RECTANGULAR TO CIRCULAR WAVEGUIDE TRANSITION

INVENTOR:
CHARLES E. ENDERBY

BY Samuel E. Turner

ATTORNEY
ABSTRACT OF THE DISCLOSURE

A transition device between a rectangular waveguide having broad and narrow walls of predetermined transverse length and a circular waveguide having a predetermined radius, comprising: a first rectangular portion wherein one narrow wall is changed to an arcuate narrow wall over a predetermined longitudinal length, said arcuate narrow wall having a radius equal to the radius of said circular waveguide; a second portion of predetermined longitudinal length over which the internal cross-section area is increased by gradually increasing the circumferential length of said arcuate wall by pivoting said broad walls at their junctions with the other narrow wall to thereby form a semicircular cross-section at the end of said second portion; and a third portion of predetermined longitudinal length over which the internal cross-section area is gradually further increased by gradually folding at the center thereof the two halves of the straight wall of said semi-circular cross-section until said two halves coincide in a radially extending knife edge at the end of said third portion, and a radially extending conductive ridge position to substantially bifurcate the length of the third portion of said transition device, whereby an undesirable TE_{11} mode is suppressed.

These and other objects are achieved according to the present invention by providing a transition structure in which the internal cross-section area is smoothly altered over a predetermined length from a rectangular shape to a circular shape. This is accomplished by first forming one narrow wall of the rectangular waveguide into an arc corresponding to the circumference of the circular waveguide. Then the broad walls of the rectangular waveguide are gradually flared by pivoting these broad walls at the corners of the straight narrow wall thus increasing the length of the arcuate narrow wall, until a cross-section of semi-circular shape is obtained. The semi-circular cross-section is then formed into the desired circular cross-section by gradually folding the two halves of the straight wall of the semi-circular shape toward one another, pivoting at the center of this straight wall, until this wall completely disappears.

The illustrated embodiment of the invention provides ease of construction in that the main transition member may be separately formed, as for example, by machining from solid stock, and then inserted into a section of circular waveguide.

To prevent formation and propagation of undesirable modes an elongated, radially positioned conductive ridge may be positioned to bifurcate the waveguide channel of the transition structure without interference with the conversion from the rectangular mode to the desired circular mode.

The invention is described more specifically with reference to the accompanying drawings in which:

FIGURE 1 is a longitudinal section elevational view of the transition structure of the invention;

FIGURES 2A–2G are successive cross-section views of the structure of FIG. 1 including representations of the electric fields.

FIGURE 2D' is a cross-section view taken at 2D showing the electric field of an undesirable TE_{11} mode:

FIGURE 2D" is a cross-section view taken at 2D illustrating the addition of a radial vane or ridge for eliminating the undesirable TE_{11} mode; and

FIGURE 3 is a partially broken away perspective view of the transition structure of the invention.

Referring to FIGS. 1 and 3, the illustrated embodiment of the transition structure of the invention is formed of three concentric members including a section of rectangular waveguide 10, a section of circular waveguide 11 and a transition member 12.

FIGS. 2A–2G are successive cross-sections of the structure of FIG. 1 showing development of the transition member 12 and the gradual change of the TE_{10} mode in the rectangular cross-section of FIG. 2A to the TE_{10} circular mode in the circular cross-section of FIG. 2G.

As shown in FIG. 2A the rectangular waveguide section 10 has a rectangular cross-section of dimensions suitable for propagating the input electromagnetic wave in the TE_{10} rectangular mode at the frequency of interest. A single arrow represents the electric field, being well-known that the TE_{10} mode in a rectangular waveguide has a transverse electric field parallel to the narrow walls which vary from a maximum intensity at the center of the waveguide to a minimum intensity at the narrow walls.

As best shown in FIG. 1, a right-hand portion 14 of the upper narrow wall of rectangular waveguide section 10 is gradually formed into an arcuate shape so that at cross-section 2B this arcuate shape matches the curvature of the inside circumference of the circular waveguide 11. Thus as shown in FIG. 2B the transition waveguide channel shape at cross-section 2B is rectangular with an arcuate upper narrow wall.

Between cross-sections 2B and 2D the transition waveguide channel shape evolves from rectangular to semi—
3,349,346

3, 349, 346

3, 349, 346

3, 349, 346

3, 349, 346

3, 349, 346

3, 349, 346

3, 349, 346

circular, the electric field changing correspondingly as shown by the electric field arrows of FIGS. 2B-2D. In effect, the broad walls of the rectangular shape of FIG. 2B are pivoted at their junctions with the lower narrow wall at a uniform rate until they become collinear with the lower narrow wall whereby the semicircular cross-section of FIG. 2D is obtained.

Between cross-sections 2D and 2G the waveguide shape evolves from semicircular to the full circular shape of circular waveguide 11. In effect, this is accomplished by pivoting the equal halves of the straight wall of the semicircular shape (FIG. 2D) at its center at a uniform rate until these two halves terminate in a vertical knife edge (FIG. 2F). This completes the transition and the electric field lines are now formed in the concentric circles of the TE_{01} circular mode, the electric field of the TE_{01} mode having no radial components and having an intensity which varies from maximum at one-half wave-guide radius to minimum at the center and at the wall of the circular waveguide. (The inside diameter of circular waveguide section 11 is selected, in well-known manner, for propagation in the TE_{01} mode at the frequency of interest.)

While the rectangular to circular waveguide transition as described hereinbefore has been found relatively free of conversion to undesirable modes, there is the possibility of the excitation of an unwanted TE_{11} circular mode in particular. Representative electric field lines of the TE_{11} mode in the semicircular cross-section are shown in FIG. 2D. This TE_{11} mode may be substantially eliminated without disturbance of the TE_{01} mode, by providing the previously mentioned radially-positioned narrow conductive ridge shown as a ridge 13 in FIG. 2D' positioned to bifurcate the waveguide channel of the transition structure. The ridge 13 may extend the entire length of the transition structure or a lesser portion thereof as required. (To maintain clarity of the drawing the ridge 13 is not shown in FIGS. 1 and 3.) The ridge 13 terminates the electric field lines of the TE_{11} mode thus providing substantial suppression thereof.

Construction of the described rectangular to circular waveguide transition is relatively simple compared to prior devices of this type. The transition member 12 may be separately machined from solid round stock and then inserted into the circular waveguide section 11. The arcuate portion 14 is similarly separately machined in the upper narrow wall of rectangular waveguide 10 before attachment, by means of suitable flanges, to the assembled circular waveguide section 11 and the contained transition section 12. The ridge 13 may conveniently be supported in a longitudinal slot (not shown) machined in the wall of the circular waveguide 11.

Representative dimensions of a rectangular to circular waveguide transition according to the invention constructed for operation at K_{α} band (16Gc) are as follows: the rectangular waveguide section 10 had inside dimensions of 0.510" by 0.255", the length of the portion 14 (transition to arcuate shape) being 0.540". The circular waveguide section 11 had an inside diameter of 1.090". The transition member 12 had a length of 13", the cross-sections 2B-2F being equally spaced. The ridge 13 may have a thickness of .040", and a length of at least 9" as measured to the left from cross-section 2F.

While the invention has been described in terms of a rectangular to circular waveguide transition, it is noted that the described structure can also be employed in the reverse direction for transition of an electromagnetic input wave in the TE_{01} mode in the circular waveguide to a TE_{01} mode in the rectangular waveguide.

Thus what has been described is a relatively simple wideband, low-loss mode transition structure.

While the principles of the invention have been made clear in the illustrative embodiments, there will be obvious to those skilled in the art, many modifications in structure, arrangement, proportions, the elements, materials, and components, used in the practice of the invention, and otherwise, which are adapted for specific environments and operating requirements, without departing from these principles. The appended claims are therefore intended to cover and embrace any such modifications within the limits only of the true spirit and scope of the invention.

What is claimed is:

1. A transition device between a rectangular waveguide having broad and narrow walls of predetermined transverse length and a circular waveguide having a predetermined radius, comprising: a first rectangular portion wherein one narrow wall is changed to an arcuate narrow wall over a predetermined longitudinal length, said arcuate narrow wall having a radius equal to the radius of a said circular waveguide; a second portion of predetermined longitudinal length over which the internal cross-section area is increased by gradually increasing the circumferential length of said arcuate wall by pivoting said broad walls at their junctions with the other narrow wall to thereby form a semicircular cross-section at the end of said second portion; and a third portion of predetermined longitudinal length over which the internal cross-section area is gradually further increased by gradually folding at the center thereof the two halves of the straight wall of said semicircular cross-section until said two halves coincide in a radially extending knife edge at the end of said third portion, and a radially extending conductive ridge positioned to substantially bifurcate the length of the third portion of said transition device, whereby an undesirable TE_{11} mode is suppressed.

2. The transition device defined by claim 1 wherein said longitudinal lengths of said second and third portions are equal.

3. The transition device defined by claim 1 wherein said changes in cross-section shape of said first and second waveguide portions occur at a longitudinally uniform rate.

References Cited

UNITED STATES PATENTS

2,656,513 10/1953 King ------------------- 333--21
2,779,923 1/1957 Purcell ------------------- 333--21
2,810,890 10/1957 Klopfenstein 333--73

ELI LIEBERMAN, Primary Examiner.
HERMAN KARL SAALBACH, Examiner.
RONALD D. COHN, Assistant Examiner.