

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2016214317 B2

(54) Title
Nanobody dimers linked via C-terminally engineered cysteins

(51) International Patent Classification(s)
C07K 16/00 (2006.01) **C07K 16/24** (2006.01)
A61P 35/00 (2006.01) **C07K 16/28** (2006.01)
C07K 16/18 (2006.01) **C07K 16/30** (2006.01)

(21) Application No: **2016214317** (22) Date of Filing: **2016.02.05**

(87) WIPO No: **WO16/124781**

(30) Priority Data

(31) Number (32) Date (33) Country
62/112,218 **2015.02.05** **US**
62/269,434 **2015.12.18** **US**

(43) Publication Date: **2016.08.11**
(44) Accepted Journal Date: **2022.01.13**

(71) Applicant(s)
Ablynx N.V.

(72) Inventor(s)
Boutton, Carlo;Janssens, Daniel;Casteels, Peter;Schotte, Peter;Descamps, Francis

(74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
SAM MASSA ET AL, "Site-Specific Labeling of Cysteine-Tagged Camelid Single-Domain Antibody-Fragments for Use in Molecular Imaging", BIOCONJUGATE CHEMISTRY., US, (2014-05-21), vol. 25, no. 5, doi:10.1021/bc500111t, pages 979 - 988
WO 2011003622 A1
WO 2013190292 A2
GEORGE BADESCU ET AL, "Bridging Disulfides for Stable and Defined Antibody Drug Conjugates", BIOCONJUGATE CHEMISTRY, (2014-06-18), vol. 25, no. 6, doi:10.1021/bc500148x, ISSN 1043-1802, pages 1124 - 1136
SIMMONS D P ET AL: "Dimerisation strategies for shark IgNAR single domain antibody fragments", JOURNAL OF IMMUNOLOGICAL METHODS, ELSEVIER SCIENCE PUBLISHERS B.V., AMSTERDAM, NL, vol. 315, no. 1-2, 31 August 2006 (2006-08-31), pages 171-184.
WO 2010/025187 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/124781 A1

(43) International Publication Date
11 August 2016 (11.08.2016)

(51) International Patent Classification:

C07K 16/00 (2006.01) *C07K 16/24* (2006.01)
A61K 47/48 (2006.01) *C07K 16/28* (2006.01)
A61P 35/00 (2006.01) *C07K 16/30* (2006.01)
C07K 16/18 (2006.01)

(21) International Application Number:

PCT/EP2016/052578

(22) International Filing Date:

5 February 2016 (05.02.2016)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/112,218 5 February 2015 (05.02.2015) US
62/269,434 18 December 2015 (18.12.2015) US

(71) Applicant: ABLYNX N.V. [BE/BE]; Technologiepark 21, 9052 Ghent-Zwijnaarde (BE).

(72) Inventors: BOUTTON, Carlo; Rijksweg 115, 9940 Wielsbeke (BE). JANSSENS, Daniel; Drabstraat 207 bus 2, 2640 Mortsel (BE). CASTEELS, Peter; Lindekouter 20, 9420 Erpe-Mere (BE). SCHOTTE, Peter; Hugo Verriestlaan 34, 9840 De Pinte (BE). DESCAMPS, Francis; Daglandstraat 12, 8800 Roeselare (BE).

(74) Agents: STEFFERL, ANDREAS et al.; Hoffmann Eitle Patent- Und Rechtsanwälte PartmbB, Arabellastraße 30, 81925 Munich (DE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

WO 2016/124781 A1

(54) Title: NANobody DIMERS LINKED VIA C-TERMINALLY ENGINEERED CYSTEINS

(57) Abstract: The present invention relates to dimers comprising a first polypeptide and a second polypeptide, wherein each of said first and second polypeptide comprises at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety (preferably at the C- terminus), wherein said first polypeptide and said second polypeptide are covalently linked via a disulfide bond between the cysteine moiety of said first polypeptide and the cysteine moiety of said second polypeptide, in which the dimer outperformed the benchmark constructs, e.g. cognate multivalent and multispecific constructs, in various assays. The present invention provides methods for making the dimers of the invention.

NANOBODY DIMERS LINKED VIA C-TERMINALLY ENGINEERED CYSTEINS

FIELD OF THE INVENTION

The present invention relates to dimers comprising a first polypeptide and a second polypeptide, wherein each of said first and second polypeptide comprises at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety (preferably at the C-terminus), wherein said first polypeptide and said second polypeptide are covalently linked via a disulfide bond between the cysteine moiety of said first polypeptide and the cysteine moiety of said second polypeptide, in which the dimer outperformed the benchmark constructs, e.g. cognate multivalent and multispecific constructs, in various assays. The present invention provides methods 5 for making the dimers of the invention. The present invention further provides variable domains (as defined herein) and polypeptides comprising one or more variable domains (also referred to as “polypeptides of the invention”) obtainable by the methods of the present invention, as well as 10 compounds (also referred to as “compounds of the invention”) that comprise such variable domains and/or polypeptides coupled to one or more groups, residues or moieties.

15 The invention also relates to nucleic acids encoding such variable domains and/or polypeptides; to host cells comprising such nucleic acids and/or expressing or capable of expressing such variable domains and/or polypeptides; to compositions, and in particular to pharmaceutical compositions, 20 that comprise such variable domains and/or polypeptides, compounds, nucleic acids and/or host cells; and to uses of such variable domains, polypeptides, nucleic acids, host cells and/or compositions, in particular for labelling, prophylactic, therapeutic or diagnostic purposes.

Other aspects, embodiments, advantages and applications of the invention will become clear from the further description herein.

BACKGROUND

25 With more than 20 monoclonal antibodies (mAbs) approved for therapy, and many more in clinical development, this class of molecules has become an established treatment modality for a variety of diseases (Reichert (2011) MAbs 3:76-99; Nelson *et al.* (2010) Nat Rev Drug Discov 9:767-74). However, complex diseases such as cancer or inflammatory disorders are usually multifactorial in 30 nature, involving a redundancy of disease-mediating ligands and receptors, as well as crosstalk between signal cascades. Blockade of multiple targets or multiple sites on one target should result in improved therapeutic efficacy. The limited ability of conventional monoclonal antibody therapies to induce significant anti-tumor activity has led to the development of bispecifics; antibodies that can

simultaneously bind two different antigens (Kontermann (2012) mAbs 4:182-197). During the past decade, dual targeting with bispecific antibodies has emerged as an alternative to combination therapy or use of mixtures. The concept of dual targeting with bispecific antibodies is based on the targeting of multiple disease-modifying molecules with one drug. From a technological and 5 regulatory perspective, this makes development less complex because manufacturing, preclinical and clinical testing is reduced to a single, bispecific molecule (Kontermann (2012) *supra*). Therapy with a single dual-targeting drug rather than combinations should also be less complicated for patients.

Bispecific antibodies can be generated via biochemical or genetic means. Recombinant technologies have produced a diverse range of bispecific antibodies, generating 45 formats in the last two decades

10 (Byrne *et al* (2013) Trends Biotechnol. 31, 621-32). Despite this variety of topologies, the approach is not suited for every protein combination. The fusion of proteins via their N- or C-termini often results in a reduction or loss of bioactivity and variable expression yields can be observed due to complications in folding and processing (Schmidt (2009) Curr. Opin. Drug Discovery Dev. 12, 284-295; Baggio *et al.* (2004) Diabetes 53, 2492-2500; Chames and Baty (2009) mAbs 1, 539-47).

15 An alternative approach to generating bispecific therapeutics is chemical conjugation using homo- or hetero-bifunctional coupling reagents (Doppalapudi *et al.* (2010) Proc Natl Acad Sci USA 107:22611-6). Until now, this has been a less successful method of producing such conjugates. A fundamental flaw in the chemical techniques employed in this area has been their dependency on modifying lysine 20 residues. There is an average of 100 lysine residues per conventional antibody, and their distribution is uniform throughout the surface topology of the antibody or fragments thereof, such as, Fab, Fc and immunoglobulin single variable domain (ISVD) regions. As such, conjugation techniques using lysine residues will randomly cross-link to virtually all areas of the antibody molecule, resulting in a highly heterogeneous mixture of products with unpredictable properties.

25 A strategy to overcome this issue is provided by insertion of unnatural amino acids, which allow the site-specific introduction of chemical linkers. However, substitution for the unnatural amino acid is often incomplete, and expression yields are generally low due to the cellular toxicity of artificial amino acids at the high concentrations necessary.

Another approach to overcome the problems with random cross-linking is provided by site-directed 30 mutagenesis, in which a single nucleophilic cysteine residue is introduced at a desired site in an antibody. Cysteine residues have a low natural abundance in proteins, but are often found tied up in intramolecular disulfide bonds, providing structure and functional integrity, because of which free cysteine residues are lacking in antibodies and antibody fragments (Fodje and Al-Karadaghi (2002) Protein Eng. Des. Sel. 15, 353-358). The control of intra- versus intermolecular cross-linking is very

difficult to achieve with these reagents. Some control can be achieved through appropriate choice of reaction parameters such as protein/reagent ratio, pH, ionic strength etc., but the results remain unsatisfactory.

WO2004/03019 hypothesizes that variable domains may be linked together to form multivalent

5 ligands by for example provision of dAbs each with a cysteine at the C-terminus of the domain, the cysteines being disulfide bonded together, using a chemical coupling procedure using 2,2'-dithiodipyridine (2,2'-DTDP) and a reduced monomer. However, 2,2'-DTDP is an irritant limiting its practical use. In addition, its use is further limited since 2,2'-DTDP is also a reactive disulfide that mobilizes Ca^{2+} from cells. Not only is WO2004/03019 silent whether this method is actually feasible,

10 especially without disturbing and rearranging intramolecular thiol-bonds, but in view of the properties of 2,2'-DTDP, laborious measures have to be taken to completely remove this agent.

Baker *et al.* (2014, *Bioconjugate Chem.*, DOI: 10.1021/bc5002467) describes a bispecific antibody construct through reduction and bridging of antibody fragment disulfide bonds, using a synthesized bis-dibromomaleimide cross linker.

15 Carlsson *et al.* (1978 *Biochem J.* 173:723-737) proposes a thiolation procedure for proteins using n-succinimidyl 3-(2-pyridylthio)propionate resulting in reversible protein-protein conjugation. The procedure however requires extensive purification. In addition, decreased activity has been reported when following the protocol (Carlsson *et al.*, 1978). Carlsson *et al.* (1978) is silent whether the procedure can be used for antibodies or fragments thereof.

20 In general, intermolecular cross-linking via the introduction of cysteine residues is limited, as cysteine mutagenesis commonly leads to reduced expression yields and undesirable properties such as susceptibility to unwanted dimerisation, mixed disulfide formation or disulfide scrambling (Schmiedl *et al.* (2000) *J. Immunol. Methods* 242, 101-14; Junutula *et al.* (2008) *Nat. Biotechnol.* 26, 925-32; Albrecht *et al.* (2004) *Bioconjugate Chem.* 15, 16-26).

25 Graziano and Guptill discuss methods for creating $\text{Fab}' \times \text{Fab}'$ chemically linked bispecifics via the use of free thiols generated upon reduction of interheavy chain disulfide bonds of the $\text{F}(\text{ab}')2$ fragments. However, the conditions must be chosen such that efficient reduction of the inter-heavy chain disulfides is achieved without extensive reduction of heavy-light chain disulfide bonds. It was noted that bispecifics created using the o-phenylenedimaleimide (o-PDM) method may be more stable than

30 those generated by Ellman's reagent (5,5'-dithiobis-(2-nitrobenzoic acid) or DTNB), but it was more difficult to purify o-PDM-generated bispecifics to biochemical homogeneity. Another distinct disadvantage of the o-PDM method is the necessity to have an odd number of inter-heavy chain disulfide bonds in the antibody molecule to be maleimidated (Graziano and Guptill (2004) Chapter 5

Chemical Production of Bispecific Antibodies pages 71-85 From: Methods in Molecular Biology, vol. 283: Bioconjugation Protocols: Strategies and Methods; Edited by: C. M. Niemeyer © Humana Press Inc., Totowa, NJ.) This prevents its application in the construction of human-human bispecifics.

Hence, there remain problems in providing efficient and/or suitable methods for generating dimers.

5 A further strategy to improve treatment, especially cancer treatment, is to use antibody drug conjugates (ADCs). Although there are currently over 50 distinct ADCs in clinical trials, several of which are active, extensive problems remain in developing, purifying and preventing toxicity of ADCs. First of all, there is little control over the physico-chemical properties, such as heterogeneity of the ADCs due to the number of drugs conjugated per antibody, the PK/biodistribution, the payload and

10 the delivery vehicle. For instance, many drugs are conjugated via lysines to antibodies. As mentioned above, since lysines are scattered all over an antibody, this gives rise to a difficult to control drug-to-antibody ratio. In addition, this coupling interferes with the bispecific concept making use of lysine coupling as well. Moreover, most drugs used in cancer treatment are very hydrophobic, resulting in an unpredictable and mostly unfavorable aggregation, PK and biodistribution profile of the ADC

15 moiety. This is especially true for small antibody fragments. Conventional antibodies have a size of about 150 kD, while the drugs have on average a size of about 1 kD. Hence, the size ratio of antibody : drug is about 150 : 1. In vast contrast to a conventional antibody, an antibody fragment, such as an ISVD has a size of only about 15 kD. Consequently, the size ratio of ISVD : drug is only 15 : 1, i.e. 10 times less than for conventional antibodies. Accordingly, the hydrophobic characteristics of a drug

20 have a disproportionately larger influence on the physico-chemical properties of the conjugated antibody fragment. Indeed, a main problem with conjugated antibody fragments is aggregation (Feng *et al.* 2014 *Biomedicines* 2:1-13). Analyses further suggest that IgG-sized macromolecular constructs exhibit a favorable balance between systemic clearance and vascular extravasation, resulting in maximal tumor uptake (Dane Wittrup *et al.* 2012 *Methods Enzym.* 503 Chapter 10, pp255-268).

25 These difficulties effectively limit the use of conjugating drugs to smaller antibody fragments.

WO2005/007197 describes a process for the conjugation of polymers to proteins, using conjugation reagents having the ability to conjugate with both sulfur atoms derived from a disulfide bond in a protein to give thioether conjugates. In this method, the disulfide bond is reduced to produce two free cysteine residues and then reformed using a bridging reagent to which the polymer is covalently attached. This method is however not recommended for conjugating antibodies as the multitude of intra-chain disulfide bonds in the antibody molecule results in disulfide bond scrambling.

WO2013/190292 appears to overcome the deficiencies of WO2005/007197 regarding antibodies and describes a process for the conjugation of polymers via a conjugating reagent that forms a bridge

between two cysteine residues derived from a single inter-heavy chain disulfide bond in the hinge region of these antibodies. WO2013/190292 is silent about conjugation cysteine residues not located in the hinge region. Indeed, WO2013/190292 is silent about immunoglobulin single variable domains, which lack a hinge region.

5 Epidermal growth factor receptor (EGFR; also called HER-1) is a member of the HER-kinase family, together with HER-2, HER-3, and HER-4. EGFR is overexpressed in a variety of human tumors including non-small cell lung cancer, breast, head and neck, gastric, colorectal, esophageal, prostate, bladder, renal, pancreatic, and ovarian cancers. Activation of EGFR causes signaling that may lead to cell division, increased motility, angiogenesis and decreased apoptosis. These effects are mediated
10 by a complex series of signaling mechanisms, such as engagement of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K) pathways.

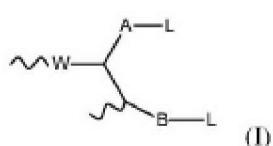
EGFR has also been implicated in several other diseases, such as inflammatory arthritis and hypersecretion of mucus in the lungs.

15 Many of the EGFR targeting antibodies such as IMC-C225 (Erbtitux, Imclone), EMD72000 (Merck Darmstadt), ABX-EGF (Abgenix), h-R3 (theraCIM, YM Biosciences) and Humax-EGFR (Genmab) were isolated as antibodies that prevent binding of ligand to the receptor. Yet none of these antibodies or the presently available drugs is completely effective for the treatment of cancer, and most are limited by severe toxicity.

20 Hence, there remain problems in the art for providing efficient and/or suitable methods for conjugating drugs to dimers.

SUMMARY OF THE INVENTION

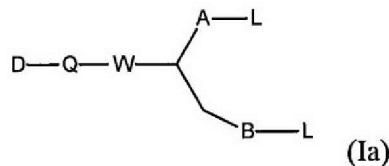
It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.


25 In view of their modularity, immunoglobulin single variable domains (ISVDs) and especially Nanobodies are exceptionally suited for combining into multivalent constructs. A convenient and preferred manner to generate multivalent constructs is by genetic fusion of individual nucleic acids encoding ISVDs via amide bonds, in which a nucleotide sequence encoding an ISVD is coupled via its 3'-terminus nucleic acid to the 5'-terminus nucleic acid of another nucleotide sequence encoding
30 ISVD, if necessary via (nucleic acid) linkers of various lengths. Hence, the ISVDs are coupled via amide bonds, possibly via peptide linkers.

ISVDs comprise intramolecular disulfide bonds between cysteines in order to maintain the integrity and functionality of the moiety. It has been demonstrated extensively that after genetic fusion of nucleotide sequences encoding ISVDs, the intrinsic property to form canonical (also designated as intramolecular) disulfide bonds is not affected in the individual ISVDs upon translation.

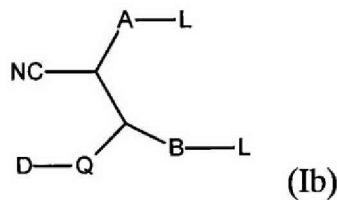
5 In view of the ease and versatility of genetic fusion, chemical conjugation of ISVDs is not a preferred method, especially since it requires arduous methods to selectively couple ISVDs at a predetermined site, not hindering intramolecular disulfide bonds and/or uses non-self, potentially hazardous components.

In one aspect, the present disclosure provides a method for making dimers, comprising at least the 0 steps of:

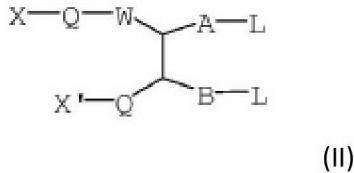

- (i) providing a first polypeptide comprising the sequence set forth in SEQ ID NO: 27, wherein said first polypeptide comprises
 - at least one immunoglobulin single variable domain (ISVD) and
 - a C-terminal extension comprising a cysteine moiety;
- 5 (ii) providing a second polypeptide comprising the sequence set forth in SEQ ID NO: 27, wherein said second polypeptide comprises
 - at least one immunoglobulin single variable domain (ISVD) and
 - a C-terminal extension comprising a cysteine moiety; and
- 0 (iii) oxidizing the thiol moiety of said cysteine moiety of said first polypeptide and the thiol moiety of said cysteine moiety of said second polypeptide by adding oxidizing copper ions (Cu^{2+}), and preferably at pH 6.5 to pH 7.5 to a disulfide derivative cystine;
- (iv)-a reducing the cystine disulfide derivative cystine;
- (iv)-b reacting the reduced product with a conjugating agent that forms a bridge between the two cysteine residues derived from the cystine; and
- 25 (v) optionally purifying said dimers, preferably via size exclusion chromatography; wherein the integrity of the ISVDs is maintained, wherein preferably at least 80%, such as 85%, 90%, 95%, 99% or even more, such as 100% of said first and said second polypeptide are dimerized, for instance as determined by mass spectrometry; and wherein said conjugating agent is chosen from the group consisting of
- 30 - conjugating agents comprising the functional group of formula (I)

5

in which W represents an electron-withdrawing group; A represents a C₁₋₅ alkylene or alkenylene chain; B represents a bond or a C₁₋₄ alkylene or alkenylene chain; and each L independently represents a leaving group;


- conjugating agents comprising the functional group of the formula (Ia):

0


in which W represents an electron-withdrawing group, Q represents a linking group and D represents a diagnostic, therapeutic or labelling agent, such as, for instance, a drug, or a binding agent, e.g. a linker, for a diagnostic, therapeutic or labelling agent, such as, for instance, a drug;

- conjugating agents comprising the functional group of the formula (Ib), in which NC represents a cyano group:

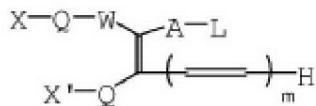
5 in which Q represents a linking group and D represents a diagnostic, therapeutic or labelling agent, such as, for instance, a drug, or a binding agent, e.g. a linker, for a diagnostic, therapeutic or labelling agent, such as, for instance, a drug;

- conjugating agents comprising the functional group of the formulae (II), (III) or (IV):

20

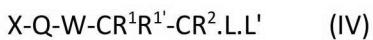
in which one of X and X' represents a polymer and the other represents a hydrogen atom;

Q represents a linking group;


W represents an electron-withdrawing group; or, if X' represents a polymer, X-Q-W together may represent an electron withdrawing group;

A represents a C₁₋₅ alkylene or alkenylene chain;

25


B represents a bond or a C₁₋₄ alkylene or alkenylene chain; and

each L independently represents a leaving group;

(III)

in which X, X', Q, W, A and L have the meanings given for the general formula II, and in addition if X represents a polymer, X' and electron-withdrawing group W together with the interjacent atoms may form a ring, and m represents an integer 1, 2, 3 or 4; or

in which X, Q and W have the meanings given for the general formula II, and either

R¹ represents a hydrogen atom or a C₁₋₄ alkyl group, R^{1'} represents a hydrogen atom, and each of L and L' independently represents a leaving group; or

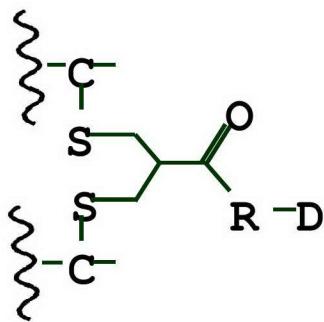
R¹ represents a hydrogen atom or a C₁₋₄ alkyl group, L represents a leaving group, and

R¹ and L' together represent a bond; or

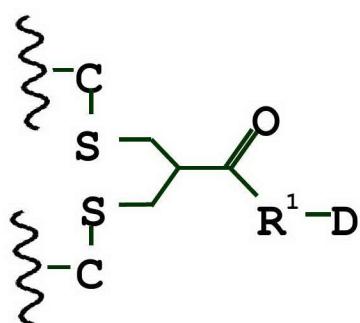
R¹ and L together represent a bond and R¹ and L' together represent a bond; and

R² represents a hydrogen atom or a C₁₋₄ alkyl group.

In another aspect, the present disclosure provides a dimer comprising a first polypeptide and a second polypeptide,


wherein said first polypeptide comprises

- at least one immunoglobulin single variable domain (ISVD) and
- a C-terminal extension comprising a cysteine moiety;


wherein said second polypeptide comprises

- at least one immunoglobulin single variable domain (ISVD) and
- a C-terminal extension comprising a cysteine moiety; and

wherein said first polypeptide and said second polypeptide are covalently linked via a thioether bond of the cysteine moiety (C) in the C-terminal extension of said first polypeptide and a thioether bond of the cysteine moiety (C) in the C-terminal extension of said second polypeptide with the compound according to formula (V) or formula (VI)

formula (V)

formula (VI)

in which

"-C-" represents a cysteine moiety in the C-terminal extension of said first polypeptide and said second polypeptide ;

"-C" represents cysteine moiety at the C-terminus of a C-terminal extension of said first polypeptide and said second polypeptide;

R^1 represents a C_{1-4} alkyl group; and D represents i) a diagnostic, therapeutic or labelling agent, such as, for instance, a drug, or ii) a binding agent, e.g. a linker, for a diagnostic, therapeutic or labelling agent such as for instance a drug,

and wherein said first polypeptide and said second polypeptide comprise the sequence set forth in

SEQ ID NO: 27.

In another aspect, the present disclosure provides a dimer when made by a method of the invention.

The present invention provides a convenient method in which intermolecular dimerization via disulfide bonds between two polypeptides is facilitated, without substantially any aberrant disturbance or involvement of intramolecular disulfide bonds of ISVDs. This method uses the introduction of a cysteine in the C-terminal extension of a polypeptide further comprising ISVDs.

The present invention also provides methods for making the dimers of the invention. In particular, the present invention relates to a method for making (polypeptide-)dimers, comprising at least the steps of:

(i) providing a first polypeptide, wherein said first polypeptide comprises

- 30 - at least one immunoglobulin single variable domain (ISVD) and
- a C-terminal extension comprising a cysteine moiety, preferably at the C-terminus;

(ii) providing a second polypeptide, wherein said second polypeptide comprises

- at least one immunoglobulin single variable domain (ISVD) and
- a C-terminal extension comprising a cysteine moiety, preferably at the C-terminus; and

5 (iii) oxidizing the thiol moiety of said cysteine moiety at the C-terminal extension of said first polypeptide and the thiol moiety of said cysteine moiety at the C-terminal extension of said second polypeptide, optionally by adding oxidizing copper ions (Cu^{2+}), and preferably at pH 6.5 to pH 7.5 to a disulfide derivative cystine; and said cystine is the only intermolecular disulfide bond present in the dimer; thereby making said dimers.

Preferably, the step of reducing said (C-terminal) cystine of said dimer is performed under conditions wherein intramolecular disulfide bonds of said first polypeptide and/or said second polypeptide remain oxidized. In other words, the integrity of the ISVDs is maintained. The method optionally further comprised the step of reducing said (C-terminally located) cystine of said dimer.

0 It was further surprisingly found that the dimers of the invention outperformed the benchmark constructs, e.g. cognate multivalent and multispecific constructs, in various assays. The benchmark constructs consisted of the same polypeptides as the dimers of the present invention, but the

benchmark constructs were generated by genetic fusion of nucleic acids encoding these polypeptides, because of which a first polypeptide is coupled to a second polypeptide via amide bonds in an N-terminal to C-terminal direction. In particular, the dimers of the invention can bind to a target with an affinity (suitably measured and/or expressed as a K_D -value (actual or apparent), a K_A -value (actual or apparent), a k_{on} -rate and/or a k_{off} -rate better than the benchmark, e.g. cognate bivalent constructs. On the other hand, the dimers of the invention, even when containing two albumin binding ISVDs, showed a similar biodistribution profile as the benchmark which contains only one albumin binding ISVD.

Moreover, the dimers of the invention showed unexpectedly an improved internalization compared to the benchmark constructs, especially on cells with low target expression. As internalization is crucial for good efficacy, improved internalization likely will lead to better efficacy. In addition, an improved internalization can reduce side effects, such as toxicity, since less drug is needed and less drug will disengage from the target. Internalization of the dimers on cells with low target expression can broaden the range of tumors accessible to treatment and decrease the chances of developing drug resistance. On the other hand, the dimers of the invention showed a similar, favorable biodistribution profile as the benchmark constructs.

Accordingly, the present invention relates to a dimer comprising a first polypeptide and a second polypeptide, wherein said first polypeptide comprises at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety (preferably at the C-terminus); wherein said second polypeptide comprises at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety (preferably at the C-terminus); and wherein said first polypeptide and said second polypeptide are covalently linked via a disulfide bond between the cysteine moiety in the C-terminal extension of said first polypeptide and the cysteine moiety in the C-terminal extension said second polypeptide.

As such, the present invention relates to a (polypeptide) dimer comprising a first polypeptide and a second polypeptide, wherein said first polypeptide and said second polypeptide are covalently linked via a C-terminally located disulfide bond.

The inventors further observed that the dimers of the invention have unexpected favourable binding and functional characteristics. These characteristics were also retained for prolonged periods of time, without any apparent or substantive loss of potency. This makes the dimers useful for storage and transport. Accordingly, the present invention further relates to a method for storing polypeptides comprising reactive cysteine moieties, comprising at least the step of oxidizing the thiol moiety of

said reactive cysteine moiety to the disulfide derivative cystine, thereby temporarily inactivating said reactive cysteine moieties, wherein said polypeptides further comprise (internal) cystine bonds.

The present inventors hypothesized that the dimers might be particularly suited as a pool for instantaneous use, such as, for instance, coupling of functional groups using the C-terminal cysteine,

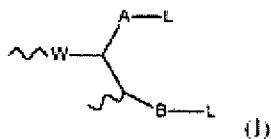
5 e.g. by maleimide chemistry. A protocol with mild reducing conditions was developed, in which the intermolecular disulfide bridge of the dimer was reduced to activate the thiol group of the constituent polypeptides. Optimized conditions resulted in reduction of the disulfide forming the dimer without reducing the internal canonical ISVD disulfide bridges. Accordingly, the present invention relates to a method for generating polypeptides comprising reactive cysteine moieties,

10 comprising at least the steps of:

- (i) providing polypeptides dimerized via a cystine bond;
- (ii) reducing said cystine bond;

thereby generating polypeptides comprising reactive cysteine moieties. Preferably, said cystine bond is located at the C-terminal end of said polypeptides. Preferably, the reducing conditions of said step

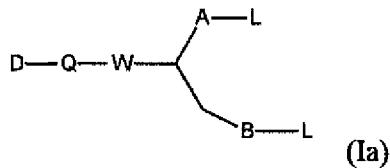
15 (ii) are chosen such that the internal cystine bonds are not reduced.


In addition, the present invention also provides methods for conjugating payloads to the polypeptides and/or dimers of the invention, with a very controlled drug-to-antibody ratio (DAR) and a purity over 95%. Completely unexpectedly, conjugating the polypeptide with a payload (DAR = 1) has no effect on the biodistribution profile. Moreover, these conjugated polypeptides demonstrated

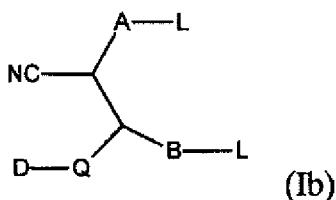
20 *in vitro* cell toxicity and *in vivo* inhibition of tumor growth. Accordingly, the present invention provides methods for treating subjects using the polypeptides and/or dimers of the invention.

In particular, the present invention relates to a method for making dimers, comprising at least the steps of:

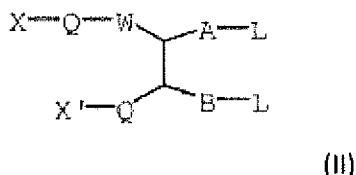
- (i) providing a first polypeptide, wherein said first polypeptide comprises
 - at least one immunoglobulin single variable domain (ISVD) and
 - a C-terminal extension comprising a cysteine moiety, preferably at the C-terminus;
- (ii) providing a second polypeptide, wherein said second polypeptide comprises
 - at least one immunoglobulin single variable domain (ISVD) and
 - a C-terminal extension comprising a cysteine moiety, preferably at the C-terminus; and
- 30 (iii) oxidizing the thiol moiety of said cysteine moiety at the C-terminus of said first polypeptide and the thiol moiety of said cysteine moiety at the C-terminus of said second polypeptide optionally by adding oxidizing copper ions (Cu^{2+}), and preferably at pH 6.5 to pH 7.5 to a disulfide derivative cystine;


(iv) optionally reacting the disulfide derivative cystine with a conjugating agent that forms a bridge between the two cysteine residues derived from the cystine, wherein said conjugating agent comprises the functional group of formula (I)

5

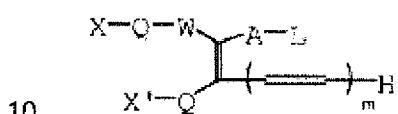

in which W represents an electron-withdrawing group; A represents a C_{1-5} alkylene or alkenylene chain; B represents a bond or a C_{1-4} alkylene or alkenylene chain; and each L independently represents a leaving group; characterized in that the integrity of the ISVDs is maintained.

In particular, the present invention relates to a method for making dimers as described herein,
10 wherein the conjugating agent comprises the functional group of the formula (Ia):


in which Q represents a linking group and D represents a diagnostic, therapeutic or labelling agent, such as, for instance, a drug, or a binding agent, e.g. a linker, for a diagnostic, therapeutic or labelling agent, such as, for instance, a drug.

15 In particular, the present invention relates to a method for making dimers as described herein, wherein the conjugating agent comprises the functional group of the formula (Ib), in which W represents a cyano group:

in which Q represents a linking group and D represents a diagnostic, therapeutic or labelling agent, such as, for instance, a drug, or a binding agent, e.g. a linker, for a diagnostic, therapeutic or labelling agent, such as, for instance, a drug.


In particular, the present invention relates to a method for making dimers as described herein, wherein the conjugating agent comprises the functional group of the formulae (II), (III) or (IV):

in which one of X and X' represents a polymer and the other represents a hydrogen atom;

Q represents a linking group;

5 W represents an electron- withdrawing group; or, if X' represents a polymer, $X\text{-}Q\text{-}W$ together may represent an electron withdrawing group;
A represents a C_{1-5} alkylene or alkenylene chain;
B represents a bond or a C_{1-4} alkylene or alkenylene chain; and
each L independently represents a leaving group;

(11)

in which X, X', Q, W, A and L have the meanings given for the general formula II, and in addition if X represents a polymer, X' and electron-withdrawing group W together with the interjacent atoms may form a ring, and m represents an integer 1, 2, 3 or 4; or

$$15 \quad X-O-W-CR^1R^{1'}-CR^2L_1L^{1'} \quad (IV)$$

in which X, Q and W have the meanings given for the general formula II, and either

R^1 represents a hydrogen atom or a C_{1-4} alkyl group, R^1' represents a hydrogen atom, and each of L and L' independently represents a leaving group; or

R^1 represents a hydrogen atom or a C_{1-4} alkyl group, L represents a leaving group, and

20 R¹ and L' together represent a bond; or

R^1 and L together represent a bond and R^1 and L' together represent a bond; and

R represents a hydrogen atom or a C₁₋₄ alkyl group.

In particular, the present invention relates to a method for making dimers as described herein, wherein said drug is chosen from the group consisting of cytostatic agents, cytotoxic agents, chemotherapeutic agents, growth inhibitory agents, toxins (for example, an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), toxin moieties, and radioactive isotopes.

In particular, the present invention relates to a method for making dimers as described herein, wherein said drug is MMAE.

30 In particular, the present invention relates to a method for making dimers as described herein, wherein said binding agent is a linker for a diagnostic, therapeutic or labelling agent.

In particular, the present invention relates to a method for making dimers as described herein, wherein said first polypeptide and/or said second polypeptide further comprises maleimide-val-cit-MMAE.

5 In particular, the present invention relates to a method for making dimers as described herein, wherein said linker is a non-cleavable linker.

In particular, the present invention relates to a method for making dimers as described herein, wherein said linker is a cleavable linker, for example, pH cleavable linkers that comprise a cleavage site for a cellular enzyme (e.g., cellular esterases, cellular proteases such as cathepsin B).

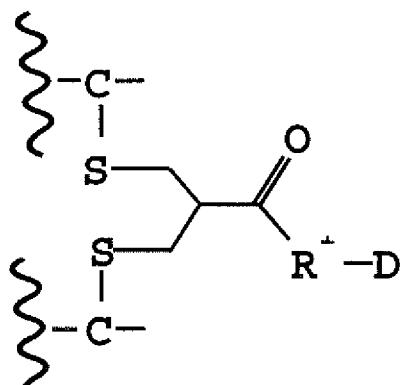
10 In particular, the present invention relates to a method for making dimers as described herein, wherein the drug to dimer ratio (DAR) is 1.

In particular, the present invention relates to a method for making dimers as described herein, wherein at least 80%, such as 85%, 90%, 95%, 99% or even more, such as 100% of said first and said second polypeptide are dimerized, for instance as determined by mass spectrometry.

15 In particular, the present invention relates to a method for making dimers as described herein, further comprising the step of purifying said dimers, preferably via size exclusion chromatography.

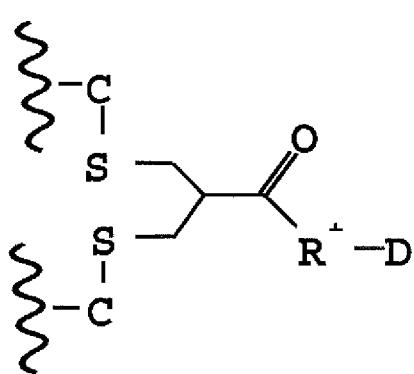
In particular, the present invention relates to a method for making dimers as described herein, wherein said first polypeptide and said second polypeptide are identical.

In particular, the present invention relates to a method for making dimers as described herein, wherein said first polypeptide and said second polypeptide are different.


20 In particular, the present invention relates to a method for making dimers as described herein, wherein said first polypeptide and/or said second polypeptide comprises a C-terminal extension of 50, 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid residue(s) comprising a cysteine moiety, preferably at the C-terminus.

25 In particular, the present invention relates to a method for making dimers as described herein, wherein said C-terminal extension is genetically fused to the C-terminal end of the most C-terminally located ISVD in said polypeptide.

30 In particular, the present invention relates to a dimer comprising a first polypeptide and a second polypeptide, wherein said first polypeptide comprises at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety (preferably at the C-terminus); wherein said second polypeptide comprises at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety (preferably at the C-terminus); and wherein said first polypeptide and said second polypeptide are covalently linked via a


thioether bond of the cysteine moiety (C) in the C-terminal extension of said first polypeptide and a thioether bond of the cysteine moiety (C) in the C-terminal extension of said second polypeptide with the compound according to formula (V) or formula (VI)

5

10

formula (V)

formula (VI)

in which

15 "-C-" represents a cysteine moiety in the C-terminal extension of a polypeptide of the invention;
 "-C" represents cysteine moiety at the C-terminus of a C-terminal extension of a polypeptide of the invention;
 R¹ represents a C₁₋₄ alkyl group; and D represents a diagnostic, therapeutic or labelling agent, such as, for instance, a drug or a binding agent, e.g. a linker, for a diagnostic, therapeutic or labelling agent
 20 such as for instance a drug.

In particular, the present invention relates to a dimer as described herein, wherein said drug is chosen from the group consisting of cytostatic agents, cytotoxic agents, chemotherapeutic agents, growth inhibitory agents, toxins (for example, an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), toxin moieties, and radioactive isotopes.

25 In particular, the present invention relates to a dimer as described herein, wherein said drug is MMAE.

In particular, the present invention relates to a dimer as described herein, comprising maleimide-val-cit-MMAE.

30 In particular, the present invention relates to a dimer as described herein, wherein said binding agent is a linker for a diagnostic, therapeutic or labelling agent.

In particular, the present invention relates to a dimer as described herein, wherein said linker is a non-cleavable linker.

In particular, the present invention relates to a dimer as described herein, wherein said linker is a cleavable linker, for example, pH cleavable linkers that comprise a cleavage site for a cellular enzyme (e.g., cellular esterases, cellular proteases such as cathepsin B).

5 In particular, the present invention relates to a dimer as described herein, wherein the drug to dimer ratio (DAR) is 1.

In particular, the present invention relates to a dimer as described herein, wherein said dimer binds to a target with an IC_{50} of at most 100 nM, such as 50 nM, 20 nM, 10 nM, 9 nM, 8 nM, 7 nM, 6 nM, 5 nM, 4 nM, 3 nM, preferably even at most 2 nM, such as 1 nM, as determined by a competition FACS.

10 In particular, the present invention relates to a dimer as described herein, wherein said dimer binds to a target with an IC_{50} which is at least 10%, such as 20%, 30%, 50%, 80%, 90%, or even 100% better than the IC_{50} of a benchmark, preferably as determined by a competition FACS.

In particular, the present invention relates to a dimer as described herein, wherein said dimer binds to a target with an IC_{50} which is at least 2 times, such as 3 times or 4 times, and even 5 times or 10 times better than the IC_{50} of a benchmark, preferably as determined by a competition FACS.

15 In particular, the present invention relates to a dimer as described herein, wherein said first polypeptide and/or said second polypeptide comprises a C-terminal extension of 50, 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid residue(s) comprising a cysteine moiety, preferably at the C-terminus.

20 In particular, the present invention relates to a dimer as described herein, wherein said C-terminal extension consists of GlyGlyGlyCys (SEQ ID NO: 4), GlyGlyCys (SEQ ID NO: 3), GlyCys (SEQ ID NO: 2) or Cys (SEQ ID NO: 1).

In particular, the present invention relates to a dimer as described herein, wherein said C-terminal extension is chosen from the group consisting of SEQ ID NOs: 1-15.

25 In particular, the present invention relates to a dimer as described herein, wherein said first polypeptide and said second polypeptide are identical.

In particular, the present invention relates to a dimer as described herein, wherein said first polypeptide and said second polypeptide are different.

In particular, the present invention relates to a dimer as described herein, for use in the treatment of cancer, wherein said dimer internalizes.

30 In particular, the present invention relates to a dimer as described herein, for the manufacture of a medicament for the treatment of cancer, wherein said dimer internalizes.

FIGURE LEGENDS

Figure 1 Schematic depiction of various constructs used.

Figure 2 Competition binding FACS.

5 **Figure 3** Blocking of EGF mediated EGFR phosphorylation on HER14 cells (0.5 mM EGF).

Figure 4 Schematic representation of the reduction of disulfide dimers of C-terminal GGC-extended polypeptides.

10 **Figure 5** SEC profile of reduced cysteine extended polypeptides. MWs of the protein markers are indicated by the dashed line (— —), and are 670 kDa, 158 kDa, 44 kDa, 17 kDa and 1.35 kDa. mAU is milli Absorbance units at 280nm.

Figure 6 Maleimide-val-cit-MMAE.

Figure 7 SDS-PAGE Analysis of T0238-00001-mc-val-cit-PAB-MMAE (ABL100-NC003-1). 1) Novex Markers; 2) T0238-00001 dimer; 3) reduced T0238-00001 (10 mM DTT, 2-8 °C, O/N); 4) ABL100-NC003-1 crude conjugation mixture; 5) ABL100-NC003-1.

15 **Figure 8** Overlaid hydrophobic interaction chromatograms for reduced T023800001-A (oxidised) T023800001-A (reduced) and T0238-00001-mc-val-cit-PAB-MMAE.

20 **Figure 9** *In vitro* cell killing of Polypeptide-MMAE conjugates: impedimetric monitoring of the effect of different concentrations of non- and conjugated Nanobodies on proliferation of MDA-MB-468 cells, measured as fluctuations in normalized cell index (CI). The arrow indicates the time-point of Nanobody administration (*i.e.* 20h after seeding) and the dotted line indicates the end-point (*i.e.* 116h post seeding) for data analysis. The cell index obtained from the cell growth in absence of Nanobody is taken as control.

Figure 10 Dose-dependent effect of the non-conjugated and MMAE-conjugated polypeptides.

Figure 11 *In vivo* efficacy of polypeptide-MMAE conjugates.

25 **Figure 12** Principle of ThioBridge™ technique.

Figure 13 ThioBridge™ technology attached to payload to Nanobody dimer.

Figure 14 Scheme for generating bispecific ThioBridge™ dimers (Scheme 1).

Figure 15 Generation of bispecific of Nb-drug-conjugates using ThioBridge™ (Scheme 2).

30 **Figure 16** Generation of bispecific of Nb-drug-conjugates using protective groups in adapted ThioBridge™ protocol (Scheme 3).

Figure 17 Modification and radiolabeling of Nbs using NCS-Bz-Df and ^{89}Zr .

Figure 18 Averaged %ID/g for 3 polypeptides.

Figure 19 Dose-response curve of internalized polypeptides and constructs.

5 DETAILED DESCRIPTION OF THE INVENTION

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.

Unless indicated or defined otherwise, all terms used have their usual meaning in the art, which will 10 be clear to the skilled person. Reference is for example made to the standard handbooks, such as Sambrook *et al.* "Molecular Cloning: A Laboratory Manual" (2nd ed.), Vols. 1-3, Cold Spring Harbor Laboratory Press (1989); F. Ausubel *et al.* eds., "Current protocols in molecular biology", Green Publishing and Wiley Interscience, New York (1987); Lewin "Genes II", John Wiley & Sons, New York, N.Y., (1985); Old *et al.* "Principles of Gene Manipulation: An Introduction to Genetic Engineering", 2nd 15 edition, University of California Press, Berkeley, CA (1981); Roitt *et al.* "Immunology" (6th ed.), Mosby/Elsevier, Edinburgh (2001); Roitt *et al.* Roitt's Essential Immunology, 10th Ed. Blackwell Publishing, UK (2001); and Janeway *et al.* "Immunobiology" (6th ed.), Garland Science Publishing/Churchill Livingstone, New York (2005), as well as to the general background art cited herein.

Unless indicated otherwise, all methods, steps, techniques and manipulations that are not 20 specifically described in detail can be performed and have been performed in a manner known per se, as will be clear to the skilled person. Reference is for example again made to the standard handbooks and the general background art mentioned herein and to the further references cited therein; as well as to for example the following reviews: Presta 2006 (Adv. Drug Deliv. Rev. 58 (5-6): 640-56), Levin and Weiss 2006 (Mol. Biosyst. 2(1): 49-57), Irving *et al.* 2001 (J. Immunol. Methods 25 248(1-2): 31-45), Schmitz *et al.* 2000 (Placenta 21 Suppl. A: S106-12), Gonzales *et al.* 2005 (Tumour Biol. 26(1): 31-43), which describe techniques for protein engineering, such as affinity maturation and other techniques for improving the specificity and other desired properties of proteins such as immunoglobulins.

A nucleic acid sequence or amino acid sequence is considered to be "(in) essentially isolated (form)" - 30 for example, compared to the reaction medium or cultivation medium from which it has been obtained - when it has been separated from at least one other component with which it is usually associated in said source or medium, such as another nucleic acid, another protein/polypeptide,

another biological component or macromolecule or at least one contaminant, impurity or minor component. In particular, a nucleic acid sequence or amino acid sequence is considered "essentially isolated" when it has been purified at least 2-fold, in particular at least 10-fold, more in particular at least 100-fold, and up to 1000-fold or more. A nucleic acid sequence or amino acid sequence that is 5 "in essentially isolated form" is preferably essentially homogeneous, as determined using a suitable technique, such as a suitable chromatography technique, such as polyacrylamide-gel electrophoresis.

Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".

10 For instance, when a nucleotide sequence, amino acid sequence or polypeptide is said to "comprise" another nucleotide sequence, amino acid sequence or polypeptide, respectively, or to "essentially consist of" another nucleotide sequence, amino acid sequence or polypeptide, this may mean that the latter nucleotide sequence, amino acid sequence or polypeptide has been incorporated into the first mentioned nucleotide sequence, amino acid sequence or polypeptide, respectively, but more 15 usually this generally means that the first mentioned nucleotide sequence, amino acid sequence or polypeptide comprises within its sequence a stretch of nucleotides or amino acid residues, respectively, that has the same nucleotide sequence or amino acid sequence, respectively, as the latter sequence, irrespective of how the first mentioned sequence has actually been generated or obtained (which may for example be by any suitable method described herein). By means of a non- 20 limiting example, when a polypeptide of the invention is said to comprise an immunoglobulin single variable domain, this may mean that said immunoglobulin single variable domain sequence has been incorporated into the sequence of the polypeptide of the invention, but more usually this generally means that the polypeptide of the invention contains within its sequence the sequence of the immunoglobulin single variable domains irrespective of how said polypeptide of the invention has 25 been generated or obtained. Also, when a nucleic acid or nucleotide sequence is said to comprise another nucleotide sequence, the first mentioned nucleic acid or nucleotide sequence is preferably such that, when it is expressed into an expression product (e.g. a polypeptide), the amino acid sequence encoded by the latter nucleotide sequence forms part of said expression product (in other words, that the latter nucleotide sequence is in the same reading frame as the first mentioned, larger 30 nucleic acid or nucleotide sequence).

By "essentially consist of" or "consist essentially of" and the like is meant that the polypeptide used herein either is exactly the same as the polypeptide of the invention or corresponds to the polypeptide of the invention which has a limited number of amino acid residues, such as 1-20 amino acid residues, for example 1-10 amino acid residues and preferably 1-6 amino acid residues, such as

1, 2, 3, 4, 5 or 6 amino acid residues, added at the amino terminal end, at the carboxy terminal end, or at both the amino terminal end and the carboxy terminal end of the immunoglobulin single variable domain.

An amino acid sequence (such as an immunoglobulin single variable domain, an antibody, a

5 polypeptide of the invention, or generally an antigen binding protein or polypeptide or a fragment thereof) that can (specifically) bind to, that has affinity for and/or that has specificity for a specific antigenic determinant, epitope, antigen or protein (or for at least one part, fragment or epitope thereof) is said to be "against" or "directed against" said antigenic determinant, epitope, antigen or protein.

10 The affinity denotes the strength or stability of a molecular interaction. The affinity is commonly given as by the K_D , or dissociation constant, which has units of mol/liter (or M). The affinity can also be expressed as an association constant, K_A , which equals $1/K_D$ and has units of $(\text{mol/liter})^{-1}$ (or M^{-1}). In the present specification, the stability of the interaction between two molecules will mainly be expressed in terms of the K_D value of their interaction; it being clear to the skilled person that in view 15 of the relation $K_A = 1/K_D$, specifying the strength of molecular interaction by its K_D value can also be used to calculate the corresponding K_A value. The K_D -value characterizes the strength of a molecular interaction also in a thermodynamic sense as it is related to the change of free energy (DG) of binding by the well-known relation $DG = RT \cdot \ln(K_D)$ (equivalently $DG = -RT \cdot \ln(K_A)$), where R equals the gas constant, T equals the absolute temperature and ln denotes the natural logarithm.

20 The K_D for biological interactions which are considered meaningful (e.g. specific) are typically in the range of 10^{-12} M (0.001 nM) to 10^{-5} M (10000 nM). The stronger an interaction is, the lower is its K_D .

The K_D can also be expressed as the ratio of the dissociation rate constant of a complex, denoted as k_{off} , to the rate of its association, denoted k_{on} (so that $K_D = k_{\text{off}}/k_{\text{on}}$ and $K_A = k_{\text{on}}/k_{\text{off}}$). The off-rate k_{off} has units s^{-1} (where s is the SI unit notation of second). The on-rate k_{on} has units $M^{-1}s^{-1}$. The on-rate may 25 vary between $10^2 M^{-1}s^{-1}$ to about $10^7 M^{-1}s^{-1}$, approaching the diffusion-limited association rate constant for bimolecular interactions. The off-rate is related to the half-life of a given molecular interaction by the relation $t_{1/2} = \ln(2)/k_{\text{off}}$. The off-rate may vary between $10^{-6} s^{-1}$ (near irreversible complex with a $t_{1/2}$ of multiple days) to $1 s^{-1}$ ($t_{1/2} = 0.69$ s).

30 Specific binding of an antigen-binding protein, such as an ISVD, to an antigen or antigenic determinant can be determined in any suitable manner known per se, including, for example, Scatchard analysis and/or competitive binding assays, such as radio-immunoassays (RIA), enzyme immunoassays (EIA) and sandwich competition assays, and the different variants thereof known per se in the art; as well as the other techniques mentioned herein.

The affinity of a molecular interaction between two molecules can be measured via different techniques known per se, such as the well-known surface plasmon resonance (SPR) biosensor technique (see for example Ober *et al.* 2001, Intern. Immunology 13: 1551-1559) where one molecule is immobilized on the biosensor chip and the other molecule is passed over the

5 immobilized molecule under flow conditions yielding k_{on} , k_{off} measurements and hence K_D (or K_A) values. This can for example be performed using the well-known BIACORE® instruments (Pharmacia Biosensor AB, Uppsala, Sweden). Kinetic Exclusion Assay (KINEXA®) (Drake *et al.* 2004, Analytical Biochemistry 328: 35-43) measures binding events in solution without labeling of the binding partners and is based upon kinetically excluding the dissociation of a complex.

10 The GYROLAB® immunoassay system provides a platform for automated bioanalysis and rapid sample turnaround (Fraley *et al.* 2013, Bioanalysis 5: 1765-74).

It will also be clear to the skilled person that the measured K_D may correspond to the apparent K_D if the measuring process somehow influences the intrinsic binding affinity of the implied molecules for example by artifacts related to the coating on the biosensor of one molecule. Also, an apparent K_D

15 may be measured if one molecule contains more than one recognition sites for the other molecule. In such situation the measured affinity may be affected by the avidity of the interaction by the two molecules. As will be clear to the skilled person, and as described on pages 53-56 of WO 08/020079, the dissociation constant may be the actual or apparent dissociation constant. Methods for determining the dissociation constant will be clear to the skilled person, and for example include the

20 techniques mentioned on pages 53-56 of WO 08/020079.

The term "specificity" has the meaning given to it in paragraph n) on pages 53-56 of WO 08/020079; and as mentioned therein refers to the number of different types of antigens or antigenic determinants to which a particular antigen-binding molecule or antigen-binding protein (such as a dimer or polypeptide of the invention) molecule can bind. The specificity of an antigen-binding protein can be determined based on affinity and/or avidity, as described on pages 53-56 of WO 08/020079 (incorporated herein by reference), which also describes some preferred techniques for measuring binding between an antigen-binding molecule (such as a polypeptide or ISVD of the invention) and the pertinent antigen. Typically, antigen-binding proteins (such as the immunoglobulin single variable domains, and/or polypeptides of the invention) will bind to their antigen with a dissociation constant (K_D) of 10^{-5} to 10^{-12} moles/liter or less, and preferably 10^{-7} to 10^{-12} moles/liter or less and more preferably 10^{-8} to 10^{-12} moles/liter (*i.e.*, with an association constant (K_A) of 10^5 to 10^{12} liter/ moles or more, and preferably 10^7 to 10^{12} liter/moles or more and more preferably 10^8 to 10^{12} liter/moles). Any K_D value greater than 10^{-4} mol/liter (or any K_A value lower than 10^4 liter/mol) is generally considered to indicate non-specific binding. Preferably, a

monovalent immunoglobulin single variable domain of the invention will bind to the desired antigen with an affinity less than 500 nM, preferably less than 200 nM, more preferably less than 10 nM, such as less than 500 pM.

Another approach that may be used to assess affinity is the 2-step ELISA (Enzyme-Linked

5 Immunosorbent Assay) procedure of Friguet *et al.* 1985 (J. Immunol. Methods 77: 305-19). This method establishes a solution phase binding equilibrium measurement and avoids possible artifacts relating to adsorption of one of the molecules on a support such as plastic.

However, the accurate measurement of K_D may be quite labor-intensive and as consequence, often

apparent K_D values are determined to assess the binding strength of two molecules. It should be

10 noted that as long all measurements are made in a consistent way (e.g. keeping the assay conditions unchanged) apparent K_D measurements can be used as an approximation of the true K_D and hence in the present document K_D and apparent K_D should be treated with equal importance or relevance.

Finally, it should be noted that in many situations the experienced scientist may judge it to be

convenient to determine the binding affinity relative to some reference molecule. For example, to

15 assess the binding strength between molecules A and B, one may e.g. use a reference molecule C that is known to bind to B and that is suitably labelled with a fluorophore or chromophore group or other chemical moiety, such as biotin for easy detection in an ELISA or FACS (Fluorescent activated cell sorting) or other format (the fluorophore for fluorescence detection, the chromophore for light absorption detection, the biotin for streptavidin-mediated ELISA detection). Typically, the reference

20 molecule C is kept at a fixed concentration and the concentration of A is varied for a given concentration or amount of B. As a result an IC_{50} value is obtained corresponding to the concentration of A at which the signal measured for C in absence of A is halved. Provided $K_{D\text{ref}}$, the K_D of the reference molecule, is known, as well as the total concentration c_{ref} of the reference molecule, the apparent K_D for the interaction A-B can be obtained from following formula: $K_D = IC_{50}/(1+c_{\text{ref}}/K_{D\text{ref}})$.

25 Note that if $c_{\text{ref}} \ll K_{D\text{ref}}$, $K_D \approx IC_{50}$. Provided the measurement of the IC_{50} is performed in a consistent way (e.g. keeping c_{ref} fixed) for the binders that are compared, the strength or stability of a molecular interaction can be assessed by the IC_{50} and this measurement is judged as equivalent to K_D or to apparent K_D throughout this text.

The half maximal inhibitory concentration (IC_{50}) is a measure of the effectiveness of a compound in

30 inhibiting a biological or biochemical function, e.g. a pharmacological effect. This quantitative measure indicates how much of the ISVD (e.g. a Nanobody) (inhibitor) is needed to inhibit a given biological process (or component of a process, i.e. an enzyme, cell, cell receptor, chemotaxis, anaplasia, metastasis, invasiveness, etc.) by half. In other words, it is the half maximal (50%)

inhibitory concentration (IC) of a substance (50% IC, or IC₅₀). The IC₅₀ of a drug can be determined by constructing a dose-response curve and examining the effect of different concentrations of antagonist such as the ISVD (e.g. a Nanobody) of the invention on reversing agonist activity. IC₅₀ values can be calculated for a given antagonist such as the ISVD (e.g. a Nanobody) of the invention by 5 determining the concentration needed to inhibit half of the maximum biological response of the agonist.

The term half maximal effective concentration (EC₅₀) refers to the concentration of a compound which induces a response halfway between the baseline and maximum after a specified exposure time. In the present context it is used as a measure of a polypeptide's, ISVD's (e.g. a Nanobody's) 10 potency. The EC₅₀ of a graded dose response curve represents the concentration of a compound where 50% of its maximal effect is observed. Concentration is preferably expressed in molar units.

In biological systems, small changes in ligand concentration typically result in rapid changes in response, following a sigmoidal function. The inflection point at which the increase in response with increasing ligand concentration begins to slow is the EC₅₀. This can be determined mathematically by 15 derivation of the best-fit line. Relying on a graph for estimation is convenient in most cases. In case the EC₅₀ is provided in the examples section, the experiments were designed to reflect the KD as accurate as possible. In other words, the EC₅₀ values may then be considered as KD values. The term "average KD" relates to the average KD value obtained in at least 1, but preferably more than 1, such as at least 2 experiments. The term "average" refers to the mathematical term "average" (sums of 20 data divided by the number of items in the data).

It is also related to IC₅₀ which is a measure of a compound's inhibition (50% inhibition). For competition binding assays and functional antagonist assays IC₅₀ is the most common summary measure of the dose-response curve. For agonist/stimulator assays the most common summary measure is the EC₅₀.

25 The inhibitor constant, K_i, is an indication of how potent an inhibitor is; it is the concentration required to produce half maximum inhibition. The absolute inhibition constant K_i can be calculated by using the Cheng-Prusoff equation:

$$K_i = \frac{IC50}{\frac{[L]}{K_D} + 1}$$

in which [L] is the fixed concentration of the ligand.

The term "genetic fusion" as used herein refers to the coupling of individual nucleic acids, e.g. 30 encoding ISVDs, via amide bonds, in which a nucleotide sequence encoding an ISVD is coupled via its

3'-terminus nucleic acid via a phosphodiester bond to the 5'-terminus nucleic acid of another nucleotide sequence encoding an ISVD, if appropriate via (nucleic acid) linkers of various lengths, e.g. a nucleotide sequence encoding an ISVD is coupled via its 3'-terminus nucleic acid via a phosphodiester bond to the 5'-terminus nucleic acid of a linker sequence, which is coupled via its 3'-terminus nucleic acid via a phosphodiester bond to the 5'-terminus nucleic acid of another nucleotide sequence encoding an ISVD (i.e. the ISVDs and optionally the linkers are genetically fused). Genetic fusion can be performed according to standard recombinant DNA protocols (*supra*), or as described in the Examples section, e.g. Garaicoechea *et al.* (2008, *J Virol.* 82: 9753–9764).

Amino acid sequences are interpreted to mean a single amino acid or an unbranched sequence of 10 two or more amino acids, depending of the context. Nucleotide sequences are interpreted to mean an unbranched sequence of 3 or more nucleotides.

Amino acids are those L-amino acids commonly found in naturally occurring proteins and are listed in Table 1 below. Those amino acid sequences containing D-amino acids are not intended to be embraced by this definition. Any amino acid sequence that contains post-translationally modified 15 amino acids may be described as the amino acid sequence that is initially translated using the symbols shown in the Table below with the modified positions; e.g., hydroxylations or glycosylations, but these modifications shall not be shown explicitly in the amino acid sequence. Any peptide or protein that can be expressed as a sequence modified linkages, cross links and end caps, non-peptidyl bonds, etc., is embraced by this definition.

20 **Table 1: Common amino acids**

1-Letter Code	3-Letter Code	Name
A	Ala	Alanine
B	Asx	Aspartic acid or Asparagine
C	Cys	Cysteine
D	Asp	Aspartic acid
E	Glu	Glutamic acid
F	Phe	Phenylalanine
G	Gly	Glycine
H	His	Histidine
I	Ile	Isoleucine
J	Xle	Isoleucine or Leucine
K	Lys	Lysine
L	Leu	Leucine
M	Met	Methionine
N	Asn	Asparagine
O	Pyl	Pyrrolysine
P	Pro	Proline

Q	Gln	Glutamine
R	Arg	Arginine
S	Ser	Serine
T	Thr	Threonine
U	Scy	Selenocysteine
V	Val	Valine
W	Trp	Tryptophan
X	Xxx	Uncommon or Unspecified
Y	Tyr	Tyrosine
Z	Glx	Glutamic acid or Glutamine

The terms "protein", "peptide", "protein/peptide", and "polypeptide" are used interchangeably throughout the disclosure and each has the same meaning for purposes of this disclosure. Each term refers to an organic compound made of a linear chain of two or more amino acids. The compound

5 may have ten or more amino acids; twenty-five or more amino acids; fifty or more amino acids; one hundred or more amino acids, two hundred or more amino acids, and even three hundred or more amino acids. The skilled artisan will appreciate that polypeptides generally comprise fewer amino acids than proteins, although there is no art-recognized cut-off point of the number of amino acids that distinguish a polypeptides and a protein; that polypeptides may be made by chemical synthesis

10 or recombinant methods; and that proteins are generally made *in vitro* or *in vivo* by recombinant methods as known in the art.

To facilitate an understanding of the invention, a brief discussion of the terminology used in connection with the invention will be provided. By convention, the amide bond in the primary structure of polypeptides is in the order that the amino acids are written, in which the amine end (N-terminus) of a polypeptide is always on the left, while the acid end (C-terminus) is on the right.

The polypeptide of the invention comprises at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety, preferably at the C-terminus. In its simplest form, the polypeptide of the invention consists of one ISVD followed by (bonded to or conjugated with) a cysteine.

20 The C-terminal extension is present C-terminally of the last amino acid residue (usually a serine residue) of the last (most C-terminally located) ISVD and comprises a cysteine residue. Preferably, the cysteine moiety of the invention is present or positioned at the C-terminus of the C-terminal extension.

In the context of the present invention, the C-terminal extension consists of at least one amino acid, 25 *i.e.* the cysteine moiety, or an amino acid sequence of at least two amino acid residues to maximal 50 amino acid residues comprising at least one cysteine residue present or positioned at the C-terminus

of the C-terminal extension. The C-terminal extension preferably consists of between 2 and 40 amino acid residues, such as between 2 and 30 amino acid residues, such as for instance, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 amino acid residues. For example, the C-terminal extension may consist of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues of which the amino acid located at the C-terminus

5 is a cysteine moiety, such as, e.g. the C-terminal extension consists of only a cysteine residue; e.g. the C-terminal extension may consist of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 amino acid residues followed by a cysteine moiety; e.g. the C-terminal extension may consist of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 glycine residues followed by a cysteine moiety; e.g. the C-terminal extension may consist of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 alanine residues followed by a cysteine moiety. It

10 will be appreciated that the C-terminal extension of a polypeptide comprises preferably only one cysteine moiety.

In another aspect, the cysteine residue is present or positioned at a site in the C-terminal extension which is different from the C-terminal end (C-terminus). For instance, the cysteine residue is present or positioned at the amino acid residue in front of (upstream of) the last amino acid residue of the C-

15 terminal extension (i.e. the second last amino acid residue of the polypeptide of the invention) or at the amino acid residue in front of (upstream of) the last two amino acid residue of the C-terminal extension (i.e. the third last amino acid residue of the polypeptide of the invention). For example, the C-terminal extension may consist of 2, 3, 4, 5, 6, 7 or 8 amino acid residues (such as e.g. glycine or alanine) of which respectively the first, second, third, fourth, fifth, sixth or seventh amino acid

20 residue is a cysteine (i.e. the second last amino acid residue of the polypeptide of the invention); or the C-terminal extension may consist of 3, 4, 5, 6, 7 or 8 amino acid residues (such as e.g. glycine or alanine) of which respectively the first, second, third, fourth, fifth or sixth amino acid residue is a cysteine (i.e. the third last amino acid residue of the polypeptide of the invention).

Preferred examples of C-terminal extensions are given in Table 2.

25 **Table 2: C-terminal extensions**

SEQ ID NO	Amino acid sequence	SEQ ID NO	Amino acid sequence
1	C	82	CA
2	GC	83	GCA
3	GGC	84	GGCA
4	GGGC	85	GGGCA
5	GGGC	86	GGGGCA
6	AC	87	ACA
7	AAC	88	AACA
8	AAAC	89	AAACA
9	AAAC	90	AAAACA
10	CG	91	CGA

11	GCG	92	GC GA
12	GGCG	93	GG CGA
13	GGCG	94	GG CGA
14	GGGGCG	95	GGGG CGA
15	GGGGCGGG	96	GGGG CGGG

In an embodiment, the invention relates to a dimer as described herein, wherein said first polypeptide and/or said second polypeptide comprises a C-terminal extension of 50, 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid residue(s) comprising a cysteine moiety, preferably only one cysteine moiety. The cysteine moiety is preferably located at the C-terminus. In an embodiment, the 5 present invention relates to a dimer as described herein, wherein said C-terminal extension consists of GlyGlyGlyCys (SEQ ID NO: 4), GlyGlyCys (SEQ ID NO: 3), GlyCys (SEQ ID NO: 2) or Cys (SEQ ID NO: 1).

In an embodiment, the invention relates to a dimer as described herein, wherein said first polypeptide and/or said second polypeptide comprises a C-terminal extension of 50, 40, 30, 20, 10, 9, 10 8, 7, 6, 5, 4, 3, 2, or 1 amino acid residue(s) comprising a cysteine moiety, preferably only one cysteine moiety, and an alanine moiety located at the C-terminus. In an embodiment, the present invention relates to a dimer as described herein, wherein said C-terminal extension consists of GlyGlyGlyCysAla (SEQ ID NO: 85), GlyGlyCysAla (SEQ ID NO: 84), GlyCysAla (SEQ ID NO: 83) or CysAla (SEQ ID NO: 82).

15 In an embodiment, the invention relates to a dimer as described herein, wherein said polypeptide comprises a C-terminal extension chosen from the group consisting of SEQ ID NOs: 1 – 15 and 82-96, preferably from SEQ ID NOs: 1 – 15 .

The C-terminal extension can be coupled to an ISVD via any suitable technique known to the person skilled in the art, such as, for instance, by recombinant DNA techniques described *supra* for genetic 20 fusion.

A polypeptide of the invention may comprise more than 1 ISVD, such as 2, 3, 4 or even more ISVDs. Accordingly, the present invention relates to a polypeptide of the invention comprising at least two ISVDs. Additionally, the present invention relates to a dimer comprising a first polypeptide and a second polypeptide as described herein, wherein said first polypeptide comprises at least two ISVDs 25 and/or said second polypeptide comprises at least two ISVDs.

The ISVDs comprised in a polypeptide of the invention may be the same or different. In an embodiment, the ISVDs can bind the same target, irrespective of the ISVDs being the same or different. Accordingly, the present invention relates to a polypeptide of the invention, comprising identical ISVDs, ISVDs binding the same target, and/or ISVDs comprising the same CDR1, CDR2 and

CDR3, respectively. In an embodiment, the ISVDs can bind different targets. In an embodiment, the present invention relates to a dimer comprising a first polypeptide and a second polypeptide as described herein, wherein said at least two ISVDs of said first polypeptide are identical and/or said at least two ISVDs of said second polypeptide are identical.

5 In a polypeptide of the invention, whether or not comprised in the dimer of the invention, the ISVDs can be directly linked or linked via a linker.

The relative affinities may depend on the location of the ISVDs in the polypeptide. It will be appreciated that the order of the ISVDs in a polypeptide of the invention (orientation) can be chosen according to the needs of the person skilled in the art. The order of the individual ISVDs as well as

10 whether the polypeptide comprises a linker is a matter of design choice. Some orientations, with or without linkers, may provide preferred binding characteristics in comparison to other orientations. For instance, the order of a first ISVD (e.g. ISVD 1) and a second ISVD (e.g. ISVD 2) in the polypeptide of the invention can be (from N-terminus to C-terminus): (i) ISVD 1 (e.g. Nanobody 1) - [linker] - ISVD 2 (e.g. Nanobody 2); or (ii) ISVD 2 (e.g. Nanobody 2) - [linker]- ISVD 1 (e.g. Nanobody 1); (wherein the 15 linker is optional). All orientations are encompassed by the invention. Polypeptides that contain an orientation of ISVDs that provides desired binding characteristics can be easily identified by routine screening, for instance as exemplified in the examples section.

In the polypeptides of the invention, the two or more ISVDs, such as Nanobodies, may be directly linked to each other (as for example described in WO 99/23221) and/or may be linked to each other 20 via one or more suitable linkers, or any combination thereof. Suitable linkers for use in the polypeptides of the invention will be clear to the skilled person, and may generally be any linker used in the art to link amino acid sequences. Preferably, said linker is suitable for use in constructing proteins or polypeptides that are intended for pharmaceutical use.

Some particularly preferred linkers include the linkers that are used in the art to link antibody 25 fragments or antibody domains. These include the linkers mentioned in the publications cited above, as well as for example linkers that are used in the art to construct diabodies or scFv fragments (in this respect, however, it should be noted that, whereas in diabodies and in scFv fragments, the linker sequence used should have a length, a degree of flexibility and other properties that allow the pertinent V_H and V_L domains to come together to form the complete antigen-binding site, there is no 30 particular limitation on the length or the flexibility of the linker used in the polypeptide of the invention, since each ISVD, such as a Nanobody by itself forms a complete antigen-binding site).

For example, a linker may be a suitable amino acid or amino acid sequence, and in particular amino acid sequences of between 1 and 50, preferably between 1 and 30, such as between 1 and 10 amino

acid residues. Some preferred examples of such amino acid sequences include gly-ser linkers, for example of the type (gly_xser_y)_z, such as (for example (gly₄ser)₃ or (gly₃ser₂)₃, as described in WO 99/42077 and the GS30, GS15, GS9 and GS7 linkers described in the applications by Ablynx mentioned herein (see for example WO 06/040153 and WO 06/122825), as well as hinge-like regions, such as the hinge regions of naturally occurring heavy chain antibodies or similar sequences (such as described in WO 94/04678). Preferred linkers are depicted in Table 3.

In an embodiment, the present invention relates to a dimer as described herein, wherein said linker is chosen from the group consisting of SEQ ID NOs: 16-26.

It is encompassed within the scope of the invention that the length, the degree of flexibility and/or other properties of the linker(s) used (although not critical, as it usually is for linkers used in scFv fragments) may have some influence on the properties of the final polypeptide and/or dimer of the invention, including but not limited to the affinity, specificity or avidity for a chemokine, or for one or more of the other antigens. Based on the disclosure herein, the skilled person will be able to determine the optimal linker(s) for use in a specific polypeptide and/or dimer of the invention, optionally after some limited routine experiments.

When two or more linkers are used in the polypeptides of the invention, these linkers may be the same or different. Again, based on the disclosure herein, the skilled person will be able to determine the optimal linkers for use in a specific polypeptide of the invention, optionally after some limited routine experiments.

In the polypeptides of the invention, the ISVDs can be preceded by an N-terminal extension. In the context of the present invention, the N-terminal extension consists of an amino acid sequence of at least one amino acid residue to maximal 40 amino acid residues, preferably between 2 and 30 amino acid residues, such as between 2 and 20 amino acid residues, such as for instance, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid residues. The N-terminal extension is present N-terminally of the first (*i.e.* most N-terminally located, generally designated by amino acid 1 according to the Kabat numbering) amino acid residue of the first (*i.e.* most N-terminally located) ISVD in the polypeptide of the invention. Accordingly, the present invention relates to a first polypeptide and/or second polypeptide comprising an N-terminal extension.

In an embodiment, the present invention relates to the dimer as described herein, wherein said at least two ISVDs of said first polypeptide are identical and/or said at least two ISVDs of said second polypeptide are identical.

In an embodiment the first polypeptide of the invention and the second polypeptide of the invention of the dimer are different.

In an embodiment the first polypeptide of the invention and the second polypeptide of the invention making the dimer are the same. Accordingly, the first polypeptide of the present invention and the second polypeptide of the present invention are identical.

Table 3: Some Linker sequences of the invention

Name of linker	SEQ ID NO:	Amino acid sequences
A3	16	AAA
GS5 (5GS)	17	GGGGS
GS7 (7GS)	18	SGGSGGS
GS9 (9GS)	19	GGGGSGGGGS
GS10 (10GS)	20	GGGGSGGGGS
GS15 (15GS)	21	GGGGSGGGGSGGGGS
GS18 (18GS)	22	GGGGSGGGGSGGGGGGGS
GS20 (20GS)	23	GGGGSGGGGSGGGGSGGGGS
GS25 (25GS)	24	GGGGSGGGGSGGGGSGGGGSGGGGS
GS30 (30GS)	25	GGGGSGGGGSGGGGSGGGGSGGGGSGGGGS
GS35 (35GS)	26	GGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGS

5

As further elaborated *infra*, the ISVDs can be derived from a V_{HH} , V_H or a V_L domain, however, the ISVDs are chosen such that they do not form complementary pairs of V_H and V_L domains in the polypeptides of the invention or in the dimers of the invention. The Nanobody, V_{HH} , and humanized V_{HH} are unusual in that they are derived from natural camelid antibodies which have no light chains, 10 and indeed these domains are unable to associate with camelid light chains to form complementary V_{HH} and V_L pairs. Thus, the dimers and polypeptides of the present invention do not comprise complementary ISVDs and/or form complementary ISVD pairs, such as, for instance, complementary V_H / V_L pairs.

Monovalent polypeptides comprise or essentially consist of only one binding unit (such as *e.g.*, 15 immunoglobulin single variable domains). Polypeptides that comprise two or more binding units (such as *e.g.*, immunoglobulin single variable domains) will also be referred to herein as “multivalent” polypeptides, and the binding units/immunoglobulin single variable domains present in such polypeptides will also be referred to herein as being in a “multivalent format”. For example a “bivalent” polypeptide may comprise two immunoglobulin single variable domains, optionally linked 20 via a linker sequence, whereas a “trivalent” polypeptide may comprise three immunoglobulin single variable domains, optionally linked via two linker sequences; whereas a “tetravalent” polypeptide may comprise four immunoglobulin single variable domains, optionally linked via three linker sequences, etc.

In a multivalent polypeptide, the two or more immunoglobulin single variable domains may be the 25 same or different, and may be directed against the same antigen or antigenic determinant (for

example against the same part(s) or epitope(s) or against different parts or epitopes) or may alternatively be directed against different antigens or antigenic determinants; or any suitable combination thereof. Polypeptides that contain at least two binding units (such as *e.g.*, immunoglobulin single variable domains) in which at least one binding unit is directed against a first antigen of a first target and at least one binding unit is directed against an antigen of a second target (*e.g.* different from the first target) will also be referred to as "multispecific" polypeptides, and the binding units (such as *e.g.*, immunoglobulin single variable domains) present in such polypeptides will also be referred to herein as being in a "multispecific format". Thus, for example, a "bispecific" polypeptide of the invention is a polypeptide that comprises at least one immunoglobulin single variable domain directed against a first antigen of a first target and at least one further immunoglobulin single variable domain directed against a second antigen (*i.e.*, different from the first antigen of said first target), etc.

"Multiparatopic polypeptides", such as *e.g.*, "biparatopic polypeptides" or "triparatopic polypeptides", comprise or essentially consist of two or more binding units that each have a different paratope. In a further aspect, the polypeptide of the invention is a multiparatopic polypeptide (also referred to herein as "*multiparatopic polypeptide(s) of the invention*"), such as *e.g.*, "*(a) biparatopic polypeptide(s) of the invention*" or "*triparatopic polypeptide(s) of the invention*". The term "*multiparatopic*" (antigen-) binding molecule or "*multiparatopic*" polypeptide as used herein shall mean a polypeptide comprising at least two (*i.e.* two or more) immunoglobulin single variable domains, wherein a "first" immunoglobulin single variable domain is directed against a first target and a "second" immunoglobulin single variable domain is directed against the same, first target, wherein said "first" and "second" immunoglobulin single variable domains have a different paratope. Accordingly, a multiparatopic polypeptide comprises or consists of two or more immunoglobulin single variable domains that are directed against a first target, wherein at least one "first" immunoglobulin single variable domain is directed against a first epitope on said first target and at least one "second" immunoglobulin single variable domain is directed against a second epitope on said first target different from the first epitope on said first target.

In an embodiment, the present invention relates to a dimer as described herein, wherein said first polypeptide and/or said second polypeptide is chosen from the group of monovalent, bivalent, multivalent, monospecific, bispecific and multispecific polypeptides.

As used herein, the "target" of the invention is any suitable antigen (*e.g.* any target of interest) to which an ISVD can bind. The ISVD of the invention may for example bind or be directed against an antigenic determinant, epitope, part, domain, subunit or confirmation (where applicable) of a target, such as, for instance, a Receptor Tyrosine Kinase (RTK) or a G-protein coupled receptor (GPCR), *e.g.*

participating in malignancy. A target of the invention can be any target, such as a cellular receptor, on the surface of a cell, e.g. known to participate in malignancy, such as, for instance, receptor tyrosine kinases (RTK) and RTK-mediated signal transduction pathway components, which are involved in tumor initiation, maintenance, angiogenesis, and vascular proliferation. About 20 different RTK classes have been identified, of which the most extensively studied are: 1. RTK class I (EGF receptor family) (ErbB family), 2. RTK class II (Insulin receptor family), 3. RTK class III (PDGF receptor family), 4. RTK class IV (FGF receptor family), 5. RTK class V (VEGF receptors family), 6. RTK class VI (HGF receptor family), 7. RTK class VII (Trk receptor family), 8. RTK class VIII (Eph receptor family), 9. RTK class IX (AXL receptor family), 10. RTK class X (LTK receptor family), 11. RTK class XI (TIE receptor family), 12. RTK class XII (ROR receptor family), 13. RTK class XIII (DDR receptor family), 14. RTK class XIV (RET receptor family), 15. RTK class XV (KLG receptor family), 16. RTK class XVI (RYK receptor family), 17. RTK class XVII (MuSK receptor family). In particular, targets such as epidermal growth factor receptors (EGFR), platelet-derived growth factor receptors (PDGFR), vascular endothelial growth factor receptors (VEGFR), c-Met, HER3, plexins, integrins, CD44, RON and on receptors involved in pathways such as the Ras/Raf/mitogen-activated protein (MAP)-kinase and phosphatidylinositol-3 kinase (PI3K)/ Akt/ mammalian target of rapamycin (mTOR) pathways are preferred.

Accordingly the present invention relates to a dimer as described herein, wherein said first target and said second target are independently chosen from the group consisting of GPCRs, Receptor Tyrosine Kinases, DDR1, Discoidin I (CD167a antigen), DDR2, ErbB-1, C-cerbB-2, FGFR-1, FGFR-3, CD135 antigen, CD 117 antigen, Protein tyrosine kinase-1, c-Met, CD148 antigen, C-ret, ROR1, ROR2, Tie-1, Tie-2, CD202b antigen, Trk-A, Trk-B, Trk-C, VEGFR-1, VEGFR-2, VEGFR-3, Notch receptor 1-4, FAS receptor, DR5, DR4, CD47, CX3CR1, CXCR-3, CXCR-4, CXCR-7, Chemokine binding protein 2, and CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCR10 and CCR11; MART-1, carcino-embryonic antigen ("CEA"), gp100, MAGE-1, HER-2, and Lewis^y antigens, CD123, CD44, CLL-1, CD96, CD47, CD32, CXCR4, Tim-3, CD25, TAG-72, Ep-CAM, PSMA, PSA, GD2, GD3, CD4, CD5, CD19, CD20, CD22, CD33, CD36, CD45, CD52, and CD147; growth factor receptors, including ErbB3 and ErbB4; and Cytokine receptors including Interleukin-2 receptor gamma chain (CD132 antigen); Interleukin-10 receptor alpha chain (IL-10R-A); Interleukin-10 receptor beta chain (IL-10R-B); Interleukin-12 receptor beta-1 chain (IL-12R-beta1); Interleukin-12 receptor beta-2 chain (IL-12 receptor beta-2); Interleukin-13 receptor alpha-1 chain (IL-13R-alpha-1) (CD213 al antigen); Interleukin-13 receptor alpha-2 chain (Interleukin-13 binding protein); Interleukin-17 receptor (IL-17 receptor); Interleukin-17B receptor (IL-17B receptor); Interleukin 21 receptor precursor (IL-21R); Interleukin-1 receptor, type I (IL-1R-1) (CD121a); Interleukin-1 receptor, type II (IL-1R-beta) (CDw121b); Interleukin-1

receptor antagonist protein (IL-1ra); Interleukin-2 receptor alpha chain (CD25 antigen); Interleukin-2 receptor beta chain (CD122 antigen); Interleukin-3 receptor alpha chain (IL-3R-alpha) (CD123 antigen). Exemplary molecular targets (e.g., antigens) include CD proteins such as CD2, CD3, CD4, CD8, CD11, CD19, CD20, CD22, CD25, CD33, CD34, CD40, CD52; members of the ErbB receptor family such as the EGF receptor (EGFR, HER1, ErbB1), HER2 (ErbB2), HER3 (ErbB3) or HER4 (ErbB4) receptor; macrophage receptors such as CRIg; tumor necrosis factors such as TNFa or TRAIL/Apo-2; cell adhesion molecules such as LFA-1, Mad, p150, p95, VLA-4, ICAM-1, VCAM and $\alpha\beta 3$ integrin including either α or β subunits thereof; growth factors and receptors such as EGF, FGFR (e.g., FGFR3) and VEGF; IgE; cytokines such as IL1; cytokine receptors such as IL2 receptor; blood group antigens; flk2/flt3 receptor; obesity (OB) receptor; mpl receptor; CTLA-4; protein C; neutropilins; ephrins and receptors; netrins and receptors; slit and receptors; chemokines and chemokine receptors such as CCL5, CCR4, CCR5; amyloid beta; complement factors, such as complement factor D; lipoproteins, such as oxidized LDL (oxLDL); lymphotoxins, such as lymphotoxin alpha (LT α). Other molecular targets include Tweak, B7RP-1, proprotein convertase subtilisin/kexin type 9 (PCSK9), sclerostin, c-kit, Tie-2, c-fms, and anti-M1.

In a preferred embodiment, at least one of the ISVDs binds to epidermal growth factor receptor (EGFR), preferably human EGFR or any isoform thereof as represented by P00533-1, P00533-2, P00533-3 or P00533-4 as provided by Uniprot database (<http://www.uniprot.org/uniprot/P00533>) even more preferably hEGFR represented by SEQ ID NO: 61.

SEQ ID NO: 61 (P00533 hEGFR)
MRPSGTAGAALLALLAALCPASRALEKKVCQGTSNKLQLGTFEDHFLSLQRMFNNEV VLGNLEITYVQRNYDLSFLKTIQEVAQYVIALNTVERIPLLENLQIIRGNMYYENSYALA VLSNYDANKTGLKELPMRNQEIILHGAVRFSNNPACNVESIQWRDIVSSDFLSNMSMDF QNHLGSCQKCDPSCPNGSCWGAGEENCQKLTKIICAQQCSCRGKSPSDCCHNQCAAGC TGPRESDCLVCRKFRDEATCKDTCPPMLYNPTTYQMDVNPEGKYSFGATCVKKCPRNYV VTDHGSCVRACGADSYEMEEDGVRKCKCEGPCRKVCGNGIGIGEFKDSLISINATNIKHF NCTSISGDLHILPVAFRGDSFTHTPPLDPQEELDILKTVKEITGFLLIQAWPENRTDLHAF ENLEIIRGRTKQHGQFSLAVVSLNITSGLRSIKEISDGDVIISGNKNLCYANTINWK FGTSGQKTKIISNRGENSKATGQVCHALCSPEGCWGPEPRDCVSCRNSRGRECVDKCN LLEGEPEFVENSECTQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVKTCPAGVM GENNTLVWKYADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPKIPSIATGMVGALLLLVV ALGIGLFLMRRRHIVRKRTLRLLQERELVEPLTPSGEAPNQALLRILKETEFKKIKVLGS GAFGTVYKGLWIPEGEKVKIPVAIKELEATSPKANKEILDEAYVMASVDNPHVCRLLG CLTSTVQLITQLMPFGCLLDYVREHKDNIGSQYLLNWCVQIAKGMYLEDRRLVHRLA RNVLVKTPQHVKITDFGLAKLLGAEKEYHAEGGKVPIKWMALESILHRYTHQSDVWSY GTVWELMTFGSKPYDGIPASEISSLKEGERLPQPPICITDVMIMVCKWMIDADSRPK FRELIIEFSKMRDPQRYLVIQGDERMHLPSPTDSNFYRALMDEEDMDDVVADEYLIPQ QGFFSSPSTSRTPLLSSLSATSNNSTVACIDRNGLQSCPIKEDSFLQRYSSDPTGALTED SIDDTFLPVPEYINQSVPKRPAGSVQNPVYHNQPLNPAPS RDPHYQDPHSTAVGNPEYLN TVQPTCVNSTFDSPAHWAKGSHQISLDNPDYQQDFFPKEAQPNGIFKGSTAENAEYLRV APQSSEFIGA

In an embodiment, the polypeptide of the invention is chosen from SEQ ID NOs: 27-31 and 62-81.

In an embodiment, the polypeptide of the invention comprises at least one of the ISVD binding to CD4, CD123, IL23, CXCR4, IL12Rb1, IL12Rb2 or CEACAM5, preferably said ISVD is independently chosen from SEQ ID NO:s 97-110 (see Table 6).

5 It is also expected that the immunoglobulin single variable domains, polypeptides and/or dimers of the invention will generally bind to all naturally occurring or synthetic analogs, variants, mutants, alleles, parts and fragments of its targets.

Accordingly, the invention relates to dimer as described herein, wherein said ISVD of said first polypeptide binds a first target and/or said ISVD of said second polypeptide binds a second target.

10 Accordingly, the invention relates to dimer as described herein, wherein said first polypeptide binds a first target:

- with an IC_{50} of at most 100 nM, such as 50 nM, 20 nM, 10 nM, 9 nM, 8 nM, 7 nM, 6 nM, 5 nM, 4 nM, 3 nM, preferably even at most 2 nM, such as 1 nM, as determined by a competition FACS;
- with a dissociation constant (K_D) of 10^{-5} to 10^{-12} moles/litre or less, and preferably 10^{-7} to 10^{-12} moles/litre or less and more preferably 10^{-8} to 10^{-12} moles/litre;
- with a rate of association (k_{on} -rate) of between $10^2 M^{-1}s^{-1}$ to about $10^7 M^{-1}s^{-1}$, preferably between $10^3 M^{-1}s^{-1}$ and $10^7 M^{-1}s^{-1}$, more preferably between $10^4 M^{-1}s^{-1}$ and $10^7 M^{-1}s^{-1}$, such as between $10^5 M^{-1}s^{-1}$ and $10^7 M^{-1}s^{-1}$; and/or
- with a rate of dissociation (k_{off} rate) between $1s^{-1}$ and $10^{-6} s^{-1}$, preferably between $10^{-2} s^{-1}$ and $10^{-6} s^{-1}$, more preferably between $10^{-3} s^{-1}$ and $10^{-6} s^{-1}$, such as between $10^{-4} s^{-1}$ and $10^{-6} s^{-1}$.

Accordingly, the invention relates to dimer as described herein, wherein said second polypeptide binds a second target:

- with an IC_{50} of at most 100 nM, such as 50 nM, 20 nM, 10 nM, 9 nM, 8 nM, 7 nM, 6 nM, 5 nM, 4 nM, 3 nM, preferably even at most 2 nM, such as 1 nM, as determined by a competition FACS;
- with a dissociation constant (K_D) of 10^{-5} to 10^{-12} moles/litre or less, and preferably 10^{-7} to 10^{-12} moles/litre or less and more preferably 10^{-8} to 10^{-12} moles/litre;
- with a rate of association (k_{on} -rate) of between $10^2 M^{-1}s^{-1}$ to about $10^7 M^{-1}s^{-1}$, preferably between $10^3 M^{-1}s^{-1}$ and $10^7 M^{-1}s^{-1}$, more preferably between $10^4 M^{-1}s^{-1}$ and $10^7 M^{-1}s^{-1}$, such as between $10^5 M^{-1}s^{-1}$ and $10^7 M^{-1}s^{-1}$; and/or
- with a rate of dissociation (k_{off} rate) between $1s^{-1}$ and $10^{-6} s^{-1}$, preferably between $10^{-2} s^{-1}$ and $10^{-6} s^{-1}$, more preferably between $10^{-3} s^{-1}$ and $10^{-6} s^{-1}$, such as between $10^{-4} s^{-1}$ and $10^{-6} s^{-1}$.

In an embodiment, the invention relates to dimer as described herein, wherein said first target and said second target are different.

In an embodiment, the invention relates to dimer as described herein, wherein said first target and said second target are identical.

Unless indicated otherwise, the term "immunoglobulin sequence" - whether used herein to refer to a heavy chain antibody or to a conventional 4-chain antibody - is used as a general term to include 5 both the full-size antibody, the individual chains thereof, as well as all parts, domains or fragments thereof (including but not limited to antigen-binding domains or fragments such as V_{HH} domains or V_H/V_L domains, respectively). In addition, the term "sequence" as used herein (for example in terms like "immunoglobulin sequence", "antibody sequence", "variable domain sequence", " V_{HH} sequence" or "protein sequence"), should generally be understood to include both the relevant amino acid 10 sequence as well as nucleic acids or nucleotide sequences encoding the same, unless the context requires a more limited interpretation.

An immunoglobulin single variable domains may be used as a "binding unit", "binding domain" or "building block" (these terms are used interchangeable) for the preparation of a polypeptide, which may optionally contain one or more further immunoglobulin single variable domains that can serve 15 as a binding unit (*i.e.*, against the same or a different epitope of the same target and/or against one or more different targets).

The term "immunoglobulin single variable domain" ("ISVD"), interchangeably used with "single variable domain" ("SVD"), defines molecules wherein the antigen binding site is present on, and formed by, a single immunoglobulin domain. This sets immunoglobulin single variable domains apart 20 from "conventional" immunoglobulins or their fragments, wherein two immunoglobulin domains, in particular two variable domains, interact to form an antigen binding site. Typically, in conventional immunoglobulins, a heavy chain variable domain (VH) and a light chain variable domain (VL) interact to form an antigen binding site. In this case, the complementarity determining regions (CDRs) of both VH and VL will contribute to the antigen binding site, *i.e.* a total of 6 CDRs will be involved in antigen 25 binding site formation.

In contrast, the binding site of an immunoglobulin single variable domain is formed by a single V_H or V_L domain. Hence, the antigen binding site of an immunoglobulin single variable domain is formed by no more than three CDRs.

The terms "immunoglobulin single variable domain" and "single variable domain" hence do not 30 comprise conventional immunoglobulins or their fragments which require interaction of at least two variable domains for the formation of an antigen binding site. However, these terms do comprise fragments of conventional immunoglobulins wherein the antigen binding site is formed by a single variable domain.

Generally, single variable domains will be amino acid sequences that essentially consist of 4 framework regions (FR1 to FR4, respectively) and 3 complementarity determining regions (CDR1 to CDR3, respectively). Such single variable domains and fragments are most preferably such that they comprise an immunoglobulin fold or are capable for forming, under suitable conditions, an immunoglobulin fold. As such, the single variable domain may for example comprise a light chain variable domain sequence (e.g. a V_L -sequence) or a suitable fragment thereof; or a heavy chain variable domain sequence (e.g. a V_H -sequence or V_{HH} sequence) or a suitable fragment thereof; as long as it is capable of forming a single antigen binding unit (*i.e.* a functional antigen binding unit that essentially consists of the single variable domain, such that the single antigen binding unit does not need to interact with another variable domain to form a functional antigen binding unit, as is for example the case for the variable domains that are present in for example conventional antibodies and scFv fragments that need to interact with another variable domain - *e.g.* through a V_H/V_L interaction - to form a functional antigen binding domain).

In an embodiment of the invention, the immunoglobulin single variable domains are light chain variable domain sequences (e.g. a V_L -sequence), or heavy chain variable domain sequences (e.g. a V_H -sequence); more specifically, the immunoglobulin single variable domains can be heavy chain variable domain sequences that are derived from a conventional four-chain antibody or heavy chain variable domain sequences that are derived from a heavy chain antibody.

For example, the single variable domain or immunoglobulin single variable domain (or an amino acid that is suitable for use as an immunoglobulin single variable domain) may be a (single) domain antibody (or an amino acid that is suitable for use as a (single) domain antibody), a "dAb" or dAb (or an amino acid that is suitable for use as a dAb) or a Nanobody (as defined herein, and including but not limited to a V_{HH}); other single variable domains, or any suitable fragment of any one thereof.

For a general description of (single) domain antibodies, reference is also made to the prior art cited herein, as well as to EP 0368684. For the term "dAb's", reference is for example made to Ward *et al.* 1989 (Nature 341: 544-546), to Holt *et al.* 2003 (Trends Biotechnol. 21: 484-490); as well as to for example WO 04/068820, WO 06/030220, WO 06/003388, WO 06/059108, WO 07/049017, WO 07/085815 and other published patent applications of Domantis Ltd. It should also be noted that, although less preferred in the context of the present invention because they are not of mammalian origin, single variable domains can be derived from certain species of shark (for example, the so-called "IgNAR domains", see for example WO 05/18629).

In particular, the immunoglobulin single variable domain may be a NANOBODY® (as defined herein) or a suitable fragment thereof. [Note: NANOBODY®, NANOBODIES® and NANOCLOONE® are registered

trademarks of Ablynx N.V.] For a general description of Nanobodies, reference is made to the further description below, as well as to the prior art cited herein, such as e.g. described in WO 08/020079 (page 16).

For a further description of V_{HH} 's and Nanobodies, reference is made to the review article by 5 Muyldermans 2001 (Reviews in Molecular Biotechnology 74: 277-302), as well as to the following patent applications, which are mentioned as general background art: WO 94/04678, WO 95/04079 and WO 96/34103 of the Vrije Universiteit Brussel; WO 94/25591, WO 99/37681, WO 00/40968, WO 00/43507, WO 00/65057, WO 01/40310, WO 01/44301, EP 1134231 and WO 02/48193 of Unilever; WO 97/49805, WO 01/21817, WO 03/035694, WO 03/054016 and WO 03/055527 of the Vlaams 10 Instituut voor Biotechnologie (VIB); WO 03/050531 of Algonomics N.V. and Ablynx N.V.; WO 01/90190 by the National Research Council of Canada; WO 03/025020 by the Institute of Antibodies; as well as WO 04/041867, WO 04/041862, WO 04/041865, WO 04/041863, WO 04/062551, WO 05/044858, WO 06/40153, WO 06/079372, WO 06/122786, WO 06/122787 and WO 06/122825, by 15 Ablynx N.V. and the further published patent applications by Ablynx N.V. Reference is also made to the further prior art mentioned in these applications, and in particular to the list of references mentioned on pages 41-43 of the International application WO 06/040153, which list and references are incorporated herein by reference. As described in these references, Nanobodies (in particular VHH sequences and partially humanized Nanobodies) can in particular be characterized by the presence of one or more "Hallmark residues" in one or more of the framework sequences. A further 20 description of the Nanobodies, including humanization and/or camelization of Nanobodies, as well as other modifications, parts or fragments, derivatives or "Nanobody fusions", multivalent constructs (including some non-limiting examples of linker sequences) and different modifications to increase the half-life of the Nanobodies and their preparations can be found e.g. in WO 08/101985 and WO 08/142164.

25 Thus, in the meaning of the present invention, the term "immunoglobulin single variable domain" or "single variable domain" comprises polypeptides which are derived from a non-human source, preferably a camelid, preferably a camelid heavy chain antibody. They may be humanized, as previously described. Moreover, the term comprises polypeptides derived from non-camelid sources, e.g. mouse or human, which have been "camelized", as e.g. described in Davies and Riechmann 1994 30 (FEBS 339: 285-290), 1995 (Biotechnol. 13: 475-479), 1996 (Prot. Eng. 9: 531-537) and Riechmann and Muyldermans 1999 (J. Immunol. Methods 231: 25-38).

The term "immunoglobulin single variable domain" encompasses immunoglobulin sequences of different origin, comprising mouse, rat, rabbit, donkey, human and camelid immunoglobulin sequences. It also includes fully human, humanized or chimeric immunoglobulin sequences. For

example, it comprises camelid immunoglobulin sequences and humanized camelid immunoglobulin sequences, or camelized immunoglobulin single variable domains, e.g. camelized dAbs as described by Ward *et al.* 1989 (see for example WO 94/04678 and Davies and Riechmann 1994, 1995 and 1996) and camelized VH.

5 Again, such immunoglobulin single variable domains may be derived in any suitable manner and from any suitable source, and may for example be naturally occurring V_{HH} sequences (*i.e.* from a suitable species of Camelid) or synthetic or semi-synthetic amino acid sequences, including but not limited to partially or fully “humanized” V_{HH} , “camelized” immunoglobulin sequences (and in particular camelized V_H), as well as Nanobodies and/or V_{HH} that have been obtained by techniques
10 such as affinity maturation (for example, starting from synthetic, random or naturally occurring immunoglobulin sequences, such as V_{HH} sequences), CDR grafting, veneering, combining fragments derived from different immunoglobulin sequences, PCR assembly using overlapping primers, and similar techniques for engineering immunoglobulin sequences well known to the skilled person; or any suitable combination of any of the foregoing.

15 The amino acid sequence and structure of an immunoglobulin single variable domain can be considered - without however being limited thereto - to be comprised of four framework regions or “FRs”, which are referred to in the art and herein as “Framework region 1” or “FR1”; as “Framework region 2” or “FR2”; as “Framework region 3” or “FR3”; and as “Framework region 4” or “FR4”, respectively; which framework regions are interrupted by three complementary determining regions
20 or “CDRs”, which are referred to in the art as “Complementarity Determining Region 1” or “CDR1”; as “Complementarity Determining Region 2” or “CDR2”; and as “Complementarity Determining Region 3” or “CDR3”, respectively.

Thus, generally, an ISVD can be defined as an amino acid sequence with the (general) structure

FR1 - CDR1 - FR2 - CDR2 - FR3 - CDR3 - FR4

25 in which FR1 to FR4 refer to framework regions 1 to 4, respectively, and in which CDR1 to CDR3 refer to the complementarity determining regions 1 to 3, respectively. In particular, a Nanobody can be an amino acid sequence with the (general) structure

FR1 - CDR1 - FR2 - CDR2 - FR3 - CDR3 - FR4

in which FR1 to FR4 refer to framework regions 1 to 4, respectively, and in which CDR1 to CDR3 refer
30 to the complementarity determining regions 1 to 3, respectively, and in which one or more of the Hallmark residues are as further defined in the references cited herein or in Table B-2.

Table B-2: Hallmark Residues in Nanobodies

Position	Human V _{H3}	Hallmark Residues
11	L, V; predominantly L	L, S, V, M, W, F, T, Q, E, A, R, G, K, Y, N, P, I; preferably L
37	V, I, F; usually V	F ⁽¹⁾ , Y, V, L, A, H, S, I, W, C, N, G, D, T, P, preferably F ⁽¹⁾ or Y
44 ⁽⁸⁾	G	E ⁽³⁾ , Q ⁽³⁾ , G ⁽²⁾ , D, A, K, R, L, P, S, V, H, T, N, W, M, I; preferably G ⁽²⁾ , E ⁽³⁾ or Q ⁽³⁾ ; most preferably G ⁽²⁾ or Q ⁽³⁾
45 ⁽⁸⁾	L	L ⁽²⁾ , R ⁽³⁾ , P, H, F, G, Q, S, E, T, Y, C, I, D, V; preferably L ⁽²⁾ or R ⁽³⁾
47 ⁽⁸⁾	W, Y	F ⁽¹⁾ , L ⁽¹⁾ or W ⁽²⁾ G, I, S, A, V, M, R, Y, E, P, T, C, H, K, Q, N, D; preferably W ⁽²⁾ , L ⁽¹⁾ or F ⁽¹⁾
83	R or K; usually R	R, K ⁽⁵⁾ , T, E ⁽⁵⁾ , Q, N, S, I, V, G, M, L, A, D, Y, H; preferably K or R; most preferably K
84	A, T, D; predominantly A	P ⁽⁵⁾ , S, H, L, A, V, I, T, F, D, R, Y, N, Q, G, E; preferably P
103	W	W ⁽⁴⁾ , R ⁽⁶⁾ , G, S, K, A, M, Y, L, F, T, N, V, Q, P ⁽⁶⁾ , E, C; preferably W
104	G	G, A, S, T, D, P, N, E, C, L; preferably G
108	L, M or T; predominantly L	Q, L ⁽⁷⁾ , R, P, E, K, S, T, M, A, H; preferably Q or L ⁽⁷⁾

Notes:

- (1) In particular, but not exclusively, in combination with KERE or KQRE at positions 43-46.
- (2) Usually as GLEW at positions 44-47.
- (3) Usually as KERE or KQRE at positions 43-46, e.g. as KEREL, KEREF, KQREL, KQREF, KEREG, KQREW or KQREG at positions 43-47. Alternatively, also sequences such as TERE (for example TEREL), TQRE (for example TQREL), KECE (for example KECEL or KECER), KQCE (for example KQCEL), RERE (for example REREG), RQRE (for example RQREL, RQREF or RQREW), QERE (for example QEREG), QQRE, (for example QQREW, QQREL or QQREF), KGRE (for example KGREG), KDRE (for example KDREV) are possible. Some other possible, but less preferred sequences include for example DECKL and NVCEL.
- (4) With both GLEW at positions 44-47 and KERE or KQRE at positions 43-46.
- (5) Often as KP or EP at positions 83-84 of naturally occurring V_{HH} domains.
- (6) In particular, but not exclusively, in combination with GLEW at positions 44-47.

(7) With the proviso that when positions 44-47 are GLEW, position 108 is always Q in (non-humanized) V_{HH} sequences that also contain a W at 103.
(8) The GLEW group also contains GLEW-like sequences at positions 44-47, such as for example GVEW, EPEW, GLER, DQEW, DLEW, GIEW, ELEW, GPEW, EWLP, GPER, GLER and ELEW.

Thus, in another preferred, but not limiting aspect, a Nanobody of the invention can be defined as an amino acid sequence with the (general) structure

FR1 - CDR1 - FR2 - CDR2 - FR3 - CDR3 - FR4

in which FR1 to FR4 refer to framework regions 1 to 4, respectively, and in which CDR1 to CDR3 refer 5 to the complementarity determining regions 1 to 3, respectively, and in which: (i) one or more of the amino acid residues at positions 11, 37, 44, 45, 47, 83, 84, 103, 104 and 108 according to the Kabat numbering are chosen from the Hallmark residues mentioned in Table B-2; and in which: (ii) CDR1, CDR2 and CDR3 are as defined herein.

In a preferred but non-limiting aspect, the invention relates to an ISVD (such as a Nanobody) against 10 a target such as e.g. EGFR, which consists of 4 framework regions (FR1 to FR4 respectively) and 3 complementarity determining regions (CDR1 to CDR3 respectively), in which:

- CDR1 is chosen from the group consisting of:
 - (a) the amino acid sequences of SEQ ID NO's: 47 and 55;
 - (b) amino acid sequences that have at least 80% amino acid identity with at least one of the amino acid sequences of SEQ ID NO's: 47 and 55;
 - (c) amino acid sequences that have 3, 2, or 1 amino acid difference with at least one of the amino acid sequences of SEQ ID NO's: 47 and 55;

and/or

- CDR2 is chosen from the group consisting of:
 - (d) the amino acid sequences of SEQ ID NO's: 49 and 57;
 - (e) amino acid sequences that have at least 80% amino acid identity with at least one of the amino acid sequences of SEQ ID NO's: 49 and 57;
 - (f) amino acid sequences that have 3, 2, or 1 amino acid difference with at least one of the amino acid sequences of SEQ ID NO's: 49 and 57;

and/or

- CDR3 is chosen from the group consisting of:
 - (g) the amino acid sequences of SEQ ID NO's: 51 and 59;
 - (h) amino acid sequences that have at least 80% amino acid identity with at least one of the amino acid sequences of SEQ ID NO's: 51 and 59;

- (i) amino acid sequences that have 3, 2, or 1 amino acid difference with at least one of the amino acid sequences of SEQ ID NO's: 51 and 59;

or any suitable fragment of such an amino acid sequence.

In a preferred but non-limiting aspect, the invention relates to an ISVD (such as a Nanobody) against

5 a target such as e.g. EGFR, which consists of 4 framework regions (FR1 to FR4 respectively) and 3 complementarity determining regions (CDR1 to CDR3 respectively), in which:

- FR1 is chosen from the group consisting of:

- (i) the amino acid sequences of SEQ ID NO's: 46 and 54;

- (ii) amino acid sequences that have at least 80% amino acid identity with at least one of the amino acid sequences of SEQ ID NO's: 46 and 54;

10

- (iii) amino acid sequences that have 3, 2, or 1 amino acid difference with at least one of the amino acid sequences of SEQ ID NO's: 46 and 54;

and/or

- CDR1 is chosen from the group consisting of:

15

- (a) the amino acid sequences of SEQ ID NO's: 47 and 55;

- (b) amino acid sequences that have at least 80% amino acid identity with at least one of the amino acid sequences of SEQ ID NO's: 47 and 55;

- (c) amino acid sequences that have 3, 2, or 1 amino acid difference with at least one of the amino acid sequences of SEQ ID NO's: 47 and 55;

20 and/or

- FR2 is chosen from the group consisting of:

- (iv) the amino acid sequences of SEQ ID NO's: 48 and 56;

- (v) amino acid sequences that have at least 80% amino acid identity with at least one of the amino acid sequences of SEQ ID NO's: 48 and 56;

25

- (vi) amino acid sequences that have 3, 2, or 1 amino acid difference with at least one of the amino acid sequences of SEQ ID NO's: 48 and 56;

and/or

- CDR2 is chosen from the group consisting of:

- (d) the amino acid sequences of SEQ ID NO's: 49 and 57;

30

- (e) amino acid sequences that have at least 80% amino acid identity with at least one of the amino acid sequences of SEQ ID NO's: 49 and 57;

- (f) amino acid sequences that have 3, 2, or 1 amino acid difference with at least one of the amino acid sequences of SEQ ID NO's: 49 and 57;

and/or

- FR3 is chosen from the group consisting of:
 - (vii) the amino acid sequences of SEQ ID NO's: 50 and 58;
 - (viii) amino acid sequences that have at least 80% amino acid identity with at least one of the amino acid sequences of SEQ ID NO's: 50 and 58;

5 (ix) amino acid sequences that have 3, 2, or 1 amino acid difference with at least one of the amino acid sequences of SEQ ID NO's: 50 and 58;

and/or

- CDR3 is chosen from the group consisting of:
 - (g) the amino acid sequences of SEQ ID NO's: 51 and 59;
 - 10 (h) amino acid sequences that have at least 80% amino acid identity with at least one of the amino acid sequences of SEQ ID NO's: 51 and 59;
 - (i) amino acid sequences that have 3, 2, or 1 amino acid difference with at least one of the amino acid sequences of SEQ ID NO's: 51 and 59;

and/or

15 - FR4 is chosen from the group consisting of:

- (x) the amino acid sequences of SEQ ID NO's: 52 and 60;
- (xi) amino acid sequences that have at least 80% amino acid identity with at least one of the amino acid sequences of SEQ ID NO's: 52 and 60;
- (xii) amino acid sequences that have 3, 2, or 1 amino acid difference with at least one of the 20 amino acid sequences of SEQ ID NO's: 52 and 60;

or any suitable fragment of such an amino acid sequence.

Preferably, the ISVD is chosen from the group consisting of SEQ ID NO:s 45 and 53.

The total number of amino acid residues in an immunoglobulin single variable domain can be in the region of 110-120, is preferably 112-115, and is most preferably 113.

25 As further described in paragraph q) on pages 58 and 59 of WO 08/020079 (incorporated herein by reference), the amino acid residues of an immunoglobulin single variable domain are numbered according to the general numbering for VH domains given by Kabat *et al.* ("Kabat numbering") ("Sequence of proteins of immunological interest", US Public Health Services, NIH Bethesda, MD, Publication No. 91), as applied to VHH domains from Camelids in the article of Riechmann and

30 Muylldermans 2000 (J. Immunol. Methods 240: 185-195; see for example Figure 2 of this publication), and accordingly FR1 of an immunoglobulin single variable domain comprises the amino acid residues at positions 1-30, CDR1 of an immunoglobulin single variable domain comprises the amino acid residues at positions 31-35, FR2 of an immunoglobulin single variable domain comprises the amino acids at positions 36-49, CDR2 of an immunoglobulin single variable domain comprises the amino

acid residues at positions 50-65, FR3 of an immunoglobulin single variable domain comprises the amino acid residues at positions 66-94, CDR3 of an immunoglobulin single variable domain comprises the amino acid residues at positions 95-102, and FR4 of an immunoglobulin single variable domain comprises the amino acid residues at positions 103-113.

5 It will be clear, based on the examples of immunoglobulin single variable domain sequences that are given herein as well as in WO 08/020079, in WO 06/040153 and in the further immunoglobulin single variable domain-related references cited therein, that the precise number of amino acid residues will also depend on the length of the specific CDR's that are present in the immunoglobulin single variable domain. With regard to the CDR's, as is well-known in the art, there are multiple 10 conventions to define and describe the CDR's of a VH or VHH fragment, such as the Kabat definition (which is based on sequence variability and is the most commonly used) and the Chothia definition (which is based on the location of the structural loop regions). Reference is for example made to the website <http://www.bioinf.org.uk/abs/>. For the purposes of the present specification and claims, even though the CDR's according to Kabat may also be mentioned, the CDRs are most preferably 15 defined on the basis of the Abm definition (which is based on Oxford Molecular's AbM antibody modelling software), as this is considered to be an optimal compromise between the Kabat and Chothia definitions. Reference is again made to the website <http://www.bioinf.org.uk/abs/>).

In an embodiment, FR4 comprises the C-terminal amino acid sequence VTVSS, *i.e.* each of positions 109, 110, 111, 112 and 113. The present invention also encompasses ISVDs ending at position 109, 20 110, 111 or 112. In an aspect of the invention, FR4 ends with the C-terminal amino acid sequence VTVS (positions 109-112), FR4 ends with the C-terminal amino acid sequence VTV (positions 109-111), FR4 ends with the C-terminal amino acid sequence VT (positions 109-110), or FR4 ends with the C-terminal amino acid V (position 109). The C-terminal extension can be present C-terminally of the last amino acid residue of FR4, *e.g.* V109, T110, V111, S112 or S113, of the last (most C-terminally 25 located) ISVD, in which the cysteine moiety of the invention is preferably present or positioned at the C-terminus of the C-terminal extension. In an embodiment, FR4 comprises the C-terminal amino acid sequence VTVSS and the C-terminal extension is a cysteine (*e.g.* a polypeptide of the invention ending in VTVSSC). In an embodiment, FR4 comprises the C-terminal amino acid sequence VTVS and the C-terminal extension is a cysteine (*e.g.* a polypeptide of the invention ending in VTVSC). In an 30 embodiment, FR4 comprises the C-terminal amino acid sequence VTV and the C-terminal extension is a cysteine (*e.g.* a polypeptide of the invention ending in VTVC). In an embodiment, FR4 comprises the C-terminal amino acid sequence VT and the C-terminal extension is a cysteine (*e.g.* a polypeptide of the invention ending in VTC). In an embodiment, FR4 comprises the C-terminal amino acid V and the C-terminal extension is a cysteine (*e.g.* a polypeptide of the invention ending in VC).

In an embodiment, the present invention relates to a dimer as described herein, wherein an ISVD is a light chain variable domain sequence (VL), is a heavy chain variable domain sequence (VH), is derived from a conventional four-chain antibody or is derived from a heavy chain antibody.

In an embodiment, the present invention relates to a dimer as described herein, wherein each of said

5 ISVD is independently chosen from the group consisting of single domain antibodies, domain antibodies, amino acid sequences suitable for use as single domain antibody, amino acid sequences suitable for use as domain antibody, dAbs, amino acid sequences suitable for use as dAb, Nanobodies, VHVs, humanized VHVs, and camelized VHs. Preferably, the ISVD comprises between 100 to 140 amino acids, such as between 110-130 amino acids.

10 In an embodiment, the present invention relates to a dimer as described herein, wherein each of said ISVD is independently chosen from the group consisting of Nanobodies, VHVs, humanized VHVs, and camelized VHs comprises between 105 to 125 amino acids, such as preferably between 110-120 amino acids, such as 110, 111, such as 110, 111, 112, 113, 114, 115, 116, 117, 118, 119 or 120 amino acids, most preferably 113 amino acids.

15 The present invention relates to a dimer as described herein, wherein each of said ISVD is independently chosen from the group consisting of Nanobodies, VHVs, humanized VHVs, and camelized VHs ends at amino acid position 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118 119 or 120, preferably at amino acid position 113 according to Kabat numbering.

20 The present invention relates to a dimer as described herein, wherein each of said ISVD is independently chosen from the group consisting of single domain antibodies, domain antibodies, amino acid sequences suitable for use as single domain antibody, amino acid sequences suitable for use as domain antibody, dAbs, amino acid sequences suitable for use as dAb and camelized VHs, wherein said single domain antibodies, domain antibodies, amino acid sequences suitable for use as single domain antibody, amino acid sequences suitable for use as domain antibody, dAbs, amino acid sequences suitable for use as dAb and camelized VHs are derived from a VH.

25 The present invention relates to a dimer as described herein, wherein said single domain antibodies, domain antibodies, amino acid sequences suitable for use as single domain antibody, amino acid sequences suitable for use as domain antibody, dAbs, amino acid sequences suitable for use as dAb and camelized VHs comprise 110-130 amino acids, preferably 115-127 amino acids, such as 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126 or 127 amino acids, most preferably 123 amino acids. Preferably, wherein said single domain antibodies, domain antibodies, amino acid sequences suitable for use as single domain antibody, amino acid sequences suitable for use as domain antibody, dAbs, amino acid sequences suitable for use as dAb and camelized VHs end at amino acid

110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129 or 130 preferably at amino acid 123, according to Kabat numbering.

Accordingly the present invention relates to a dimer as described herein, wherein each of said ISVD is independently chosen from the group consisting of single domain antibodies, domain antibodies,

5 amino acid sequences suitable for use as single domain antibody, amino acid sequences suitable for use as domain antibody, dAbs and amino acid sequences suitable for use as dAb, wherein said single domain antibodies, domain antibodies, amino acid sequences suitable for use as single domain antibody, amino acid sequences suitable for use as domain antibody, dAbs or amino acid sequences suitable for use as dAb are derived from a VL. Preferably, wherein said single domain antibodies, 10 domain antibodies, amino acid sequences suitable for use as single domain antibody, amino acid sequences suitable for use as domain antibody, dAbs and amino acid sequences suitable for use as dAb comprise 100-120 amino acids, preferably 105-115 amino acids, such as 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119 or 120 amino acids, most preferably 108 amino acids. Preferably, wherein said single domain antibodies, domain antibodies, 15 amino acid sequences suitable for use as single domain antibody, amino acid sequences suitable for use as domain antibody, dAbs and amino acid sequences suitable for use as dAb, end at amino acid 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119 or 120, preferably at amino acid 108, according to Kabat numbering.

In a specific aspect of the invention, a polypeptide or dimer of the invention may have an increased

20 half-life, compared to the corresponding polypeptide or dimer of the invention. Some preferred, but non-limiting examples of such polypeptides or dimers will become clear to the skilled person based on the further disclosure herein, and for example comprise polypeptides of the invention that have been chemically modified to increase the half-life thereof (for example, by means of pegylation); polypeptides of the invention that comprise at least one additional binding site for binding to a 25 serum protein (such as serum albumin); or polypeptides of the invention that comprise at least one polypeptide of the invention that is linked to at least one moiety that increases the half-life of the polypeptide of the invention.

According to a specific, preferred but non-limiting aspect of the invention, the polypeptides of the invention may contain, besides the one or more immunoglobulin single variable domains directed

30 against an epitope on a target cell, at least one immunoglobulin single variable domain against human serum albumin. These immunoglobulin single variable domains against human serum albumin may be as generally described in the applications by Ablynx N.V. cited herein (see for example WO 04/062551). Some particularly preferred ISVDs, such as Nanobodies that provide for increased half-life and that can be used in the polypeptides of the invention include the ISVDs, e.g.

Nanobodies ALB-1 to ALB-10 disclosed in WO 06/122787 (see Tables II and III) of which ALB-8 (SEQ ID NO: 62 in WO 06/122787) is particularly preferred, as well as the ISVDs, e.g. Nanobodies disclosed in WO 2012/175400 (SEQ ID NOS: 1-11 of WO 2012/175400) and the ISVD, e.g. Nanobody with SEQ ID NO: 109 disclosed in the co-pending US provisional application No 62/047,560 entitled "*Improved immunoglobulin single variable domains*" (date of filing: September 8, 2014; assignee: Ablynx N.V.).

5 5 *immunoglobulin single variable domains*" (date of filing: September 8, 2014; assignee: Ablynx N.V.).

In a further aspect, the invention relates to a dimer as described herein, wherein said first polypeptide and/or said second polypeptide further comprises one or more other groups, residues, moieties or binding units (as further defined herein), wherein said one or more other groups, residues, moieties or binding units increase the half-life of the dimer (compared to the dimer lacking 10 said one or more other groups, residues, moieties or binding units). Preferably, the said one or more other groups, residues, moieties or binding units that increase the half-life of the dimer is an ISVD that increases the half-life of the dimer.

10 10 In an embodiment the invention relates to a dimer as described herein, wherein said ISVD that increases the half-life of the dimer binds serum albumin, preferably human serum albumin, or serum 15 immunoglobulin, preferably, human IgG.

In an embodiment the invention relates to a dimer as described herein, which has a serum half-life that is at least 1.5 times, preferably at least 2 times, such as at least 5 times, for example at least 10 times or more than 20 times, larger than the half-life of the corresponding dimer without said ISVD that increases the half-life of the dimer.

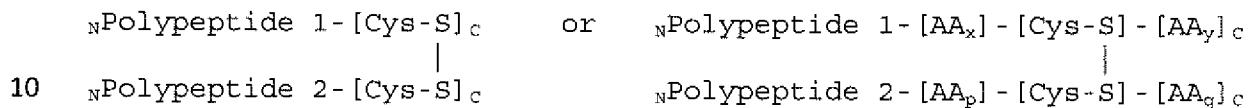
20 20 In an embodiment the invention relates to a dimer as described herein, which has a serum half-life that is increased with more than 1 hours, preferably more than 2 hours, more preferably more than 6 hours, such as more than 12 hours, or even more than 24, 48 or 72 hours, compared to the corresponding said ISVD that increases the half-life of the dimer.

25 25 In an embodiment the invention relates to a dimer as described herein, which has a serum half-life in human of at least about 12 hours, preferably at least 24 hours, more preferably at least 48 hours, even more preferably at least 72 hours or more; for example, of at least 5 days (such as about 5 to 10 days), preferably at least 9 days (such as about 9 to 14 days), more preferably at least about 10 days (such as about 10 to 15 days), or at least about 11 days (such as about 11 to 16 days), more preferably at least about 12 days (such as about 12 to 18 days or more), or more than 14 days (such 30 30 as about 14 to 19 days).

In a particularly preferred but non-limiting aspect of the invention, the invention provides a polypeptide of the invention comprising at least one immunoglobulin single variable domain (ISVD); and further comprising one or more (preferably one) serum albumin binding immunoglobulin single

variable domain as described herein, e.g. the serum albumin binding immunoglobulin single variable domain of Alb11, Alb23, Alb129, Alb132, Alb8, Alb11 (S112K)-A, Alb82, Alb82-A, Alb82-AA, Alb82-G, Alb82-GG, Alb82-GGG (see Table 10), e.g. chosen from SEQ ID NO:s 32-44.

Table 10: Serum albumin binding ISVD sequences ("ID" refers to the SEQ ID NO as used herein)


Name	ID	Amino acid sequence
Alb8	32	EVQLVESGGGLVQPGNRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSGSDTLYADS VKGRFTISRDNAKTTLYLQMNSLRPEDTAVYCTIGGSLSRSSQGTIVTVSS
Alb23	33	EVQLLESGGGLVQPGGSLRLSCAASGFTFRSGMSWVRQAPGKGPEWVSSISGSGSDTLYADS VKGRFTISRDNSKNTLYLQMNSLRPEDTAVYCTIGGSLSRSSQGTIVTVSS
Alb129	34	EVQLVESGGGVVQPGNRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSGSDTLYADS VKGRFTISRDNAKTTLYLQMNSLRPEDTATYYCTIGGSLSRSSQGTIVTVSSA
Alb132	35	EVQLVESGGGVVQPGGSLRLSCAASGFTFRSGMSWVRQAPGKGPEWVSSISGSGSDTLYAD SVKGRFTISRDNSKNTLYLQMNSLRPEDTATYYCTIGGSLSRSSQGTIVTVSSA
Alb11	36	EVQLVESGGGLVQPGNRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSGSDTLYADS VKGRFTISRDNAKTTLYLQMNSLRPEDTAVYCTIGGSLSRSSQGTIVTVSS
Alb11 (S112K)-A	37	EVQLVESGGGLVQPGNRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSGSDTLYADS VKGRFTISRDNAKTTLYLQMNSLRPEDTAVYCTIGGSLSRSSQGTIVKVSSA
Alb82	38	EVQLVESGGGVVQPGNRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSGSDTLYADS VKGRFTISRDNAKTTLYLQMNSLRPEDTALYYCTIGGSLSRSSQGTIVTVSS
Alb82-A	39	EVQLVESGGGVVQPGNRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSGSDTLYADS VKGRFTISRDNAKTTLYLQMNSLRPEDTALYYCTIGGSLSRSSQGTIVTVSSA
Alb82-AA	40	EVQLVESGGGVVQPGNRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSGSDTLYADS VKGRFTISRDNAKTTLYLQMNSLRPEDTALYYCTIGGSLSRSSQGTIVTVSSAA
Alb82-AAA	41	EVQLVESGGGVVQPGNRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSGSDTLYADS VKGRFTISRDNAKTTLYLQMNSLRPEDTALYYCTIGGSLSRSSQGTIVTVSSAAA
Alb82-G	42	EVQLVESGGGVVQPGNRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSGSDTLYADS VKGRFTISRDNAKTTLYLQMNSLRPEDTALYYCTIGGSLSRSSQGTIVTVSSGG
Alb82-GG	43	EVQLVESGGGVVQPGNRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSGSDTLYADS VKGRFTISRDNAKTTLYLQMNSLRPEDTALYYCTIGGSLSRSSQGTIVTVSSGG
Alb82-GGG	44	EVQLVESGGGVVQPGNRLSCAASGFTFSSFGMSWVRQAPGKGLEWVSSISGSGSDTLYADS VKGRFTISRDNAKTTLYLQMNSLRPEDTALYYCTIGGSLSRSSQGTIVTVSSGGG

5

ISVDs, such as Nanobodies, comprise internal (also known as canonical or intramolecular) disulfide bridges, which are highly conserved. Removing these specific internal disulfide bridges compromises the activity of the ISVDs.

The present inventors surprisingly observed that oxidizing the thiol moiety (-SH) of an unpaired cysteine residue (abbreviated as Cys, cys or C; 2-Amino-3-sulphydrylpropanoic acid; which is an α -amino acid with the chemical formula HO₂CCH(NH₂)CH₂SH) located in the C-terminal extension, preferably at the C-terminus, of a first polypeptide of the invention and the thiol moiety of an unpaired cysteine moiety located in the C-terminal extension, preferably at the C-terminus, of a second polypeptide of the invention resulted in a disulfide derivative cystine thereby making dimers, but in which intramolecular thiol moieties were not reacted. In other words, the thiol-groups of the

C-terminally located cysteines were specifically oxidized to form intermolecular bonds, without aberrant or re-oxidizing the intramolecular thiol-groups, thereby maintaining the integrity of the ISVD, as demonstrated in the examples section. The coupling of the polypeptides into a dimer was performed by chemical conjugation, in which the thiol moieties of the cysteine in the C-terminal extension in each of two polypeptides were oxidized to the disulfide derivative cystine. Preferably, said cystine (e.g. disulfide bridge) is the only inter-chain disulfide bond present in the dimer, e.g.

in which

- [Cys-S] and - [AA_x] - [Cys-S] - [AA_y] denote the C-terminal extension comprising a cysteine of said polypeptide;

"AA" represents any amino acid as defined herein;

20 the prefix "N" represents the N-terminus of a polypeptide;

the suffix "C" represents the C-terminus of a polypeptide;

the subscripts "x", "y", "p" and "q" represent a number, independently chosen from the integers ranging from 0-50, such as ranging from 1-40, or ranging from 2-30, such as, for instance, 0, 1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20. For instance, if all of "x", "y", "p" and "q" are 0, the C-terminal extension is only the cysteine; and if both of "y" and "q" are 0, but "x" and "p" are not 0, the C-terminus of the C-terminal extension is cysteine.

The present invention relates to a method for making (polypeptide-)dimers, comprising at least the steps of: (i) providing a first polypeptide, wherein said first polypeptide comprises at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety, preferably at the C-terminus; (ii) providing a second polypeptide, wherein said second polypeptide comprises at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety, preferably at the C-terminus; and (iii) oxidizing the thiol moiety of said cysteine moiety at the C-terminal extension, preferably at the C-terminus, of said first polypeptide and the thiol moiety of said cysteine moiety at the C-terminal extension, preferably at the C-terminus, of said second polypeptide to a disulfide derivative cystine; thereby making said dimers; and said disulfide derivative cystine is the only intermolecular disulfide bond present in the dimer.

Coupling of the polypeptides into a dimer can be performed by chemical conjugation, e.g. in the *Pichia* spent media, in which the cysteines (preferably C-terminally located) in the C-terminal extension in each of said two polypeptides are oxidized to a disulfide derivative cystine via their thiol moieties at near neutral pH, such as, for instance, between pH 6.5 and pH 7.5, e.g. pH 6.5, pH 6.6, pH

5 pH 6.7, pH 6.8, pH 6.9, pH 7.0, pH 7.1 pH 7.2, pH 7.3, pH 7.4, and pH 7.5.

In an embodiment, the oxidation process is optimized by adding oxidizing copper ions (Cu^{2+}), for instance in the form of $CuSO_4$. It was observed that nearly 100% of the C-terminally located thiol moieties were oxidized after copper treatment. Accordingly, the present invention relates to a method as described herein, wherein at least 80%, such as 85%, 90%, 95%, 99% or even more than 10 99% such as 100% of said first and/or said second polypeptide are dimerized. The degree of oxidation can be determined by any suitable method, but is preferably determined by mass spectrometry.

The invention further relates to a method as described herein, wherein said first polypeptide comprises at least two ISVDs and/or said second polypeptide comprises at least two ISVDs.

The invention further relates to a method as described herein, wherein said at least two ISVDs of said 15 first polypeptide are identical and/or said at least two ISVDs of said second polypeptide are identical.

The invention further relates to a method as described herein, wherein said first polypeptide and said second polypeptide are identical or are different.

As used herein, the term "bispecific dimer" relates to a dimer in which the first polypeptide of the 20 dimer is different from the second polypeptide of the dimer, independent of the valence (e.g. monovalent, bivalent or multivalent) or specificity (e.g. monospecific, bispecific or multispecific) of the first and second polypeptide. It will be appreciated that a dimer can comprise two identical, but bispecific polypeptides (which will be considered herein as a "monospecific dimer").

Methods are provided for the generation of bispecific dimers, e.g. the first polypeptide is different 25 from the second polypeptide of the dimer. In a first embodiment, the host strain e.g. the *Pichia* strain is transformed with two different vectors, in which the first vector encodes the first polypeptide and the second vector encodes the second polypeptide. Alternatively, one vector is used, but the vector comprises a first gene encoding the first polypeptide and a second gene encoding the second polypeptide. Alternatively, two host cells are used each expressing the one or other polypeptide, such as, for instance, a first vector encoding the first polypeptide is expressed in a first host cell, e.g. 30 a *Pichia*, and a second vector encoding the second polypeptide is expressed in a second host cell, e.g. also a *Pichia*.

Coupling of the polypeptides into a bispecific dimer can be performed by chemical conjugation, e.g. in the *Pichia* spent media, in which the cysteines (preferably C-terminally located) in the C-terminal extension in each of said two polypeptides are oxidized to a disulfide derivative cystine via their thiol moieties at near neutral pH, such as, for instance, between pH 6.5 and pH 7.5, e.g. pH 6.5, pH 6.6, pH 5 6.7, pH 6.8, pH 6.9, pH 7.0, pH 7.1 pH 7.2, pH 7.3, pH 7.4, and pH 7.5.

In an embodiment, the present invention relates to a method for making bispecific dimers, comprising at least the steps of:

- (i) providing a first polypeptide, wherein said first polypeptide comprises
 - at least one immunoglobulin single variable domain (ISVD) and
 - a C-terminal extension comprising a cysteine moiety, preferably at the C-terminus;
- (ii) providing a second polypeptide, wherein said second polypeptide comprises
 - at least one immunoglobulin single variable domain (ISVD) and
 - a C-terminal extension comprising a cysteine moiety, preferably at the C-terminus;wherein said first polypeptide is different from said second polypeptide; and
- (iii) oxidizing the thiol moiety of said cysteine moiety at the C-terminus of said first polypeptide and the thiol moiety of said cysteine moiety at the C-terminus of said second polypeptide, optionally by adding oxidizing copper ions (Cu^{2+}), and preferably at pH 6.5 to pH 7.5 to a disulfide derivative cystine; thereby making said dimers.

Preferably, the integrity of the ISVDs is maintained and said cystine is the only intermolecular 20 disulfide bond present in the dimer.

The term "integrity" as used herein refers to the maintenance of the structure, stability and/or function of the ISVDs, such as, for instance, maintaining the proper intramolecular disulfide bonds connecting the two layers of anti-parallel β -sheet structures of the immunoglobulin domain, and binding its cognate antigen. Preferably, the disulfide bond (cystine) between amino acid positions 22 25 and 92 (according to Kabat) is maintained, and if present, the additional disulfide bond between CDR1 and CDR3 is maintained.

The present invention relates to method as provided herein, wherein the gene encoding the first polypeptide and the gene encoding the second polypeptide are present on two different vectors. Preferably, said vectors are present in one host cell, e.g. *Pichia*. Alternatively, said polypeptides are 30 encoded by different genes which are located on one vector.

The vector of the invention can be any suitable vector, such as for example a plasmid, cosmid, YAC, a viral vector or transposon. In particular, the vector may be an expression vector, i.e. a vector that can

provide for expression *in vitro* and/or *in vivo* (e.g. in a suitable host cell, host organism and/or expression system).

The vectors of the invention may be used to transform a host cell or host organism, *i.e.*, for expression and/or production of the polypeptide of the invention. Suitable hosts or host cells will be

5 clear to the skilled person, and may for example be any suitable fungal, prokaryotic or eukaryotic cell or cell line or any suitable fungal, prokaryotic or (non-human) eukaryotic organism, for example:

- a bacterial strain, including but not limited to gram-negative strains such as strains of *Escherichia coli*; of *Proteus*, for example of *Proteus mirabilis*; of *Pseudomonas*, for example of *Pseudomonas fluorescens*; and gram-positive strains such as strains of *Bacillus*, for example of *Bacillus subtilis* or of *Bacillus brevis*; of *Streptomyces*, for example of *Streptomyces lividans*; of *Staphylococcus*, for example of *Staphylococcus carnosus*; and of *Lactococcus*, for example of *Lactococcus lactis*;

- a fungal cell, including but not limited to cells from species of *Trichoderma*, for example from *Trichoderma reesei*; of *Neurospora*, for example from *Neurospora crassa*; of *Sordaria*, for example from *Sordaria macrospora*; of *Aspergillus*, for example from *Aspergillus niger* or from *Aspergillus sojae*; or from other filamentous fungi;

- a yeast cell, including but not limited to cells from species of *Saccharomyces*, for example of *Saccharomyces cerevisiae*; of *Schizosaccharomyces*, for example of *Schizosaccharomyces pombe*; of *Pichia*, for example of *Pichia pastoris* or of *Pichia methanolica*; of *Hansenula*, for example of *Hansenula polymorpha*; of *Kluyveromyces*, for example of *Kluyveromyces lactis*; of *Arxula*, for example of *Arxula adeninivorans*; of *Yarrowia*, for example of *Yarrowia lipolytica*;

- an amphibian cell or cell line, such as *Xenopus oocytes*;

- an insect-derived cell or cell line, such as cells/cell lines derived from lepidoptera, including but not limited to *Spodoptera* SF9 and Sf21 cells or cells/cell lines derived from *Drosophila*, such as Schneider and Kc cells;

- a plant or plant cell, for example in tobacco plants; and/or

- a mammalian cell or cell line, for example a cell or cell line derived from a human, a cell or a cell line from mammals including but not limited to CHO-cells (for example CHO-K1 cells), BHK-cells and human cells or cell lines such as HeLa, COS, Caki, NIH3T3, and HEK293H cells;

30 as well as all other host cells or (non-human) hosts known per se for the expression and production of antibodies and antibody fragments (including but not limited to (single) domain antibodies and scFv fragments), which will be clear to the skilled person. Reference is also made to the general

background art cited hereinabove, as well as to for example WO 94/29457; WO 96/34103; WO 99/42077; Frenken *et al.* (Res Immunol. 149: 589-99, 1998); Riechmann and Muyldermans (1999), *supra*; van der Linden (J. Biotechnol. 80: 261-70, 2000); Joosten *et al.* (Microb. Cell Fact. 2: 1, 2003); Joosten *et al.* (Appl. Microbiol. Biotechnol. 66: 384-92, 2005); and the further references cited
5 herein.

In the present description, a gene is defined as the entire nucleic acid sequence that is necessary for the synthesis of a functional polypeptide. Hence, the gene includes more than the nucleotides encoding the amino acid sequence of the polypeptide (coding region) but also all the DNA sequences required for the synthesis of a particular RNA transcript. Preferably, step (iii) is performed in *Pichia*
10 spent medium.

Methods for manipulating nucleic acids, such as, for instance, adding, inserting, mutating, replacing, or deleting nucleic acids relative to the nucleic acid encoding the ISVD, are well known to the person skilled in the art. Reference is made to the standard handbooks *supra*.

The present inventors provide a further optimized protocol for making bispecific dimers, in which the
15 efficiency rate was over 50%, such as 60%, 70%, 80% or even more than 90%, such as $\geq 95\%$. This was accomplished by binding a first, reactive polypeptide to a (solid-)carrier and flowing the second, reactive polypeptide over the first polypeptide bound to the carrier. Any non-reacted second polypeptide can be regenerated (reduced) and flown again over the first polypeptide bound to the carrier. This step can be repeated until all first and/or second polypeptides are reacted.

20 In step 1, the first polypeptide is reduced to obtain monomeric material, preferably 100% monomeric material. Generic conditions for reducing typical polypeptide solutions are set out herein.

In step 2, the first polypeptide in a buffer is bound under reducing conditions to the carrier. A carrier
25 is preferably a chromatography resin. Preferably, the carrier binds only the first polypeptide, but not the second polypeptide. In order to avoid the possible formation of homodimers of the first polypeptide, while being immobilized, the first polypeptide can be immobilized at low density to the carrier. Such a spatial separation of the individual first polypeptides can be achieved by loading the carrier using sub-optimal binding conditions (e.g. a too high flow rate for a typical affinity resin) or via expanding bed chromatography. Methods and conditions for spatially separating the individual polypeptides on the carrier belong to the common general knowledge or can be achieved with
30 routine experimentation by the person skilled in the art. In a preferred embodiment the carrier only binds the first polypeptide but not the second polypeptide. For instance, a carrier such as Protein A can be used if the first polypeptide (and preferably not the second polypeptide) binds to Protein A. Alternatively, in case both the first polypeptide and the second polypeptide bind to the carrier, then

the carrier, after immobilizing the first polypeptide, is saturated with a dummy polypeptide, such as a non-cysteine extended Nanobody before applying the second polypeptide.

In step 3, excess of the second polypeptide, also in reduced form (see above), is applied in a buffer and is circulated over the column (optionally under slightly oxidizing conditions). The second

5 polypeptide is passed over the carrier until the immobilized, first polypeptide is fully complexed (conjugated) with the second polypeptide via a disulfide bond. Preferably, this is followed by measuring the concentration drop of the second polypeptide to match a saturated first polypeptide population. If necessary, for this step conditions are optimized to limit the amount of a formation of a monospecific dimer of the second polypeptides, as is well known to the person skilled in the art.

10 The population of the second polypeptide not bound to the carrier can be recovered and used in future coupling reactions, such as for instance reduced again and applied to the column with the first polypeptide until the first polypeptide is saturated.

In step 4 the bispecific dimer is recovered from the carrier by typical elution conditions for the carrier used, as is well known by the person skilled in the art (e.g. acidic conditions for Protein A).

15 In the present context, the term "immobilization" refers to a molecule whose movement in space has been restricted either completely or to a small limited region by attachment to a solid structure, e.g. the carrier. In general the term immobilization refers to the act of the limiting movement or making incapable of movement, e.g. retard the movement. The dimers of the invention can be immobilized by any suitable method, such as for instance by adsorption, covalent binding, entrapment, 20 encapsulation and (reversible) crosslinking, preferably covalent binding, more preferably by affinity. Any suitable carrier for immobilization can be used. The person skilled in the art will appreciate that the suitability of a carrier depends on the method of immobilization. For instance, carriers for covalent binding are agarose, cellulose, crosslinked dextran, polystyrene, polyacrylamide gels, and porous silica gels. A preferred carrier is protein A resin.

25 Suitable buffers may include, but are not limited to, acetate buffers, phosphate buffers, citrate buffers, sulphate buffers, glycine buffers, carboxylate buffers and/or Tris buffers.

Reducing and oxidizing conditions are well known in the art. Reference is made to the examples section, the description and to e.g. standard chemistry handbooks, such as *Principles of Modern Chemistry* (2011 by Oxtoby, Gillis and Campion, 7th edition). Preferred reducing conditions are 30 performed in 1-15 mM, such as 2-12 mM, 4-11 mM, 5-10 mM, preferably 10 mM DTT for minimal 1h (to maximal 8h) at room temperature or overnight at 4 °C, at a concentration up to 10 mg/ml polypeptide, in order to remain the canonical -S-S- remains oxidized. Preferred oxidizing conditions are performed in 0.1-10 mM, 0.5-5 mM, preferably 1 mM CuSO₄ for 1-4h, preferably 2h at room

temperature, or by using a convenient redox-couple, which can be easily determined by the person skilled in the art.

Accordingly, the present invention relates to method for making bispecific dimers, comprising at least the steps of:

- 5 1. providing a first polypeptide, wherein said first polypeptide comprises
 - at least one immunoglobulin single variable domain (ISVD) and
 - a C-terminal extension comprising a cysteine moiety, preferably at the C-terminus;
- 10 2. reducing said first polypeptide;
- 15 3. binding the reduced first polypeptide of step 2 under reducing conditions to a carrier;
- 20 4. providing a second polypeptide, wherein said second polypeptide comprises
 - at least one immunoglobulin single variable domain (ISVD);
 - a C-terminal extension comprising a cysteine moiety, preferably at the C-terminus;wherein said first polypeptide is different from said second polypeptide;
- 25 5. reducing said second polypeptide;
- 30 6. applying the reduced second polypeptide of step 5 to the reduced first polypeptide bound to the carrier of step 3, optionally under slightly oxidizing conditions, oxidizing the thiol moiety of said cysteine moiety, preferably at the C-terminus, of said first polypeptide and the thiol moiety of said cysteine moiety, preferably at the C-terminus, of said second polypeptide to a disulfide derivative cystine; thereby making said bispecific dimers; optionally until all of the first polypeptide are fully conjugated to the second polypeptide via a disulfide bond;
- 35 7. optionally non-conjugated second polypeptides are recovered, reduced and applied again according to steps 5 and 6;
- 40 8. eluting the bispecific dimer from the carrier.

25 The invention further relates to any method as described herein, wherein said first polypeptide and/or said second polypeptide comprises an N-terminal extension.

The invention further relates to a method as described herein, wherein said first polypeptide and/or said second polypeptide comprises a C-terminal extension of 50, 40, 30, 20, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid residue(s) comprising a cysteine moiety, preferably at the C-terminus.

30 The invention further relates to a method as described herein, wherein said C-terminal extension is chosen from the group consisting of SEQ ID NOs: 1-15, preferably said C-terminal extension consists of GlyGlyGlyCys (SEQ ID NO: 4), GlyGlyCys (SEQ ID NO: 3), GlyCys (SEQ ID NO: 2) or Cys (SEQ ID NO: 1).

The invention further relates to a method as described herein, wherein said C-terminal extension is genetically fused to the C-terminal end of the most C-terminally located ISVD in said polypeptide.

In a further embodiment, the dimers are purified to homogeneity. Purification can be accomplished by any suitable technique known in the art, such as chromatography, preferably size exclusion chromatography, of which the person skilled in the art is fully acquainted with. Accordingly, the present invention relates to a method as described herein, further comprising the step of purifying said dimers, optionally via size exclusion chromatography. Accordingly, the present invention relates to a method as described herein, wherein said dimers are purified to at least 90% purity or more, e.g. 95% purity or more, such as 97%, 98%, 99% or even 100%. Purity can be determined by any suitable method known in the art, and preferably is determined by mass spectrometry.

In an embodiment, the present invention relates to a dimer, preparable by a method as described above.

The present inventors surprisingly observed that binding and other functional characteristics, such as potency, of the polypeptides in the dimer were not only retained, but were even ameliorated compared to the corresponding benchmark.

Without being bound to any theory, it was hypothesized that the paratope of the ISVDs can be in a more "favourable" position for antigen recognition in this dimer assemblation than in the corresponding benchmark assemblation.

As used herein, a "benchmark" is used as a point of reference for evaluating performance, such as one or more functional characteristics of a molecule, such as, for instance, affinity, efficacy, and potency as described herein. The particular dimer will determine the appropriateness of a certain benchmark, which can readily be assessed by a person skilled in the art. Preferably the benchmark will consist of the same number and/or the same ISVDs as the number and/or identity of ISVDs of the dimer. Preferably, the benchmarks comprise the same polypeptides making up the dimer, but in the benchmark these polypeptides are formed by genetic fusion instead of chemical conjugation as described herein (see e.g. the examples section). A comparison between a dimer and one or both polypeptides individually making up the dimer already provides significant information on the performance of the dimer.

The dimers of the invention comprise a first polypeptide comprising at least one ISVD and a second polypeptide comprising at least one ISVD. The affinity of the dimer can be determined as a whole, e.g. of both polypeptides together, or the affinity of the dimer can be determined by determining the affinity of each polypeptide constituting the dimer individually. In other words, in the latter case the affinity is determined for a polypeptide, independent of avidity effects due to the other polypeptide.

As used herein, the term "potency" is a measure of an agent, such as a dimer, benchmark, polypeptide, ISVD or Nanobody, its biological activity. Potency of an agent can be determined by any suitable method known in the art, such as, for instance, as described in the examples section. Cell culture based potency assays are often the preferred format for determining biological activity since 5 they measure the physiological response elicited by the agent and can generate results within a relatively short period of time. Various types of cell based assays, based on the mechanism of action of the product, can be used, including but not limited to proliferation assays, cytotoxicity assays, reporter gene assays, cell surface receptor binding assays and assays to measure induction/inhibition of functionally essential protein or other signal molecule (such as phosphorylated proteins, enzymes, 10 cytokines, cAMP and the like), all well known in the art. Results from cell based potency assays can be expressed as "relative potency" as determined by comparison of the dimer of the invention to the response obtained for the corresponding benchmark (cf. examples section).

A compound, e.g. the dimer of the invention, is said to be more potent than a benchmark, e.g. the reference compound, such as a construct comprising the corresponding polypeptides, when the 15 response obtained for the compound, e.g. the dimer of the invention, is at least 1.5 times, such as 2 times, but preferably at least 3 times, such as at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, at least 10 times, at least 15 times, at least 20 times, at least 25 times, at least 50 times, at least 75 times, and even more preferably even at least 100 times, or more better (e.g. functionally better) than the response by the reference compound, e.g. 20 the corresponding benchmark in a given assay.

The efficacy or potency of the dimers, immunoglobulin single variable domains and polypeptides of the invention, and of compositions comprising the same, can be tested using any suitable *in vitro* assay, cell-based assay, *in vivo* assay and/or animal model known *per se*, or any combination thereof, depending on the specific disease or disorder involved. Suitable assays and animal models will be 25 clear to the skilled person, and for example include ligand displacement assays (e.g. Burgess *et al.*, Cancer Res 2006 66:1721-9), dimerization assays (e.g. WO2009/007427A2, Goetsch, 2009), signaling assays (e.g. Burgess *et al.*, Mol Cancer Ther 9:400-9), proliferation/survival assays (e.g. Pacchiana *et al.*, J Biol Chem 2010 Sep M110.134031), cell adhesion assays (e.g. Holt *et al.*, Haematologica 2005 90:479-88) and migration assays (e.g. Kong-Beltran *et al.*, Cancer Cell 6:75-84), endothelial cell 30 sprouting assays (e.g. Wang *et al.*, J Immunol. 2009; 183:3204-11), and *in vivo* xenograft models (e.g. Jin *et al.*, Cancer Res. 2008 68:4360-8), as well as the assays and animal models used in the experimental part below and in the prior art cited herein. A means to express the inhibition of said first target *in vitro* is by IC₅₀.

In particular, the dimers of the invention bind to a target with an affinity (suitably measured and/or expressed as a K_D -value (actual or apparent), a K_A -value (actual or apparent), a k_{on} -rate and/or a k_{off} -rate better than the benchmark.

In an embodiment, the present invention relates to a dimer comprising polypeptides as described

5 herein, wherein said dimer binds to a target with an IC_{50} which is at least 10%, such as 20%, 30%, 50%, 80%, 90%, or even 100% better or more than the IC_{50} of a benchmark, for instance as determined in a ligand competition assay, competition FACS, a functional cellular assay, such as inhibition of ligand-induced chemotaxis, an ALPHASCREEN® assay, etc., preferably by a competition FACS.

10 In an embodiment, the present invention relates to a dimer comprising polypeptides as described herein, wherein said dimer binds to a target with an IC_{50} which is at least 1.5 times, such as 2 times, 3 times or 4 times, and even 5 times or 10 times better than the IC_{50} of a benchmark, for instance as determined in a ligand competition assay, competition FACS, a functional cellular assay, such as inhibition of ligand-induced chemotaxis, an ALPHASCREEN® assay, etc., preferably by a competition

15 FACS.

In an embodiment, the present invention relates to a dimer comprising polypeptides as described herein, having an IC_{50} of between 200 nM and 0.01 nM, such as 0.01, 0.05, 0.1, 0.15, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 or 200 nM, for instance determined in a ligand competition assay, competition FACS, a functional cellular assay,

20 such as inhibition of ligand-induced chemotaxis, an ALPHASCREEN® assay, etc.

Transport, manufacture, storage and delivery processes can exert manifold stresses on polypeptides, such as chemical and physical stresses. During storage chemical modifications can occur such as, for instance, deamidation, racemization, hydrolysis, oxidation, isomerization, beta-elimination or disulfide exchange. Physical stresses can cause denaturation and unfolding, aggregation, particulate

25 formation, precipitation, opalescence or adsorption. It is known that these stresses can affect the physicochemical integrity of protein therapeutics, e.g. antibody therapeutics.

As noted *supra*, the inventors observed that the dimers of the invention have unexpected favourable binding and functional characteristics. These characteristics were also retained for prolonged periods of time, without any apparent or substantive loss of potency. This makes the dimers useful for

30 storage and transport. The invention provides stable dimers of the invention. "Stable" generally means that the dimers do not suffer from significant physical or chemical changes, in particular oxidation, upon storage for prolonged periods of time, e.g. 1 month to 36 months, even if exposed to one or more chemical or physical stresses such as elevated temperatures (equal to or higher than

+25 °C), or physical stress such as shaking or stirring. More in particular, "stable" means that upon storage for prolonged periods (as defined) under conditions (as defined) there is only a limited formation of one or more of degradation products, e.g. low molecular weight (LMW) derivatives (e.g. polypeptides) of the dimers of the invention; and/or high molecular weight (HMW) derivatives

5 (oligomers or polymers) formed e.g. by aggregation of the dimers.

Accordingly, the present invention relates to a dimer as described herein, wherein said dimer is stable for at least 2 months, such as 4 months, 6 months, 12 months or even longer, such as 18 months, 24 months or 36 months at -20 °C, +4 °C, room temperature, e.g. +20 °C or even at +25 °C, wherein said stability is characterized by a limited formation or no formation of LMW and/or HMW,

10 e.g. less than 10 %, such as less than 5%, less than 2% or even no detectable LMW and/or HMW.

General techniques that can be used to assess stability of a protein include static light scattering, tangential flow filtration, Fourier transform infrared spectroscopy, circular dichroism, urea induced protein unfolding, intrinsic tryptophan fluorescence and/or 1-anilin-β8-naphthalenesulfonic acid protein binding. These techniques are applicable to the dimers of the invention as well. In addition, 15 the dimers of the invention show little or no loss of potency/biological activity in the course of storage and/or under influence of one or more stresses as defined herein.

Accordingly the present invention relates to a method for storing polypeptides comprising reactive cysteine moieties, comprising at least the step of oxidizing the thiol moiety of said reactive cysteine moiety to the disulfide derivative cystine, thereby temporarily inactivating said reactive cysteine 20 moieties, wherein said polypeptides further comprise (internal) cystine bonds.

Notwithstanding the favourable functional properties of the dimers of the invention, the present inventors hypothesized that the dimers might be particularly suited as a pool for instantaneous use, such as, for instance, coupling of functional groups using the C-terminal cysteine, e.g. by maleimide chemistry. A protocol with mild reducing conditions was developed, in which the intermolecular 25 disulfide bridge of the dimer was reduced to activate the thiol group of the constituent polypeptides. Optimized conditions resulted in reduction of the disulfide forming the dimer without reducing the internal canonical ISVD disulfide bridges.

Preferred reductants are acid based reductants, such as Oxalic acid (C₂H₂O₄), Formic acid (HCOOH), Ascorbic acid (C₆H₈O₆), phosphorous acid, or β-mercaptopropanol, Lithium aluminum hydride (LiAlH₄), 30 Nascent (atomic) hydrogen, Sodium amalgam, Diborane, Sodium borohydride (NaBH₄), Compounds containing the Sn²⁺ ion, such as tin(II) chloride, Sulfite compounds, Hydrazine, Zinc-mercury amalgam (Zn(Hg)), Diisobutylaluminum hydride (DIBAL-H), Lindlar catalyst, Phosphites, hypophosphites,

compounds containing Fe^{2+} , such as iron(II) sulfate, Carbon monoxide(CO), Carbon (C), Dithiothreitol (DTT) and Tris(2-carboxyethyl)phosphine HCl (TCEP), preferably DTT and TCEP.

Preferred final concentrations of the reductants are between 50 mM and 1 mM, such as between 40 mM and 2 mM, between 30 mM and 5 mM, and 20 mM and 7.5 mM, preferably 10 mM.

5 It was determined that an overnight treatment with 10 mM DTT at 4°C (or during at least 2h at room temperature) was very suitable for reducing the intermolecular disulfide bond of ISVDs at concentrations up to 10mg/ml, but without affecting the internal canonical disulfide bonds. Reduction can be carried out preferably using DTT or TCEP. Unlike TCEP, DTT is preferably removed to create optimal coupling conditions. Via Size Exclusion Chromatography (SEC) monomeric 10 polypeptides can be separated from the non-reduced dimer and DTT.

The extent of reduction can be monitored via any means known in the art, such as for instance via SEC or SDS-PAGE in non-reducing conditions.

Accordingly the present invention relates to a method as described herein, further comprising the step of reducing said (C-terminal) cystine of said dimer, preferably under conditions wherein internal 15 disulfide bonds of said first polypeptide and/or said second polypeptide remain oxidized.

Accordingly the present invention relates to a method for generating polypeptides comprising reactive cysteine moieties, comprising at least the steps of:

(i) providing polypeptides according to the invention, which are dimerized via a cystine (disulfide bond; SS-bond or disulfide bridge between two cysteines);
20 (ii) reducing said cystine;
thereby generating polypeptides comprising reactive cysteine moieties; preferably said cystine bond is located at the C-terminal end of said polypeptides. Preferably, the reducing conditions of said step (ii) are chosen such that the internal (canonical) cystine bonds are not reduced.

After reduction of the dimers, the reduced monomeric polypeptides are preferably used 25 immediately, e.g. within 0.5h but preferably within 10 minutes, for conjugation or are frozen to prevent re-oxidation, although re-oxidation is not prevented completely by freezing. Experimental evidence suggest that the reduced monomeric polypeptides of the invention are stable up to 24h at 4°C in D-PBS.

In an embodiment, the dimers and the constituent polypeptides of the invention comprise one or 30 more functional groups, residues or moieties. Preferably, said one or more functional groups, residues or moieties is chosen from the group of diagnostic, therapeutic and labelling agents, preferably a drug.

In an embodiment the present invention relates to a dimer as described herein, which further comprises one or more other groups, residues, moieties or binding units. In an embodiment the present invention relates to a dimer as described herein, wherein said first polypeptide and/or said second polypeptide further comprises one or more other groups, residues, moieties or binding units.

5 For instance, functional groups, residues or moieties can be coupled or linked to the (reactive) thiol moiety of the cysteine residue at the C-terminus of the polypeptide and/or functional groups, residues or moieties can be coupled or linked to the N-terminus of the polypeptide of the invention. In an embodiment, one or both N-termini of the dimer of the invention comprises functional groups, residues or moieties.

10 Examples of such groups, residues or moieties and methods and techniques that can be used to attach such groups, residues or moieties and the potential uses and advantages of such groups, residues or moieties will be clear to the skilled person. Without being limiting, thiol reactive groups for antibody modification include maleimide, vinylsulphone, haloacetyl or pyridyl disulfide groups. Maleimides react selectively with cysteines at neutral pH, although there is reactivity with amine

15 groups at higher pH values. A stable thioether bond is generated.

One or more functional groups, residues or moieties may be attached to the dimer and/or polypeptide of the invention that confer one or more desired properties or functionalities to the dimer and/or polypeptide of the invention. Examples of such functional groups, residues or moieties will be clear to the skilled person. For example, such one or more functional groups, residues or

20 moieties may increase the half-life, the solubility and/or the absorption of the dimer and/or polypeptide of the invention, such one or more functional groups, residues or moieties may reduce the immunogenicity and/or the toxicity of the dimer and/or polypeptide of the invention, such one or more functional groups, residues or moieties may eliminate or attenuate any undesirable side effects of the dimer and/or polypeptide of the invention, and/or such one or more functional groups,

25 residues or moieties may confer other advantageous properties to and/or reduce the undesired properties of the dimer and/or polypeptide of the invention; or any combination of two or more of the foregoing. Examples of such functional groups, residues or moieties and of techniques for introducing them will be clear to the skilled person, and can generally comprise all functional groups, residues or moieties and techniques mentioned in the general background art cited herein as well as

30 the functional groups, residues or moieties and techniques known per se for the modification of pharmaceutical proteins, and in particular for the modification of antibodies or antibody fragments (including scFv's and single domain antibodies), for which reference is for example made to Remington's Pharmaceutical Sciences, 16th ed., Mack Publishing Co., Easton, PA (1980).

In view of the specificity, the dimers and/or polypeptides of the invention are also very suitable for conjugation to imaging agents also indicated herein as labelling agents. Suitable imaging agents for conjugating to antibodies are well known in the art, and similarly useful for conjugating to the dimers and/or polypeptides of the present invention. Suitable imaging agents include but are not limited to 5 molecules preferably selected from the group consisting of organic molecules, enzyme labels, radioactive labels, colored labels, fluorescent labels, chromogenic labels, luminescent labels, haptens, digoxigenin, biotin, metal complexes, metals, colloidal gold, fluorescent label, metallic label, biotin, chemiluminescent, bioluminescent, chromophore and mixtures thereof.

Accordingly, the present invention relates to a dimer and/or polypeptide according to the invention, 10 further comprising an imaging agent, including, but not limited to a molecule preferably selected from the group consisting of organic molecules, enzyme labels, radioactive labels, colored labels, fluorescent labels, chromogenic labels, luminescent labels, haptens, digoxigenin, biotin, metal complexes, metals, colloidal gold, fluorescent label, metallic label, biotin, chemiluminescent, bioluminescent, chromophore and mixtures thereof.

15 One or more detectable labels or other signal-generating groups, residues or moieties may be coupled to the dimer and/or polypeptide of the invention, depending on the intended use of the labelled polypeptide. Suitable labels and techniques for attaching, using and detecting them will be clear to the skilled person, and for example include, but are not limited to, the fluorescent labels, phosphorescent labels, chemiluminescent labels, bioluminescent labels, radio-isotopes, metals, 20 metal chelates, metallic cations, chromophores and enzymes, such as those mentioned on page 109 of WO 08/020079. Radioisotopes and radionuclides known in the art for their utility as detection agents include, but are not limited to, ³H, ¹⁴C, ¹⁵N, ¹⁸F, ³⁵S, ⁶⁴Cu, ⁶⁷Cu, ⁷⁵Br, ⁷⁶Br, ⁷⁷Br, ⁸⁹Zr, ⁹⁰Y, ⁹⁷Ru, ⁹⁹Tc, ¹⁰⁵Rh, ¹⁰⁹Pd, ¹¹¹In, ¹²³I, ¹²⁴I, ¹²⁵I, ¹³¹I, ¹⁴⁹Pm, ¹⁵³Sm, ¹⁶⁶Ho, ¹⁷⁷Lu, ¹⁸⁶Re, ¹⁸⁸Re, ¹⁹⁸Au, ¹⁹⁹Au, ²⁰³Pb, ²¹¹At, ²¹²Pb, ²¹²Bi, ²¹³Bi, ²²³Ra, and ²²⁵Ac. Indium ¹¹¹ is particularly preferred as the diagnostic radionuclide 25 because between about 1 to about 10 mCi can be safely administered without detectable toxicity; and the imaging data is generally predictive of subsequent PDC distribution (see *infra*). See, for example, Murray 26 J. Nuc. Med. 3328 (1985) and Carragillo *et al*, 26 J. Nuc. Med. 67 (1985).

Other suitable labels will be clear to the skilled person, and for example include moieties that can be detected using NMR or ESR spectroscopy. For instance, the polypeptides of the invention can be 30 radiolabeled with ⁸⁹Zr as exemplified in the Examples section. Such labelled polypeptides of the invention may for example be used for *in vitro*, *in vivo* or *in situ* assays (including immunoassays known per se such as ELISA, RIA, EIA and other “sandwich assays”, etc.) as well as *in vivo* diagnostic and imaging purposes, depending on the choice of the specific label. In a preferred embodiment, the radiolabeled polypeptides and/or dimers of the invention are detected via microPET imaging. Images

can be reconstructed using AMIDE Medical Image Data Examiner software (version 1.0.4, Stanford University).

A functional group, residue or moiety may be attached that is one part of a specific binding pair, such as the biotin-(strept)avidin binding pair. Such a functional group may be used to link the dimer and/or polypeptide of the invention to another protein, polypeptide or chemical compound that is bound to the other half of the binding pair, i.e. through formation of the binding pair. For example, a dimer and/or polypeptide of the invention may be conjugated to biotin, and linked to another protein, polypeptide, compound or carrier conjugated to avidin or streptavidin. For example, such a conjugated dimer and/or polypeptide may be used as a reporter, for example in a diagnostic system where a detectable signal-producing agent is conjugated to avidin or streptavidin. Such binding pairs may for example also be used to bind the dimer and/or polypeptide of the invention to a carrier, including carriers suitable for pharmaceutical purposes. One non-limiting example are the liposomal formulations described by Cao and Suresh 2000 (Journal of Drug Targeting 8 (4): 257). Such binding pairs may also be used to link a therapeutically active agent to the polypeptide of the invention.

Other potential chemical and enzymatical modifications will be clear to the skilled person. Such modifications may also be introduced for research purposes (e.g. to study function-activity relationships). Reference is for example made to Lundblad and Bradshaw 1997 (Biotechnol. Appl. Biochem. 26: 143-151).

The dimers and/or polypeptides of the invention can be conjugated to therapeutic agents, such as drugs. Hence, in some embodiments, the dimers and/or polypeptides of the invention are conjugated with drugs to form dimer/polypeptide-drug conjugates (collectively abbreviated as "PDCs" herein).

Contemporaneous antibody-drug conjugates (ADCs) are used in oncology applications, where the use of antibody-drug conjugates for the local delivery of drugs, such as cytotoxic or cytostatic agents, toxins or toxin moieties, allows for the targeted delivery of the drug moiety to tumors, which can allow higher efficacy, lower toxicity, etc. These ADCs have three components: (1) a monoclonal antibody conjugated through a (2) linker to a (3) drug moiety, such as a toxin moiety or toxin. An overview of this technology is provided in Ducry *et al.*, Bioconjugate Chem., 21:5-13 (2010), Carter *et al.*, Cancer J. 14(3):154 (2008) and Senter, Current Opin. Chem. Biol. 13:235-244 (2009), all of which are hereby incorporated by reference in their entirety. The PDCs of the present invention also have three components: (1) a dimer or polypeptide conjugated through a (2) linker to a (3) drug, such as a toxin moiety or toxin. As noted above, although the conjugation of linkers and drugs has a greater, and unfavourable effect on the aggregation, biodistribution and PK profile of antibody fragments,

such as the polypeptide of the invention, than the larger sized antibody, the person skilled in the art will appreciate that the technology, methods, means, etc. of ADCs are in general equally applicable to PDCs (cf. Feng *et al. supra*).

The invention provides polypeptides of the invention (whether or not comprised in the dimer of the

5 invention) comprising a drug, such as a toxin or toxin moiety. For the sake of completeness, the invention provides a dimer of the invention comprising a drug, such as a toxin or toxin moiety.

The drug, e.g. toxin moiety or toxin can be linked or conjugated to the dimer and/or polypeptide

using any suitable method. Generally, conjugation is done by covalent attachment to the dimer and/or polypeptide, as known in the art, and generally relies on a linker, often a peptide linkage. For

10 example, the drug, such as a toxin moiety or toxin can be covalently bonded to the polypeptide directly or through a suitable linker. Suitable linkers can include non-cleavable or cleavable linkers,

for example, pH cleavable linkers that comprise a cleavage site for a cellular enzyme (e.g., cellular esterases, cellular proteases such as cathepsin B, see e.g. examples section). Such cleavable linkers

can be used to prepare a ligand that can release a drug, such as a toxin moiety or toxin after the

15 polypeptide is internalized. As will be appreciated by those in the art, the number of drug moieties per dimer and/or polypeptide can change, depending on the conditions of the reaction, and can vary

from 1:1 to 20:1 drug:polypeptide (also indicated as drug – antibody ratio or DAR). As will also be appreciated by those in the art, the actual number is an average, when the reaction and/or

purification is not tightly controlled. Preferably, the dimer of the invention further comprising a drug,

20 wherein the drug to dimer ratio (DAR) is 1. A variety of methods for linking or conjugating a drug, such as a toxin moiety or toxin, to a dimer and/or polypeptide can be used. The particular method

selected will depend on the drug, such as a toxin moiety or toxin, and the dimer and/or polypeptide to be linked or conjugated. If desired, linkers that contain terminal functional groups can be used to

link the dimer and/or polypeptide and drug, e.g. a toxin moiety or toxin. Generally, conjugation is

25 accomplished by reacting the drug, e.g. a toxin moiety or toxin, that contains a reactive functional group (or is modified to contain a reactive functional group) with a linker or directly with a dimer and/or polypeptide. Covalent bonds formed by reacting a drug, e.g. a toxin moiety or toxin, that

contains (or is modified to contain) a chemical moiety or functional group that can, under appropriate conditions, react with a second chemical group thereby forming a covalent bond. If

30 desired, a suitable reactive chemical group can be added to polypeptide or to a linker using any suitable method (see, e.g., Hermanson, *Bioconjugate Techniques*, Academic Press: San Diego, CA (1996)). Many suitable reactive chemical group combinations are known in the art, for example an

amine group can react with an electrophilic group such as tosylate, mesylate, halo (chloro, bromo, fluoro, iodo), N-hydroxysuccinimidyl ester (NHS), and the like. Thiols can react with maleimide,

iodoacetyl, acryloyl, pyridyl disulfides, 5-thiol-2-nitrobenzoic acid thiol (TNB-thiol), and the like. An aldehyde functional group can be coupled to amine- or hydrazide-containing molecules, and an azide group can react with a trivalent phosphorous group to form phosphoramidate or phosphorimide linkages. Suitable methods to introduce activating groups into molecules are known in the art (see 5 for example, Hermanson, *supra*).

As shown in the examples, it was unexpectedly found that the polypeptides of the present invention comprising a C-terminal extension comprising a cysteine moiety at the C-terminus were remarkably suited for conjugating in a very controlled manner a specific number of drugs per polypeptide, e.g. DAR of 1. This results in a better controlled efficacy and safety profile compared to the prior art 10 molecules. Accordingly, the present invention relates to polypeptides as described herein comprising a single conjugated drug, e.g. DAR = 1. The process of the invention thus allows polypeptides and dimers to be produced with improved homogeneity (resulting in better controllable PK/PD profiles, efficacy and eventually patient safety).

As described below, the drug of the PDC can be any number of agents, including but not limited to 15 cytostatic agents, cytotoxic agents such as chemotherapeutic agents, growth inhibitory agents, toxins (for example, an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), toxin moieties, or a radioactive isotope (that is, a radioconjugate) are provided. In other embodiments, the invention further provides methods of using the PDCs. The present invention also relates to Radioimmunotherapy (RIT), in which a polypeptide or dimer of the invention is labelled 20 with a radioactive isotope to deliver cytotoxic radiation to a target cell.

Drugs for use in the present invention include cytotoxic drugs, particularly those which are used for cancer therapy. Such drugs include, in general, DNA damaging agents, anti-metabolites, natural products and their analogs. Exemplary classes of cytotoxic agents include the enzyme inhibitors such as dihydrofolate reductase inhibitors, and thymidylate synthase inhibitors, DNA intercalators, DNA 25 cleavers, topoisomerase inhibitors, the anthracycline family of drugs, the vinca drugs, the mitomycins, the bleomycins, the cytotoxic nucleosides, the pteridine family of drugs, diynenes, the podophyllotoxins, dolastatins, maytansinoids, differentiation inducers, and taxols.

Members of these classes include, for example, methotrexate, methopterin, dichloromethotrexate, 5-fluorouracil, 6-mercaptopurine, cytosine arabinoside, melphalan, leurosine, leurosidine, 30 actinomycin, daunorubicin, doxorubicin, mitomycin C, mitomycin A, caminomycin, aminopterin, tallysomycin, podophyllotoxin and podophyllotoxin derivatives such as etoposide or etoposide phosphate, vinblastine, vincristine, vindesine, taxanes including taxol, taxotere retinoic acid, butyric acid, N8-acetyl spermidine, camptothecin, calicheamicin, esperamicin, ene-diynes, duocarmycin A,

duocarmycin SA, calicheamicin, camptothecin, maytansinoids (including DM1), monomethylauristatin E (MMAE), monomethylauristatin F (MMAF), and maytansinoids (DM4) and their analogues, preferably MMAE. Preferably said polypeptide conjugated to a drug, such as a toxin or toxin moiety, is chosen from the group consisting of ABL 100-NC003-1, ABL 100-NC003-3, ABL 100-NC003-5, ABL 100-NC003-6 and ABL 100-BF012-1, most preferably ABL 100-BF012-1.

Drugs, such as toxins may be used as polypeptides-toxin conjugates and/or dimer-toxin conjugates and include bacterial toxins such as diphtheria toxin, plant toxins such as ricin, small molecule toxins such as geldanamycin (Mandler *et al.* (2000) *J. Nat. Cancer Inst.* 92(19):1573-1581; Mandler *et al.* (2000) *Bioorganic & Med. Chem. Letters* 10:1025-1028; Mandler *et al.* (2002) *Bioconjugate Chem.* 13:786-791), maytansinoids (EP 1391213; Liu *et al.* (1996) *Proc. Natl. Acad. Sci. USA* 93:8618-8623), and calicheamicin (Lode *et al.* (1998) *Cancer Res.* 58:2928; Hinman *et al.* (1993) *Cancer Res.* 53:3336-3342). Toxins may exert their cytotoxic and cytostatic effects by mechanisms including tubulin binding, DNA binding, or topoisomerase inhibition.

Conjugates of a polypeptide and/or dimer of the invention and one or more small molecule toxins, such as a maytansinoids, dolastatins, auristatins, a trichothecene, calicheamicin, and CC1065, and the derivatives of these toxins that have toxin activity, are contemplated.

Other drugs, such as antitumor agents that can be conjugated to the dimers and/or polypeptides of the invention include BCNU, streptozotocin, vincristine and 5-fluorouracil, the family of agents known collectively LL-E33288 complex described in U.S. Pat. Nos. 5,053,394, 5,770,710, as well as esperamicins (U.S. Pat. No. 5,877,296).

Drugs, such as enzymatically active toxins and fragments thereof which can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins, dianthin proteins, *Phytolaca americana* proteins (PAPI, PAPII, and PAP-S), *momordica charantia* inhibitor, curcin, crotin, *sapaonaria officinalis* inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the trichothecenes. See, for example, WO 93/21232 published Oct. 28, 1993.

The present invention further contemplates a PDC formed between a dimer and/or polypeptide of the invention and a compound with nucleolytic activity (e.g., a ribonuclease or a DNA endonuclease such as a deoxyribonuclease; DNase).

For selective destruction of the tumor, the dimer and/or polypeptide of the invention may comprise a highly radioactive atom. A variety of radioactive isotopes are available for the production of

radioconjugated PDCs. Examples include At²¹¹, I¹³¹, I¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹², P³², Pb²¹² and radioactive isotopes of Lu.

The radio- or other labels may be incorporated in the conjugate in known ways. For example, the polypeptide and/or dimer may be biosynthesized or may be synthesized by chemical amino acid synthesis using suitable amino acid precursors involving, for example, fluorine-19 in place of hydrogen. Labels such as Tc^{99m} or I¹²³, Re¹⁸⁶, Re¹⁸⁸ and In¹¹¹ can be attached via a cysteine residue in the peptide. Yttrium-90 can be attached via a lysine residue. The Iodogen method (Fraker *et al.* (1978) *Biochem. Biophys. Res. Commun.* 80: 49-57 can be used to incorporate Iodine-123. Iodine-125 can be radiolabeled by the iodobead method as described in Valentine *et al.*, (1989) *J. Biol. Chem.* 264:11282. "Monoclonal Antibodies in Immunoscintigraphy" (Chatal, CRC Press 1989) describes other methods in detail.

The person skilled in the art can establish effective single treatment dosages (e.g. therapeutically effective amounts) of radioconjugated PDCs, which depend *inter alia* on the specific radiolabel, half-life of the PDC, toxicity, target etc. Preferably, the effective single treatment dosages range 15 preferably from between about 5 and about 75 mCi, more preferably between about 10 and about 40 mCi.

The generation of PDC compounds can be accomplished by any technique known to the skilled artisan in the field of ADCs. Briefly, the PDC compounds can include dimer and/or polypeptide of the invention as the Antibody unit, a drug, and optionally a linker that joins the drug and the dimer 20 and/or polypeptide of the invention.

Methods of determining whether a drug or an antibody-drug conjugate exerts an effect, e.g. a cytostatic and/or cytotoxic effect on a cell are known. Generally, the effect, e.g. a cytotoxic or cytostatic activity of an Antibody Drug Conjugate can be measured by: exposing mammalian cells expressing a target protein of the Antibody Drug Conjugate in a cell culture medium; culturing the 25 cells for a period from about 6 hours to about 5 days; and measuring cell viability. Cell-based *in vitro* assays can be used to measure viability (proliferation), cytotoxicity, and induction of apoptosis (caspase activation) of the Antibody Drug Conjugate. These methods are equally applicable to PDCs.

Accordingly the invention relates to a polypeptide of the invention (whether or not comprised in the dimer of the invention) further comprising a drug, such as a toxin or toxin moiety. For the sake of 30 clarity, the invention relates to a dimer (comprising polypeptides of the invention) further comprising a drug, such as a toxin or toxin moiety.

Accordingly, the present invention relates to a polypeptide according to the invention (whether or not comprised in the dimer of the invention) conjugated to a drug, such as a toxin or toxin moiety.

For the sake of clarity, the invention relates to a dimer (comprising polypeptides of the invention) conjugated to a drug, such as a toxin or toxin moiety.

PDCs combine the selectivity of a highly selective targeting moiety with the killing potency of a drug.

For the polypeptide according to the invention (whether or not comprised in the dimer of the

5 invention) to function as a successful component of a PDC, the polypeptide needs to bind to the target antigen on the surface of the target cell, e.g. a tumor cell. For most drugs the PDC is to be internalized by the cell in order to be efficacious (see e.g. Trail 2013 Antibodies 2:113-129 review).

Following internalization, the PDC is transported to the lysosome where subsequent intracellular

processing of the PDC will release the biologically active drug to exert its (toxic) effects on the target

10 cell, such as a tumor cell. Not only biologically active drugs should be internalized, but also radioactive isotopes for radio-immunotherapy (RIT) are preferably internalized, in order to highly

localize the toxic effects of the radioactive payload. The precise targeting by the radiolabeled

polypeptides of the invention (whether or not comprised in the dimer of the invention) causes

selective and extremely effective cytotoxicity of target cells (e.g. tumor cells) at relatively low doses

15 of radioactivity, minimizing side-effects.

The inventors demonstrated that the overall internalization of the dimers of the invention appeared

to be more potent and efficacious than the corresponding monomers and the bivalent benchmarks,

especially in cells with a low number of targets. This difference in internalization is less pronounced

yet still significant in cells that express a target in extreme high levels.

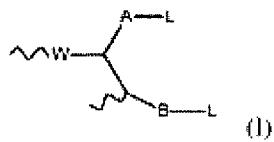
20 Accordingly, the present invention relates to a dimer of the invention for use in the treatment of cancer, wherein said dimer internalizes. Preferably said dimer is conjugated to a (cytotoxic) drug.

Accordingly, the present invention relates to the use of a dimer of the invention for the manufacture of a medicament for the treatment of cancer, wherein said dimer internalizes. Preferably said dimer is conjugated to a (cytotoxic) drug.

25 In an embodiment, the dimer of the invention can be used to target cells expressing a low number of binding sites for the corresponding ISVDs, such as less than $10*10^5$ binding sites, such as $5*10^5$ binding sites, or even less than $10*10^4$ binding sites, $5*10^4$ binding sites, $1*10^4$ binding sites, or less than 5000 binding sites.

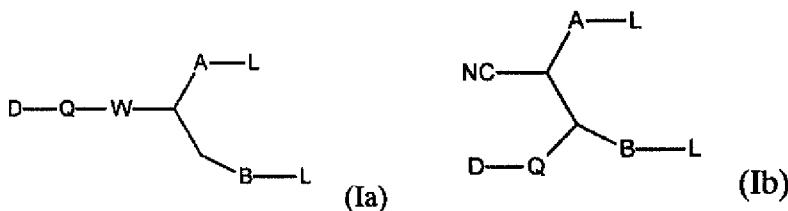
30 In an embodiment, the present invention relates to a dimer as described herein for use in the treatment of cancer, wherein said dimer internalizes. Preferably said dimer is conjugated to a (cytotoxic) drug.

In an embodiment, the present invention relates to the use of a dimer as described herein for the manufacture of a medicament for the treatment of cancer, wherein said dimer internalizes. Preferably said dimer is conjugated to a (cytotoxic) drug.

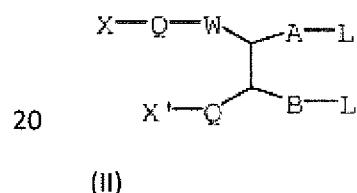

The present inventors demonstrated also that the dimers of the invention have superior characteristics compared to the related genetically fused constructs. As described *supra* the dimers of the invention can be conjugated directly via a disulfide bond between the cysteine moiety of a first polypeptide and a cysteine moiety of a second polypeptide (e.g. via a disulfide derivative cystine). Via this conjugation mechanism, the flexibility between the two polypeptides is limited. This is satisfactory in most cases, and even resulted in improved binding characteristics compared to the corresponding benchmark.

However, in some cases more flexibility between the two individual polypeptides may be required. In some instances it can be advantageous to have a linker which can conjugate the polypeptides of the invention allowing more flexibility, and preferably can conjugate a drug as well.

The ThioBridge® linker conjugation has been extensively described in WO 2005/007197 and WO 2013/190292, which are herein incorporated by reference explicitly. This ThioBridge technique is established for antibodies and fragments thereof, such as Fabs and F(ab')₂. In particular, the ThioBridge technique can be used for the single inter-heavy chain disulfide bond in the hinge region of an antibody or across the interchain disulfide bonds located between the C_L domain of the light chain and the C_{H1} domain of the heavy chain of an antibody (WO2013/190292). The ThioBridge technique has not been used for dimers of ISVDs, such as Nanobodies, however. Indeed, there is an important difference between the conventional antibodies used in WO 2005/007197 and WO 2013/190292 and the dimers of the present invention. In case the interchain disulfide bridge is reduced in a conventional antibody or a fragment thereof via the ThioBridge technique, these antibodies and fragments, such as the V_H and the V_L domains, remain bound via hydrophobic and electrostatic interactions and van der Waals forces. In contrast, the polypeptides in the dimer of the invention are completely independent of each other, *i.e.* in general there are no interactions between these polypeptides apart from the disulfide bridge. As a consequence, when reducing the cys-linked Nanobody dimer, the reactive -S⁻ moiety can pair with any available acceptor group in its vicinity, not necessarily the ThioBridge linker. Hence, the success rate of the ThioBridge technique drops dramatically.


It is unexpected that the ThioBridge® linker conjugation is amenable to the dimers of the present invention.

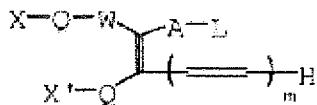
Accordingly, in a preferred embodiment, the present invention relates to a method in which the dimers of the invention are reacted with a conjugating reagent that forms a bridge between the cysteine residues derived from the disulfide bond. Preferably, the conjugating reagent includes a polymer. Even more preferably, the conjugating reagent contains the functional group (thiobridge):


in which W represents an electron-withdrawing group; A represents a C_{1-5} alkylene or alkenylene chain; B represents a bond or a C_{1-4} alkylene or alkenylene chain; and each L independently represents a leaving group.

Preferably, the polymer is chosen from the group consisting of diagnostic, therapeutic or labelling agents, such as for instance drugs as defined *supra*, binding agents capable of binding a diagnostic, therapeutic or labelling agent, such as for instance a drug (e.g. a linker as defined *supra*), and polyethylene glycol (PEG). The reagents preferably have the formula (Ia) or, where W represents a cyano group, (Ib):

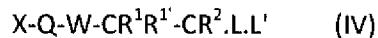
15 in which Q represents a linking group and D represents a diagnostic, therapeutic or labelling agent, such as for instance a drug or a binding agent for a diagnostic, therapeutic or labelling agent such as for instance a drug. Some preferred groups Q are given in formulae II, III and IV.

In an embodiment, the present invention relates to a method as described herein, wherein the reagent is of the formula II, III or IV:


in which one of X and X' represents a polymer and the other represents a hydrogen atom; Q represents a linking group;

W represents an electron-withdrawing group; or, if X' represents a polymer, X-Q-W together may represent an electron withdrawing group;

A represents a C₁₋₅ alkylene or alkenylene chain;


B represents a bond or a C₁₋₄ alkylene or alkenylene chain; and

5 each L independently represents a leaving group;

(III)

in which X, X', Q, W, A and L have the meanings given for the general formula II, and in addition if X represents a polymer, X' and electron-withdrawing group W together with the interjacent atoms may form a ring, and m represents an integer 1, 2, 3, or 4; or

in which X, Q and W have the meanings given for the general formula II, and either

R¹ represents a hydrogen atom or a C₁₋₄ alkyl group, R¹' represents a hydrogen atom, and each of L

15 and L' independently represents a leaving group; or

R¹ represents a hydrogen atom or a C₁₋₄ alkyl group, L represents a leaving group, and

R¹ and L' together represent a bond; or

R¹ and L together represent a bond and R¹ and L' together represent a bond; and

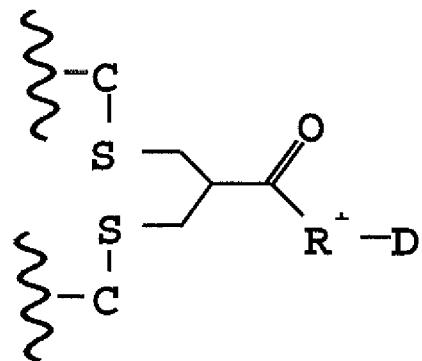
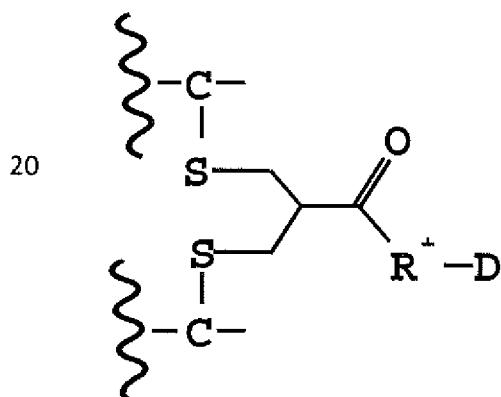
R represents a hydrogen atom or a C₁₋₄ alkyl group.

20 The linking group Q and the leaving group L are preferably as described in WO2013/190292, the content of which is incorporated herein explicitly. For instance, a leaving group L may for example represent -SR, -SO₂R, -OSO₂R, -N⁺R₃, -N⁺HR₂, -N⁺H₂R, halogen, or -OØ, in which R has the meaning given above, and Ø represents a substituted aryl, especially phenyl, group, containing at least one electron withdrawing substituent, for example -CN, -NO₂, -CO₂R, -COH, -CH₂OH, -COR, -OR, -OCOR, -OCO₂R, -SR, -SOR, -SO₂R, -NHCOR, -NRCOR, -NHCO₂R, -NR'CO₂R, -NO, -NHOH, -NR'OH, -C=N-NHCOR, -C=N-NR'COR, -N⁺R₃, -N⁺HR₂, -N⁺H₂R, halogen, especially chlorine or, especially, fluorine, -C≡CR, -C=CR₂ and -C=CHR, in which each R independently has one of the meanings given above.

The present invention relates to a method as described herein, which comprises the additional step of reducing the electron withdrawing group W in the resulting conjugate.

Generally, reaction of the polypeptides of the invention with the conjugating reagent involves reducing the cystine disulfide bond in the dimer and subsequently reacting the reduced product with the conjugating reagent. Suitable reaction conditions are given in WO2013/190292.

The present invention relates to a dimer in which a conjugating reagent is bound to a dimer via two



5 sulfur atoms derived from a disulfide bridge at the C-terminal end of the polypeptides; characterised in that said disulfide bridge is the only inter-heavy chain disulfide bond present in the dimer.

In an embodiment, the present invention relates to a dimer as described herein, wherein said first polypeptide and said second polypeptide are rebridged to a thiobridge.

10 In an embodiment, the present invention relates to a dimer as described herein, wherein said first polypeptide and said second polypeptide are conjugated via thiobridge.

In an embodiment, the present invention relates to a dimer according to the invention, wherein said drug is covalently bonded to the dimer via a thiobridge.

15 The present invention relates to a dimer wherein said first polypeptide and said second polypeptide are covalently linked via thioether bonds of cysteine moiety (C) in the C-terminal extension of said first polypeptide and the cysteine moiety (C) in the C-terminal extension of said second polypeptide according to formula (V) or formula (VI)

25

in which

"-C-" represents a cysteine moiety in the C-terminal extension of a polypeptide of the invention, including a cysteine moiety at the C-terminus of a C-terminal extension;

30 "C" represents cysteine moiety at the C-terminus of a C-terminal extension of a polypeptide of the invention;

R¹ represents a C₁₋₄ alkyl group; and D represents a diagnostic, therapeutic or labelling agent, such as, for instance, a drug or a binding agent, e.g. a linker, for a diagnostic, therapeutic or labelling agent such as for instance a drug.

Accordingly, the present invention relates to dimer as described herein, comprising a first

5 polypeptide and a second polypeptide, wherein said first polypeptide comprises at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety (preferably at the C-terminus); wherein said second polypeptide comprises at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety (preferably at the C-terminus); and wherein said first polypeptide and said second
10 polypeptide are covalently linked via a thioether bond of the cysteine moiety (C) in the C-terminal extension of said first polypeptide and a thioether bond of the cysteine moiety (C) in the C-terminal extension of said second polypeptide with the compound according to formula (V) or formula (VI).

The diagnostic, therapeutic or labelling agent, such as, for instance, a drug may be conjugated

15 directly to the dimer by using a conjugating reagent as described herein already carrying the diagnostic, therapeutic or labelling agent, such as, for instance, a drug, or the diagnostic, therapeutic or labelling agent, such as, for instance, a drug, may be added after conjugation of the conjugating reagent with the dimer, for example by use of a conjugating reagent containing a binding group for the diagnostic, therapeutic or labelling agent, such as, for instance, a drug.

The present invention relates to dimers as described herein comprising a single conjugated drug, e.g.

20 DAR = 1. The process of the invention thus allows polypeptides and dimers to be produced with improved homogeneity. In particular, the use of conjugating reagents that bind across the interchain disulfide bond of the dimer provides dimer conjugates having improved loading stoichiometry, and in which there are specific sites of attachment, without destroying the native interchain (canonical) disulfide bonds of the ISVDs. The use of dimers having a single intermolecular disulfide bond also
25 reduces disulfide bond scrambling. Disulfide scrambling, that is the incorrect assembly of the cysteine pairs into disulfide bonds, is known to affect the antigen-binding capacity of an ISVD and lead to reduced activity. Minimising scrambling by use of the present invention improves the homogeneity of the conjugated dimer. Dimer-drug conjugates with improved homogeneity provide benefits in therapy. Homogeneous dimer conjugates also provide more accurate and consistent measurements
30 in diagnostic and imaging applications.

Most drugs used in cancer treatment are hydrophobic. This is advantageous, since these hydrophobic drugs can penetrate the cell membrane. However, these drugs can penetrate any membrane, also from non-cancerous cells. Still these drugs are efficacious since the cancer cells divide more rapidly

than "normal" cells. It will be appreciated that the use of these drugs comes with serious side-effects. In order for a more targeted approach, several of these drugs have been coupled to conventional antibodies, which are used as a vehicle to preferably target the cancer cell. These conventional antibodies have a size of about 150 kD, while the drugs have on average a size of about 1 kD. Hence, 5 the size ratio of antibody : drug is about 150 : 1. This ratio is one of the reasons that the hydrophobicity of the drug is of little influence of the antibody drug conjugate (ADC) in total.

It has been demonstrated that the physicochemical properties of the ISVDs are exceedingly dependent on its surface exposed amino acids that become solvent exposed. This is reflected in the large number of different formulations used for ISVDs. In vast contrast to a conventional antibody, an 10 ISVD has a size of only about 15 kD. Consequently, the size ratio of ISV : drug is only 15 : 1, i.e. 10 times less than for conventional antibodies. Accordingly, the hydrophobic characteristics of a drug have a disproportionately larger influence on the properties of the PDC. Indeed, a main problem with PDCs is aggregation. Nevertheless, it was surprisingly observed that the PDCs of the invention were stable, were amenable to administration *in vivo* and were able to reduce tumor growth *in vivo*.

15 In an embodiment, the present invention provides a polypeptide conjugated to a toxin as described herein or a dimer as described herein conjugated to a toxin for use in treating a subject in need thereof, e.g. to treat cancer.

The present invention relates to a dimer as described above for use in therapy, preferably for use in the treatment of cancer. Also, the present invention relates to the use of a dimer as described above 20 for the manufacture of a medicament for the treatment of cancer.

The term "cancer" refers to any cancer caused by the proliferation of malignant neoplastic cells, such as tumors, neoplasms, carcinomas, sarcomas, leukemia's, and lymphomas. Cancers of interest for treatment include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, leukemia, lymphoid malignancies, cancer of the breast, cancer of the ovary, cancer of the testis, cancer of the 25 lung, cancer of the colon, cancer of the rectum, cancer of the pancreas, cancer of the liver, cancer of the central nervous system, cancer of the head and neck, cancer of the kidney, cancer of the bone, cancer of the blood or cancer of the lymphatic system. More particular examples of such cancers include squamous cell cancer (e.g. epithelial squamous cell cancer), lung cancer including small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung and squamous carcinoma of the 30 lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, oral cancer, liver cancer, bladder cancer, cancer of the urinary tract, hepatoma, breast cancer including, for example, HER2 -positive breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or

uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, melanoma, multiple myeloma and B-cell lymphoma, brain cancer, head and neck cancers, and associated metastases.

A "solid tumor cancer" is a cancer comprising an abnormal mass of tissue. In some embodiments, the

5 cancer is a solid tumor cancer (e.g., carcinomas, and lymphomas breast cancer, non-small cell lung cancer, prostate cancer, pancreatic cancer, head and neck cancer, colon cancer, sarcoma, or adrenocortical carcinoma).

The present invention provides a method for treating and/or preventing and/or alleviating disorders relating to cancer (for instance as defined above).

10 As used herein, and as well understood in the art, "to treat" a condition or "treatment" of the condition (e.g., the conditions described herein such as cancer) is an approach for obtaining beneficial or desired results, such as clinical results. Beneficial or desired results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions; diminishment of extent of disease, disorder, or condition; stabilized (*i.e.*, not worsening) state of disease, disorder, or 15 condition; preventing spread of disease, disorder, or condition; delay or slowing the progress of the disease, disorder, or condition; amelioration or palliation of the disease, disorder, or condition; and remission (whether partial or total), whether detectable or undetectable. "Palliating" a disease, disorder, or condition means that the extent and/or undesirable clinical manifestations of the disease, disorder, or condition are lessened and/or time course of the progression is slowed or 20 lengthened, as compared to the extent or time course in the absence of treatment.

The term an "effective amount" of an agent (e.g., any of the foregoing conjugates), as used herein, is that amount sufficient to effect beneficial or desired results, such as clinical results, and, as such, an "effective amount" depends upon the context in which it is being applied.

By "subject" is meant a human or non-human animal (e.g., a mammal).

25 The present invention relates to a method of treating cancer, e.g. a tumor, which comprises the administration to a patient of a dimer, polypeptide and/or PDC of the invention.

The present invention provides also method for treating and/or preventing and/or alleviating disorders relating to rheumatoid arthritis, psoriasis, or hypersecretion of mucus in the lung, comprising administering to a subject in need of such treatment (an effective amount of) a 30 polypeptide conjugated to a toxin as described herein.

The present invention provides a method for delivering a prophylactic or therapeutic polypeptide or dimer conjugated to a toxin to a specific location, tissue or cell type in the body, the method

comprising the steps of administering to a subject a polypeptide conjugated to a toxin as described herein or a dimer conjugated to a toxin as described herein. The present invention provides a method for treating a subject in need thereof comprising administering a polypeptide conjugated to a toxin as described herein.

5 In an embodiment, the present invention relates to a pharmaceutical composition comprising a polypeptide conjugated to a toxin as described above or a dimer conjugated to a toxin as described herein. The present invention provides a dimer of the invention, together with a pharmaceutically acceptable carrier; optionally together with an additional agent.

Accordingly, the present invention provides a polypeptide of the invention, whether or not 10 comprised in the dimer of the invention, conjugated to a drug, such as a toxin or toxin moiety as described herein. Preferably said polypeptide comprises an ISVD directed against EGFR, potentially further comprising an ISVD directed against serum albumin.

In an embodiment, the present invention provides a polypeptide conjugated to a toxin as described herein, wherein at least one ISVD inhibits and/or blocks the interaction between Epidermal Growth 15 Factor (EGF) and EGFR.

The term "pharmaceutical composition," as used herein, represents a composition containing a compound described herein formulated with a pharmaceutically acceptable excipient. In some embodiments, the pharmaceutical composition is manufactured or sold with the approval of a governmental regulatory agency as part of a therapeutic regimen for the treatment of disease in a 20 mammal. Pharmaceutical compositions can be formulated, for example, for oral administration in unit dosage form (e.g., a tablet, capsule, caplet, gelcap, or syrup); for topical administration (e.g., as a cream, gel, lotion, or ointment); for intravenous administration (e.g., as a sterile solution free of particulate emboli and in a solvent system suitable for intravenous use); or in any other formulation described herein.

25 In an embodiment, the present invention relates to a composition comprising the dimer, polypeptide and/or PDC of the invention, preferably, said composition is a pharmaceutical composition, optionally further comprising at least one pharmaceutically acceptable carrier, diluent or excipient and/or adjuvant, and that optionally comprises one or more further pharmaceutically active polypeptides and/or compounds. The compositions containing an effective amount can be 30 administered for radiation treatment planning, diagnostic, or therapeutic treatments. When administered for radiation treatment planning or diagnostic purposes, the conjugate is administered to a subject in a diagnostically effective dose and/or an amount effective to determine the therapeutically effective dose. In therapeutic applications, compositions are administered to a

subject (e.g., a human) already suffering from a condition (e.g., cancer) in an amount sufficient to cure or at least partially arrest the symptoms of the disorder and its complications. An amount adequate to accomplish this purpose is defined as a "therapeutically effective amount," an amount of a compound sufficient to substantially improve at least one symptom associated with the disease 5 or a medical condition. For example, in the treatment of cancer, an agent or compound that decreases, prevents, delays, suppresses, or arrests any symptom of the disease or condition would be therapeutically effective. A therapeutically effective amount of an agent or compound is not required to cure a disease or condition but will provide a treatment for a disease or condition such that the onset of the disease or condition is delayed, hindered, or prevented, or the disease or 10 condition symptoms are ameliorated, or the term of the disease or condition is changed or, for example, is less severe or recovery is accelerated in an individual (cf. *supra*). The dimer, polypeptide and/or PDC of the invention can be used for the treatment of cancer by administering to a subject a first dose of any of the foregoing the dimers, polypeptides and/or PDCs or compositions in an amount effective for radiation treatment planning, followed by administering a second dose of any of 15 the foregoing dimers, polypeptides and/or PDCs or compositions in a therapeutically effective amount.

Amounts effective for these uses may depend on the severity of the disease or condition and the weight and general state of the subject. The therapeutically effective amount of the dimers and compositions of the invention and used in the methods of this invention applied to mammals (e.g., 20 humans) can be determined by the ordinarily-skilled artisan with consideration of individual differences in age, weight, and the condition of the mammal. Because certain PDCs of the invention exhibit an enhanced ability to target cancer cells and residualize, the dosage of the compounds of the invention can be lower than (e.g., less than or equal to about 90%, 75%, 50%, 40%, 30%, 20%, 15%, 12%, 10%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.1 % of) the equivalent dose of required for a 25 therapeutic effect of the unconjugated agent. The agents of the invention are administered to a subject (e.g., a mammal, such as a human) in an effective amount, which is an amount that produces a desirable result in a treated subject. Therapeutically effective amounts can also be determined empirically by those of skill in the art. Single or multiple administrations of the compositions of the invention including an effective amount can be carried out with dose levels and pattern being 30 selected by the treating physician. The dose and administration schedule can be determined and adjusted based on the severity of the disease or condition in the subject, which may be monitored throughout the course of treatment according to the methods commonly practiced by clinicians or those described herein.

The dimers of the present invention may be used in combination with either conventional methods of treatment or therapy or may be used separately from conventional methods of treatment or therapy.

When the dimers of this invention are administered in combination therapies with other agents, they

5 may be administered sequentially or concurrently to an individual. Alternatively, pharmaceutical compositions according to the present invention may be comprised of a combination of a compound of the present invention in association with a pharmaceutically acceptable excipient, as described herein, and another therapeutic or prophylactic agent known in the art.

Generally, for pharmaceutical use, the dimers, PDCs and/or polypeptides of the invention may be

10 formulated as a pharmaceutical preparation or composition comprising at least one dimer, PDC and/or polypeptide of the invention and at least one pharmaceutically acceptable carrier, diluent or excipient and/or adjuvant, and optionally one or more further pharmaceutically active polypeptides and/or compounds. By means of non-limiting examples, such a formulation may be in a form suitable for oral administration, for parenteral administration (such as by intravenous, intramuscular or
15 subcutaneous injection or intravenous infusion), for topical administration, for administration by inhalation, by a skin patch, by an implant, by a suppository, etc, wherein the parenteral administration is preferred. Such suitable administration forms - which may be solid, semi-solid or liquid, depending on the manner of administration - as well as methods and carriers for use in the preparation thereof, will be clear to the skilled person, and are further described herein. Such a
20 pharmaceutical preparation or composition will generally be referred to herein as a "pharmaceutical composition". A pharmaceutical preparation or composition for use in a non-human organism will generally be referred to herein as a "veterinary composition".

Thus, in a further aspect, the invention relates to a pharmaceutical composition that contains at least

one polypeptide of the invention, at least one PDC of the invention or at least one dimer of the
25 invention and at least one suitable carrier, diluent or excipient (*i.e.*, suitable for pharmaceutical use), and optionally one or more further active substances.

Generally, the polypeptides, PDCs and/or dimers of the invention can be formulated and

administered in any suitable manner known *per se*. Reference is for example made to the general background art cited above (and in particular to WO 04/041862, WO 04/041863, WO 04/041865,

30 WO 04/041867 and WO 08/020079) as well as to the standard handbooks, such as Remington's Pharmaceutical Sciences, 18th Ed., Mack Publishing Company, USA (1990), Remington, the Science and Practice of Pharmacy, 21st Edition, Lippincott Williams and Wilkins (2005); or the Handbook of Therapeutic Antibodies (S. Dubel, Ed.), Wiley, Weinheim, 2007 (see for example pages 252-255).

The polypeptides, PDCs and/or dimers of the invention may be formulated and administered in any manner known *per se* for conventional antibodies and antibody fragments (including scFv's and diabodies) and other pharmaceutically active proteins. Such formulations and methods for preparing the same will be clear to the skilled person, and for example include preparations suitable for 5 parenteral administration (e.g. intravenous, intraperitoneal, subcutaneous, intramuscular, intraluminal, intra-arterial or intrathecal administration) or for topical (*i.e.*, transdermal or intradermal) administration.

Preparations for parenteral administration may for example be sterile solutions, suspensions, dispersions or emulsions that are suitable for infusion or injection. Suitable carriers or diluents for 10 such preparations for example include, without limitation, those mentioned on page 143 of WO 08/020079. Usually, aqueous solutions or suspensions will be preferred.

Thus, the polypeptides, PDCs and/or dimers of the invention may be systemically administered, *e.g.*, orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be 15 compressed into tablets, or may be incorporated directly with the food of the patient's diet. For oral therapeutic administration, the polypeptides PDCs and/or dimers of the invention may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 0.1% of the polypeptide, PDC and/or dimer of the invention. Their percentage 20 in the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form. The amount of the polypeptide, PDC and/or dimer of the invention in such therapeutically useful compositions is such that an effective dosage level will be obtained.

The tablets, troches, pills, capsules, and the like may also contain binders, excipients, disintegrating 25 agents, lubricants and sweetening or flavoring agents, for example those mentioned on pages 143-144 of WO 08/020079. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac or sugar 30 and the like. A syrup or elixir may contain the dimers, PDCs, polypeptides, compounds and/or constructs of the invention, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in

the amounts employed. In addition, the polypeptides, PDCs and/or dimers of the invention may be incorporated into sustained-release preparations and devices.

Preparations and formulations for oral administration may also be provided with an enteric coating that will allow the constructs of the invention to resist the gastric environment and pass into the 5 intestines. More generally, preparations and formulations for oral administration may be suitably formulated for delivery into any desired part of the gastrointestinal tract. In addition, suitable suppositories may be used for delivery into the gastrointestinal tract.

The polypeptides, PDCs and/or dimers of the invention may also be administered intravenously or intraperitoneally by infusion or injection. Particular examples are as further described on pages 144 10 and 145 of WO 08/020079 or in PCT/EP2010/062975 (entire document).

For topical administration, the polypeptides, PDCs and/or dimers of the invention may be applied in pure form, *i.e.*, when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologic acceptable carrier, which may be a solid or a liquid. Particular examples are as further described on page 145 of WO 15 08/020079.

Useful dosages of the PDCs, polypeptides, dimers, compounds and/or constructs of the invention can be determined by comparing their *in vitro* activity, and *in vivo* activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see US 4,938,949.

20 Generally, the concentration of the polypeptides, PDCs and/or dimers of the invention in a liquid composition, such as a lotion, will be from about 0.1-25 wt-%, preferably from about 0.5-10 wt-%. The concentration in a semi-solid or solid composition such as a gel or a powder will be about 0.1-5 wt-%, preferably about 0.5-2.5 wt-%.

25 The amount of the polypeptides, PDCs and/or dimers of the invention required for use in treatment will vary not only with the particular polypeptide, PDC and/or dimer selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will be ultimately at the discretion of the attendant physician or clinician. Also the dosage of the polypeptides, PDCs and/or dimers of the invention varies depending on the target cell, tumor, tissue, graft, or organ.

30 The desired dose may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four or more sub-doses per day. The sub-dose itself may be further divided, *e.g.*, into a number of discrete loosely spaced administrations.

An administration regimen could include long-term, daily treatment. By "long-term" is meant at least two weeks and preferably, several weeks, months, or years of duration. Necessary modifications in this dosage range may be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein. The dosage can also be adjusted by the individual 5 physician in the event of any complication.

EXAMPLES

1 Generation of building blocks

Various constructs were generated in *P. pastoris*, starting from the EGFR binding Nanobodies 7D12 10 and 9G08, and an albumin binding Nanobody ALB11 as depicted in Table 4.

Table 4: Constructs

Product Name	Building Blocks
T023800001-A	7D12-20GS-ALB11-GGC-A
T023800003-A	7D12-20GS-7D12-GGC-A
T023800005-A	7D12-20GS-9G08-GGC-A
T023800006-A	7D12-20GS-7D12-20GS-ALB11-GGC-A
T023800008-A	7D12-20GS-9G08-20GS-ALB11-GGC-A
T023800001-dimer	$N[7D12-ALB11-GGC]_c-S-S_c[CGG-ALB11-7D12]_N$

1.1 Genetic fusion

20 The coupling of the building blocks 7D12 and Alb11 and linkers in various transpositions (order) in T023800001, T023800003, T023800005 and T023800006 was performed by genetic fusion according to standard protocols, for instance as described by Garaicoechea *et al.* (Garaicoechea *et al.* (2008) *J Virol.* 82: 9753–9764). Polypeptides were generated comprising various linker lengths and compositions (order of ISVDs and individual ISVDs). C-terminal extensions, including GGC, were 25 constructed also by genetic fusions. The sequences of T023800001 (SEQ ID NO: 27), T023800003 (SEQ ID NO: 28), T023800005 (SEQ ID NO: 29) and T023800006 (SEQ ID NO: 30) and T023800008 (SEQ ID NO: 31) are provided in Table 6.

30 The feasibility of constructing different C-terminal extensions comprising a cysteine moiety at the C-terminus was demonstrated by manufacturing various polypeptides with different C-terminal extensions: -C (SEQ ID NO: 1), -GC (SEQ ID NO: 2), -GGC (SEQ ID NO: 3), -GGGC (SEQ ID NO: 4), -CG

(SEQ ID NO: 10), -GCG (SEQ ID NO: 11), -GGGCG (SEQ ID NO: 13), -GGGGCGGGG (SEQ ID NO: 15) and -AAAC (SEQ ID NO: 8) (data not shown).

1.2 Alanine extension

An alanine moiety (N-Maleoyl- β -alanine; Sigma-Aldrich) was conjugated via maleimide chemistry to the sulphhydryl group ($-SH$) of the C-terminally located cysteine at near neutral conditions (pH 6.5-7.5) to form stable thioether linkages according to well established protocols (see below). In short, first the concentration of the polypeptide at issue was determined. A 2-5 molar excess of N-Maleoyl- β -alanine was added to the polypeptide to block all available cysteines. The mixture was incubated for 1 h at RT followed by an overnight incubation at 4°C. The conjugation efficiency was confirmed via LC MS on the next day. The polypeptides comprising the Ala-extension were purified to homogeneity via SEC chromatography to remove excess N-Maleoyl- β -alanine.

The resulting constructs were designated T023800001-A, T023800003-A, T023800005-A and T023800006-A (Figure 1; Table 4).

It was further demonstrated that also an Alanine could be conjugated to constructs with C-terminal extensions comprising cysteine that were different from GGC (see also 1.1 above; data not shown).

1.3 Dimerization

The coupling of the polypeptides into a dimer was performed by chemical conjugation in the *Pichia* spent media, in which the C-terminal cysteines in the C-terminal extension in each of said two polypeptides were oxidized to a disulfide derivative cystine via their thiol moieties at near neutral pH. In order to optimize the oxidation process, oxidizing copper ions were added (Cu^{2+} in the form of $CuSO_4$) in essence as set out in WO2010/125187. The dimers were purified to homogeneity and subsequently analyzed via size exclusion chromatography. Samples were also verified by LC-MS. The resulting data demonstrated that nearly 100% of the thiol moieties were oxidized after treatment with 1 mM $CuSO_4$ for 2h at room temperature. In none of the chromatograms the formation of significant (undesirable) pre-peaks was observed. Moreover, in none of the chromatograms evidence was seen for the formation of significant pre-peaks indicating that the copper treatment does not seem to oxidize methionines in the protein, nor does the total mass analysis detect any +16 Da mass increase which would be consistent with a single oxidation on for example a methionine.

Dimers were prepared from T023800001, T023800003, T023800005 and T023800006. The dimer of T023800001 (designated T023800001-dimer) is shown in Figure 1.

1.4 *Stability*

The different constructs of the invention, e.g. dimers, polypeptides and benchmarks, were tested for stability after storage under stringent stress conditions. These conditions comprised of incubation of the polypeptides of invention for longer period of time (3 weeks and 6 weeks) at different 5 temperatures (25°C and 40°C), essentially as set out in WO2014/184352.

It was demonstrated that the polypeptides of the invention, e.g. with a C-terminal extension comprising a cysteine moiety, and dimers had similar properties as the parent molecules they were derived from and were stable for prolonged periods at 4°C, 25°C as well at 40°C, without significant 10 chemical degradation and modifications (data not shown). In addition, stability after various cycles of freeze-thaw and 4°C storage for longer period of time (*i.e.* > 4 d) did not change, as shown in the functional assays (*cf.* below).

1.5 *Advanced linkers*

As indicated above, the feasibility of constructing different C-terminal extensions comprising a cysteine moiety at the C-terminus was demonstrated by manufacturing various polypeptides with 15 different C-terminal extensions: -C (SEQ ID NO: 1), -GC (SEQ ID NO: 2), -GGC (SEQ ID NO: 3), -GGGC (SEQ ID NO: 4), -CG (SEQ ID NO: 10), -GCG (SEQ ID NO: 11), -GGGCG (SEQ ID NO: 13), -GGGGCGGGG (SEQ ID NO: 15) and -AAC (SEQ ID NO: 8) by genetic fusion (*cf.* Example 1.1). Subsequently, an alanine moiety was conjugated via maleimide chemistry to the sulphhydryl group (–SH) of the C-terminally located cysteine (*cf.* Example 1.2).

20 In an alternative approach, different C-terminal extensions comprising a cysteine-moiety which also comprise already a C-terminally located alanine are provided. These linkers are subsequently conjugated to the constructs by genetic linking as described in Example 1.1. Examples of these C-terminal extensions are: -CA, -GCA, -GGCA, -GGGCA, -GGGGCA, -ACA, -AAC, -AAACA, -AAAACA, -CGA, -GCGA, -GGCGA, -GGGGCGA, and -GGGGCGGGGA.

25 1.6 *Additional constructs*

In order to further demonstrate the ubiquitous applicability and features of the dimers of the invention, various bispecific constructs were generated as set out in WO2015044386. A summary of these polypeptides is provided in Table 1.6. Various characteristics such as affinity and potency were 30 tested (IC50, KD) of both the individual building blocks as well as the bispecific polypeptides. The results are provided also in WO2015044386. The resulting sequences are provided in Table 6.

Table 1.6: Summary of bispecific constructs

target1-target2	NB1-NB2	SEQ ID NO	NB2-NB1	SEQ ID NO
-----------------	---------	-----------	---------	-----------

CD123-CXCR4	57A07 - 14D09	62	55A01 - 14D09	66
CD123-CXCR4	57A07 - 281F12	63	55A01 - 281F12	67
CXCR4-CD123	14D09 - 57A07	64	14D09 - 55A01	68
CXCR4-CD123	281F12 - 57A07	65	281F12 - 55A01	69
CD4-CXCR4	03F11-281F12	70	-	-
CXCR4-CD4	281F12-03F11	71	-	-
EGFR-CEACAM5	7D12-CEA#1	72	7D12-CEA#5	73
CEACAM5-EGFR	CEA#1-7D12	74	CEA#5-7D12	75
IL12Rb2-CD4	135B08-03F11	76	135A07-03F11	77
IL12Rb1-CD4	148C09-03F11	78	148F09-03F11	79
IL23-CD4	150D02-03F11	80	150H07-03F11	81

1.7 Additional dimers

For the sake of convenience, only the linker -GGGCA of Example 1.5 is genetically linked to each of the bispecific polypeptides of Example 1.6, resulting in 20 constructs with this C-terminal extension.

5 The integrity, including affinity and potency of these bispecific polypeptides is tested essentially as set out in WO2015044386. In the absence of any substantial loss of affinity and potency, these polypeptides are thereupon dimerized as set out in Example 1.3. The resulting dimers are tested similarly according to the procedures of Example 1.6 and WO2015044386 as the parental bispecific polypeptides, after which the various results are compared.

10 Similar to the results of Example 2 and 3 (below), it is predicted that the dimers will outperform the corresponding benchmarks, further demonstrating the ubiquitous applicability of the present invention. Nevertheless, as noted in WO2015044386, in some instances there can be an effect on affinity and/or potency depending on the orientation of the individual building blocks, when comparing dimers with building locks in different positions, see e.g. the dimer comprising the

15 polypeptides CD123-CXCR4 compared to the dimer comprising the polypeptides CXCR4-CD123.

2 Characterization of polypeptides binding to MDA-MB-468 cells

Polypeptides were characterized in a binding competition assay to assess the EGFR binding affinities.

MDA-MB-468 breast cell cancer cell line (mammary gland/breast; derived from metastatic site: 20 pleural effusion; ABL216) was used.

In order to detect binding of the polypeptide to cells expressing EGFR, the FLAG-tagged 7D12 was used as a competitor. To setup the assay, first a titration series of the FLAG-tagged 7D12 was

performed on the MDA-MB-468 cells. The EC₉₀ (41 nM) of FLAG-tagged 7D12 was chosen in a competition setup in which non-tagged polypeptides were titrated.

In brief, 100 000 cells were transferred to the plate. The plates were washed twice by centrifugation at 200 g for 3 minutes at 4°C. Supernatant was removed and 50 µl of purified polypeptide was added

5 to the well together with 50 µl of FLAG-tagged 7D12 (final concentration 41 nM) in a total of 100 µl per well. After 90 minutes incubation at 4°C, plates were washed three times by centrifugation for 30 min at 4°C. Supernatant was removed and 100 µl per well of 0.5 µg mouse anti-flag mAb (Sigma-Aldrich, cat#F1804) or FACS buffer was added, followed by an 30 minutes incubation at 4°C. Cells were washed three times by centrifugation at 200 g during 3 minutes at 4°C. After removing the
10 supernatant, 110 µl per well of goat anti-mouse PE or goat anti-human IgG PE was added to the cells and incubated for 30 minutes at 4°C. Plates were then centrifuged for 30 minutes at 200 g at 4°C, supernatant removed and 100 µl per well FACS buffer was added and sequentially the plates were washed three times by centrifugation at 200 g for 3 minutes at 4°C. Next, dead cells were stained with 100 µl TOPRO (Molecular Probes, T3605) per well and cells were sequentially measured on the
15 FACS Canto (Becton Dickinson). First a gate was set on the intact cells as determined from the scatter profile. Then, dead cells were gated out by their fluorescence profile from the TOPRO stain (5 nM, Molecular probes, T3605). As controls, conditions were taken along where there was no polypeptide present or a known irrelevant polypeptide (data not shown).

T023800001-A (indicated herein also as T023800001), T023800003-A (indicated herein also as
20 T023800003), T23800005-A (indicated herein also as T023800005), T023800006-A (indicated herein also as T023800006) and the non-reduced T023800001-dimer were evaluated.

The results are depicted in Figure 2.

From these results it can be concluded that competition of T023800001, T023800003, T023800005 and T023800006 with EC₉₀ 7D12-FLAG (*i.e.* 41nM) results in a K_i of 15 nM, 0.63 nM, 0.25 nM and 1.16
25 nM for T023800001, T023800003, T023800005 and T023800006, respectively. The absolute inhibition constant K_i was calculated using the Cheng-Prusoff equation.

$$K_i = \frac{IC50}{\frac{[L]}{K_D} + 1}$$

Unexpectedly, the T023800001-dimer showed an K_i of 0.12 nM, which is 2 times better than T023800005-A, the best performing genetically fused construct, and even more than 9 times better than T023800006-A, the direct comparator of the T023800001-dimer.

3 Quantification of EGFR phosphorylation in HER14 cell line

To verify if the gain in potency as observed in the competition FACS (see Example 2 above) also translates into a modulation of the EGFR mediated signal transduction, the inventors set out a 5 blocking experiment of EGF mediated EGFR phosphorylation by Nanobodies in NIH3T3/HER14 cells. The constructs used were T023800001-A and T023800006-A as well as T023800001-dimer. Dose-dependent inhibition of EGFR phosphorylation was assessed on HER14 cells expressing only EGFR.

Briefly, HER14 cells were seeded in duplicate into 0.1% gelatin coated 96-well culture plates and grown in DMEM culture medium containing 10% FBS/BS for 24h. The next day, cells were serum-starved in medium supplemented with 0.1% FCS for 24 hrs and then incubated with the constructs 10 followed by stimulation for 10 minutes with 0.5 nM of recombinant human EGF (R&D Systems, cat# 236-EG). EGF concentrations were based on the EC₅₀ obtained in HER14 cells (EC₅₀=3.5 ng/ml). In each plate an irrelevant control polypeptide was included as reference (data not shown). Monolayers 15 were rinsed twice with ice-cold D-PBS, and subsequently lysed in ice cold RIPA buffer substituted with 1 mM PMSF. EGF-dependent receptor activation in cell lysates was measured using a Phospho(Tyr1173)/Total EGFR Whole Cell Lysate Kit (Meso Scale Discovery - K15104D). Plates were loaded with 30 µl of lysate, incubated 1h at RT with shaking and processed according to the manufacturer's protocol. Plates were read on the Sector Imager 2400 (Meso Scale Discovery). The percentage of phospho-protein over total protein was calculated using the formula: (2 × p- 20 protein)/(p-protein + total protein) × 100.

The results are depicted in Figure 3.

A dose-dependent inhibition of EGFR phosphorylation was only observed on HER14 cells expressing EGFR. Since the functional phosphorylation is only mediated via EGFR signaling, the gain of avidity by multivalent formatting is expected to translate into increased inhibition of EGFR phosphorylation in a 25 cell-specific manner.

Even more pronounced than the results from the competition FACS, T023800001-dimer (4.4 nM) shows a 5-6 fold increase in potency when compared to the established bivalent Nanobody T023800006-A (26.6 nM). T023800001-A yielded a potency of 105 nM.

4 Preparation of cysteine extended monomeric Nanobodies via SEC

4.1 *Background information*

It was realized that the polypeptides of the invention comprising at least one immunoglobulin single variable domain (ISVD) and a C-terminal extension comprising a cysteine moiety at the C-terminus 5 are suitable for maleimide chemistry based coupling reactions (cf. Example 1.2 above).

To convert the dimers to monomeric polypeptides and make the C-terminal cysteine available for coupling, a reduction needed to be carried out. However, care should be taken to design optimized conditions resulting in reduction of the disulfide dimer without reducing the internal canonical ISVD disulfide bridges. Reduction was carried out preferably using DTT or TCEP. Unlike TCEP, DTT needs to 10 be removed to create optimal coupling conditions. Via Size Exclusion Chromatography (SEC) monomeric Nanobody is separated from non-reduced dimeric Nanobody and DTT.

4.2 *Reduction protocol*

The reduction protocol consisted of an overnight treatment with 10mM DTT at 4°C (or during minimum 2h at room temperature) in D-PBS. ISVD concentration was between 2 and 10 mg/ml. It 15 was demonstrated that these conditions did not affect the internal canonical disulfide bond (see Figure 4). Similar results were obtained using TCEP, here we used immobilized TCEP (Pierce, Immobilized TCEP Disulfide Reducing Gel, #77712) according to the manufacturers protocol. Alternatively a short exposure to 10mM TCEP during 30 minutes at 4°C was used.

4.3 *Size Exclusion Chromatography (SEC)*

20 For purification, preferably a Superdex 75 column (GE Healthcare) was used (separation range 5-100 kDa) for polypeptides comprising up to three ISVDs to generate monomeric reduced products. For analytical purpose, HPLC columns were used such as Agilent SEC-3. The equilibration and the running buffer was D-PBS.

An exemplary of a fully reduced pure product after SEC is provided in Figure 5.

25 Following SEC, the reduced monomeric polypeptide was immediately used for conjugation or frozen to prevent re-oxidation into dimers. Experimental evidence suggested that the reduced monomeric fraction of GGC extended polypeptides is stable up to 24h at 4°C in D-PBS (data not shown).

A polypeptide comprising two ISVDs was reduced with 10mM DTT during 2h at ambient temperature and sized on a Superdex 75 XK 16/60 column (GE Healthcare) equilibrated in D-PBS. Only minute 30 amounts of dimer were detected; the remainder of material was reduced to monomer and hence ready for conjugation. The molecular weight of the gel filtration standard (Biorad) is indicated by the dashed line.

5 Polypeptides coupled to MMAE

The hydrophobic antimitotic agent monomethyl auristatin E (MMAE) is a synthetic analog of the natural product dolastatin 10. MMAE is a potent inhibitor of tubulin polymerization in dividing cells.

5 In this example, the inventors set out to couple MMAE to the freed C-terminal cysteine of the polypeptides of the invention. In short, MMAE was conjugated via a valine-citrulline linker to the polypeptide for drug targeting purposes. The valine-citrulline linker is highly stable in serum but is cleaved by lysosomal enzymes like cathepsin B after internalization of the conjugate by target cells. The following linker abbreviations are used herein and have the indicated definitions: Val Cit is a
10 valine-citrulline, dipeptide site in protease cleavable linker; PAB is p-aminobenzoyl; mc is maleimide conjugated.

Nanobodies were reduced with 10mM DTT overnight at 4°C and then buffer exchanged to remove the excess of DTT. The conjugation with mc-val-cit-PAB-MMAE (MW about 0.7 kDa; Figure 6) was conducted at 22°C. After 1 hour, the reaction was quenched 20 equivalents N-acetyl-cysteine per
15 free drug. The resulting product was purified by centrifugal concentration and buffer exchanged to final buffer. For purification at larger scale, a non-centrifugal diafiltration method is more suited. The product solution was sterile filtered (0.2 mm).

Polypeptides conjugated to MMAE:

T023800001 => T023800001-mc-val-cit-PAB-MMAE (ABL 100-NC003-1 or T023800001-MMAE)
20 T023800003 => T023800003-mc-val-cit-PAB-MMAE (ABL 100-NC003-3 or T023800003-MMAE)
T023800005 => T023800005-mc-val-cit-PAB-MMAE (ABL 100-NC003-5 or T023800005-MMAE)
T023800006 => T023800006-mc-val-cit-PAB-MMAE (ABL 100-NC003-6 or T023800006-MMAE)
T023800008 => T023800008-mc-val-cit-PAB-MMAE (ABL 100-BF012-1)

An HIC-HPLC analysis was performed to determine the Drug to polypeptide ratios (DAR). In short,
25 Analytical HIC of conjugates was carried out using a TOSOH, TSKgel Butyl-NPR column (35 x 4.6 mm) connected to a Dionex Ultimate 3000RS HPLC system. A linear gradient from 100% buffer A (1.5 M ammonium sulfate in 50 mM sodium phosphate, pH 7.0) to 100% buffer B (20% isopropanol (v/v) in 50 mM sodium phosphate) over 30 min at a flow rate of 0.8 mL/min. The column temperature was maintained at 30 °C throughout the analysis and UV detection was carried out at 280 nm. For each
30 analysis, 10 µg of sample was injected. Peaks were assigned drug to polypeptide ratios (DARs) based on shifts to higher retention time and by A248/A280 ratios. Average DARs were calculated by taking the sum of the individual DAR values multiplied by the fraction of the species (expressed as a

decimal). Polypeptides used were ABL 100-NC003-1, ABL 100-NC003-3, ABL 100-NC003-5 and ABL 100-NC003-6.

The results are provided in Table 5

Table 5	purity %				
	DAR-0	DAR-1	DAR-2	(SEC)	SDS-PAGE
ABL 100-NC003-1	1.3%	98.7%	0%	97.7	96.7
ABL 100-NC003-3	1.1%	98.9%	0%	96.3	96.9
ABL 100-NC003-5	1.7%	98.3%	0%	98.6	96.8
ABL 100-NC003-6	1.2%	98.8%	0%	98.1	95.1
ABL 100-BF012-1	0%	100%	0%	97.6	97.6

5

An SDS-PAGE analysis was performed to determine the oxidation status of the polypeptides. In short, the SDS-PAGE analysis was carried out using NUPAGE® 4-12% Bis-Tris gels (Invitrogen, Cat # NP0321BOX) under non-reducing conditions with MES buffer. For analysis, 1 µg of sample (based on protein) was loaded onto the gel per lane. Electrophoresis was carried out at 200 V for 35 min. The 10 gel were stained with INSTANTBLUE™ (Expedeon, Cat # ISB1LUK) for protein detection and analysed using IMAGEQUANT® imaging equipment (GE Healthcare).

A summary of the results is also provided in Table 5. An exemplary result is provided as Figure 7.

In order to further confirm and elaborate the results of the SDS-PAGE, an SE-HPLC analysis was performed to determine the percentage purity and aggregation. In short, SE-HPLC was carried out 15 using a Waters ACQUITY® UPLC BEH200 SEC column (4.6 mm x 30 cm, 1.7 µm), connected to an Agilent Infinity 1260 Bioinert system. The mobile phase was 0.1 M sodium phosphate buffer, pH 6.8, containing 15% (v/v) isopropanol. The flow rate was kept constant at 0.15 mL/min. The column was maintained at 25 °C throughout the analysis. The analysis was carried out in a 30 min isocratic elution with UV detection at 280 nm. For each analysis, 10 µg of sample was injected. The % purity and % 20 aggregation present were calculated by comparing the peak areas of the main peaks and early eluting peaks respectively with total peak area.

The results are summarized in Table 5. An exemplary HIC analysis of the coupling result is depicted in Figure 8.

This means that for all polypeptides the reaction results in an efficiency of over 98% of the 25 polypeptides for conjugation to the ADC. Moreover, the reaction resulted in a DAR of 1, implying on the one hand that the ISVDs were intact, e.g. no internal thiols were used, and on the other hand a

very controlled number of drugs per polypeptide. This results in a better safety profile, in contrast to the Gaussian distribution of drugs conjugated to conventional antibodies.

Table 6

55A01- 281F12	67	EVQLVESGGGSVQAGGSRLSCTTSRALNMYVMGWRQAPGNEREFVAATSSGGSTSYPDSVKGRFTI SRDNAKNTVYLQMNSLKPEDTAAYRCAASPYVSTPTMNILEEYRYWGQGTLVTVSSGGGSGGGGGGGG SGGGSGGGGGGGGGSEVQLVESGGLVQAGDSLRLSCAASGRAFSRYAMGWRQAPGKEREVVA AIGWGPSKTNYADSVKGRFTISRDNAKNTVYLQMNTLKPEDTAVYSCAAKFVNTDSTWSRSEMYTYWGQG TLTVSS
14D09- 55A01	68	EVQLVESGGGLVQAGGSRLSCVASGISSSKRNMGWYRQAPGKQRESVATISSGGNKDYDAVKDRFTIS RDTTKNTVYLQMNSLKPEDTAVYYCKIEAGTGWATRRGYTYWGQGTLVTVSSGGGSGGGGGGGG GSGGGSGGGGGGGGGSEVQLVESGGSVQAGGSRLSCTTSRALNMYVMGWRQAPGNEREFVAATSS SGGSTSYPDSDKGRFTISRDNAKNTVYLQMNSLKPEDTAAYRCAASPYVSTPTMNILEEYRYWGQGTLVT VSS
281F12- 55A01	69	EVQLVESGGGLVQAGDSLRLSCAASGRAFSRYAMGWRQAPGKEREVVAIIGWGPSKTNYADSVKGRFTI SRDNAKNTVYLQMNTLKPEDTAVYSCAAKFVNTDSTWSRSEMYTYWGQGTLVTVSSGGGSGGGGGGGG SGGGSGGGGGGGGGSEVQLVESGGSVQAGGSRLSCTTSRALNMYVMGWRQAPGNEREFVA ATSSGGSTSYPDSVKGRFTISRDNAKNTVYLQMNSLKPEDTAAYRCAASPYVSTPTMNILEEYRYWGQG TLTVSS
03F11- 281F12	70	EVQLVESGGGSVQPGGLTLSCGTSGRTPNVMGWRQAPGKEREVVAAVRWSSTGIYYTQYADSVKSRT ISRDNAKNTVYLEMNSLKPEDTAVYYCAADTYNSNPARWDGYDFRGQGTQVTVSSGGGSGGGGSEVQLV ESGGGLVQAGDSLRLSCAASGRAFSRYAMGWRQAPGKEREVVAIIGWGPSKTNYADSVKGRFTISRDNA KNTVYLQMNTLKPEDTAVYSCAAKFVNTDSTWSRSEMYTYWGQGTLVTVSS
281F12- 03F11	71	EVQLVESGGGLVQAGDSLRLSCAASGRAFSRYAMGWRQAPGKEREVVAIIGWGPSKTNYADSVKGRFTI SRDNAKNTVYLQMNTLKPEDTAVYSCAAKFVNTDSTWSRSEMYTYWGQGTLVTVSSGGGSGGGGSEVQLV ESGGGSVQPGGLTLSCGTSGRTPNVMGWRQAPGKEREVVAAVRWSSTGIYYTQYADSVKSRTISRDN AKNTVYLEMNSLKPEDTAVYYCAADTYNSNPARWDGYDFRGQGTQVTVSS
7D12- CEA#1	72	EVQLVESGGGSVQTGGSLRLTCAASGRTSRSYGMGWRQAPGKEREVFSGISWRGDSTGYADSVKGRFTI SRDNAKNTVLDLQMNSLKPEDTAIYYCAAAAGSAWYGTLEYDYWGQGTLVTVSSGGGSGGGGGGGG GGGGGGGGGGGGGGGGSEVQLVESGGSVQAGGSRLSCTTSRALNMYVMGWRQAPGKEREVVA NRGGGYTVYADSVKGRFTISRDNAKNTVYLQMNSLRPDDTADYYCAASGVLGLHEDWFNYWGQGTLVT VSS
7D12- CEA#5	73	EVQLVESGGGSVQTGGSLRLTCAASGRTSRSYGMGWRQAPGKEREVFSGISWRGDSTGYADSVKGRFTI SRDNAKNTVLDLQMNSLKPEDTAIYYCAAAAGSAWYGTLEYDYWGQGTLVTVSSGGGSGGGGGGGG GGGGGGGGGGGGGGGGSEVQLVESGGSVQAGGSRLSCTTSRALNMYVMGWRQAPGKEREVVA NRGGGYTVYADSVKGRFTISRDNAKNTVYLQMNSLRPDDTADYYCAASGVLGLHEDWFNYWGQGTLVT VSS
CEA#1- 7D12	74	EVQLVESGGGSVQAGGSRLSCAASGDTYGSYWMGWRQAPGKEREVVAIINRGGGYTVYADSVKGRFTI SRDTAKNTVYLQMNSLRPDDTADYYCAASGVLGLHEDWFNYWGQGTLVTVSSGGGSGGGGGGGG GGGGGGGGGGGGGGGGSEVQLVESGGSVQTGGSLRLTCAASGRTSRSYGMGWRQAPGKEREVFSGIS WRGDSTGYADSVKGRFTISRDNAKNTVLDLQMNSLKPEDTAIYYCAAAAGSAWYGTLEYDYWGQGTLVT VSS
CEA#5- 7D12	75	EVQLVESGGGSVQAGGSRLSCAASGDTYGSYWMGWRQAPGKEREVVAIINRGGGYTVYADSVKGRFTI SRDNAKNTLYLQMNSLRPDDTADYYCAASGVLGLHEDWFNYWGQGTLVTVSSGGGSGGGGGGGG GGGGGGGGGGGGGGSEVQLVESGGSVQTGGSLRLTCAASGRTSRSYGMGWRQAPGKEREVFSGIS WRGDSTGYADSVKGRFTISRDNAKNTVLDLQMNSLKPEDTAIYYCAAAAGSAWYGTLEYDYWGQGTLVT VSS
135B08- 03F11	76	EVQLVESGGRLVQAGDSLRLSCAASGRFTFISYRMGWRQAPGKEREVVAALRWSSNIDYTYYADSVKGR FSISGDYAKNTVYLQMNSLKAEDETAVYYCAASTRWGVMESDTEYTSWGQGTLVTVSSGGGSGGGGGG GGGGGGGGGGGGGGGGSEVQLVESGGSVQPGGLTLSCGTSGRTFNVMGWRQAPGKEREVVA VRWSSSTGIYYTQYADSVKSRTISRDNAKNTVYLEMNSLKPEDTAVYYCAADTYNSNPARWDGYDFRGQG TLTVSS
135A07- 03F11	77	EVQLVESGGRLVQAGDSLRLSCAASGRFTFISYRMGWRQAPGKEREVFSALRWSSNIDYTYYADSVKGR FSISGDYAKNTVYLQMNSLKAEDETAVYYCAASTRWGVMESDTEYTSWGQGTLVTVSSGGGSGGGGGG GGGGGGGGGGGGGGGGSEVQLVESGGSVQPGGLTLSCGTSGRTFNVMGWRQAPGKEREVVA VRWSSSTGIYYTQYADSVKSRTISRDNAKNTVYLEMNSLKPEDTAVYYCAADTYNSNPARWDGYDFRGQG TLTVSS

148C09-03F11	78	EVQLVESGGGLVQTGGSLRLSCAASGRTPRLVAMGWFQTPGKEREFVGEIILSKGFTYYADSVKGRFTI SRVNAKNTITMYLQMNSLKS ETD AVYYCAGRQNWSGPARTNEYEYWGQGT LTVSSGGGGSGGGSGGG GS GGGGGSGGGSGGGSGGGSEVQLVESGGSVQPGGSLTLCGTSGRTFNVMGWFQAPGKEREFVAA VRWSSTGIYYTQYADSVKSRTFISRDNAKNTVYLEMNSLKP ETD AVYYCAADTYNSNP ARWDGYDFRGQG TLTVSS
148F09-03F11	79	EVQLVESGGGLVQTGGSLRLSCAASGRTPSIIAMGWFQTPGKEREFVGEIILSKGFTYYADSVKGRFTI SRANAKNTITMYLQMNSLKS ETD AVYYCAARQNWSGPRTNEYEYWGQGT LTVSSGGGGSGGGSGGG GS GGGGGSGGGSGGGSEVQLVESGGSVQPGGSLTLCGTSGRTFNVMGWFQAPGKEREFVAA VRWSSTGIYYTQYADSVKSRTFISRDNAKNTVYLEMNSLKP ETD AVYYCAADTYNSNP ARWDGYDFRGQG TLTVSS
150D02-03F11	80	EVQLVESGGGLVQPGGSLTLSCVASGRTFSTDVMGWFQAPGKEREFVAAHRTSGISTVYAASVKGRFTI SRDNAKNTVYLG MKSLKP ETD AVYYCAAGSDASGGYDYWGQGT LTVSSGGGGSGGGSGGGSG GGGSGGGSGGGSEVQI LVEGGGSVQPGGSLTLCGTSGRTFNVMGWFQAPGKEREFVAAVRWSSTGI YYTQYADSVKSRTFISRDNAKNTVYLEMNSLKP ETD AVYYCAADTYNSNP ARWDGYDFRGQGT LTVSS
150H07-03F11	81	EVQLVESGGGLVQAGGSRLSCAASGRTPSSYAMGWFQAPGKDR E FVAATSWIGESTYYADSVKGRFTI SRDNAKNTVYLRMNSLKP ETD AVYYCAADLYYTAYAAADEDYDYWGQGT LTVSSGGGGSGGGSGGGGS GGGSGGGSGGGSGGGSEVQI LVEGGGSVQPGGSLTLCGTSGRTFNVMGWFQAPGKEREFVAAVR WSSTGIYYTQYADSVKSRTFISRDNAKNTVYLEMNSLKP ETD AVYYCAADTYNSNP ARWDGYDFRGQGT LTVSS
57A07	97	EVQLVESGGGLVQAGGSRLSCAASGSIFSGNVMGWYRRQAPGKEREWVAATASGGSIYYRDSVKGRFTI SRDNAKNTVYLG MKSLKP ETD AVYYCNSHPPTLPYWGLGTQTVSS
281F12	98	EVQLVESGGGLVQAGDSLRLSCAASGRAFSRYAMGWFQAPGKEREFVAAIGWGPSKTNYADSVKGRFTI SRDNAKNTVYLG MKSLKP ETD AVYSCAAKFVN T D STWSRSEMYTYWGQGTQTVSS
14D09	99	EVQLVESGGGLVQAGGSRLSCVASGSISSSKRNMGWYRQAPGKQRESVATISSGGNKDYTD AVKDRFTIS RDITKNTVYLG MKSLKP ETD AVYYCIEAGTGWATRRGYTYWGQGT LTVSS
55A01	100	EVQLVESGGGSVQAGGSRLSCTTSGRALNMVYMGWFQAPGNEREFVAAATSSSGGSTSYPD SVKGRFTI SRDNAKNTVYLG MKSLKP ETD AA YRC AASPYVSTPTM NILEEYRYWGLGTQTVSS
03F11	101	EVQLVESGGGSVQPGGSLTLSCGTSGRTFNVMGWFQAPGKEREFVAAVRWSSTGIYYTQYADSVKSRTF ISRDNAKNTVYLEMNSLKP ETD AVYYCAADTYNSNP ARWDGYDFRGQGT QTVSS
7D12	102	EVQLVESGGGSVQTGGSLRLTCAASGRTSRSYGMGWFQAPGKEREFVSGISWRGDSTGYADSVKGRFTI SRDNAKNTVYLG MKSLKP ETD AIYYCAAAGSAWYGTLYEYDYWGQGT LTVSS
CEA#1	103	EVQLVESGGGSVQAGGSRLSCAASGDTYGSYWMGWFQAPGKEREVGAA INRGGGYTVYADSVKGRFTI SRDTAKNTVYLG MKSLRPDDTADYYCAASGVLGGLHEDWFNYWGQGT LTVSS
CEA#5	104	EVQLVESGGGSVQAGGSRLSCAASGDTYGSYWMGWFQAPGQEREAVAA INRGGGYTVYADSVKGRFTI SRDNAKNTLYLG MKSLRPDDTADYYCAASGVLGGLHEDWFNYWGQGT LTVSS
135B08	105	EVQLVESGGRLVQAGDSLRLSCAASGRTFISYRMGWFQAPGKEREFVAALRWSSSNIDYTYYADSVKGR FSISG DYAKNTVYLG MKSLKAEDTAVYYCAASTRWGV MESDTEYTSWGQGT LTVSS
135A07	106	EVQLVESGGRLVQAGDSLRLSCAASGRFTSYRMGWFQAPGKEREFV S AL RWGV MESDTEYTSWGQGT LTVSS
148C09	107	EVQLVESGGGLVQTGGSLRLSCAASGRTPRLVAMGWFQTPGKEREFVGEIILSKGFTYYADSVKGRFTI SRVNAKNTITMYLQMNSLKS ETD AVYYCAGRQNWSGPARTNEYEYWGQGT LTVSS
148F09	108	EVQLVESGGGLVQTGGSLRLSCAASGRTPSIIAMGWFQTPGKEREFVGEIILSKGFTYYADSVKGRFTI SRANAKNTITMYLQMNSLKS ETD AVYYCAARQNWSGPRTNEYEYWGQGT LTVSS
150D02	109	EVQLVESGGGLVQPGGSLTLSCVASGRTFSTDVMGWFQAPGKEREFVAAHRTSGISTVYAASVKGRFTI SRDNAKNTVYLG MKSLKP ETD AVYYCAAGSDASGGYDYWGQGT LTVSS
150H07	110	EVQLVESGGGLVQAGGSRLSCAASGRTPSSYAMGWFQAPGKDR E FVAATSWIGESTYYADSVKGRFTI SRDNAKNTVYLRMNSLKP ETD AVYYCAADLYYTAYAAADEDYDYWGQGT LTVSS

5.1. *in vitro cell toxicity of polypeptides coupled to MMAE*

The effect of MMAE-conjugated polypeptides on cell proliferation and/or cell toxicity was tested using the XCELLIGENCE® instrument (Analyser Model W380; SN: 281081212038, Roche). The 5 instrument quantifies changes in electrical impedance as cells attach and spread in a culture dish, displaying them as a dimensionless parameter termed cell-index, which is directly proportional to the total area of tissue-culture well that is covered by cells (Duchateau *et al.* 2013. *Phys. Status Solidi* 10: 882-888 and Giaever and Keese 1991. *Proc. Natl. Acad. Sci. USA* 88: 7896-7900). The XCELLIGENCE® instrument (Analyser Model W380; SN: 281081212038) utilizes the E-plates 96 (ACEA Biosciences; 10 cat#05 232 368 001; lot#20140138; plate 1: ID#079605; plate 2: ID#079606) as tissue-culture well plate for seeding cells. The constructs used were T023800001-A and T023800001-MMAE, T023800003-A and T023800003-MMAE, T023800005-A and T023800005-MMAE, and T023800006-A and T023800006-MMAE. Dose-dependent inhibitory effect on MDA-MB-468 (mammary 15 gland/breast; derived from metastatic site: pleural effusion; ABL216) cell proliferation of the non-conjugated and MMAE-conjugated Nanobodies was assessed with the XCELLIGENCE® instrument using the following protocol.

In brief, the XCELLIGENCE® station was placed in a 37°C incubator in presence of 5% CO₂. MDA-MB-468 cell are grown T175 flasks containing RPMI (Gibco, Cat Nr: 72400-021) supplemented with 1% 20 P/S (Penicillin-Streptomycin of a stock 10,000 U/mL; Gibco, Cat Nr: 15140-122); 1% Na pyruvate (Gibco, Cat Nr: 11360-039) and 10 % FBS (Sigma-Aldrich, Cat Nr: F7524). Cells are harvested by trypsinization, centrifugation and re-suspending them to indicated cell densities. 50 µl of cell medium was added to each well of E-plate 96 and a blank reading on the XCELLIGENCE® system was performed to measure background impedance in absence of cells. 6000 cells (50 µl) were transferred to each well of an E-plate 96 and incubated for 20h to let the cells adhere. 100 µL of each 25 polypeptide was administered in a 1:3 dilution series, starting from 500 nM (total volume per well is 200 µl). Impedance readings were programmed at 15 minute intervals. The experiments were stopped at time point 162h (±7 d). The cell indices measured at time point 116h after seeding for all tested concentrations were used for dose-response analysis.

Proliferation curves and dose-response curves are depicted respectively in Figure 9 and Figure 10. 30 The obtained IC₅₀ values are given in Table 7.

Table 7. IC₅₀ and % inhibition observed for the non- and MMAE-conjugated polypeptides

polypeptide	IC ₅₀ (nM)	% Inhibition
-------------	-----------------------	--------------

T023800001-A		
T023800001-MMAE	28.7	99.8
T023800003-A		
T023800003-MMAE	6.2	76.8
T023800005-A	34.9	44.9
T023800005-MMAE	1.2	91.9
T023800006-A		
T023800006-MMAE	8	89.7

The non-conjugated polypeptides T023800001-A, T023800003-A, T023800005-A and T023800006-A exhibit no apparent effect on the proliferative properties of MDA-MB-468 cells, except the biparatopic T023800005-A which demonstrates a slight inhibitory effect on cell proliferation. In 5 contrast, the MMAE-conjugated polypeptides T023800001-MMAE, T023800003-MMAE, T023800005-MMAE and T023800006-MMAE clearly show a dose-dependent inhibitory effect on cell proliferation with almost complete inhibition at highest dose, as shown in Figure 9.

5.2 *in vivo efficacy of polypeptides coupled to MMAE*

The *in vivo* efficacy study of anti-EGFR polypeptide drug conjugates was assessed in a subcutaneous 10 xenograft mouse model.

Tumors were induced by subcutaneous injection of 1×10^7 FaDu cells into the right flank of healthy SWISS nude female mice of 6-8 weeks old. The FaDu cell line is a head and neck cancer cell line established from a punch biopsy of a hypopharyngal tumor removed from a 56-year old Caucasian/Hindu male patient. The treatment was started when tumors reached a mean volume 15 between 100-200mm³.

The animals received a daily injection of T023800008-MMAE at 5mg/kg every 4 days with a total of 6 injections (Q4Dx6). A first control group received daily injections every 4 days with a total of 6 days of a non-EGFR binding, but MMAE conjugated polypeptide at equimolar dose. A second control group received a daily injection of vehicle every 4 days for a total of 6 injections. Each groups consisted of 20 12 animals.

The length and the width of the tumor were measured twice a week with calipers and the volume of the tumor was estimated according to the following formula:

The polypeptide-MMAE conjugate T023800008-MMAE showed a significant inhibitor of tumor growth compared to the 2 control groups (Figure 11).

6 Generation of bispecific dimers

In this example protocols are provided enabling the generation of bispecific dimers, *i.e.* dimers in which polypeptide 1 is dissimilar from polypeptide 2.

5 6.1 Standard protocol

In first instance the protocol of Example 1.3 above is followed, but in which one *Pichia* strain produces both, dissimilar polypeptides. The coupling of the polypeptides into a dimer is also performed by chemical conjugation in the *Pichia* spent media, in which the C-terminal cysteines in the C-terminal extension in each of said two polypeptides are oxidized to a disulfide derivative 10 cystine via their thiol moieties at near neutral pH. In order to optimize the oxidation process, oxidizing copper ions are added (Cu^{2+} in the form of CuSO_4) in essence as set out in WO2010/125187. The dimers are purified to homogeneity (ion-exchange chromatography) and subsequently analyzed 15 via size exclusion chromatography. Samples are also verified by LC-MS. The standard protocol will generate the intended bispecific NB1-NB2 dimers. However, it is expected that a fraction will also contain monospecific dimers, *e.g.* NB1-NB1 and NB2-NB2.

6.2 Alternative protocol

Nanobody heterodimers (bispecific dimers) can be generated using two distinct C-terminally Cysteine extended Nbs without the use of a crosslinker.

This can be achieved via non-covalent immobilization of the first Nanobody (=NbA) while making its 20 free sulphhydryl available to the second Nanobody (=NbB) to form a C-terminal heterodimeric disulfide bond.

In a first Step NbA is reduced to obtain 100% monomeric material. Generic conditions for reducing typical Nanobody solutions [5-10mg/ml] are 10mM DTT in D-PBS overnight at 4°C or during 1-2h at Room temperature (RT). Preferably the optimal conditions are determined for each individual 25 Nanobody so that its canonical disulfide bond remains intact.

In Step 2 the NbA monomeric fraction is bound under reducing conditions to a carrier. Such a carrier could be a chromatography resin which preferably only binds NbA and not NbB. NbA is immobilized at low density to avoid the formation of NbA-NbA dimers while immobilized. Such a spatial separation of individual NbAs could be achieved by loading the column using sub-optimal binding 30 conditions (*i.e.* a too high flow rate for a typical affinity resin) or via expanding bed chromatography. Preferably the carrier only binds NbA. So ProteinA could be used if NbA (and preferably not NbB) is a

Protein A binder. If both Nanobodies A and B bind the carrier, after immobilizing NbA, should be saturated with a non-cysteine extended Nanobody before applying NbB.

In Step 3 an excess of the second Nanobody (NbB), also in reduced form (see above), is applied and is circulated over the column (optionally under slightly oxidizing conditions). NbB is passed over the 5 carrier until the immobilised NbA is fully complexed with NbB via a disulfide bond. This can be followed by measuring the concentration drop of NbB to match a saturated NbA population. For this step conditions are optimized to limit the amount of NbB-NbB dimer formation. This population will not bind the carrier and can be recovered and used in future coupling reactions.

In Step 4 the NbA-NbB dimer preparation is recovered from the resin by typical elution conditions for 10 that column (*i.e.* acidic conditions for Protein A) and further processed/formulated.

7 Polypeptides conjugated via ThioBridge™

As demonstrated in Examples 2 and 3, the dimers of the invention have superior characteristics compared to the related genetic fusion constructs. The dimers described *supra* were directly 15 conjugated via a disulfide bond between the cysteine moiety of a first polypeptide and a cysteine moiety of a second polypeptide (*e.g.* to a disulfide derivative cystine). Via this conjugation mechanism, the flexibility between the two polypeptides is limited. This is satisfactory in most cases. However, in some cases more flexibility between the two individual polypeptides may be required. Moreover, the polypeptides of the dimer have to be adapted for conjugation to drugs. Also as 20 described *supra*, these drugs are mostly conjugated via linkers, forming *e.g.* PDCs. Hence, in some instances it can be advantageous to have a linker which can conjugate the polypeptides of the invention allowing more flexibility, and preferably can conjugate a drug as well.

In this example it is sorted out whether the polypeptides of the invention can be conjugated via ThioBridge™ technique.

25 ThioBridge linker conjugation has been extensively described in WO 2005/007197 and WO 2013/190292, both in the name of Polytherics. In essence, the ThioBridge technology conjugates the two sulfur atoms that naturally form disulfide bridges in native proteins, such as antibodies or fragments thereof. The general principle of the ThioBridge technique is depicted in Figure 12.

As noted above, the ThioBridge technique is established for antibodies and fragments thereof, such 30 as Fabs and F(ab')₂. The ThioBridge technique has not been used for dimers of ISVDs, such as Nanobodies, however. Indeed, there is an important difference between the conventional antibodies used in WO 2005/007197 and WO 2013/190292 and the dimers of the present invention. In case the

interchain disulfide bridge is reduced in a conventional antibody or a fragment thereof via the ThioBridge technique, these antibodies and fragments, such as the V_H and the V_L domains, remain bound via hydrophobic and electrostatic interactions and van der Waals forces. In contrast, the polypeptides in the dimer of the invention are completely independent of each other, *i.e.* in general 5 there are no interactions between these polypeptides apart from the disulfide bridge. As a consequence, when reducing the cys-linked Nanobody dimer, the reactive $-S^-$ moiety can pair with any available acceptor group in its vicinity, not necessarily the ThioBridge linker. Hence, the success rate of the ThioBridge technique is expected to drop dramatically.

The present inventors set out to optimize and establish a ThioBridge technique protocol for the 10 polypeptides of the present invention. In all work packages, the dimers are purified to homogeneity and subsequently analyzed via size exclusion chromatography. Samples are also verified by LC-MS.

In a first work package (WP1), the first and the second polypeptide of the dimer are identical (NB1 and NB1 in Figure 13). This facilitates pairing, *i.e.* the second addition, into correct dimers (ThioBridge dimers) when the disulfide bonds between the first and second polypeptide are reduced. It is 15 expected that the differences between conventional antibodies and the polypeptides of the invention as set out above will impair the direct applicability of the conventional ThioBridge protocol. When a ThioBridge technology protocol is successfully devised, the ubiquitous applicability of WP1 is checked by repeating the protocol with different polypeptides, *i.e.* a dimer 2 composed of NB2 and NB2.

20 When WP1 is successfully concluded, a second work package (WP2) is initiated for the generation of bispecific Nanobody drug conjugates using the ThioBridge technique, *i.e.* dimers composed of NB1-NB1 and dimers composed of NB2-NB2 as depicted in Figure 15. In first instance, the ThioBridge technique protocol that was established in WP1 is used to re-bridging a disulfide bond of a polypeptide (NB1) of dimer 1 (composed of NB1 and NB1) and a polypeptide (NB2) of dimer 2 25 (composed of NB2 and NB2) into a ThioBridge bispecific dimer composed of NB1 and NB2 (cf. Figure 15). In view of the complexity, it is expected that the majority of the resulting dimers, even when newly re-bridged, is identical to the parental dimers: ThioBridge dimers of NB1-NB1 and ThioBridge dimers of NB2-NB2, while ThioBridge dimers of NB1-NB2 are present but in a minority.

In order to increase the success rate and enrich for a NB1-NB2 dimer fraction, the ThioBridge 30 technique protocol as used in WP2 is adapted as follows (WP3- Figure 16). In a first step of the third work package (WP3), the dimers of polypeptide 1 (NB1) and polypeptide 2 (NB2) are reduced in a similar fashion as in WP1 and WP2. In a second addition step and before rebridging, a fraction of the reduced polypeptide 1 and a fraction of the reduced polypeptide 2 are loaded with a protective

group to avoid formation of parental dimers (NB1-NB1 and NB2-NB2), for instance, the protective group is a carrier as set out before. In a third step, the protected fraction of polypeptide 1 is separated from the reactive fraction of polypeptide 1 and the protected fraction from polypeptide 2 is separated from the reactive fraction from polypeptide 2. In a fourth step, the protected fraction of 5 polypeptide 1 is mixed with the reactive fraction of polypeptide 2 and the protected fraction of polypeptide 2 is mixed with the reactive fraction of polypeptide 1. After this, the protective groups from the protected fractions are removed allowing the formation of bispecific, heterodimers (NB1- NB2 and NB2-NB1). Since the reaction is forced to one direction in view of the protective groups, the generation of the desired bispecific dimers is higher than via the method of WP2.

10 In work package 4 (WP4), an alternative strategy relative to WP2 and WP3 is used for the generation of bispecific ThioBridge dimers. In particular, the Cys-linked Nanobody dimers are already bispecific (cf. Example 6). In first instance, the ThioBridge technique protocol that was established in WP1 is used to establish re-bridging disulfide bonds in a bispecific dimer resulting in a bispecific ThioBridge dimer of polypeptide 1 and polypeptide 2 (see Figure 14). In order to increase the success rate, the 15 ThioBridge technique protocol can be adapted if necessary. It is expected that the formation of bispecific ThioBridge dimers according to WP4 is more efficacious than via WP2. Nevertheless, in some instances it may be advantageous to use the protocol of WP2 or WP3 over the protocol of WP4.

20 **8 PK study of dimers and drug-conjugated polypeptides**

As indicated above, already due to the size differences, dimerization and conjugation of drugs to the polypeptides of the invention has a far larger influence than on conventional antibodies. Accordingly, the inventors set out to assess the effects on the PK properties of a payload conjugated to a Nanobody with a DAR=1.

25 In addition, the inventors set out to assess the PK properties of a dimer of the invention comprising 2 human serum albumin binding domains ("Alb"). As will be evident from the examples above, a dimer comprising two identical moieties (*i.e.* polypeptide 1 = polypeptide 2) is easier and more cost effectively to generate and purify than a dimer with two dissimilar moieties. Human serum albumin binding domains are necessary in various instances for extending the half-life of the construct.

30 However, having an additional human serum albumin binding domain should not have any negative effect on the PK profile of the construct.

8.1 Radiolabeling of polypeptides

The PK properties were tested via radiolabeled polypeptides. In short, polypeptides were radiolabeled with ⁸⁹Zr, NCS-Bz-Df via randomly conjugation on free -NH₂ (see Figure 17). 22 nmol polypeptide (1.0 mg) was mixed with 0.9% NaCl until a final volume of 500 µL (final concentration 2 mg/mL). Next, the pH was set to 8.9-9.1 by adding 0.1 M Na₂CO₃. Finally, a solution of 66 nmol NCS-Bz-Df in DMSO (3 eq, 10 µL) was added and reacted for 30 min at 37 °C. After 30 min the reaction mixture was purified by using a 50 mM NaOAc / 200 mM Sucrose prewashed PD10 column. The product was collected in a fraction of 1.0 mL. The Df-PK-polypeptides were next radiolabeled with ⁸⁹Zr at pH ~ 7 for 60 min at room temperature (reaction mixture contained: 100 µL 1 M Oxalic acid containing ⁸⁹Zr, 45 µL 2 M Na₂CO₃, 500 µL 0.5 M Hepes buffer (pH 7.2) and 355 µL NCS-Df-polypeptide (~0.4 mg). Next, the reaction mixture was purified over a prewashed PD10 column with 50 mM NaOAc / 200 mM Sucrose and the product collected in 1.5 mL.

The radiolabeling results are summarized in Table 8.

The radiolabeling yields varied between 9.6% and 37.6% (normally a radiolabeling yield of 70% is expected). Probably this low labeling yield has to do with the low polypeptide amount that was used during modification. HPLC and Spinfilter analysis showed that the radiochemical purity was satisfactory for ⁸⁹Zr-T023800006A and ⁸⁹Zr-T023800006-MMAE (>96%). ⁸⁹Zr-T023800001 showed a purity <90.0% for spinfilter analysis, HPLC showed 8.6% free ⁸⁹Zr. Normally a construct should have a radiolabeled purity of >90.0%. In this case, it was decided to use ⁸⁹Zr-T023800001 anyway for the PK study, since the spinfilter purity of ⁸⁹Zr-T023800001 was near 90% and HPLC analysis showed an >90% pure product. Lindmo binding was >90% for all polypeptides (data not shown).

Subsequently, the ⁸⁹Zr-PK radiolabeled polypeptides were formulated to an activity of 0.22 MBq/mice, concentration 50 µg/mL with an injection volume of 130 µL.

Table 8 Labelling results polypeptides

Polypeptide	radiolabeling yield (MBq)	radiolabeling yield (%)	Spinfilter (%)	HPLC (%)	Lindmo binding (%)
⁸⁹ Zr-T023800001	5,484	19,2	87,7	91,4	95,0
⁸⁹ Zr-T023800006A	2,742	9,6	97,7	96,4	95,5
⁸⁹ Zr-T023800006-MMAE	10,878	37,6	98,2	100	90,6

25

In conclusion, the radiolabeling yields were not as efficient as expected. The radiochemical purity of ⁸⁹Zr-T023800006A and ⁸⁹Zr-T023800006-MMAE was good (>97% according to spinfilter and >96%

according to HPLC). The Lindmo binding results were high, with >90%. ^{89}Zr -T023800001 was not as pure as required with the spinfilter analysis. Eventually it was decided to still use ^{89}Zr -T023800001. All polypeptides were formulated and injected successfully.

8.2 *in vivo PK studies*

5 3 mice were injected with radiolabeled (^{89}Zr) polypeptide and the cpm (counts per minute) values were detected at 9 time points: 5 min, 1h, 3h, 24h, 48h, 72h, 140h, 168h and 192h. These values were then used to calculate the %injected dose of polypeptide per g mouse (%ID/g). For each polypeptide, the results of the 3 mice were averaged.

The results are summarized in Figure 18.

10 The results show unexpectedly that the biodistribution profile of bivalent polypeptides (T02380006-A) is similar as the biodistribution profile of the drug-conjugated polypeptides (T02380006-MMAE). Conjugating a polypeptide of the invention with a payload has no effect on the biodistribution profile. Without being bound to any theory, it was hypothesized that the tightly controlled conjugation process resulting in a DAR = 1 is predictive for the PK properties (in this case, no variance
15 compared to the non-conjugated polypeptides).

Also unexpectedly, the biodistribution profile of the cys-linked dimer of the invention (T023800001) is similar to of a corresponding bivalent polypeptide (T02380006-A). The presence of two human serum albumin binding units in the cys-linked dimer of the invention does not affect the distribution profile.

20

9 Improved internalization by dimers

The aim of this experiment was to assess whether a Cys-linked dimer (DIM T023800001, *i.e.* bivalent from a functional perspective) shows an increased internalization compared to its monomeric counterpart (T023800001-A) and traditionally linked -genetic fusion- bivalent format (T02380006-A). For this purpose, an internalization experiment was performed on NCI-H292 cells, which moderately express the EGF Receptor. The accumulation of internalized Nanobodies in life cells was measured via Flow CytoMetry (FCM) using a pHrodoTM labeled albumin (50 µg/ml) as detection tool. pHrodo[®] dye is a pH-sensitive Molecular Probe and almost non-fluorescent at neutral pH. In acidic environments such as in endosomes and lysosomes, it fluoresces brightly. Cells (30.000 cells/well)
25 were transferred in a flat bottom 96-well plate and incubated for 5 hrs. at 37°C with different concentrations of the particular polypeptides and constructs together with the pHrodoTM labeled albumin (50 µg/ml). Cells were then washed, harvested, measured on FCM and analyzed.
30

The obtained dose-response curves are presented in Figure 19 and correlated EC₅₀ values and top MFI top levels are listed in Table 9.

Table 9. Estimated EC₅₀ values and MFI Top levels

	EC ₅₀ (nM)	MFI Top
DIM T023800001	0.7	42102
T023800001-A	> 23	Not reached
T023800006-A	> 16	Not reached

5 Remarkably, in NCI-H292 cells, the overall internalization of DIM T023800001 appeared to be more potent and efficacious than the monomer T023800001-A and traditionally linked bivalent Nanobody T023800006-A. Moreover, this difference in internalization is less pronounced yet still significant in cells that express EGFR in extreme high levels such as MDA-MB-468 (data not shown).

10 The entire contents of all of the references (including literature references, issued patents, published patent applications, and co pending patent applications) cited throughout this application are hereby expressly incorporated by reference, in particular for the teaching that is referenced hereinabove. The Figures and the Experimental Part/Examples are only given to further illustrate the invention and should not be interpreted or construed as limiting the scope of the invention and/or of the appended

15 claims in any way, unless explicitly indicated otherwise herein.

Table B-1 CDR's and framework sequences of Nanobodies against human EGFR

SEQ	Clon	SEQ	FR1	SEQ	CDR1	SEQ	FR2	SEQ	CDR2	SEQ	FR3	SEQ	CDR3	SEQ	FR4
45	7D12	46	EVQLEESG	47	SYGMG	48	WFRQAP	49	GISWRGDS	50	RFTISRDNAKN	51	AAGSAWY	52	WGQGTQVTVS
	(Q1E ,		GGSVQTGG SLRLTCAA SGRTSR				GKERE VS		TGYADSVK G		TVDLQMNSLKP EDTAIYYCAA		GTLYEYD Y		S
53	9G8	54	EVQLVVESG	55	SYAMG	56	WFRQAP	57	AINWSSGS	58	RFTISRDNAKN	59	GYQINSG	60	WGQGTQVTVS
			GGLVQAGG SLRLSCAA SGRTFSS				GKERE VV		TYYADSVK G		TMYLQMNSLKP EDTAVYYCAA		NYNFKDY EYDY		S

CLAIMS

1. A method for making dimers, comprising at least the steps of:

5 (i) providing a first polypeptide comprising the sequence set forth in SEQ ID NO: 27, wherein said first polypeptide comprises

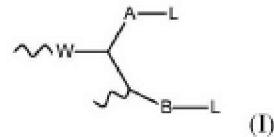
- at least one immunoglobulin single variable domain (ISVD) and
- a C-terminal extension comprising a cysteine moiety;

(ii) providing a second polypeptide comprising the sequence set forth in SEQ ID NO: 27, wherein said second polypeptide comprises

- at least one immunoglobulin single variable domain (ISVD) and
- a C-terminal extension comprising a cysteine moiety; and

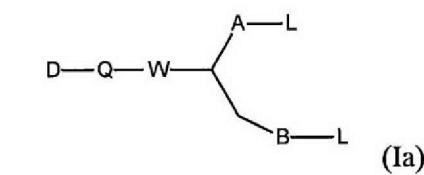
(iii) oxidizing the thiol moiety of said cysteine moiety of said first polypeptide and the thiol moiety of said cysteine moiety of said second polypeptide by adding oxidizing copper ions (Cu^{2+}), and preferably at pH 6.5 to pH 7.5 to a disulfide derivative cystine;

5 (iv)-a reducing the cystine disulfide derivative cystine;

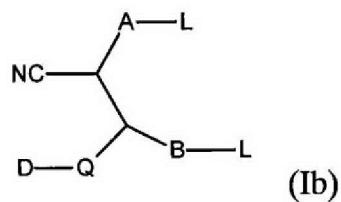

(iv)-b reacting the reduced product with a conjugating agent that forms a bridge between the two cysteine residues derived from the cystine; and

(v) optionally purifying said dimers, preferably via size exclusion chromatography;

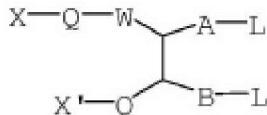
0 wherein the integrity of the ISVDs is maintained,


wherein preferably at least 80%, such as 85%, 90%, 95%, 99% or even more, such as 100% of said first and said second polypeptide are dimerized, for instance as determined by mass spectrometry; and wherein said conjugating agent is chosen from the group consisting of

- conjugating agents comprising the functional group of formula (I)


in which W represents an electron-withdrawing group; A represents a C_{1-5} alkylene or alkenylene chain; B represents a bond or a C_{1-4} alkylene or alkenylene chain; and each L independently represents a leaving group;

30 - conjugating agents comprising the functional group of the formula (Ia):


in which W represents an electron-withdrawing group, Q represents a linking group and D represents a diagnostic, therapeutic or labelling agent, such as, for instance, a drug, or a binding agent, e.g. a linker, for a diagnostic, therapeutic or labelling agent, such as, for instance, a drug;

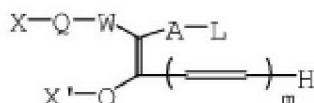
- conjugating agents comprising the functional group of the formula (Ib), in which NC represents a cyano group:

in which Q represents a linking group and D represents a diagnostic, therapeutic or labelling agent, such as, for instance, a drug, or a binding agent, e.g. a linker, for a diagnostic, therapeutic or labelling agent, such as, for instance, a drug;

- conjugating agents comprising the functional group of the formulae (II), (III) or (IV):

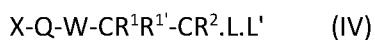
(II)

in which one of X and X' represents a polymer and the other represents a hydrogen atom;


Q represents a linking group;

W represents an electron-withdrawing group; or, if X' represents a polymer, X-Q-W together may represent an electron withdrawing group;

A represents a C₁₋₅ alkylene or alkenylene chain;


B represents a bond or a C₁₋₄ alkylene or alkenylene chain; and

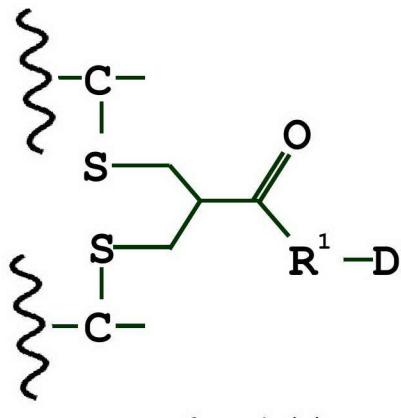
each L independently represents a leaving group;

(III)

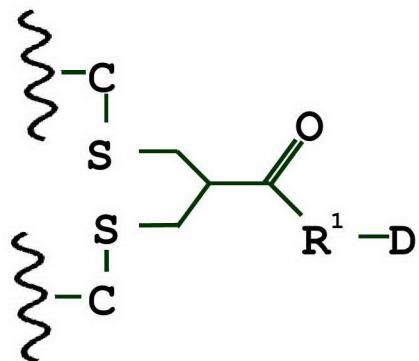
in which X, X', Q, W, A and L have the meanings given for the general formula II, and in addition if X represents a polymer, X' and electron-withdrawing group W together with the interjacent atoms may form a ring, and m represents an integer 1, 2, 3 or 4; or

in which X, Q and W have the meanings given for the general formula II, and either R¹ represents a hydrogen atom or a C₁₋₄ alkyl group, R^{1'} represents a hydrogen atom, and each of L and L' independently represents a leaving group; or

R¹ represents a hydrogen atom or a C₁₋₄ alkyl group, L represents a leaving group, and


R¹ and L' together represent a bond; or

R¹ and L together represent a bond and R¹ and L' together represent a bond; and


R² represents a hydrogen atom or a C₁₋₄ alkyl group.

2. The method according to claim 1, wherein said drug is chosen from the group consisting of cytostatic agents, cytotoxic agents, chemotherapeutic agents, growth inhibitory agents, toxins (for example, an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), toxin moieties, and radioactive isotopes, preferably said drug is MMAE.
3. The method according to claim 1 or 2, wherein said binding agent is a linker for a diagnostic, therapeutic or labelling agent.
4. The method according to any one of claims 1 to 3, wherein said first polypeptide and/or said second polypeptide further comprises maleimide-val-cit-MMAE.
5. The method according to claim 3 or 4, wherein said linker is a non-cleavable linker or a cleavable linker, for example, a pH cleavable linker that comprises a cleavage site for a cellular enzyme (e.g., cellular esterases, cellular proteases such as cathepsin B).
6. The method according to any one of claims 1 to 5, wherein the drug to dimer ratio (DAR) is 1.
7. A dimer comprising a first polypeptide and a second polypeptide, wherein said first polypeptide comprises
 - at least one immunoglobulin single variable domain (ISVD) and
 - a C-terminal extension comprising a cysteine moiety;wherein said second polypeptide comprises
 - at least one immunoglobulin single variable domain (ISVD) and

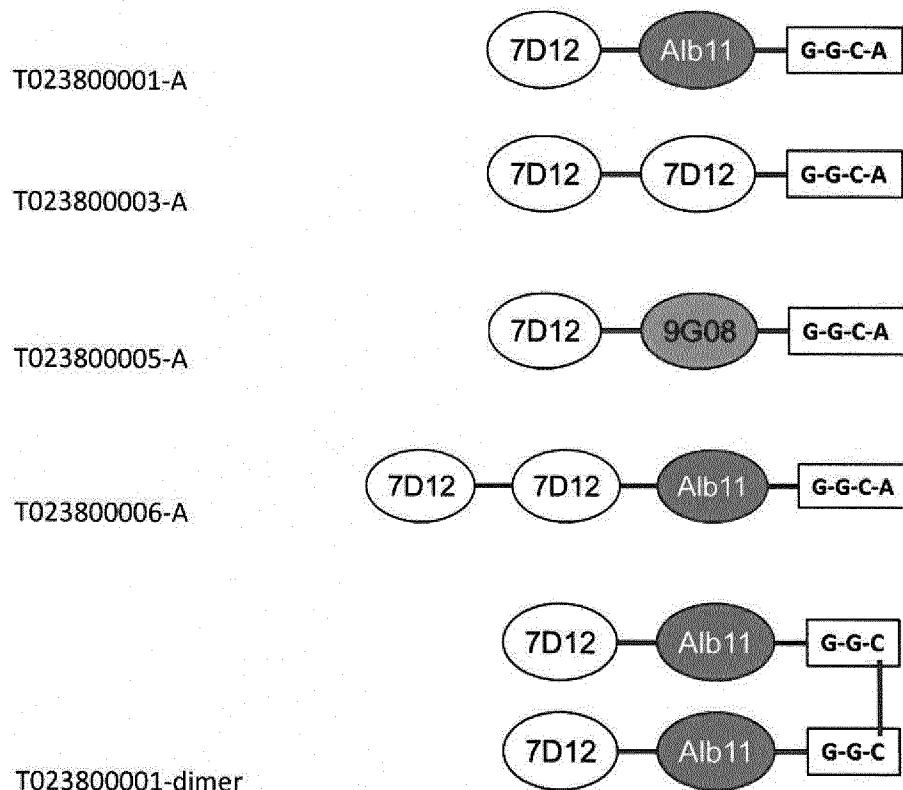
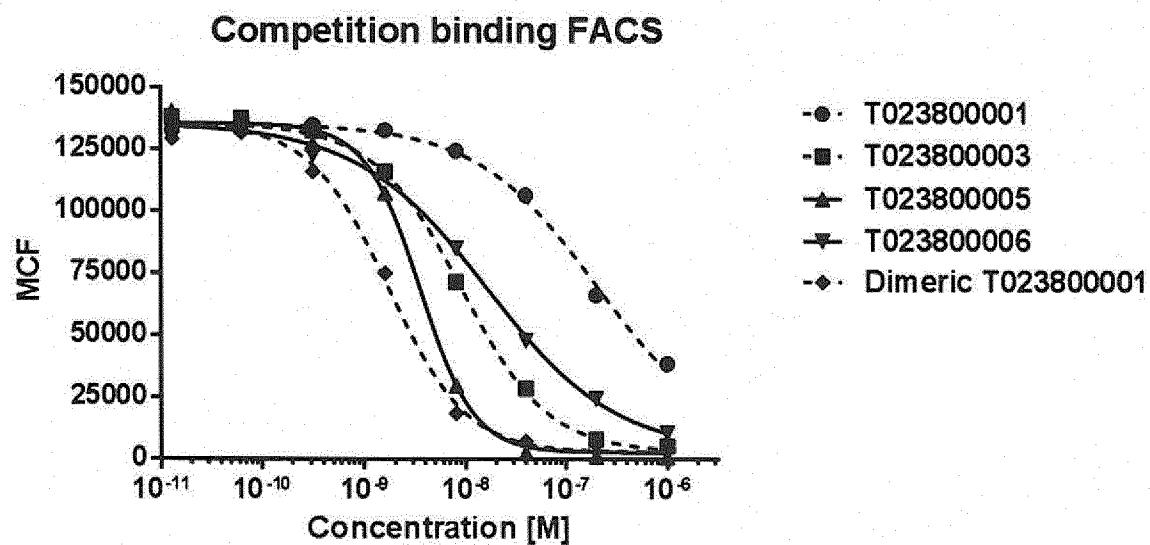
- a C-terminal extension comprising a cysteine moiety; and
wherein said first polypeptide and said second polypeptide are covalently linked via a thioether bond of the cysteine moiety (C) in the C-terminal extension of said first polypeptide and a thioether bond of the cysteine moiety (C) in the C-terminal extension of said second polypeptide with the compound according to formula (V) or formula (VI)

formula (V)

formula (VI)

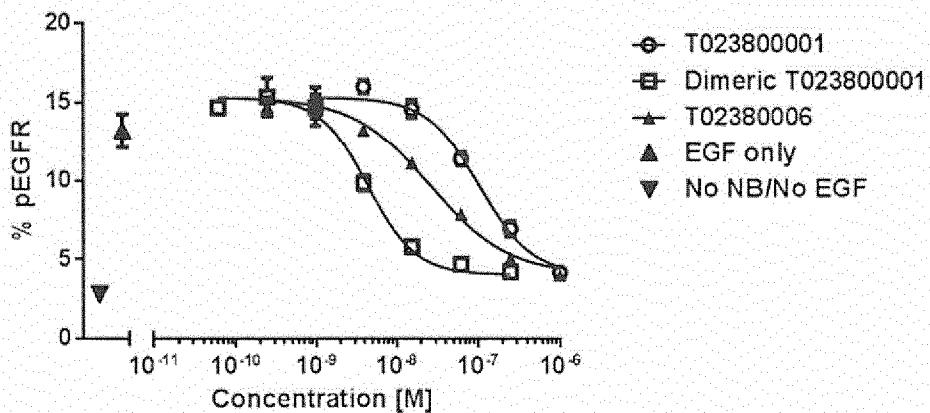
in which

"-C-" represents a cysteine moiety in the C-terminal extension of said first polypeptide and said second polypeptide;

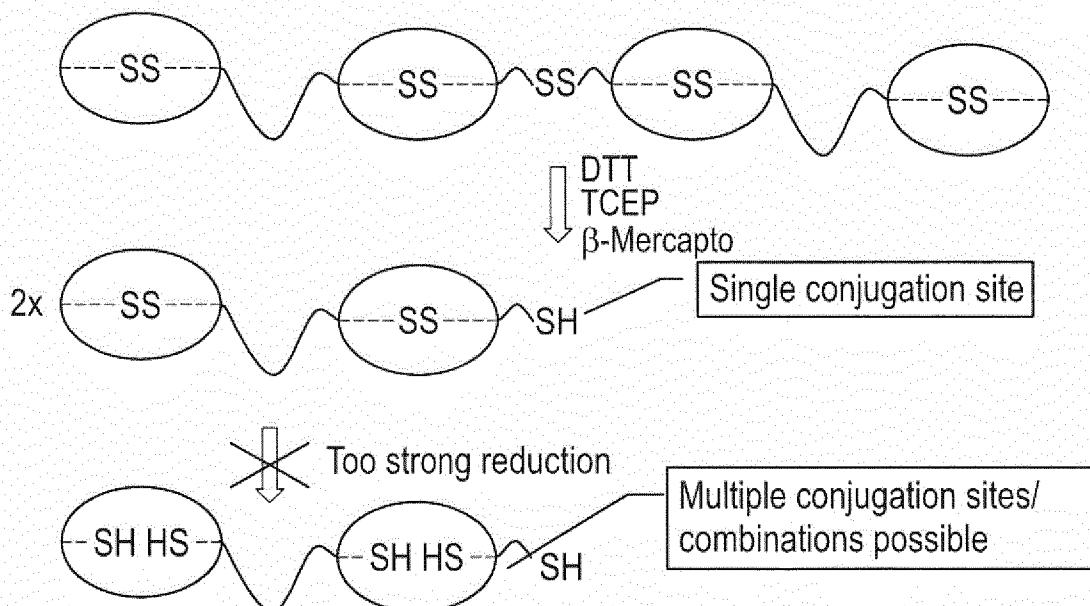


"-C" represents a cysteine moiety at the C-terminus of a C-terminal extension of said first polypeptide and said second polypeptide;

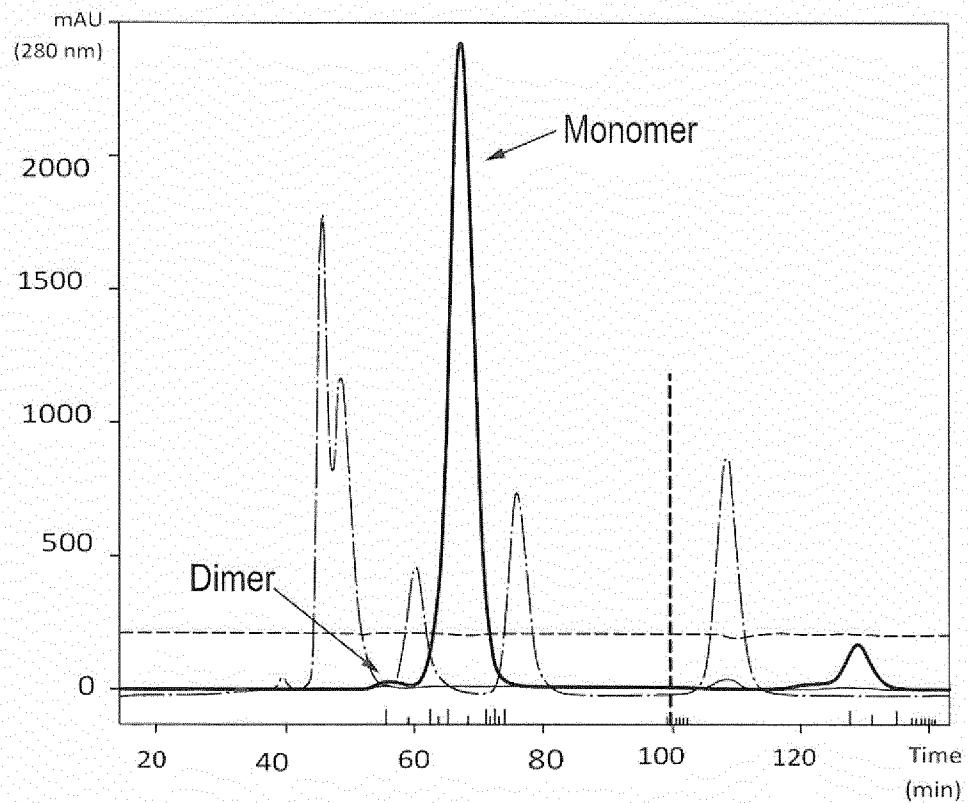
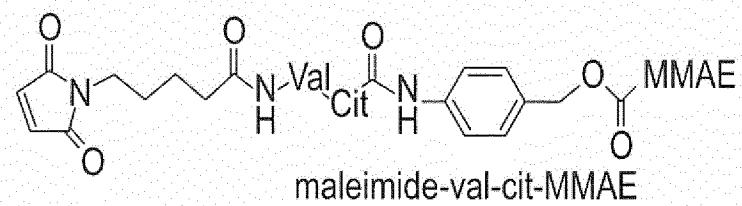
R^1 represents a C_{1-4} alkyl group; and D represents i) a diagnostic, therapeutic or labelling agent, such as, for instance, a drug, or ii) a binding agent, e.g. a linker, for a diagnostic, therapeutic or labelling agent such as for instance a drug,

and wherein said first polypeptide and said second polypeptide comprise the sequence set forth in SEQ ID NO: 27.


- 25 8. The dimer according to claim 7, wherein said drug is chosen from the group consisting of cytostatic agents, cytotoxic agents, chemotherapeutic agents, growth inhibitory agents, toxins (for example, an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), toxin moieties, and radioactive isotopes, preferably said drug is MMAE.
- 30 9. The dimer according to claim 7 or 8, comprising maleimide-val-cit-MMAE.

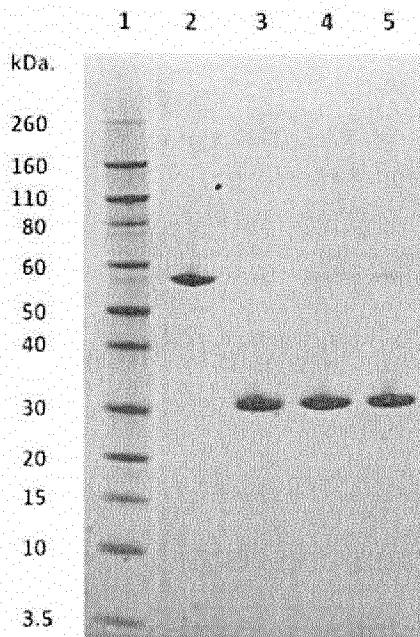
10. The dimer according to any one of claims 7 to 9, wherein said binding agent is a linker for a diagnostic, therapeutic or labelling agent.
11. The dimer according to any one of claims 7 to 10, wherein said linker is a non-cleavable linker or a cleavable linker, for example, a pH cleavable linker that comprises a cleavage site for a cellular enzyme (e.g., cellular esterases, cellular proteases such as cathepsin B).
12. The dimer according to any one of claims 7 to 11, wherein the drug to dimer ratio (DAR) is 1.
13. A dimer when made by the method of any one of claims 1 to 6.

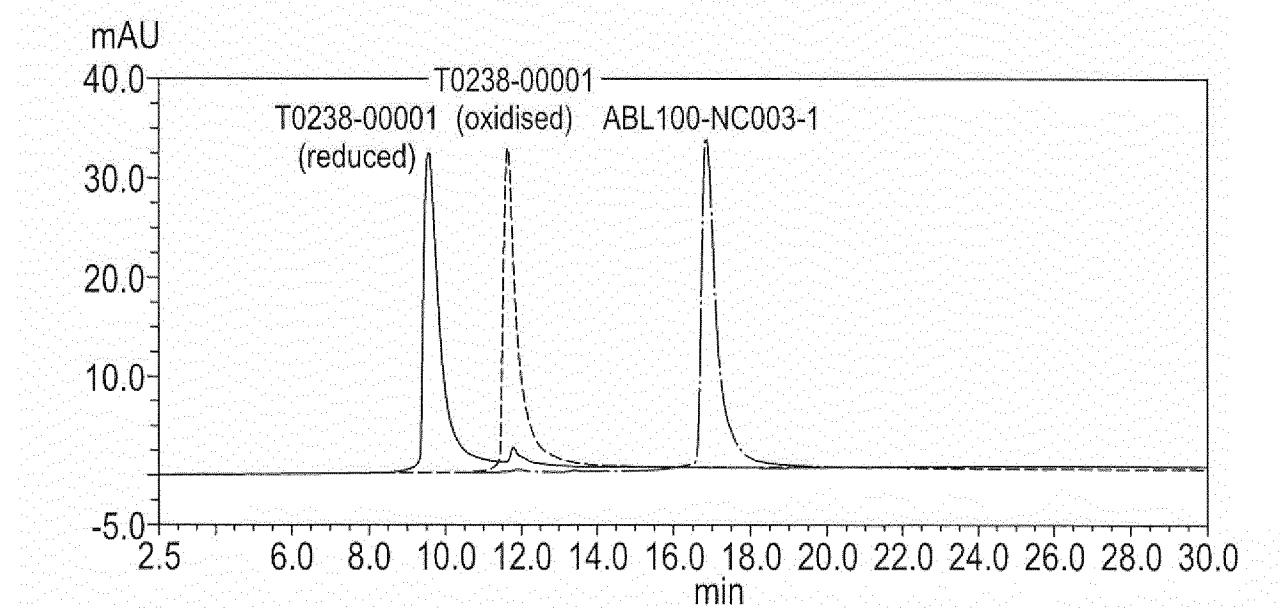

Figure 1: Constructs**Figure 2**

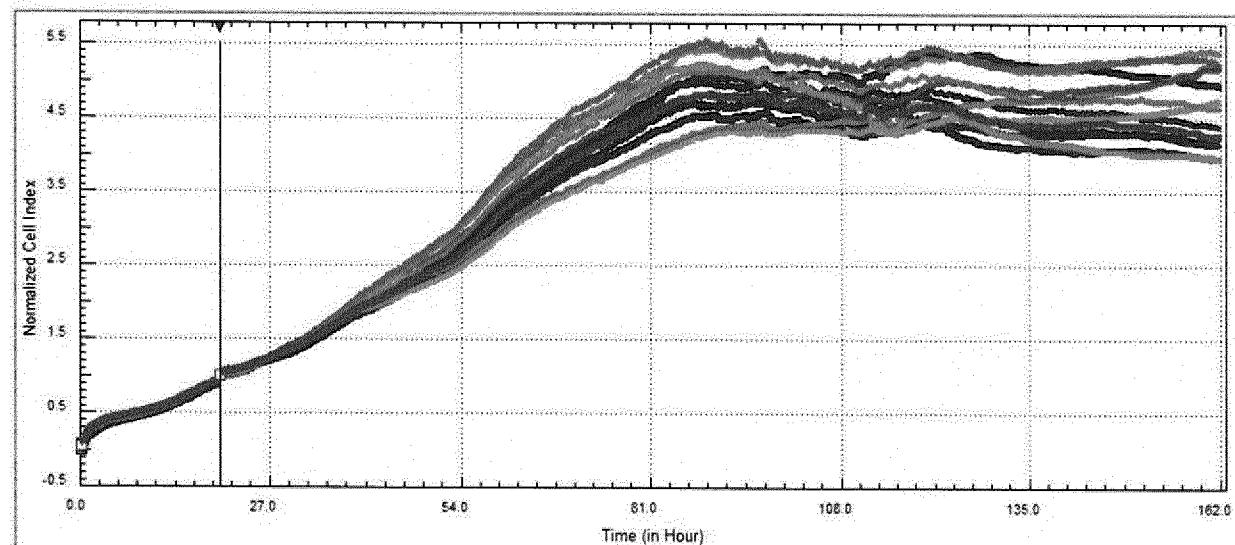
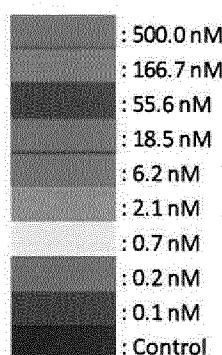
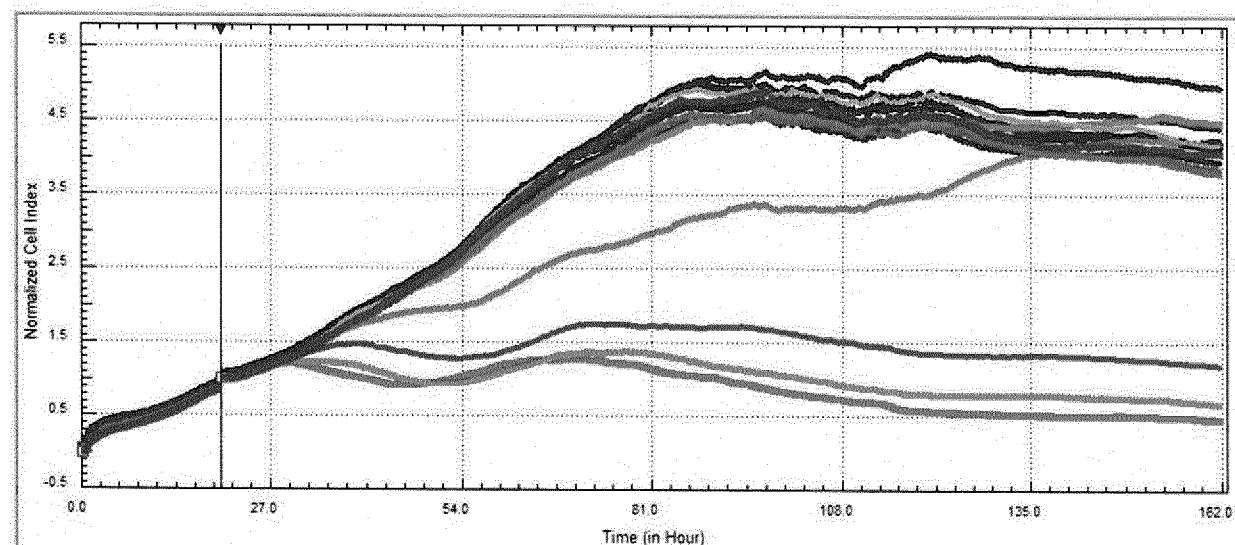


Figure 3

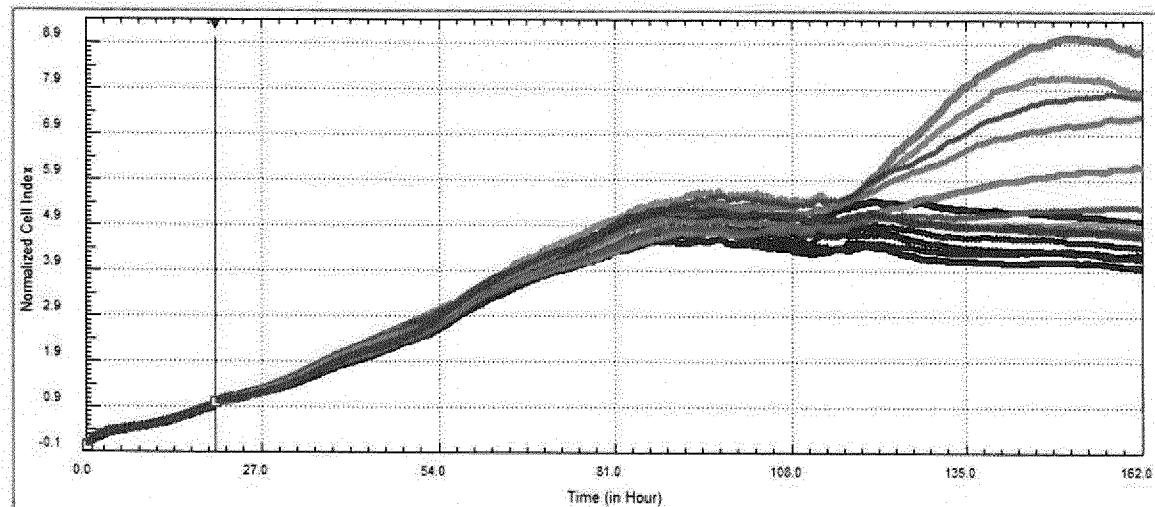
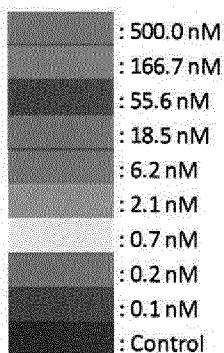
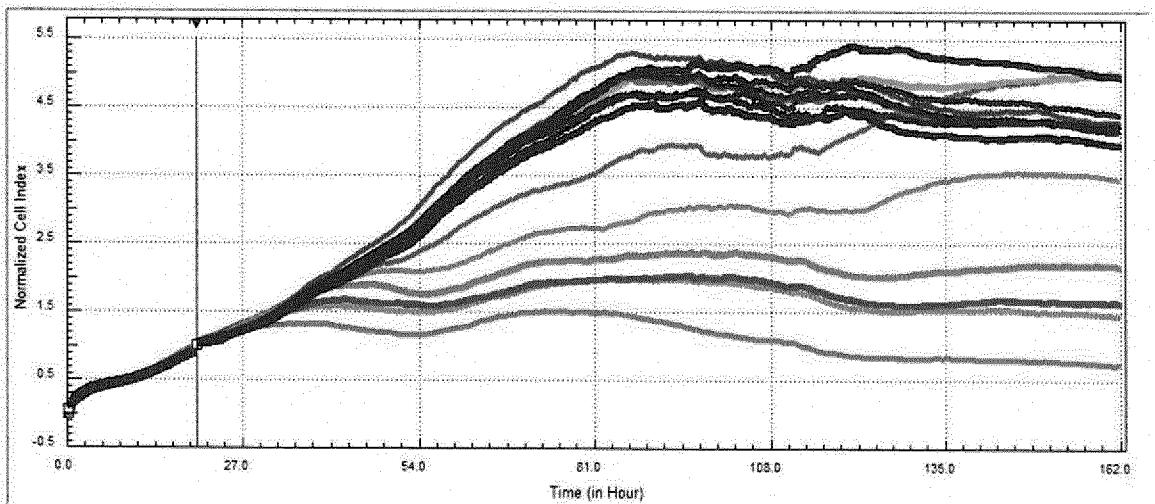
Blocking of EGF mediated EGFR phosphorylation

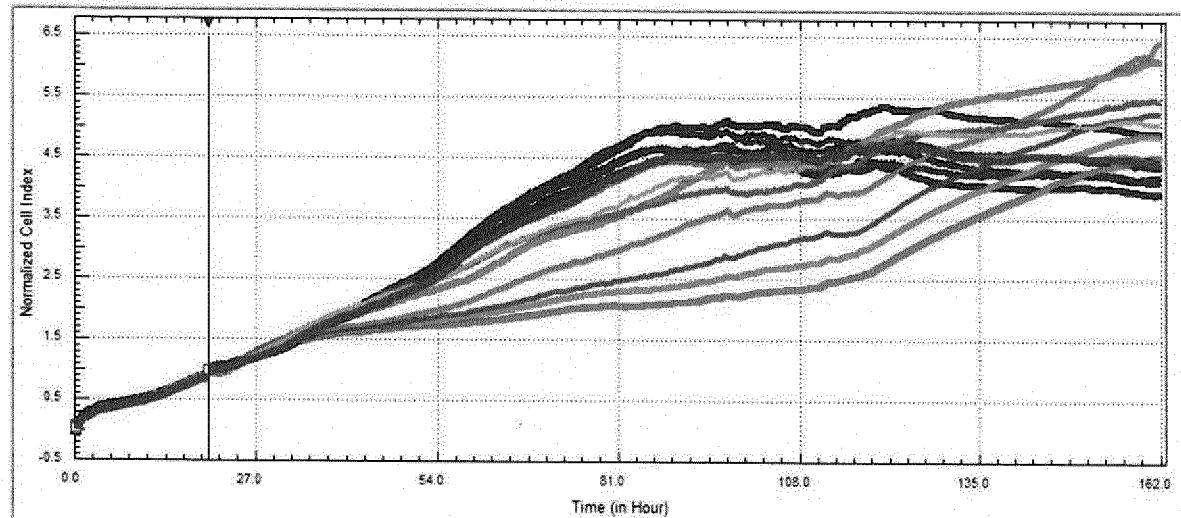
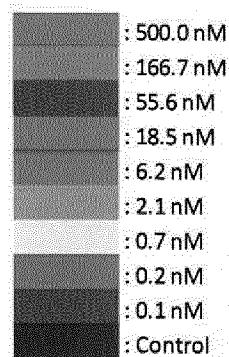
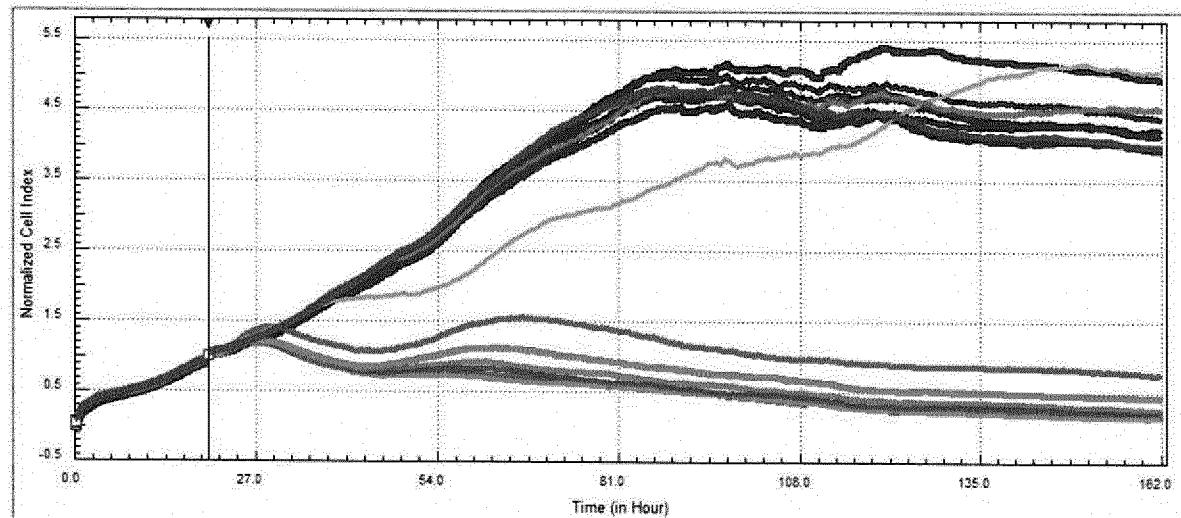
Figure 4


Scheme of dimer reduction


Figure 5**SEC profile of reduced Cysteine extended polypeptides****Figure 6**




Figure 7:




SDS-PAGE Analysis of T0238-00001-mc-val-cit-PAB-MMAE (ABL100-NC003-1)




Figure 8:

Overlaid hydrophobic interaction chromatograms

Figure 9A**A1 T023800001-A****A2 T023800001-MMAE**

Figure 9B**B1 T023800003-A****B2 T023800003-MMAE**

Figure 9C**C1 T02380005-A****C2 T02380005-MMAE**

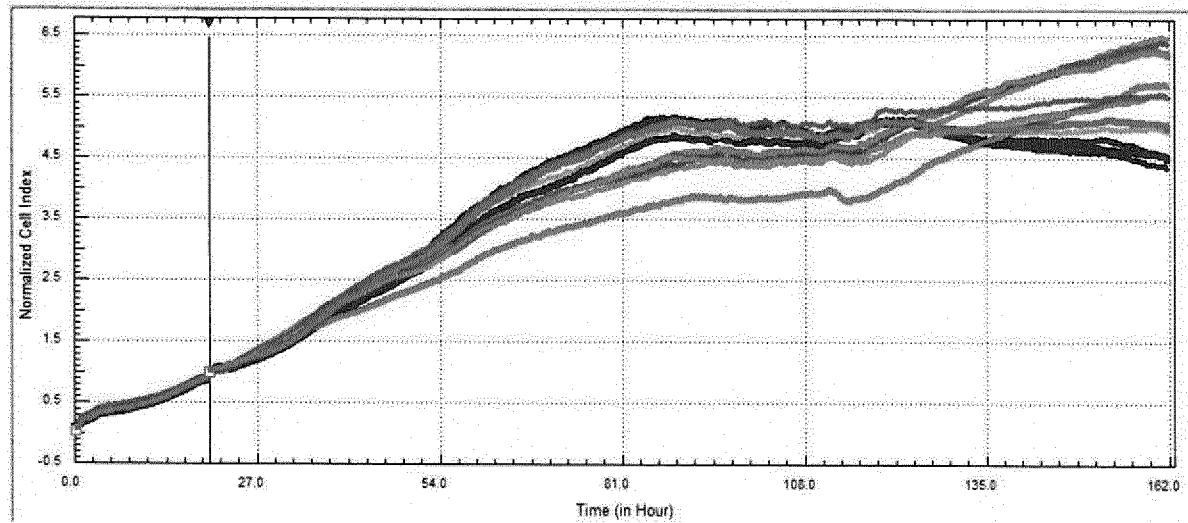
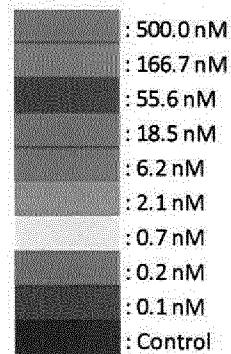
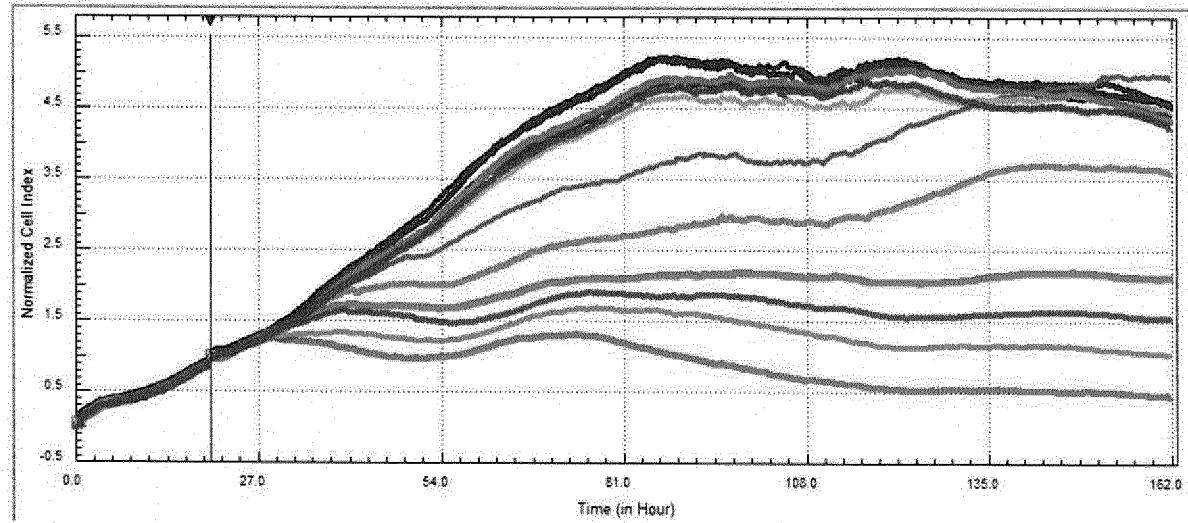
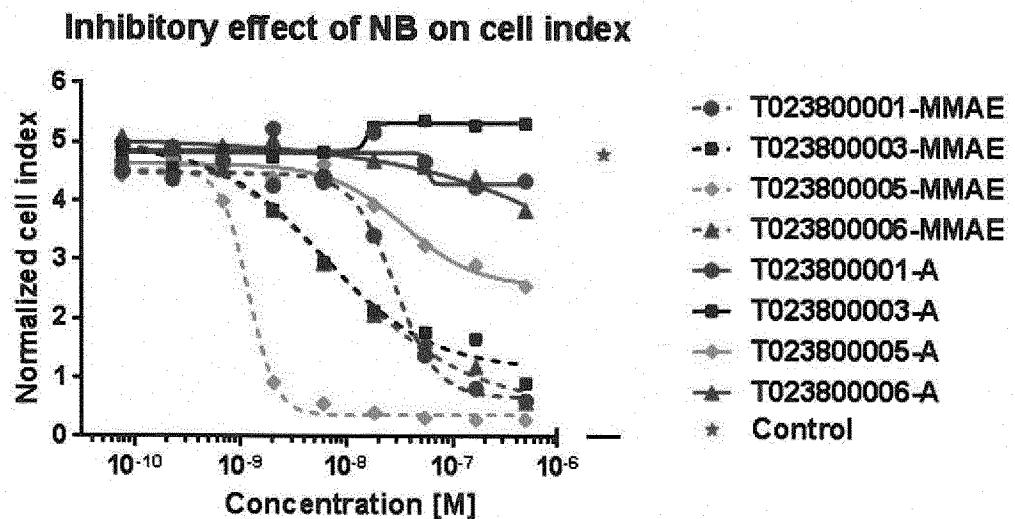
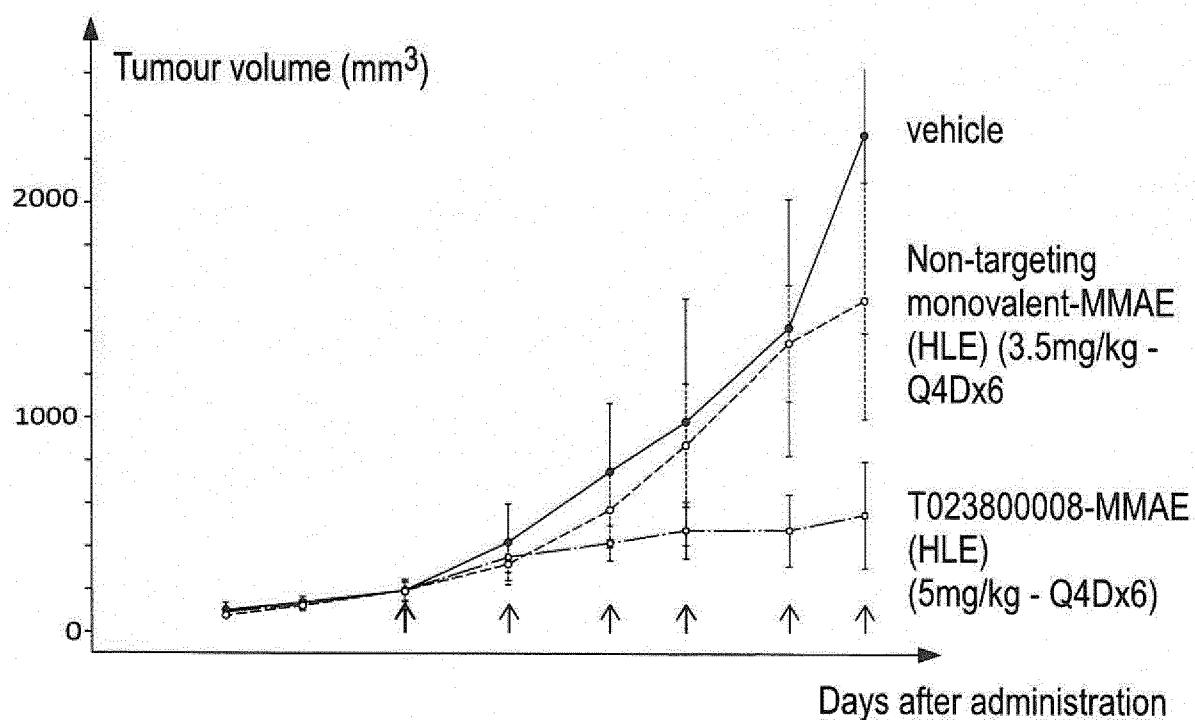





Figure 9D**D1 T02380006-A****D1 T02380006-MMAE**

Figure 10 : Dose-dependent effect of the non-conjugated and MMAE-conjugated polypeptides

Figure 11:
in vivo efficacy of polypeptide-MMAE conjugates

Figure 12 principle of ThioBridge technique

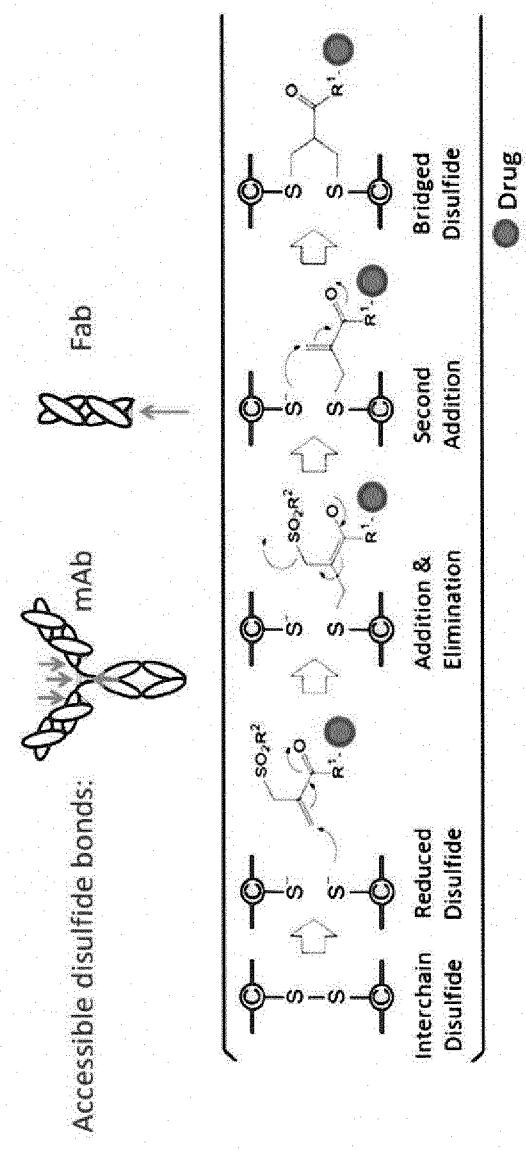


Figure 13 ThioBridge technology attached to payload to Nanobody dimer

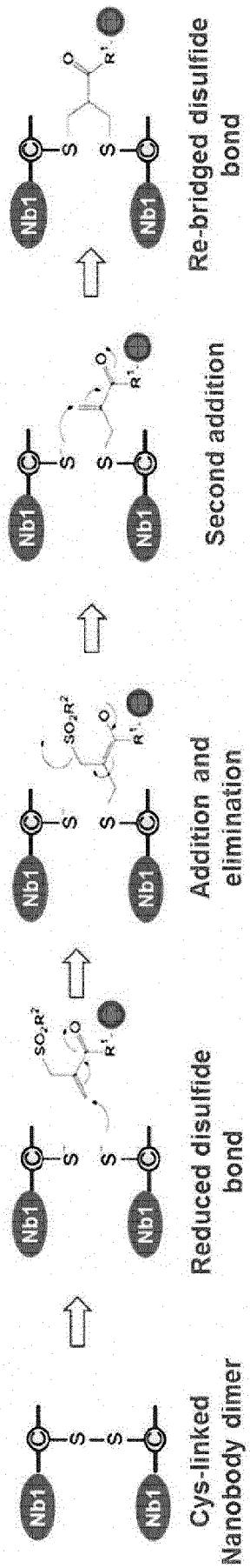
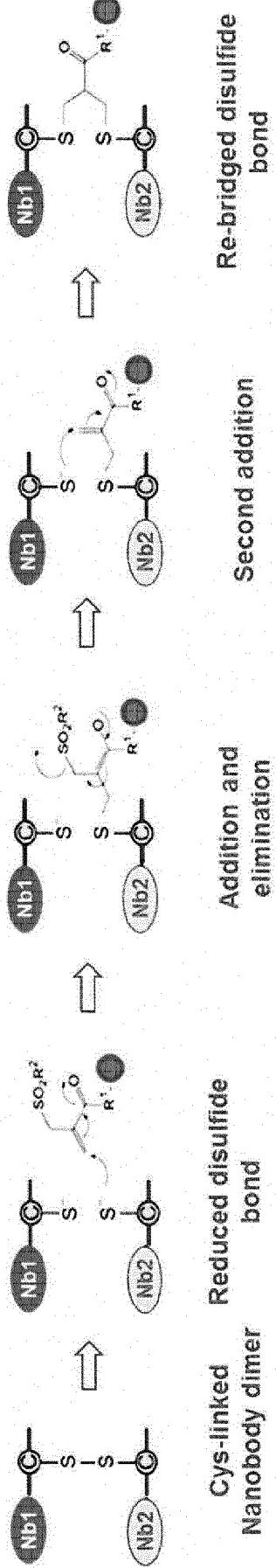



Figure 14 Scheme for generating bispecific ThioBridge dimers (Scheme 1)

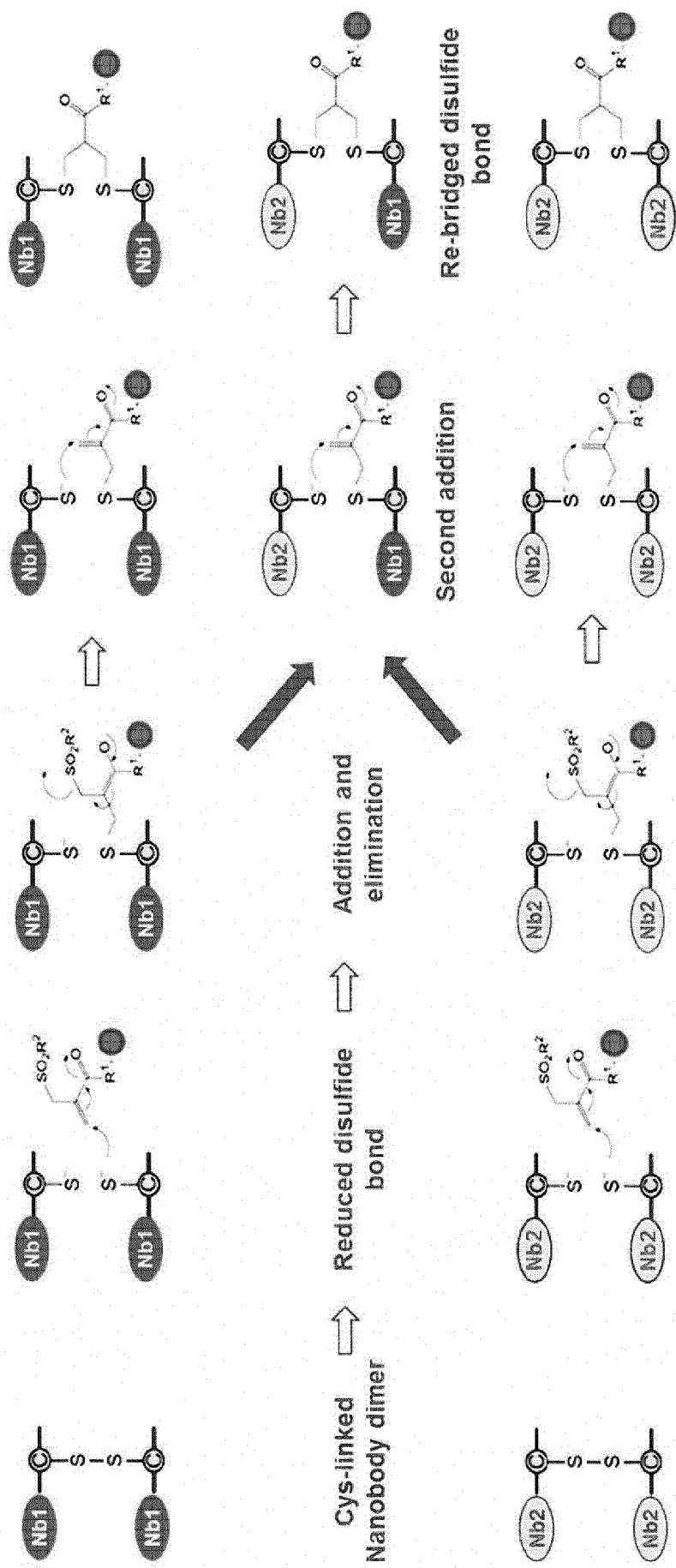
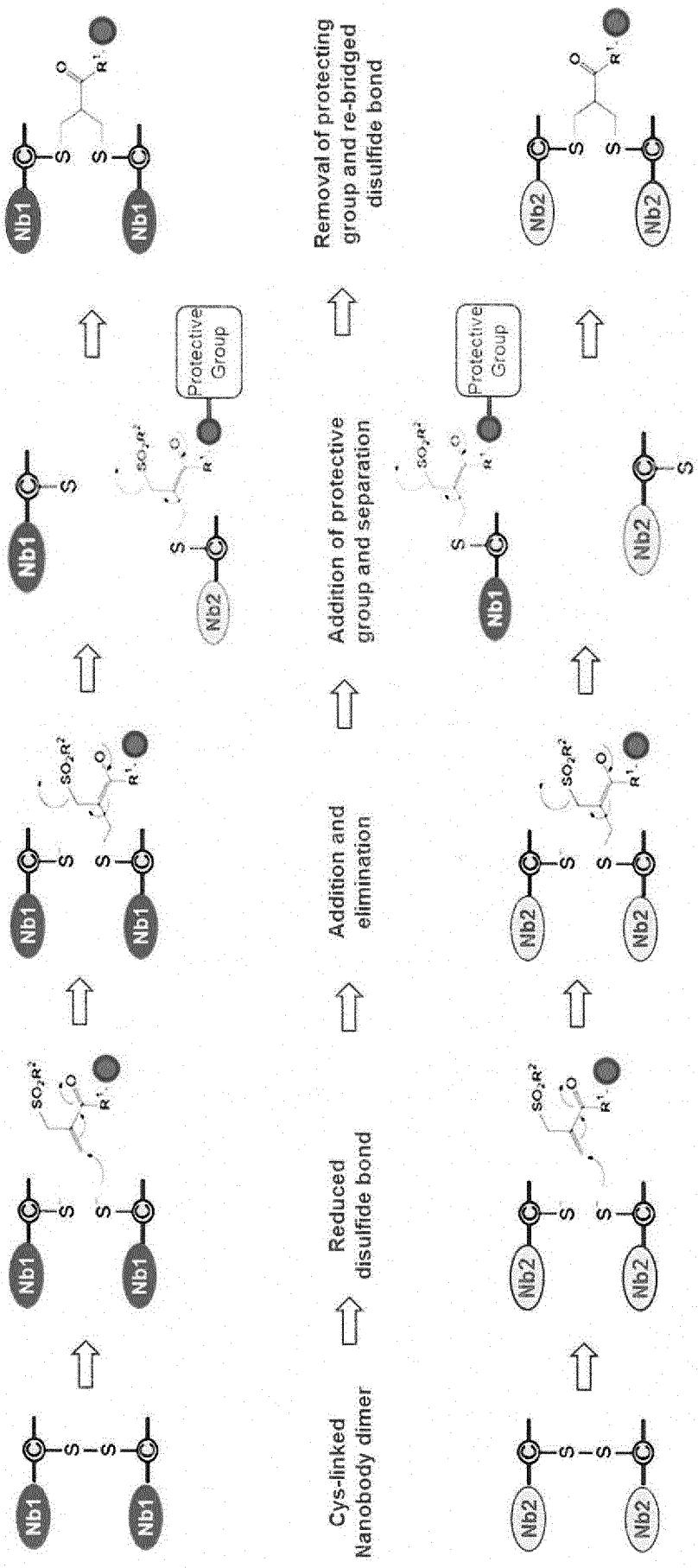
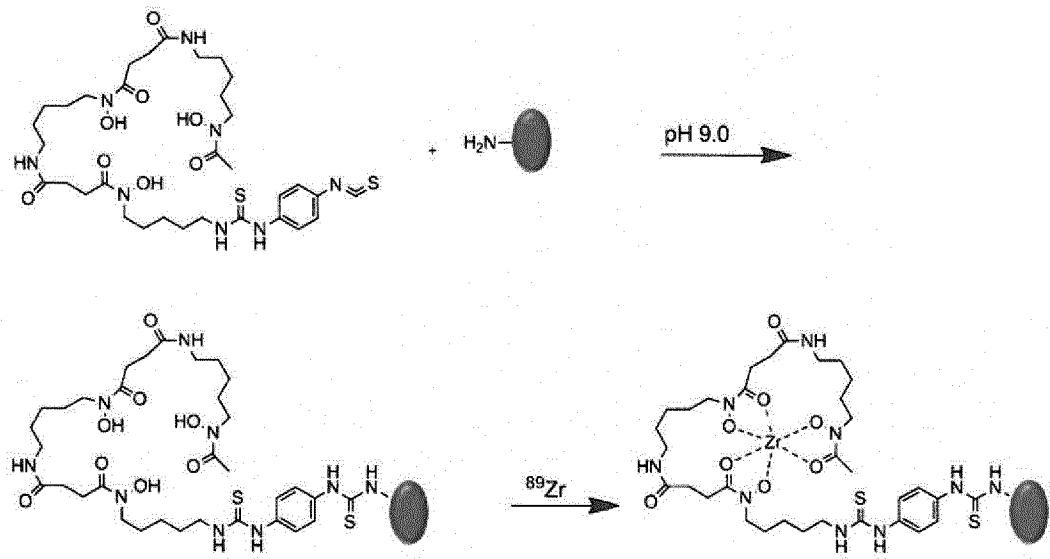
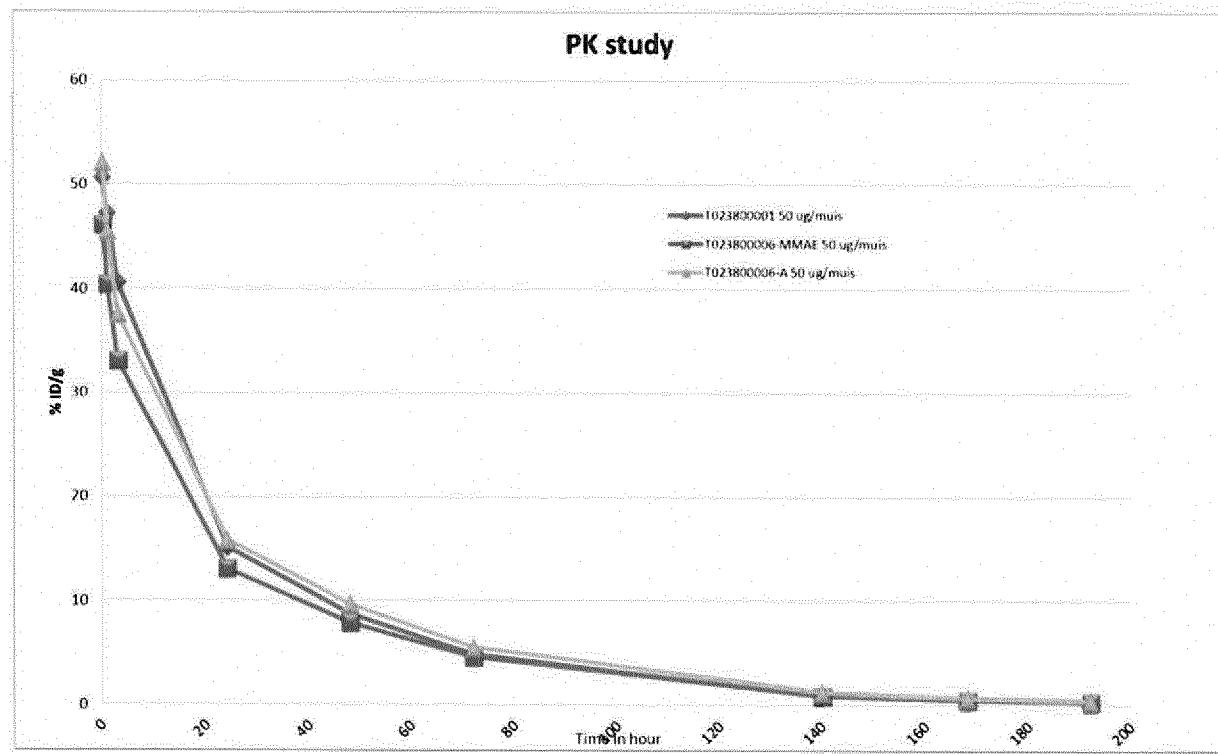
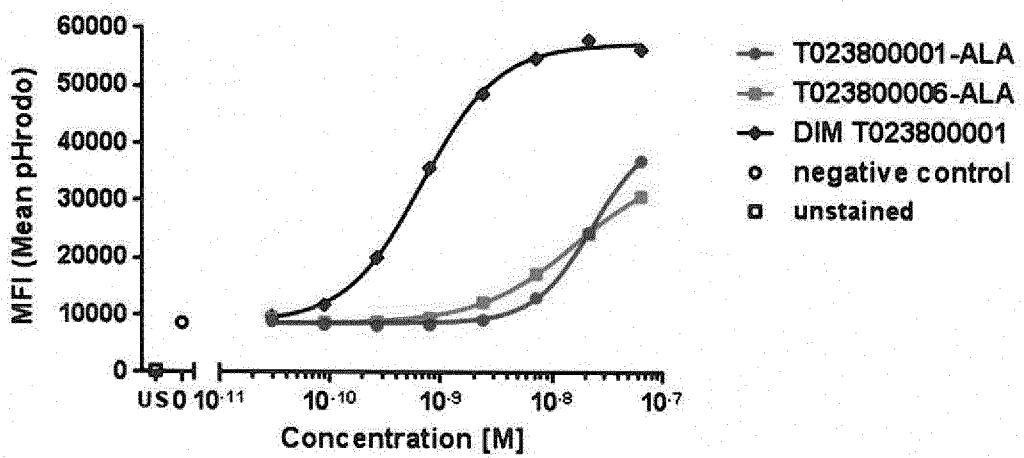






Figure 16 Generation of bispecific of Nb-drug-conjugates using protective groups in adapted thioBridge protocol (Scheme 3)

Figure 17 Modification and radiolabeling of Nbs using NCS-Bz-Df and ^{89}Zr **Figure 18** Averaged %ID/g for 3 polypeptides

Figure 19 Dose-response curve of internalized polypeptides and constructs

SEQUENCE LISTING
eol f-seql

<110> Abl ynx N. V.
<120> Cysteine linked dimers -2
<130> P15-003-PCT-1
<150> US62/112, 218
<151> 2015-02-05
<150> US62/269, 434
<151> 2015-12-18
<160> 110
<170> PatentIn version 3.5
<210> 1
<211> 1
<212> PRT
<213> Artificial Sequence
<220>
<223> c-terminal extensi on
<400> 1

Cys
1

<210> 2
<211> 2
<212> PRT
<213> Artificial Sequence
<220>
<223> c-terminal extensi on
<400> 2

Gly Cys
1

<210> 3
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
<223> c-terminal extensi on
<400> 3

Gly Gly Cys
1

<210> 4
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> c-terminal extensi on

eol f-seql

<400> 4

Gl y Gl y Gl y Cys
1

<210> 5
<211> 5
<212> PRT
<213> Artifical Sequence

<220>
<223> c-terminal extensi on

<400> 5

Gl y Gl y Gl y Gl y Cys
1 5

<210> 6
<211> 2
<212> PRT
<213> Artifical Sequence

<220>
<223> c-terminal extensi on

<400> 6

Al a Cys
1

<210> 7
<211> 3
<212> PRT
<213> Artifical Sequence

<220>
<223> c-terminal extensi on

<400> 7

Al a Al a Cys
1

<210> 8
<211> 4
<212> PRT
<213> Artifical Sequence

<220>
<223> c-terminal extensi on

<400> 8

Al a Al a Al a Cys
1

<210> 9
<211> 5
<212> PRT
<213> Artifical Sequence

<220>

eol f-seql

<223> c-terminal extensi on

<400> 9

Al a Al a Al a Al a Cys
1 5

<210> 10

<211> 2

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> c-terminal extensi on

<400> 10

Cys Gl y
1

<210> 11

<211> 3

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> c-terminal extensi on

<400> 11

Gl y Cys Gl y
1

<210> 12

<211> 4

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> c-terminal extensi on

<400> 12

Gl y Gl y Cys Gl y
1

<210> 13

<211> 5

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> c-terminal extensi on

<400> 13

Gl y Gl y Gl y Cys Gl y
1 5

<210> 14

<211> 6

<212> PRT

<213> Arti fi ci al Sequence

eol f-seql

<220>
<223> c-terminal extensi on

<400> 14

Gl y Gl y Gl y Gl y Cys Gl y
1 5

<210> 15
<211> 9
<212> PRT
<213> Artifical Sequence

<220>
<223> c-terminal extensi on

<400> 15

Gl y Gl y Gl y Gl y Cys Gl y Gl y Gl y
1 5

<210> 16
<211> 3
<212> PRT
<213> Artifical Sequence

<220>
<223> Linker

<400> 16

Al a Al a Al a
1

<210> 17
<211> 5
<212> PRT
<213> Artifical Sequence

<220>
<223> Linker

<400> 17

Gl y Gl y Gl y Gl y Ser
1 5

<210> 18
<211> 7
<212> PRT
<213> Artifical Sequence

<220>
<223> Linker

<400> 18

Ser Gl y Gl y Ser Gl y Gl y Ser
1 5

<210> 19
<211> 9

eol f-seql

<212> PRT
<213> Arti fi ci al Sequence

<220>
<223> Linker

<400> 19

Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser
1 5

<210> 20
<211> 10
<212> PRT
<213> Arti fi ci al Sequence

<220>
<223> Linker

<400> 20

Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser
1 5 10

<210> 21
<211> 15
<212> PRT
<213> Arti fi ci al Sequence

<220>
<223> Linker

<400> 21

Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser
1 5 10 15

<210> 22
<211> 18
<212> PRT
<213> Arti fi ci al Sequence

<220>
<223> Linker

<400> 22

Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Gl y Gl y
1 5 10 15

Gl y Ser

<210> 23
<211> 20
<212> PRT
<213> Arti fi ci al Sequence

<220>
<223> Linker

<400> 23

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly
1 5 10 15

eol f-seql
Gly Gly Gly Ser
20

<210> 24
<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Linker

<400> 24

Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Gly Gly Ser
20 25

<210> 25
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Linker

<400> 25

Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
20 25 30

<210> 26
<211> 35
<212> PRT
<213> Artificial Sequence

<220>
<223> Linker

<400> 26

Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly
1 5 10 15

Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
20 25 30

Gly Gly Ser
35

<210> 27
<211> 262

eol f-seql

<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 27

Gl u Val Gl n Leu Gl u Gl u Ser Gl y Gl y Gl y Ser Val Gl n Thr Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Thr Cys Al a Al a Ser Gl y Arg Thr Ser Arg Ser Tyr
20 25 30

Gl y Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Ser Gl y Ile Ser Trp Arg Gl y Asp Ser Thr Gl y Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Asp
65 70 75 80

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Ile Tyr Tyr Cys
85 90 95

Al a Al a Al a Al a Gl y Ser Al a Trp Tyr Gl y Thr Leu Tyr Gl u Tyr Asp
100 105 110

Tyr Trp Gl y Gl n Gl y Thr Gl n Val Thr Val Ser Ser Gl y Gl y Gl y Gl y
115 120 125

Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser
130 135 140

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Asn
145 150 155 160

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Ser Ser Phe
165 170 175

Gl y Met Ser Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val
180 185 190

Ser Ser Ile Ser Gl y Ser Gl y Ser Asp Thr Leu Tyr Al a Asp Ser Val
195 200 205

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Thr Thr Leu Tyr
210 215 220

Leu Gl n Met Asn Ser Leu Arg Pro Gl u Asp Thr Al a Val Tyr Tyr Cys
225 230 235 240

Thr Ile Gly Gly Ser Leu Ser Arg Ser eol f-seqI
245 Ser Glu Gly Thr Leu Val Thr
250 255

Val Ser Ser Gly Gly Cys
260

<210> 28
<211> 271
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 28

Gl u Val Gl n Leu Gl u Gl u Ser Gl y Gl y Gl y Ser Val Gl n Thr Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Thr Cys Al a Al a Ser Gl y Arg Thr Ser Arg Ser Tyr
20 25 30

Gl y Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Ser Gl y Ile Ser Trp Arg Gl y Asp Ser Thr Gl y Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Asp
65 70 75 80

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Ile Tyr Tyr Cys
85 90 95

Al a Al a Al a Al a Gl y Ser Al a Trp Tyr Gl y Thr Leu Tyr Gl u Tyr Asp
100 105 110

Tyr Trp Gl y Gl n Gl y Thr Gl n Val Thr Val Ser Ser Gl y Gl y Gl y Gl y
115 120 125

Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser
130 135 140

Gl u Val Gl n Leu Gl u Gl u Ser Gl y Gl y Gl y Ser Val Gl n Thr Gl y Gl y
145 150 155 160

Ser Leu Arg Leu Thr Cys Al a Al a Ser Gl y Arg Thr Ser Arg Ser Tyr
165 170 175

Gl y Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
180 185 190

Ser Gl y Ile Ser Trp Arg Gl y Asp Ser Thr Gl y Tyr Al a Asp Ser Val
195 200 205

eol f-seql

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Asp
210 215 220

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Ala Ile Tyr Tyr Cys
225 230 235 240

Al a Al a Al a Al a Gl y Ser Ala Trp Tyr Gl y Thr Leu Tyr Gl u Tyr Asp
245 250 255

Tyr Trp Gl y Gl n Gl y Thr Gl n Val Thr Val Ser Ser Gl y Gl y Cys
260 265 270

<210> 29

<211> 274

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 29

Gl u Val Gl n Leu Gl u Gl u Ser Gl y Gl y Gl y Ser Val Gl n Thr Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Thr Cys Ala Ala Ser Gl y Arg Thr Ser Arg Ser Tyr
20 25 30

Gl y Met Gl y Trp Phe Arg Gl n Ala Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Ser Gl y Ile Ser Trp Arg Gl y Asp Ser Thr Gl y Tyr Ala Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Asp
65 70 75 80

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Ala Ile Tyr Tyr Cys
85 90 95

Al a Al a Al a Al a Gl y Ser Ala Trp Tyr Gl y Thr Leu Tyr Gl u Tyr Asp
100 105 110

Tyr Trp Gl y Gl n Gl y Thr Gl n Val Thr Val Ser Ser Gl y Gl y Gl y Gl y
115 120 125

Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser
130 135 140

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Ala Gl y Gl y
145 150 155 160

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser Ser Tyr
165 170 175
eol f-seql

Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
180 185 190

Val Ala Ile Asn Trp Ser Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
195 200 205

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Met Tyr
210 215 220

Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
225 230 235 240

Ala Ala Gly Tyr Gln Ile Asn Ser Gly Asn Tyr Asn Phe Lys Asp Tyr
245 250 255

Gl u Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser Gly
260 265 270

Gly Cys

<210> 30
<211> 406
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 30

Gl u Val Gln Leu Glu Glu Ser Gly Gly Ser Val Gln Thr Gly Gly
1 5 10 15

Ser Leu Arg Leu Thr Cys Ala Ala Ser Gly Arg Thr Ser Arg Ser Tyr
20 25 30

Gly Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45

Ser Gly Ile Ser Trp Arg Gly Asp Ser Thr Gly Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Asp
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Ile Tyr Tyr Cys
85 90 95

Ala Ala Ala Ala Gly Ser Ala Trp Tyr Gly Thr Leu Tyr Glu Tyr Asp
100 105 110

eol f-seql

Tyr Trp Gl y Gl n Gl y Thr Gl n Val Thr Val Ser Ser Gl y Gl y Gl y Gl y
115 120 125

Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser
130 135 140

Gl u Val Gl n Leu Gl u Gl u Ser Gl y Gl y Ser Val Gl n Thr Gl y Gl y
145 150 155 160

Ser Leu Arg Leu Thr Cys Ala Ala Ser Gl y Arg Thr Ser Arg Ser Tyr
165 170 175

Gl y Met Gl y Trp Phe Arg Gl n Ala Pro Gl y Lys Gl u Arg Gl u Phe Val
180 185 190

Ser Gl y Ile Ser Trp Arg Gl y Asp Ser Thr Gl y Tyr Ala Asp Ser Val
195 200 205

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Asp
210 215 220

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Ala Ile Tyr Tyr Cys
225 230 235 240

Ala Ala Ala Ala Gl y Ser Ala Trp Tyr Gl y Thr Leu Tyr Gl u Tyr Asp
245 250 255

Tyr Trp Gl y Gl n Gl y Thr Gl n Val Thr Val Ser Ser Gl y Gl y Gl y Gl y
260 265 270

Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser
275 280 285

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Asn
290 295 300

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gl y Phe Thr Phe Ser Ser Phe
305 310 315 320

Gl y Met Ser Trp Val Arg Gl n Ala Pro Gl y Lys Gl y Leu Gl u Trp Val
325 330 335

Ser Ser Ile Ser Gl y Ser Gl y Ser Asp Thr Leu Tyr Ala Asp Ser Val
340 345 350

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Thr Thr Leu Tyr
355 360 365

Leu Gl n Met Asn Ser Leu Arg Pro Gl u Asp Thr Ala Val Tyr Tyr Cys
370 375 380

eol f-seql

Thr Ile Gly Gly Ser Leu Ser Arg Ser Ser Gln Gly Thr Leu Val Thr
385 390 395 400

Val Ser Ser Gly Gly Cys
405

<210> 31
<211> 409
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 31

Glu Val Gln Leu Glu Glu Ser Gly Gly Ser Val Gln Thr Gly Gly
1 5 10 15

Ser Leu Arg Leu Thr Cys Ala Ala Ser Gly Arg Thr Ser Arg Ser Tyr
20 25 30

Gly Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45

Ser Gly Ile Ser Trp Arg Gly Asp Ser Thr Gly Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Asp
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Ile Tyr Tyr Cys
85 90 95

Ala Ala Ala Ala Gly Ser Ala Trp Tyr Gly Thr Leu Tyr Glu Tyr Asp
100 105 110

Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser Gly Gly Gly Gly
115 120 125

Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
130 135 140

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
145 150 155 160

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser Ser Tyr
165 170 175

Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
180 185 190

Val Ala Ile Asn Trp Ser Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
195 200 205
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Met Tyr
210 215 220
Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
225 230 235 240
Ala Ala Gly Tyr Gln Ile Asn Ser Gly Asn Tyr Asn Phe Lys Asp Tyr
245 250 255
Glu Tyr Asp Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser Gly
260 265 270
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly
275 280 285
Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln
290 295 300
Pro Gly Asn Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
305 310 315 320
Ser Ser Phe Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
325 330 335
Glu Trp Val Ser Ser Ile Ser Gly Ser Gly Ser Asp Thr Leu Tyr Ala
340 345 350
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Thr
355 360 365
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Val
370 375 380
Tyr Tyr Cys Thr Ile Gly Gly Ser Leu Ser Arg Ser Ser Gln Gly Thr
385 390 395 400
Leu Val Thr Val Ser Ser Gly Gly Cys
405

<210> 32
<211> 115
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 32

Gl u Val Gln Leu Val Gl u Ser Gly Gly Gly Leu Val Gln Pro Gly Asn
1 5 10 15

eol f-seql

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gly Phe Thr Phe Ser Ser Phe
20 25 30

Gly Met Ser Trp Val Arg Gln Al a Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Ser Ile Ser Gly Ser Gly Ser Asp Thr Leu Tyr Al a Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Thr Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Pro Gln Asp Thr Al a Val Tyr Tyr Cys
85 90 95

Thr Ile Gly Gly Ser Leu Ser Arg Ser Ser Gln Gly Thr Leu Val Thr
100 105 110

Val Ser Ser
115

<210> 33
<211> 115
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 33

Glu Val Gln Leu Leu Gln Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gly Phe Thr Phe Arg Ser Phe
20 25 30

Gly Met Ser Trp Val Arg Gln Al a Pro Gly Lys Gly Pro Glu Trp Val
35 40 45

Ser Ser Ile Ser Gly Ser Gly Ser Asp Thr Leu Tyr Al a Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Pro Gln Asp Thr Al a Val Tyr Tyr Cys
85 90 95

Thr Ile Gly Gly Ser Leu Ser Arg Ser Ser Gln Gly Thr Leu Val Thr
100 105 110

eol f-seql

Val Ser Ser
115

<210> 34
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 34

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Val Val Gl n Pro Gl y Asn
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Ser Ser Phe
20 25 30

Gl y Met Ser Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val
35 40 45

Ser Ser Ile Ser Gl y Ser Gl y Ser Asp Thr Leu Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Thr Thr Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Pro Gl u Asp Thr Al a Thr Tyr Tyr Cys
85 90 95

Thr Ile Gl y Gl y Ser Leu Ser Arg Ser Ser Gl n Gl y Thr Leu Val Thr
100 105 110

Val Ser Ser Al a
115

<210> 35
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 35

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Val Val Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Arg Ser Phe
20 25 30

Gl y Met Ser Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Pro Gl u Trp Val
35 40 45

eol f-seql

Ser	Ser	Ile	Ser	Gly	Ser	Gly	Ser	Asp	Thr	Leu	Tyr	Ala	Asp	Ser	Val
50				55						60					

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Glu Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Thr Tyr Tyr Cys
85 90 95

Thr 11e Gly 100 Ser 105 Leu 110 Ser 105 Arg 105 Ser 110 Glu 110 Thr 110 Val 110 Thr 110

Val Ser Ser Ala
115

<210> 36
<211> 115
<212> PRT
<213> Arti fi ci al Sequence

<220>
<223> nanobody

<400> 36

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Asn
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe
20 25 30

Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser 50 Ser 11e Ser 51 Gly Ser 55 Ser Asp Thr 60 Leu Tyr Ala Asp Ser Val

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Thr Thr Thr Leu Tyr
65 70 75 80

Leu Glu Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Val Tyr Tyr Cys
25 30 35

Thr 11e Gly Gly Ser Leu Ser Arg Ser Ser Glu Gly Thr Leu Val Thr

Val Ser Ser
115

<210> 37
<211> 116
<212> PRT
<213> Artificial Sequence

≤220≥

eol f-seql

<223> nanobody

<400> 37

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Asn
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Ser Ser Phe
20 25 30

Gl y Met Ser Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val
35 40 45

Ser Ser Ile Ser Gl y Ser Gl y Ser Asp Thr Leu Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Thr Thr Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Pro Gl u Asp Thr Al a Val Tyr Tyr Cys
85 90 95

Thr Ile Gl y Gl y Ser Leu Ser Arg Ser Ser Gl n Gl y Thr Leu Val Lys
100 105 110

Val Ser Ser Al a
115

<210> 38

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 38

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Val Val Gl n Pro Gl y Asn
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Ser Ser Phe
20 25 30

Gl y Met Ser Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val
35 40 45

Ser Ser Ile Ser Gl y Ser Gl y Ser Asp Thr Leu Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Thr Thr Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Pro Gl u Asp Thr Al a Leu Tyr Tyr Cys
85 90 95

eol f-seql

Thr Ile Gly Gly Ser Leu Ser Arg Ser Ser Glu Gly Thr Leu Val Thr
100 105 110

Val Ser Ser
115

<210> 39
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 39

Glu Val Glu Leu Val Glu Ser Gly Gly Val Val Glu Pro Gly Asn
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe
20 25 30

Gly Met Ser Trp Val Arg Glu Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Ser Ile Ser Gly Ser Gly Ser Asp Thr Leu Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Thr Thr Leu Tyr
65 70 75 80

Leu Glu Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Leu Tyr Tyr Cys
85 90 95

Thr Ile Gly Gly Ser Leu Ser Arg Ser Ser Glu Gly Thr Leu Val Thr
100 105 110

Val Ser Ser Ala
115

<210> 40
<211> 117
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 40

Glu Val Glu Leu Val Glu Ser Gly Gly Val Val Glu Pro Gly Asn
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe
20 25 30

eol f-seql

Gly Met Ser Trp Val Arg Glu Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Ser Ile Ser Gly Ser Gly Ser Asp Thr Leu Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Thr Thr Leu Tyr
65 70 75 80

Leu Glu Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Leu Tyr Tyr Cys
85 90 95

Thr Ile Gly Gly Ser Leu Ser Arg Ser Ser Glu Gly Thr Leu Val Thr
100 105 110

Val Ser Ser Ala Ala
115

<210> 41
<211> 118
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 41

Glu Val Glu Leu Val Glu Ser Gly Gly Val Val Glu Pro Gly Asn
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe
20 25 30

Gly Met Ser Trp Val Arg Glu Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ser Ser Ile Ser Gly Ser Gly Ser Asp Thr Leu Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Thr Thr Leu Tyr
65 70 75 80

Leu Glu Met Asn Ser Leu Arg Pro Glu Asp Thr Ala Leu Tyr Tyr Cys
85 90 95

Thr Ile Gly Gly Ser Leu Ser Arg Ser Ser Glu Gly Thr Leu Val Thr
100 105 110

Val Ser Ser Ala Ala Ala
115

eol f-seql

<210> 42
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 42

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Val Val Gl n Pro Gl y Asn
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Ser Ser Phe
20 25 30

Gl y Met Ser Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val
35 40 45

Ser Ser Ile Ser Gl y Ser Gl y Ser Asp Thr Leu Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Thr Thr Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Pro Gl u Asp Thr Al a Leu Tyr Tyr Cys
85 90 95

Thr Ile Gl y Gl y Ser Leu Ser Arg Ser Ser Gl n Gl y Thr Leu Val Thr
100 105 110

Val Ser Ser Gl y
115

<210> 43
<211> 117
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 43

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Val Val Gl n Pro Gl y Asn
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Ser Ser Phe
20 25 30

Gl y Met Ser Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val
35 40 45

Ser Ser Ile Ser Gl y Ser Gl y Ser Asp Thr Leu Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Thr Thr Leu Tyr
65 70 75 80
eol f-seqI

Leu Gl n Met Asn Ser Leu Arg Pro Gl u Asp Thr Al a Leu Tyr Tyr Cys
85 90 95

Thr Ile Gl y Gl y Ser Leu Ser Arg Ser Ser Gl n Gl y Thr Leu Val Thr
100 105 110

Val Ser Ser Gl y Gl y
115

<210> 44
<211> 118
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 44

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Val Val Gl n Pro Gl y Asn
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Phe Thr Phe Ser Ser Phe
20 25 30

Gl y Met Ser Trp Val Arg Gl n Al a Pro Gl y Lys Gl y Leu Gl u Trp Val
35 40 45

Ser Ser Ile Ser Gl y Ser Gl y Ser Asp Thr Leu Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Thr Thr Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Pro Gl u Asp Thr Al a Leu Tyr Tyr Cys
85 90 95

Thr Ile Gl y Gl y Ser Leu Ser Arg Ser Ser Gl n Gl y Thr Leu Val Thr
100 105 110

Val Ser Ser Gl y Gl y Gl y
115

<210> 45
<211> 124
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 45

Gl u Val Gl n Leu Gl u Gl u Ser Gl y Gl y Gl y Ser Val Gl n Thr Gl y Gl y
1 5 10 15

eol f-seql
Ser Leu Arg Leu Thr Cys Al a Al a Ser Gl y Arg Thr Ser Arg Ser Tyr
20 25 30

Gl y Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Ser Gl y Ile Ser Trp Arg Gl y Asp Ser Thr Gl y Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Asp
65 70 75 80

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Ile Tyr Tyr Cys
85 90 95

Al a Al a Al a Al a Gl y Ser Al a Trp Tyr Gl y Thr Leu Tyr Gl u Tyr Asp
100 105 110

Tyr Trp Gl y Gl n Gl y Thr Gl n Val Thr Val Ser Ser
115 120

<210> 46
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> framework1

<400> 46

Gl u Val Gl n Leu Gl u Gl u Ser Gl y Gl y Gl y Ser Val Gl n Thr Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Thr Cys Al a Al a Ser Gl y Arg Thr Ser Arg
20 25 30

<210> 47
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> cdr1

<400> 47

Ser Tyr Gl y Met Gl y
1 5

<210> 48
<211> 14
<212> PRT
<213> Artificial Sequence

eol f-seql

<220>
<223> framework2

<400> 48

Trp Phe Arg Glu Ala Pro Gly Lys Glu Arg Glu Phe Val Ser
1 5 10

<210> 49
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> cdr2

<400> 49

Gly Ile Ser Trp Arg Gly Asp Ser Thr Gly Tyr Ala Asp Ser Val Lys
1 5 10 15

Gly

<210> 50
<211> 32
<212> PRT
<213> Artificial Sequence

<220>
<223> framework3

<400> 50

Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Asp Leu Glu
1 5 10 15

Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Ile Tyr Tyr Cys Ala Ala
20 25 30

<210> 51
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> cdr3

<400> 51

Ala Ala Gly Ser Ala Trp Tyr Gly Thr Leu Tyr Glu Tyr Asp Tyr
1 5 10 15

<210> 52
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> framework4

eol f-seql

<400> 52

Trp Glu Gln Glu Thr Gln Val Thr Val Ser Ser
1 5 10

<210> 53

<211> 127

<212> PRT

<213> Artificial Sequence

<220>

<223> 9G8

<400> 53

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser Ser Tyr
20 25 30

Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45

Val Ala Ile Asn Trp Ser Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Glu Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Met Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ala Gly Tyr Gln Ile Asn Ser Gly Asn Tyr Asn Phe Lys Asp Tyr
100 105 110

Glu Tyr Asp Tyr Trp Glu Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125

<210> 54

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> framework1

<400> 54

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser
20 25 30

<210> 55

<211> 5

eol f-seql

<212> PRT
<213> Artificial Sequence

<220>
<223> cdr1

<400> 55

Ser Tyr Ala Met Gly
1 5

<210> 56
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> framework2

<400> 56

Trp Phe Arg Glu Ala Pro Gly Lys Glu Arg Glu Phe Val Val
1 5 10

<210> 57
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> cdr2

<400> 57

Ala Ile Asn Trp Ser Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys
1 5 10 15

Gly

<210> 58
<211> 32
<212> PRT
<213> Artificial Sequence

<220>
<223> framework3

<400> 58

Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Met Tyr Leu Glu
1 5 10 15

Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Ala Ala
20 25 30

<210> 59
<211> 18
<212> PRT
<213> Artificial Sequence

<220>

eol f-seql

<223> cdr3

<400> 59

Gl y Tyr Gl n Ile Asn Ser Gl y Asn Tyr Asn Phe Lys Asp Tyr Gl u Tyr
1 5 10 15

Asp Tyr

<210> 60

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> framework4

<400> 60

Trp Gl y Gl n Gl y Thr Gl n Val Thr Val Ser Ser
1 5 10

<210> 61

<211> 1210

<212> PRT

<213> Artificial Sequence

<220>

<223> hEGFR

<400> 61

Met Arg Pro Ser Gl y Thr Ala Gl y Ala Ala Leu Leu Ala Leu Leu Ala
1 5 10 15

Ala Leu Cys Pro Ala Ser Arg Ala Leu Gl u Gl u Lys Lys Val Cys Gl n
20 25 30

Gl y Thr Ser Asn Lys Leu Thr Gl n Leu Gl y Thr Phe Gl u Asp His Phe
35 40 45

Leu Ser Leu Gl n Arg Met Phe Asn Asn Cys Gl u Val Val Leu Gl y Asn
50 55 60

Leu Gl u Ile Thr Tyr Val Gl n Arg Asn Tyr Asp Leu Ser Phe Leu Lys
65 70 75 80

Thr Ile Gl n Gl u Val Ala Gl y Tyr Val Leu Ile Ala Leu Asn Thr Val
85 90 95

Gl u Arg Ile Pro Leu Gl u Asn Leu Gl n Ile Ile Arg Gl y Asn Met Tyr
100 105 110

Tyr Gl u Asn Ser Tyr Ala Leu Ala Val Leu Ser Asn Tyr Asp Ala Asn
115 120 125

eol f-seqI

Lys Thr Gly Leu Lys Glu Leu Pro Met Arg Asn Leu Glu Glu Ile Leu
130 135 140

His Gly Ala Val Arg Phe Ser Asn Asn Pro Ala Leu Cys Asn Val Glu
145 150 155 160

Ser Ile Gln Trp Arg Asp Ile Val Ser Ser Asp Phe Leu Ser Asn Met
165 170 175

Ser Met Asp Phe Gln Asn His Leu Gly Ser Cys Gln Lys Cys Asp Pro
180 185 190

Ser Cys Pro Asn Gly Ser Cys Trp Gly Ala Gly Glu Glu Asn Cys Gln
195 200 205

Lys Leu Thr Lys Ile Ile Cys Ala Gln Gln Cys Ser Gly Arg Cys Arg
210 215 220

Gly Lys Ser Pro Ser Asp Cys Cys His Asn Gln Cys Ala Ala Gly Cys
225 230 235 240

Thr Gly Pro Arg Glu Ser Asp Cys Leu Val Cys Arg Lys Phe Arg Asp
245 250 255

Gl u Ala Thr Cys Lys Asp Thr Cys Pro Pro Leu Met Leu Tyr Asn Pro
260 265 270

Thr Thr Tyr Gln Met Asp Val Asn Pro Glu Gly Lys Tyr Ser Phe Gly
275 280 285

Ala Thr Cys Val Lys Lys Cys Pro Arg Asn Tyr Val Val Thr Asp His
290 295 300

Gly Ser Cys Val Arg Ala Cys Gly Ala Asp Ser Tyr Glu Met Glu Glu
305 310 315 320

Asp Gly Val Arg Lys Cys Lys Lys Cys Glu Gly Pro Cys Arg Lys Val
325 330 335

Cys Asn Gly Ile Gly Ile Gly Glu Phe Lys Asp Ser Leu Ser Ile Asn
340 345 350

Ala Thr Asn Ile Lys His Phe Lys Asn Cys Thr Ser Ile Ser Gly Asp
355 360 365

Leu His Ile Leu Pro Val Ala Phe Arg Gly Asp Ser Phe Thr His Thr
370 375 380

Pro Pro Leu Asp Pro Gln Glu Leu Asp Ile Leu Lys Thr Val Lys Glu
385 390 395 400

eol f-seql

Ile Thr Gly Phe Leu Leu Ile Gln Ala Trp Pro Glu Asn Arg Thr Asp
405 410 415

Leu His Ala Phe Glu Asn Leu Glu Ile Ile Arg Gly Arg Thr Lys Gln
420 425 430

His Gly Gln Phe Ser Leu Ala Val Val Ser Leu Asn Ile Thr Ser Leu
435 440 445

Gly Leu Arg Ser Leu Lys Glu Ile Ser Asp Gly Asp Val Ile Ile Ser
450 455 460

Gly Asn Lys Asn Leu Cys Tyr Ala Asn Thr Ile Asn Trp Lys Lys Leu
465 470 475 480

Phe Gly Thr Ser Gly Gln Lys Thr Lys Ile Ile Ser Asn Arg Gly Glu
485 490 495

Asn Ser Cys Lys Ala Thr Gly Gln Val Cys His Ala Leu Cys Ser Pro
500 505 510

Glu Gly Cys Trp Gly Pro Glu Pro Arg Asp Cys Val Ser Cys Arg Asn
515 520 525

Val Ser Arg Gly Arg Glu Cys Val Asp Lys Cys Asn Leu Leu Glu Gly
530 535 540

Glu Pro Arg Glu Phe Val Glu Asn Ser Glu Cys Ile Gln Cys His Pro
545 550 555 560

Glu Cys Leu Pro Gln Ala Met Asn Ile Thr Cys Thr Gly Arg Gly Pro
565 570 575

Asp Asn Cys Ile Gln Cys Ala His Tyr Ile Asp Gly Pro His Cys Val
580 585 590

Lys Thr Cys Pro Ala Gly Val Met Gly Glu Asn Asn Thr Leu Val Trp
595 600 605

Lys Tyr Ala Asp Ala Gly His Val Cys His Leu Cys His Pro Asn Cys
610 615 620

Thr Tyr Gly Cys Thr Gly Pro Gly Leu Glu Gly Cys Pro Thr Asn Gly
625 630 635 640

Pro Lys Ile Pro Ser Ile Ala Thr Gly Met Val Gly Ala Leu Leu Leu
645 650 655

Leu Leu Val Val Ala Leu Gly Ile Gly Leu Phe Met Arg Arg Arg His
660 665 670

eol f-seql

Ile Val Arg Lys Arg Thr Leu Arg Arg Leu Leu Glu Glu Arg Glu Leu
675 680 685

Val Glu Pro Leu Thr Pro Ser Glu Glu Ala Pro Asn Glu Ala Leu Leu
690 695 700

Arg Ile Leu Lys Glu Thr Glu Phe Lys Lys Ile Lys Val Leu Glu Ser
705 710 715 720

Gly Ala Phe Gly Thr Val Tyr Lys Glu Leu Trp Ile Pro Glu Gly Glu
725 730 735

Lys Val Lys Ile Pro Val Ala Ile Lys Glu Leu Arg Glu Ala Thr Ser
740 745 750

Pro Lys Ala Asn Lys Glu Ile Leu Asp Glu Ala Tyr Val Met Ala Ser
755 760 765

Val Asp Asn Pro His Val Cys Arg Leu Leu Gly Ile Cys Leu Thr Ser
770 775 780

Thr Val Glu Leu Ile Thr Glu Leu Met Pro Phe Gly Cys Leu Leu Asp
785 790 795 800

Tyr Val Arg Glu His Lys Asp Asn Ile Gly Ser Glu Tyr Leu Leu Asn
805 810 815

Trp Cys Val Glu Ile Ala Lys Glu Met Asn Tyr Leu Glu Asp Arg Arg
820 825 830

Leu Val His Arg Asp Leu Ala Ala Arg Asn Val Leu Val Lys Thr Pro
835 840 845

Glut His Val Lys Ile Thr Asp Phe Gly Leu Ala Lys Leu Leu Glu Ala
850 855 860

Glu Glu Lys Glu Tyr His Ala Glu Gly Gly Lys Val Pro Ile Lys Trp
865 870 875 880

Met Ala Leu Glu Ser Ile Leu His Arg Ile Tyr Thr His Glu Ser Asp
885 890 895

Val Trp Ser Tyr Gly Val Thr Val Trp Glu Leu Met Thr Phe Gly Ser
900 905 910

Lys Pro Tyr Asp Gly Ile Pro Ala Ser Glu Ile Ser Ser Ile Leu Glu
915 920 925

Lys Glu Glu Arg Leu Pro Glu Pro Pro Ile Cys Thr Ile Asp Val Tyr
930 935 940

eol f-seqI

Met Ile Met Val Lys Cys Trp Met Ile Asp Ala Asp Ser Arg Pro Lys
945 950 955 960

Phe Arg Glu Leu Ile Ile Glu Phe Ser Lys Met Ala Arg Asp Pro Glu
965 970 975

Arg Tyr Leu Val Ile Glu Gly Asp Glu Arg Met His Leu Pro Ser Pro
980 985 990

Thr Asp Ser Asn Phe Tyr Arg Ala Leu Met Asp Glu Glu Asp Met Asp
995 1000 1005

Asp Val Val Asp Ala Asp Glu Tyr Leu Ile Pro Glu Glu Gly Phe
1010 1015 1020

Phe Ser Ser Pro Ser Thr Ser Arg Thr Pro Leu Leu Ser Ser Leu
1025 1030 1035

Ser Ala Thr Ser Asn Asn Ser Thr Val Ala Cys Ile Asp Arg Asn
1040 1045 1050

Gly Leu Glu Ser Cys Pro Ile Lys Glu Asp Ser Phe Leu Glu Arg
1055 1060 1065

Tyr Ser Ser Asp Pro Thr Glu Ala Leu Thr Glu Asp Ser Ile Asp
1070 1075 1080

Asp Thr Phe Leu Pro Val Pro Glu Tyr Ile Asn Glu Ser Val Pro
1085 1090 1095

Lys Arg Pro Ala Gly Ser Val Glu Asn Pro Val Tyr His Asn Glu
1100 1105 1110

Pro Leu Asn Pro Ala Pro Ser Arg Asp Pro His Tyr Glu Asp Pro
1115 1120 1125

His Ser Thr Ala Val Glu Asn Pro Glu Tyr Leu Asn Thr Val Glu
1130 1135 1140

Pro Thr Cys Val Asn Ser Thr Phe Asp Ser Pro Ala His Trp Ala
1145 1150 1155

Glu Lys Glu Ser His Glu Ile Ser Leu Asp Asn Pro Asp Tyr Glu
1160 1165 1170

Glu Asp Phe Phe Pro Lys Glu Ala Lys Pro Asn Glu Ile Phe Lys
1175 1180 1185

Gly Ser Thr Ala Glu Asn Ala Glu Tyr Leu Arg Val Ala Pro Glu
1190 1195 1200

eol f-seql

Ser Ser Glu Phe Ile Gly Ala
1205 1210

<210> 62
<211> 273
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 62

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Ala Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gl y Ser Ile Phe Ser Gl y Asn
20 25 30

Val Met Gl y Trp Tyr Arg Arg Gl n Ala Pro Gl y Lys Gl u Arg Gl u Trp
35 40 45

Val Ala Ala Ile Ala Ser Gl y Gl y Ser Ile Tyr Tyr Arg Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Asn Ser His Pro Pro Thr Leu Pro Tyr Trp Gl y Gl n Gl y Thr Leu Val
100 105 110

Thr Val Ser Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y
115 120 125

Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y
130 135 140

Gl y Ser Gl y Gl y Gl y Ser Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y
145 150 155 160

Gl y Leu Val Gl n Ala Gl y Gl y Ser Leu Arg Leu Ser Cys Val Ala Ser
165 170 175

Gl y Ile Ser Ser Ser Lys Arg Asn Met Gl y Trp Tyr Arg Gl n Ala Pro
180 185 190

Gl y Lys Gl n Arg Gl u Ser Val Ala Thr Ile Ser Ser Gl y Gl y Asn Lys
195 200 205

Asp Tyr Thr Asp Ala Val Lys Asp Arg Phe Thr Ile Ser Arg Asp Thr
210 215 220

eol f-seql

Thr Lys Asn Thr Val Tyr Leu Glu Met Asn Ser Leu Lys Pro Glu Asp
225 230 235 240

Thr Ala Val Tyr Tyr Cys Lys Ile Glu Ala Gly Thr Gly Trp Ala Thr
245 250 255

Arg Arg Gly Tyr Thr Tyr Trp Gly Glu Gly Thr Leu Val Thr Val Ser
260 265 270

Ser

<210> 63

<211> 277

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 63

Gl u Val Gl n Leu Val Gl u Ser Gly Gly Leu Val Gl n Ala Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ser Ile Phe Ser Gly Asn
20 25 30

Val Met Gly Trp Tyr Arg Arg Glu Ala Pro Gly Lys Glu Arg Glu Trp
35 40 45

Val Ala Ala Ile Ala Ser Gly Gly Ser Ile Tyr Tyr Arg Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Asn Ser His Pro Pro Thr Leu Pro Tyr Trp Gly Gl n Gly Thr Leu Val
100 105 110

Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly
115 120 125

Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
130 135 140

Gly Ser Gly Gly Gly Ser Glu Val Gl n Leu Val Gl u Ser Gly Gly
145 150 155 160

Gly Leu Val Gln Ala Gly Asp Ser Leu Arg Leu Ser Cys Ala Ala Ser
165 170 175
eol f-seql

Gly Arg Ala Phe Ser Arg Tyr Ala Met Gly Trp Phe Arg Gln Ala Pro
180 185 190

Gly Lys Glu Arg Glu Phe Val Ala Ala Ile Gly Trp Gly Pro Ser Lys
195 200 205

Thr Asn Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp
210 215 220

Asn Ala Lys Asn Thr Val Tyr Leu Gln Met Asn Thr Leu Lys Pro Glu
225 230 235 240

Asp Thr Ala Val Tyr Ser Cys Ala Ala Lys Phe Val Asn Thr Asp Ser
245 250 255

Thr Trp Ser Arg Ser Glu Met Tyr Thr Tyr Trp Gly Gln Gly Thr Leu
260 265 270

Val Thr Val Ser Ser
275

<210> 64
<211> 273
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 64

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Ile Ser Ser Ser Lys Arg
20 25 30

Asn Met Gly Trp Tyr Arg Gln Ala Pro Gly Lys Gln Arg Glu Ser Val
35 40 45

Ala Thr Ile Ser Ser Gly Gly Asn Lys Asp Tyr Thr Asp Ala Val Lys
50 55 60

Asp Arg Phe Thr Ile Ser Arg Asp Thr Thr Lys Asn Thr Val Tyr Leu
65 70 75 80

Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Lys
85 90 95

Ile Glu Ala Gly Thr Gly Trp Ala Thr Arg Arg Gly Tyr Thr Tyr Trp
100 105 110

eol f-seql

Gly Glu Glu Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly
115 120 125

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
130 135 140

Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Ser Glu Val Glu
145 150 155 160

Leu Val Glu Ser Gly Gly Leu Val Glu Ala Gly Gly Ser Leu Arg
165 170 175

Leu Ser Cys Ala Ala Ser Gly Ser Ile Phe Ser Gly Asn Val Met Gly
180 185 190

Trp Tyr Arg Arg Glu Ala Pro Gly Lys Glu Arg Glu Trp Val Ala Ala
195 200 205

Ile Ala Ser Gly Gly Ser Ile Tyr Tyr Arg Asp Ser Val Lys Gly Arg
210 215 220

Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr Leu Glu Met
225 230 235 240

Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Asn Ser His
245 250 255

Pro Pro Thr Leu Pro Tyr Trp Gly Glu Gly Thr Leu Val Thr Val Ser
260 265 270

Ser

<210> 65

<211> 277

<212> PRT

<213> Artificial Sequence

<220>

<223> nobody

<400> 65

Glu Val Glu Leu Val Glu Ser Gly Gly Gly Leu Val Glu Ala Gly Asp
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Ala Phe Ser Arg Tyr
20 25 30

Ala Met Gly Trp Phe Arg Glu Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45

eol f-seql

Ala Ala Ile Gly Trp Gly Pro Ser Lys Thr Asn Tyr Ala Asp Ser Val
 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
 65 70 75 80

Leu Gln Met Asn Thr Leu Lys Pro Glu Asp Thr Ala Val Tyr Ser Cys
 85 90 95

Ala Ala Lys Phe Val Asn Thr Asp Ser Thr Trp Ser Arg Ser Glu Met
 100 105 110

Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly
 115 120 125

Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
 130 135 140

Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
 145 150 155 160

Ser Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Ala Gly
 165 170 175

Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ser Ile Phe Ser Gly
 180 185 190

Asn Val Met Gly Trp Tyr Arg Arg Gln Ala Pro Gly Lys Glu Arg Glu
 195 200 205

Trp Val Ala Ala Ile Ala Ser Gly Gly Ser Ile Tyr Tyr Arg Asp Ser
 210 215 220

Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val
 225 230 235 240

Tyr Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr
 245 250 255

Cys Asn Ser His Pro Pro Thr Leu Pro Tyr Trp Gly Gln Gly Thr Leu
 260 265 270

Val Thr Val Ser Ser
 275

<210> 66
 <211> 283
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> nanobody

eol f-seql

<400> 66

Gl u Val Gl n Leu Leu Val Gl u Ser Gl y Gl y Gl y Ser Val Gl n Al a Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Thr Thr Ser Gl y Arg Al a Leu Asn Met Tyr
20 25 30

Val Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Asn Gl u Arg Gl u Phe Val
35 40 45

Al a Al a Thr Ser Ser Ser Gl y Gl y Ser Thr Ser Tyr Pro Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Al a Tyr Arg Cys
85 90 95

Al a Al a Ser Pro Tyr Val Ser Thr Pro Thr Met Asn Ile Leu Gl u Gl u
100 105 110

Tyr Arg Tyr Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser Gl y Gl y
115 120 125

Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y
130 135 140

Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y
145 150 155 160

Ser Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Al a Gl y
165 170 175

Gl y Ser Leu Arg Leu Ser Cys Val Al a Ser Gl y Ile Ser Ser Ser Lys
180 185 190

Arg Asn Met Gl y Trp Tyr Arg Gl n Al a Pro Gl y Lys Gl n Arg Gl u Ser
195 200 205

Val Al a Thr Ile Ser Ser Gl y Gl y Asn Lys Asp Tyr Thr Asp Al a Val
210 215 220

Lys Asp Arg Phe Thr Ile Ser Arg Asp Thr Thr Lys Asn Thr Val Tyr
225 230 235 240

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Val Tyr Tyr Cys
245 250 255

Lys Ile Gl u Al a Gl y Thr Gl y Trp Al a Thr Arg Arg Gl y Tyr Thr Tyr
260 265 270

eol f-seql

Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser
275 280

<210> 67
<211> 287
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 67

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Ser Val Gl n Al a Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Thr Thr Ser Gl y Arg Al a Leu Asn Met Tyr
20 25 30

Val Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Asn Gl u Arg Gl u Phe Val
35 40 45

Al a Al a Thr Ser Ser Ser Gl y Gl y Ser Thr Ser Tyr Pro Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Al a Tyr Arg Cys
85 90 95

Al a Al a Ser Pro Tyr Val Ser Thr Pro Thr Met Asn Ile Leu Gl u Gl u
100 105 110

Tyr Arg Tyr Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser Gl y Gl y
115 120 125

Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y
130 135 140

Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y
145 150 155 160

Ser Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Al a Gl y
165 170 175

Asp Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Arg Al a Phe Ser Arg
180 185 190

Tyr Al a Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe
195 200 205

Val Ala Ala Ile Gly Trp Gly Pro Ser Lys Thr Asn Tyr Ala Asp Ser
210 215 220 eol f-seqI

Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val
225 230 235 240

Tyr Leu Gln Met Asn Thr Leu Lys Pro Glu Asp Thr Ala Val Tyr Ser
245 250 255

Cys Ala Ala Lys Phe Val Asn Thr Asp Ser Thr Trp Ser Arg Ser Glu
260 265 270

Met Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
275 280 285

<210> 68

<211> 283

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 68

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Leu Val Gl n Ala Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Val Ala Ser Gl y Ile Ser Ser Ser Lys Arg
20 25 30

Asn Met Gl y Trp Tyr Arg Gl n Ala Pro Gl y Lys Gl n Arg Gl u Ser Val
35 40 45

Al a Thr Ile Ser Ser Gl y Gl y Asn Lys Asp Tyr Thr Asp Ala Val Lys
50 55 60

Asp Arg Phe Thr Ile Ser Arg Asp Thr Thr Lys Asn Thr Val Tyr Leu
65 70 75 80

Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Ala Val Tyr Tyr Cys Lys
85 90 95

Ile Gl u Ala Gl y Thr Gl y Trp Ala Thr Arg Arg Gl y Tyr Thr Tyr Trp
100 105 110

Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser Gl y Gl y Gl y Gl y Ser Gl y
115 120 125

Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y
130 135 140

Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl u Val Gl n
145 150 155 160

eol f-seql

Leu Val Glu Ser Gly Gly Ser Val Glu Ala Gly Gly Ser Leu Arg
165 170 175

Leu Ser Cys Thr Thr Ser Gly Arg Ala Leu Asn Met Tyr Val Met Gly
180 185 190

Trp Phe Arg Glu Ala Pro Gly Asn Glu Arg Glu Phe Val Ala Ala Thr
195 200 205

Ser Ser Ser Gly Gly Ser Thr Ser Tyr Pro Asp Ser Val Lys Gly Arg
210 215 220

Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr Leu Glu Met
225 230 235 240

Asn Ser Leu Lys Pro Glu Asp Thr Ala Ala Tyr Arg Cys Ala Ala Ser
245 250 255

Pro Tyr Val Ser Thr Pro Thr Met Asn Ile Leu Glu Glu Tyr Arg Tyr
260 265 270

Trp Gly Glu Gly Thr Leu Val Thr Val Ser Ser
275 280

<210> 69
<211> 287

<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 69

Gl u Val Gl n Leu Val Gl u Ser Gly Gly Leu Val Gl n Ala Gly Asp
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Ala Phe Ser Arg Tyr
20 25 30

Al a Met Gly Trp Phe Arg Gl n Ala Pro Gly Lys Gl u Arg Gl u Phe Val
35 40 45

Al a Ala Ile Gly Trp Gly Pro Ser Lys Thr Asn Tyr Ala Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80

Leu Gl n Met Asn Thr Leu Lys Pro Gl u Asp Thr Ala Val Tyr Ser Cys
85 90 95

Ala Ala Lys Phe Val Asn Thr Asp Ser Thr Trp Ser Arg Ser Glu Met
100 105 110

eol f-seql
Tyr Thr Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly
115 120 125

Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
130 135 140

Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
145 150 155 160

Ser Glu Val Gln Leu Val Glu Ser Gly Gly Ser Val Gln Ala Gly
165 170 175

Gly Ser Leu Arg Leu Ser Cys Thr Thr Ser Gly Arg Ala Leu Asn Met
180 185 190

Tyr Val Met Gly Trp Phe Arg Gln Ala Pro Gly Asn Glu Arg Glu Phe
195 200 205

Val Ala Ala Thr Ser Ser Ser Gly Gly Ser Thr Ser Tyr Pro Asp Ser
210 215 220

Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val
225 230 235 240

Tyr Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Ala Tyr Arg
245 250 255

Cys Ala Ala Ser Pro Tyr Val Ser Thr Pro Thr Met Asn Ile Leu Glu
260 265 270

Glu Tyr Arg Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
275 280 285

<210> 70
<211> 261
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 70

Glu Val Gln Leu Val Glu Ser Gly Gly Ser Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Thr Leu Ser Cys Gly Thr Ser Gly Arg Thr Phe Asn Val Met
20 25 30

Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val Ala Ala
35 40 45

eol f-seql

Val Arg Trp Ser Ser Thr Gl y Ile Tyr Tyr Thr Gl n Tyr Ala Asp Ser
50 55 60

Val Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val
65 70 75 80

Tyr Leu Gl u Met Asn Ser Leu Lys Pro Gl u Asp Thr Ala Val Tyr Tyr
85 90 95

Cys Ala Ala Asp Thr Tyr Asn Ser Asn Pro Ala Arg Trp Asp Gl y Tyr
100 105 110

Asp Phe Arg Gl y Gl n Gl y Thr Gl n Val Thr Val Ser Ser Gl y Gl y Gl y
115 120 125

Gl y Ser Gl y Gl y Gl y Ser Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y
130 135 140

Gl y Leu Val Gl n Ala Gl y Asp Ser Leu Arg Leu Ser Cys Ala Ala Ser
145 150 155 160

Gl y Arg Ala Phe Ser Arg Tyr Ala Met Gl y Trp Phe Arg Gl n Ala Pro
165 170 175

Gl y Lys Gl u Arg Gl u Phe Val Ala Ala Ile Gl y Trp Gl y Pro Ser Lys
180 185 190

Thr Asn Tyr Ala Asp Ser Val Lys Gl y Arg Phe Thr Ile Ser Arg Asp
195 200 205

Asn Ala Lys Asn Thr Val Tyr Leu Gl n Met Asn Thr Leu Lys Pro Gl u
210 215 220

Asp Thr Ala Val Tyr Ser Cys Ala Ala Lys Phe Val Asn Thr Asp Ser
225 230 235 240

Thr Trp Ser Arg Ser Gl u Met Tyr Thr Tyr Trp Gl y Gl n Gl y Thr Gl n
245 250 255

Val Thr Val Ser Ser
260

<210> 71

<211> 260

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 71

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y eol f-seql
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Arg Al a Phe Ser Arg Tyr
20 25 30

Al a Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Al a Al a Ile Gl y Trp Gl y Pro Ser Lys Thr Asn Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Tyr
65 70 75 80

Leu Gl n Met Asn Thr Leu Lys Pro Gl u Asp Thr Al a Val Tyr Ser Cys
85 90 95

Al a Al a Lys Phe Val Asn Thr Asp Ser Thr Trp Ser Arg Ser Gl u Met
100 105 110

Tyr Thr Tyr Trp Gl y Gl n Gl y Thr Gl n Val Thr Val Ser Ser Gl y Gl y
115 120 125

Gl y Ser Gl y Gl y Gl y Ser Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y
130 135 140

Gl y Ser Val Gl n Pro Gl y Gl y Ser Leu Thr Leu Ser Cys Gl y Thr Ser
145 150 155 160

Gl y Arg Thr Phe Asn Val Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys
165 170 175

Gl u Arg Gl u Phe Val Al a Al a Val Arg Trp Ser Ser Thr Gl y Ile Tyr
180 185 190

Tyr Thr Gl n Tyr Al a Asp Ser Val Lys Ser Arg Phe Thr Ile Ser Arg
195 200 205

Asp Asn Al a Lys Asn Thr Val Tyr Leu Gl u Met Asn Ser Leu Lys Pro
210 215 220

Gl u Asp Thr Al a Val Tyr Tyr Cys Al a Al a Asp Thr Tyr Asn Ser Asn
225 230 235 240

Pro Al a Arg Trp Asp Gl y Tyr Asp Phe Arg Gl y Gl n Gl y Thr Gl n Val
245 250 255

Thr Val Ser Ser
260

eol f-seql

<210> 72
<211> 282
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 72

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Ser Val Gl n Thr Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Thr Cys Al a Al a Ser Gl y Arg Thr Ser Arg Ser Tyr
20 25 30

Gl y Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Ser Gl y Ile Ser Trp Arg Gl y Asp Ser Thr Gl y Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Asp
65 70 75 80

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Ile Tyr Tyr Cys
85 90 95

Al a Al a Al a Al a Gl y Ser Al a Trp Tyr Gl y Thr Leu Tyr Gl u Tyr Asp
100 105 110

Tyr Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser Gl y Gl y Gl y Gl y
115 120 125

Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl u
130 135 140 145 150 155 160

Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl u
145 150 155 160

Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Ser Val Gl n Al a Gl y Gl y Ser
165 170 175

Leu Arg Leu Ser Cys Al a Al a Ser Gl y Asp Thr Tyr Gl y Ser Tyr Trp
180 185 190

Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Gl y Val Al a
195 200 205

Al a Ile Asn Arg Gl y Gl y Gl y Tyr Thr Val Tyr Al a Asp Ser Val Lys
210 215 220 225

Gl y Arg Phe Thr Ile Ser Arg Asp Thr Al a Lys Asn Thr Val Tyr Leu
225 230 235 240

eol f-seql

Gl n Met Asn Ser Leu Arg Pro Asp Asp Thr Al a Asp Tyr Tyr Cys Al a
245 250 255

Al a Ser Gl y Val Leu Gl y Gl y Leu His Gl u Asp Trp Phe Asn Tyr Trp
260 265 270

Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser
275 280

<210> 73
<211> 282
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 73

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Ser Val Gl n Thr Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Thr Cys Al a Al a Ser Gl y Arg Thr Ser Arg Ser Tyr
20 25 30

Gl y Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Ser Gl y Ile Ser Trp Arg Gl y Asp Ser Thr Gl y Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Asp
65 70 75 80

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Ile Tyr Tyr Cys
85 90 95

Al a Al a Al a Al a Gl y Ser Al a Trp Tyr Gl y Thr Leu Tyr Gl u Tyr Asp
100 105 110

Tyr Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser Gl y Gl y Gl y Gl y
115 120 125

Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl u
130 135 140 145 150 155 160

Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Ser Val Gl n Al a Gl y Gl y Ser
165 170 175

Leu Arg Leu Ser Cys Ala Ala Ser Gly Asp Thr Tyr Gly Ser Tyr Trp
180 185 190 eol f-seql

Met Gly Trp Phe Arg Gln Ala Pro Gly Gln Glu Arg Glu Ala Val Ala
195 200 205

Ala Ile Asn Arg Gly Gly Tyr Thr Val Tyr Ala Asp Ser Val Lys
210 215 220

Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr Leu
225 230 235 240

Gln Met Asn Ser Leu Arg Pro Asp Asp Thr Ala Asp Tyr Tyr Cys Ala
245 250 255

Ala Ser Gly Val Leu Gly Gly Leu His Glu Asp Trp Phe Asn Tyr Trp
260 265 270

Gly Gln Gly Thr Leu Val Thr Val Ser Ser
275 280

<210> 74

<211> 282

<212> PRT

<213> Artificial Sequence

<220>

<223> nobody

<400> 74

Gl u Val Gln Leu Val Gl u Ser Gly Gly Ser Val Gln Ala Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Asp Thr Tyr Gly Ser Tyr
20 25 30

Trp Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Gly Val
35 40 45

Ala Ala Ile Asn Arg Gly Gly Tyr Thr Val Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Thr Ala Lys Asn Thr Val Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Pro Asp Asp Thr Ala Asp Tyr Tyr Cys
85 90 95

Ala Ala Ser Gly Val Leu Gly Gly Leu His Glu Asp Trp Phe Asn Tyr
100 105 110

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Ser
115 120 125

eol f-seql

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly
130 135 140

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Glu Val
145 150 155 160

Gln Leu Val Glu Ser Gly Gly Ser Val Gln Thr Gly Gly Ser Leu
165 170 175

Arg Leu Thr Cys Ala Ala Ser Gly Arg Thr Ser Arg Ser Tyr Gly Met
180 185 190

Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val Ser Gly
195 200 205

Ile Ser Trp Arg Gly Asp Ser Thr Gly Tyr Ala Asp Ser Val Lys Gly
210 215 220

Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Asp Leu Gln
225 230 235 240

Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Ile Tyr Tyr Cys Ala Ala
245 250 255

Ala Ala Gly Ser Ala Trp Tyr Gly Thr Leu Tyr Glu Tyr Asp Tyr Trp
260 265 270

Gly Gln Gly Thr Leu Val Thr Val Ser Ser
275 280

<210> 75

<211> 282

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 75

Glu Val Gln Leu Val Glu Ser Gly Gly Ser Val Gln Ala Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Asp Thr Tyr Gly Ser Tyr
20 25 30

Trp Met Gly Trp Phe Arg Gln Ala Pro Gly Gln Glu Arg Glu Ala Val
35 40 45

Ala Ala Ile Asn Arg Gly Gly Tyr Thr Val Tyr Ala Asp Ser Val
50 55 60

eol f-seql

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Pro Asp Asp Thr Al a Asp Tyr Tyr Cys
85 90 95

Al a Al a Ser Gl y Val Leu Gl y Gl y Leu His Gl u Asp Trp Phe Asn Tyr
100 105 110

Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser Gl y Gl y Gl y Gl y Ser
115 120 125

Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y
130 135 140

Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl u Val
145 150 155 160

Gl n Leu Val Gl u Ser Gl y Gl y Gl y Ser Val Gl n Thr Gl y Gl y Ser Leu
165 170 175

Arg Leu Thr Cys Al a Al a Ser Gl y Arg Thr Ser Arg Ser Tyr Gl y Met
180 185 190

Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val Ser Gl y
195 200 205

Ile Ser Trp Arg Gl y Asp Ser Thr Gl y Tyr Al a Asp Ser Val Lys Gl y
210 215 220

Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Asp Leu Gl n
225 230 235 240

Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Ile Tyr Tyr Cys Al a Al a
245 250 255

Al a Al a Gl y Ser Al a Trp Tyr Gl y Thr Leu Tyr Gl u Tyr Asp Tyr Trp
260 265 270

Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser
275 280

<210> 76

<211> 287

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 76

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Arg Leu Val Gl n Al a Gl y Asp
1 5 10 15

eol f-seql

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gly Arg Thr Phe Ile Ser Tyr
20 25 30

Arg Met Gly Trp Phe Arg Gln Al a Pro Gly Lys Glu Arg Glu Phe Val
35 40 45

Al a Al a Leu Arg Trp Ser Ser Asn Ile Asp Tyr Thr Tyr Tyr Al a
50 55 60

Asp Ser Val Lys Gly Arg Phe Ser Ile Ser Gly Asp Tyr Al a Lys Asn
65 70 75 80

Thr Val Tyr Leu Gln Met Asn Ser Leu Lys Al a Glu Asp Thr Al a Val
85 90 95

Tyr Tyr Cys Al a Al a Ser Thr Arg Trp Gly Val Met Glu Ser Asp Thr
100 105 110

Gl u Tyr Thr Ser Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly
115 120 125

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly
130 135 140

Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly
145 150 155 160

Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Ser Val Gln Pro
165 170 175

Gly Gly Ser Leu Thr Leu Ser Cys Gly Thr Ser Gly Arg Thr Phe Asn
180 185 190

Val Met Gly Trp Phe Arg Gln Al a Pro Gly Lys Glu Arg Glu Phe Val
195 200 205

Al a Al a Val Arg Trp Ser Ser Thr Gly Ile Tyr Tyr Thr Gln Tyr Al a
210 215 220

Asp Ser Val Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn
225 230 235 240

Thr Val Tyr Leu Glu Met Asn Ser Leu Lys Pro Glu Asp Thr Al a Val
245 250 255

Tyr Tyr Cys Al a Al a Asp Thr Tyr Asn Ser Asn Pro Al a Arg Trp Asp
260 265 270

Gly Tyr Asp Phe Arg Gly Gln Gly Thr Leu Val Thr Val Ser Ser
275 280 285

eol f-seql

<210> 77
<211> 287
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 77

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Arg Leu Val Gl n Al a Gl y Asp
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Arg Thr Phe Thr Ser Tyr
20 25 30

Arg Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Ser Al a Leu Arg Trp Ser Ser Gl y Asn Ile Asp Tyr Thr Tyr Tyr Al a
50 55 60

Asp Ser Val Lys Gl y Arg Phe Ser Ile Ser Gl y Asp Tyr Al a Lys Asn
65 70 75 80

Thr Val Tyr Leu Gl n Met Asn Ser Leu Lys Al a Gl u Asp Thr Al a Val
85 90 95

Tyr Tyr Cys Al a Al a Ser Thr Arg Trp Gl y Val Met Gl u Ser Asp Thr
100 105 110

Gl u Tyr Thr Ser Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser Gl y
115 120 125

Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y
130 135 140

Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y
145 150 155 160

Gl y Ser Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Ser Val Gl n Pro
165 170 175

Gl y Gl y Ser Leu Thr Leu Ser Cys Gl y Thr Ser Gl y Arg Thr Phe Asn
180 185 190

Val Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
195 200 205

Al a Al a Val Arg Trp Ser Ser Thr Gl y Ile Tyr Tyr Thr Gl n Tyr Al a
210 215 220

Asp Ser Val Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
225 230 235 240

 eol f-seql
Thr Val Tyr Leu Glu Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val
245 250 255

Tyr Tyr Cys Ala Ala Asp Thr Tyr Asn Ser Asn Pro Ala Arg Trp Asp
260 265 270

Gly Tyr Asp Phe Arg Gly Gln Gly Thr Leu Val Thr Val Ser Ser
275 280 285

<210> 78

<211> 287

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 78

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Thr Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Pro Arg Leu Val
20 25 30

Ala Met Gly Trp Phe Arg Gln Thr Pro Gly Lys Glu Arg Glu Phe Val
35 40 45

Gly Glu Ile Ile Leu Ser Lys Gly Phe Thr Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Val Asn Ala Lys Asn Thr Ile Thr
65 70 75 80

Met Tyr Leu Gln Met Asn Ser Leu Lys Ser Glu Asp Thr Ala Val Tyr
85 90 95

Tyr Cys Ala Gly Arg Gln Asn Trp Ser Gly Ser Pro Ala Arg Thr Asn
100 105 110

Glu Tyr Glu Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Gly
115 120 125

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
130 135 140

Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
145 150 155 160

Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Ser Val Gln Pro
165 170 175

eol f-seql

Gly Gly Ser Leu Thr Leu Ser Cys Gly Thr Ser Gly Arg Thr Phe Asn
180 185 190

Val Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
195 200 205

Ala Ala Val Arg Trp Ser Ser Thr Gly Ile Tyr Tyr Thr Gln Tyr Ala
210 215 220

Asp Ser Val Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
225 230 235 240

Thr Val Tyr Leu Glu Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val
245 250 255

Tyr Tyr Cys Ala Ala Asp Thr Tyr Asn Ser Asn Pro Ala Arg Trp Asp
260 265 270

Gly Tyr Asp Phe Arg Gly Gln Gly Thr Leu Val Thr Val Ser Ser
275 280 285

<210> 79

<211> 287

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 79

Gl u Val Gl n Leu Val Gl u Ser Gly Gly Leu Val Gl n Thr Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Pro Ser Ile Ile
20 25 30

Ala Met Gly Trp Phe Arg Gln Thr Pro Gly Lys Glu Arg Glu Phe Val
35 40 45

Gly Gl u Ile Ile Leu Ser Lys Gly Phe Thr Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Ala Asn Ala Lys Asn Thr Ile Thr
65 70 75 80

Met Tyr Leu Gl n Met Asn Ser Leu Lys Ser Gl u Asp Thr Ala Val Tyr
85 90 95

Tyr Cys Ala Ala Arg Gln Asn Trp Ser Gly Asn Pro Thr Arg Thr Asn
100 105 110

Gl u Tyr Gl u Tyr Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser Gl y
115 120 125
eol f-seql
Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y
130 135 140
Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y
145 150 155 160
Gl y Ser Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Ser Val Gl n Pro
165 170 175
Gl y Gl y Ser Leu Thr Leu Ser Cys Gl y Thr Ser Gl y Arg Thr Phe Asn
180 185 190
Val Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
195 200 205
Al a Al a Val Arg Trp Ser Ser Thr Gl y Ile Tyr Tyr Thr Gl n Tyr Al a
210 215 220
Asp Ser Val Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn
225 230 235 240
Thr Val Tyr Leu Gl u Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Val
245 250 255
Tyr Tyr Cys Al a Al a Asp Thr Tyr Asn Ser Asn Pro Al a Arg Trp Asp
260 265 270
Gl y Tyr Asp Phe Arg Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser
275 280 285

<210> 80
<211> 279
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody
<400> 80

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Thr Leu Ser Cys Val Al a Ser Gl y Arg Thr Phe Ser Thr Asp
20 25 30

Val Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Al a Al a His Arg Thr Ser Gl y Ile Ser Thr Val Tyr Al a Al a Ser Val
50 55 60

eol f-seql

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Tyr
65 70 75 80

Leu Gl y Met Lys Ser Leu Lys Pro Gl u Asp Thr Al a Val Tyr Val Cys
85 90 95

Al a Al a Gl y Ser Asp Al a Ser Gl y Gl y Tyr Asp Tyr Trp Gl y Gl n Gl y
100 105 110

Thr Leu Val Thr Val Ser Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y
115 120 125

Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser
130 135 140

Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl u Val Gl n Leu Val Gl u
145 150 155 160

Ser Gl y Gl y Gl y Ser Val Gl n Pro Gl y Gl y Ser Leu Thr Leu Ser Cys
165 170 175

Gl y Thr Ser Gl y Arg Thr Phe Asn Val Met Gl y Trp Phe Arg Gl n Al a
180 185 190

Pro Gl y Lys Gl u Arg Gl u Phe Val Al a Al a Val Arg Trp Ser Ser Thr
195 200 205

Gl y Ile Tyr Tyr Thr Gl n Tyr Al a Asp Ser Val Lys Ser Arg Phe Thr
210 215 220

Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Tyr Leu Gl u Met Asn Ser
225 230 235 240

Leu Lys Pro Gl u Asp Thr Al a Val Tyr Tyr Cys Al a Al a Asp Thr Tyr
245 250 255

Asn Ser Asn Pro Al a Arg Trp Asp Gl y Tyr Asp Phe Arg Gl y Gl n Gl y
260 265 270

Thr Leu Val Thr Val Ser Ser
275

<210> 81
<211> 285
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 81

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y eol f-seql
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Arg Thr Phe Ser Ser Tyr
20 25 30

Al a Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Asp Arg Gl u Phe Val
35 40 45

Al a Al a Ile Ser Trp Ile Gl y Gl u Ser Thr Tyr Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Tyr
65 70 75 80

Leu Arg Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Val Tyr Tyr Cys
85 90 95

Al a Al a Asp Leu Tyr Tyr Thr Al a Tyr Val Al a Al a Al a Asp Gl u Tyr
100 105 110

Asp Tyr Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser Gl y Gl y Gl y
115 120 125

Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y
130 135 140

Ser Gl y Gl y Gl y Gl y Ser Gl y Gl y Gl y Ser Gl y Gl y Gl y Gl y Ser
145 150 155 160

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Ser Val Gl n Pro Gl y Gl y
165 170 175

Ser Leu Thr Leu Ser Cys Gl y Thr Ser Gl y Arg Thr Phe Asn Val Met
180 185 190

Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val Al a Al a
195 200 205

Val Arg Trp Ser Ser Thr Gl y Ile Tyr Tyr Thr Gl n Tyr Al a Asp Ser
210 215 220

Val Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val
225 230 235 240

Tyr Leu Gl u Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Val Tyr Tyr
245 250 255

Cys Al a Al a Asp Thr Tyr Asn Ser Asn Pro Al a Arg Trp Asp Gl y Tyr
260 265 270

Asp Phe Arg Gly Glu Gly Thr Leu Val Thr Val Ser Ser
275 280 285
eol f-seql

<210> 82
<211> 2
<212> PRT
<213> Artificial Sequence

<220>
<223> c-terminal extensi on

<400> 82

Cys Ala
1

<210> 83
<211> 3
<212> PRT
<213> Artificial Sequence

<220>
<223> c-terminal extensi on

<400> 83

Gly Cys Ala
1

<210> 84
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> c-terminal extensi on

<400> 84

Gly Gly Cys Ala
1

<210> 85
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> c-terminal extensi on

<400> 85

Gly Gly Gly Cys Ala
1 5

<210> 86
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> c-terminal extensi on

eol f-seql

<400> 86

Gl y Gl y Gl y Gl y Cys Al a
1 5

<210> 87

<211> 3

<212> PRT

<213> Artifical Sequence

<220>

<223> c-terminal extensi on

<400> 87

Al a Cys Al a
1

<210> 88

<211> 4

<212> PRT

<213> Artifical Sequence

<220>

<223> c-terminal extensi on

<400> 88

Al a Al a Cys Al a
1

<210> 89

<211> 5

<212> PRT

<213> Artifical Sequence

<220>

<223> c-terminal extensi on

<400> 89

Al a Al a Al a Cys Al a
1 5

<210> 90

<211> 6

<212> PRT

<213> Artifical Sequence

<220>

<223> c-terminal extensi on

<400> 90

Al a Al a Al a Al a Cys Al a
1 5

<210> 91

<211> 3

<212> PRT

<213> Artifical Sequence

<220>

eol f-seql

<223> c-terminal extensi on

<400> 91

Cys Gl y Al a
1

<210> 92

<211> 4

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> c-terminal extensi on

<400> 92

Gl y Cys Gl y Al a
1

<210> 93

<211> 5

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> c-terminal extensi on

<400> 93

Gl y Gl y Cys Gl y Al a
1 5

<210> 94

<211> 6

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> c-terminal extensi on

<400> 94

Gl y Gl y Gl y Cys Gl y Al a
1 5

<210> 95

<211> 7

<212> PRT

<213> Arti fi ci al Sequence

<220>

<223> c-terminal extensi on

<400> 95

Gl y Gl y Gl y Gl y Cys Gl y Al a
1 5

<210> 96

<211> 10

<212> PRT

<213> Arti fi ci al Sequence

eol f-seqI

<220>
<223> c-terminal extension

<400> 96

Gly Gly Gly Gly Cys Gly Gly Gly Gly Ala
1 5 10

<210> 97
<211> 116
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 97

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Ser Ile Phe Ser Gly Asn
20 25 30

Val Met Gly Trp Tyr Arg Arg Gln Ala Pro Gly Lys Glu Arg Glu Trp
35 40 45

Val Ala Ala Ile Ala Ser Gly Gly Ser Ile Tyr Tyr Arg Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Asn Ser His Pro Pro Thr Leu Pro Tyr Trp Gly Leu Gly Thr Gln Val
100 105 110

Thr Val Ser Ser
115

<210> 98
<211> 126
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 98

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Ala Gly Asp
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Ala Phe Ser Arg Tyr
20 25 30

eol f-seql

Ala Met Gly Trp Phe Arg Glu Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45

Ala Ala Ile Gly Trp Gly Pro Ser Lys Thr Asn Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80

Leu Gln Met Asn Thr Leu Lys Pro Glu Asp Thr Ala Val Tyr Ser Cys
85 90 95

Ala Ala Lys Phe Val Asn Thr Asp Ser Thr Trp Ser Arg Ser Glu Met
100 105 110

Tyr Thr Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125

<210> 99

<211> 122

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 99

Gl u Val Gln Leu Val Gl u Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Val Ala Ser Gly Ile Ser Ser Ser Lys Arg
20 25 30

Asn Met Gly Trp Tyr Arg Gln Ala Pro Gly Lys Gln Arg Glu Ser Val
35 40 45

Ala Thr Ile Ser Ser Gly Gly Asn Lys Asp Tyr Thr Asp Ala Val Lys
50 55 60

Asp Arg Phe Thr Ile Ser Arg Asp Thr Thr Lys Asn Thr Val Tyr Leu
65 70 75 80

Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys Lys
85 90 95

Ile Glu Ala Gly Thr Gly Trp Ala Thr Arg Arg Gly Tyr Thr Tyr Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

eol f-seql

<210> 100
<211> 126
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 100

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Ser Val Gl n Al a Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Thr Thr Ser Gl y Arg Al a Leu Asn Met Tyr
20 25 30

Val Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Asn Gl u Arg Gl u Phe Val
35 40 45

Al a Al a Thr Ser Ser Gl y Gl y Ser Thr Ser Tyr Pro Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Lys Pro Gl u Asp Thr Al a Al a Tyr Arg Cys
85 90 95

Al a Al a Ser Pro Tyr Val Ser Thr Pro Thr Met Asn Ile Leu Gl u Gl u
100 105 110

Tyr Arg Tyr Trp Gl y Leu Gl y Thr Gl n Val Thr Val Ser Ser
115 120 125

<210> 101
<211> 125
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 101

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Ser Val Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Thr Leu Ser Cys Gl y Thr Ser Gl y Arg Thr Phe Asn Val Met
20 25 30

Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val Al a Al a
35 40 45

Val Arg Trp Ser Ser Thr Gl y Ile Tyr Tyr Thr Gl n Tyr Al a Asp Ser
50 55 60

Val Lys Ser Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val
65 70 75 80

eol f-seql
Tyr Leu Glu Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr
85 90 95

Cys Ala Ala Asp Thr Tyr Asn Ser Asn Pro Ala Arg Trp Asp Gly Tyr
100 105 110

Asp Phe Arg Gly Gln Gly Thr Gln Val Thr Val Ser Ser
115 120 125

<210> 102

<211> 124

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 102

Glu Val Gln Leu Val Glu Ser Gly Gly Ser Val Gln Thr Gly Gly
1 5 10 15

Ser Leu Arg Leu Thr Cys Ala Ala Ser Gly Arg Thr Ser Arg Ser Tyr
20 25 30

Gly Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45

Ser Gly Ile Ser Trp Arg Gly Asp Ser Thr Gly Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Asp
65 70 75 80

Leu Gln Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Ile Tyr Tyr Cys
85 90 95

Ala Ala Ala Ala Gly Ser Ala Trp Tyr Gly Thr Leu Tyr Glu Tyr Asp
100 105 110

Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 103

<211> 123

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 103

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y eol f-seqI
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Asp Thr Tyr Gl y Ser Tyr
20 25 30

Trp Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Gl y Val
35 40 45

Al a Al a Ile Asn Arg Gl y Gl y Tyr Thr Val Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Thr Al a Lys Asn Thr Val Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Pro Asp Asp Thr Al a Asp Tyr Tyr Cys
85 90 95

Al a Al a Ser Gl y Val Leu Gl y Gl y Leu His Gl u Asp Trp Phe Asn Tyr
100 105 110

Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser
115 120

<210> 104

<211> 123

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 104

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Ser Val Gl n Al a Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Asp Thr Tyr Gl y Ser Tyr
20 25 30

Trp Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Gl n Gl u Arg Gl u Al a Val
35 40 45

Al a Al a Ile Asn Arg Gl y Gl y Tyr Thr Val Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gl n Met Asn Ser Leu Arg Pro Asp Asp Thr Al a Asp Tyr Tyr Cys
85 90 95

Al a Al a Ser Gl y Val Leu Gl y Gl y Leu His Gl u Asp Trp Phe Asn Tyr
100 105 110

eol f-seql

Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser
115 120

<210> 105
<211> 127
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 105

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Arg Leu Val Gl n Al a Gl y Asp
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Arg Thr Phe Ile Ser Tyr
20 25 30

Arg Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Al a Al a Leu Arg Trp Ser Ser Asn Ile Asp Tyr Thr Tyr Tyr Al a
50 55 60

Asp Ser Val Lys Gl y Arg Phe Ser Ile Ser Gl y Asp Tyr Al a Lys Asn
65 70 75 80

Thr Val Tyr Leu Gl n Met Asn Ser Leu Lys Al a Gl u Asp Thr Al a Val
85 90 95

Tyr Tyr Cys Al a Al a Ser Thr Arg Trp Gl y Val Met Gl u Ser Asp Thr
100 105 110

Gl u Tyr Thr Ser Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser
115 120 125

<210> 106
<211> 127
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 106

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Arg Leu Val Gl n Al a Gl y Asp
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Arg Thr Phe Thr Ser Tyr
20 25 30

Arg Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

eol f-seql

Ser Ala Leu Arg Trp Ser Ser Gly Asn Ile Asp Tyr Thr Tyr Tyr Ala
50 55 60

Asp Ser Val Lys Gly Arg Phe Ser Ile Ser Gly Asp Tyr Ala Lys Asn
65 70 75 80

Thr Val Tyr Leu Gln Met Asn Ser Leu Lys Ala Glu Asp Thr Ala Val
85 90 95

Tyr Tyr Cys Ala Ala Ser Thr Arg Trp Gly Val Met Glu Ser Asp Thr
100 105 110

Glu Tyr Thr Ser Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125

<210> 107

<211> 127

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 107

Gl u Val Gl n Leu Val Gl u Ser Gly Gly Leu Val Gl n Thr Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Pro Arg Leu Val
20 25 30

Al a Met Gly Trp Phe Arg Gl n Thr Pro Gly Lys Gl u Arg Gl u Phe Val
35 40 45

Gly Gl u Ile Ile Leu Ser Lys Gly Phe Thr Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Val Asn Ala Lys Asn Thr Ile Thr
65 70 75 80

Met Tyr Leu Gl n Met Asn Ser Leu Lys Ser Gl u Asp Thr Ala Val Tyr
85 90 95

Tyr Cys Ala Gl y Arg Gl n Asn Trp Ser Gly Ser Pro Ala Arg Thr Asn
100 105 110

Gl u Tyr Gl u Tyr Trp Gly Gl n Gly Thr Leu Val Thr Val Ser Ser
115 120 125

<210> 108

<211> 127

<212> PRT

<213> Artificial Sequence

eol f-seql

<220>

<223> nanobody

<400> 108

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Thr Gl y Gl y
1 5 10 15

Ser Leu Arg Leu Ser Cys Al a Al a Ser Gl y Arg Thr Pro Ser Ile Ile
20 25 30

Al a Met Gl y Trp Phe Arg Gl n Thr Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Gl y Gl u Ile Ile Leu Ser Lys Gl y Phe Thr Tyr Tyr Al a Asp Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Al a Asn Al a Lys Asn Thr Ile Thr
65 70 75 80

Met Tyr Leu Gl n Met Asn Ser Leu Lys Ser Gl u Asp Thr Al a Val Tyr
85 90 95

Tyr Cys Al a Al a Arg Gl n Asn Trp Ser Gl y Asn Pro Thr Arg Thr Asn
100 105 110

Gl u Tyr Gl u Tyr Trp Gl y Gl n Gl y Thr Leu Val Thr Val Ser Ser
115 120 125

<210> 109

<211> 119

<212> PRT

<213> Artificial Sequence

<220>

<223> nanobody

<400> 109

Gl u Val Gl n Leu Val Gl u Ser Gl y Gl y Gl y Leu Val Gl n Pro Gl y Gl y
1 5 10 15

Ser Leu Thr Leu Ser Cys Val Al a Ser Gl y Arg Thr Phe Ser Thr Asp
20 25 30

Val Met Gl y Trp Phe Arg Gl n Al a Pro Gl y Lys Gl u Arg Gl u Phe Val
35 40 45

Al a Al a His Arg Thr Ser Gl y Ile Ser Thr Val Tyr Al a Al a Ser Val
50 55 60

Lys Gl y Arg Phe Thr Ile Ser Arg Asp Asn Al a Lys Asn Thr Val Tyr
65 70 75 80

Leu Gly Met Lys Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Val Cys
85 90 95
Ala Ala Gly Ser Asp Ala Ser Gly Gly Tyr Asp Tyr Trp Gly Gln Gly
100 105 110
Thr Leu Val Thr Val Ser Ser
115

<210> 110
<211> 125
<212> PRT
<213> Artificial Sequence

<220>
<223> nanobody

<400> 110

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Thr Phe Ser Ser Tyr
20 25 30

Ala Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Asp Arg Glu Phe Val
35 40 45

Ala Ala Ile Ser Trp Ile Gly Glu Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Val Tyr
65 70 75 80

Leu Arg Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Ala Asp Leu Tyr Tyr Thr Ala Tyr Val Ala Ala Ala Asp Glu Tyr
100 105 110

Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125