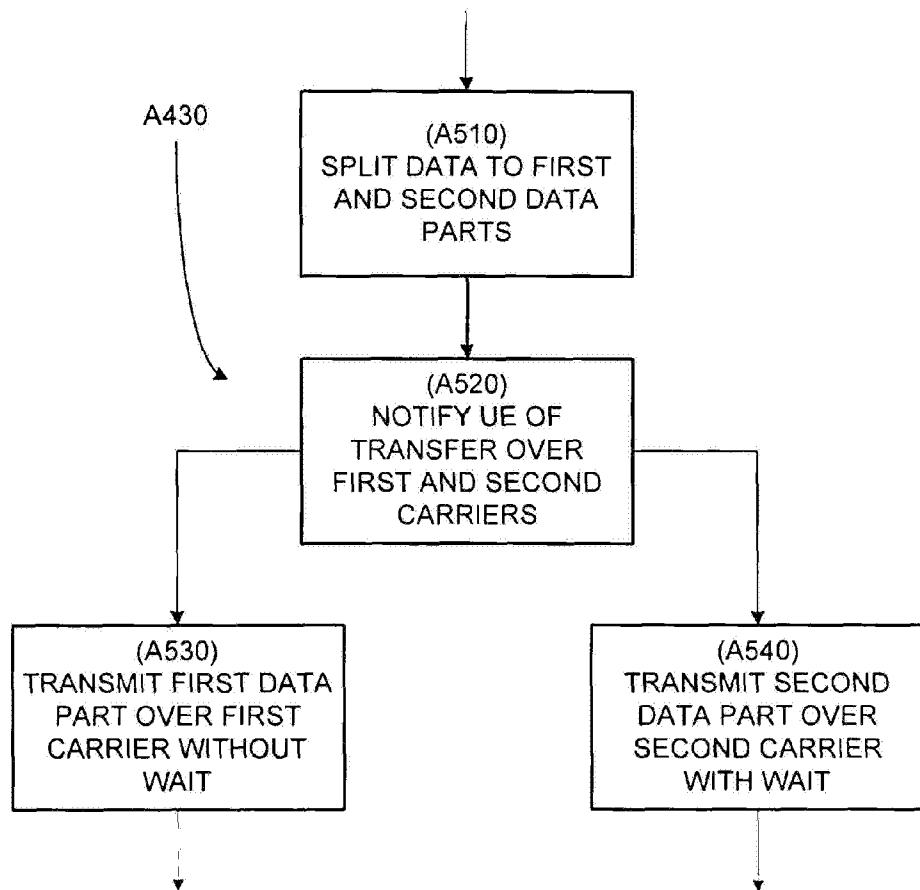


FIG. 5

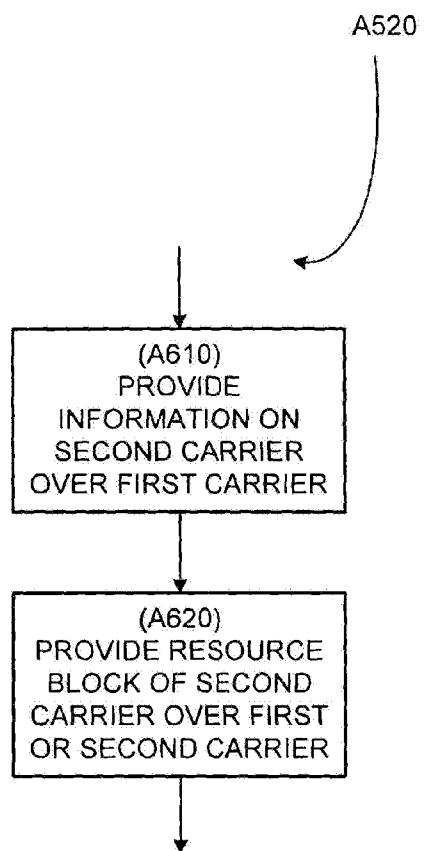


FIG. 6

FIG. 7

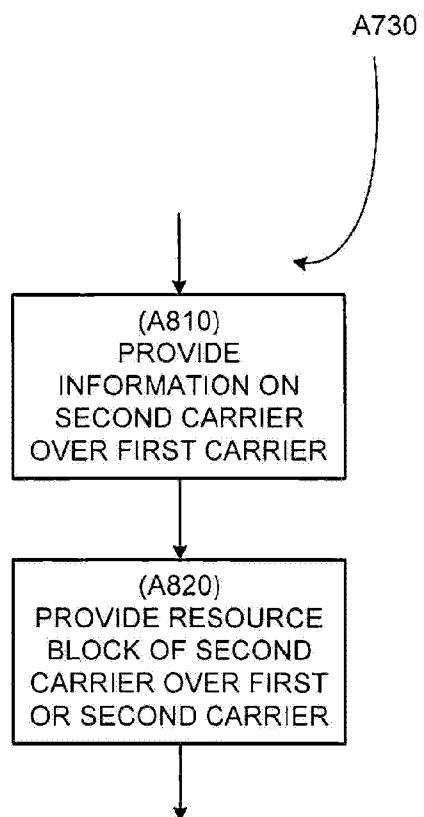


FIG. 8

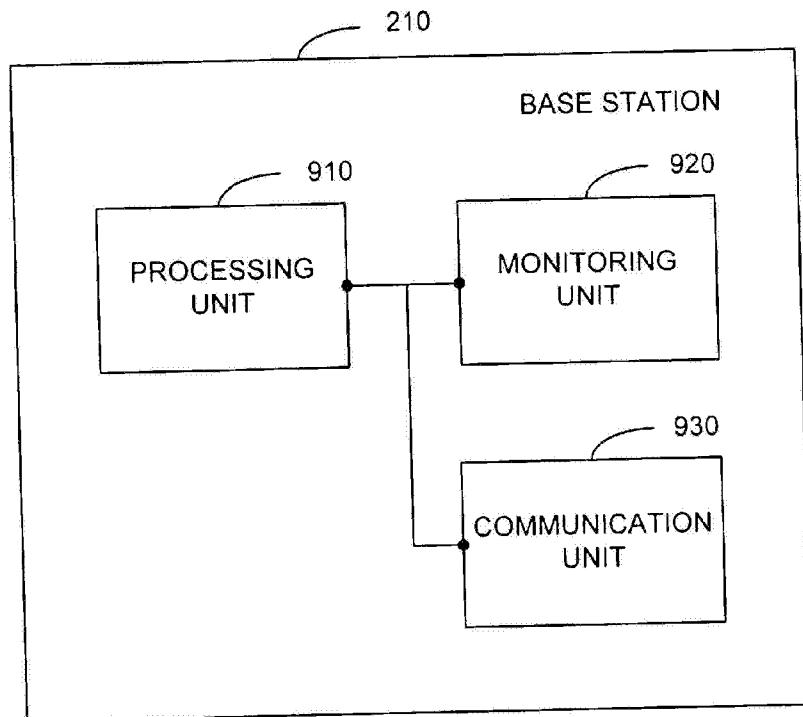


FIG. 9

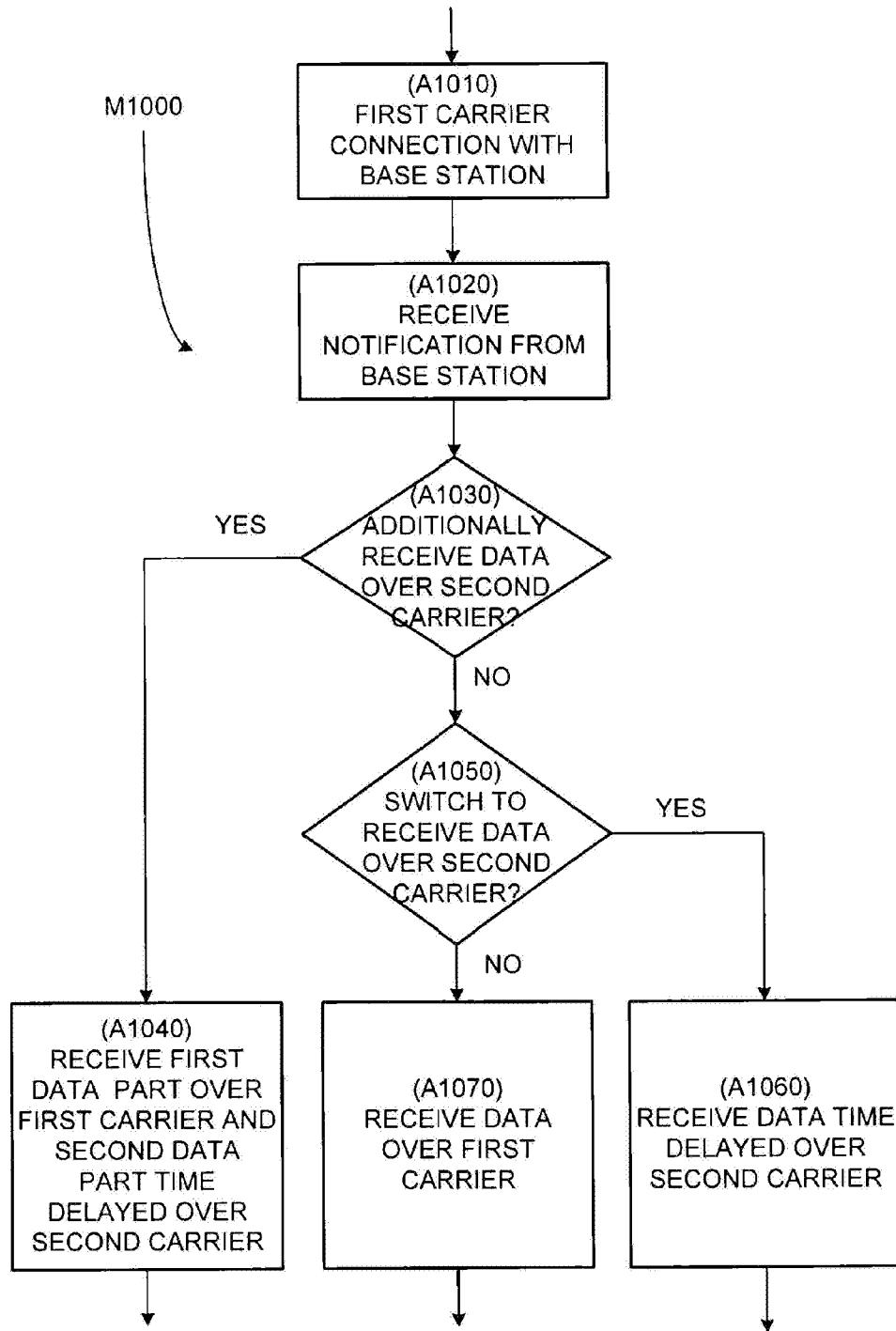


FIG. 10

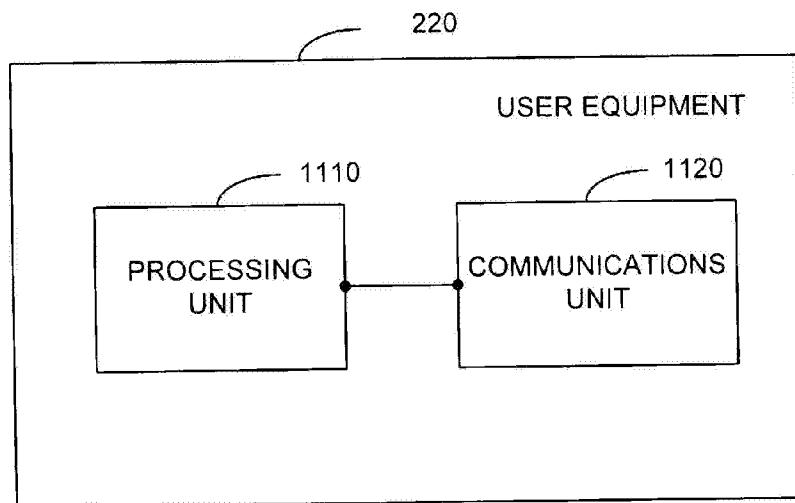


FIG. 11