WO 2006/012341 A1 |0 |00 00 000 OO O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
2 February 2006 (02.02.2006)

P
O N A A M

(10) International Publication Number

WO 2006/012341 Al

(51) International Patent Classification : GOOF 1/00
(21) International Application Number:
PCT/US2005/022577

(22) International Filing Date: 24 June 2005 (24.06.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/881,777 29 June 2004 (29.06.2004) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DURHAM, David
[US/US]; 1024 NE Parksedge Circle, Hillsboro, OR
97124 (US). SAHITA, Ravi [IN/US]; 7854 SW Kimber
Place, Beaverton, OR 97006 (US). RAJAGOPAL, Priya
[IN/US]; 110 West Dewey Avenue, Wharton, NJ 07885

(US). SCHLUESSLER, Travis [US/US]; 1242 SE 63rd
Lane, Hillsboro, OR 97123 (US). ZIMMER, Vincent
[US/US]; 1937 South 369th Street, Federal Way, WA
98003 (US).

Agents: VINCENT, Lester, J. et al.; Blakely Sokoloff
Taylor & Zafman, 12400 Wilshire Boulevard, 7th Floor,
Los Angeles, CA 90025 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

(74)

(81)

(84)

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR SECURE INTER-PLATFORM AND INTRA-PLATFORM COMMUNICATIONS

Encryption of network traffic using SMM (Transmit side)

(57) Abstract: A system and method are

provided to preserve the confidentiality and/or

Host ph] Network . . ‘s o .
Device Driver 605 { moesmg y§$a0 SMI handler 815 I | Controller 620 integrity of a sensitive communication from its
source to its destination whether locally on the
platform, between platforms, or even the same
Program Start SMI :
notification 625 Identify the program over time.
» pregram that
is the source
Program Start SMi for this
L return 830 transacation
632\‘
634 — T -Interrupts disabled
-Insert frame buffers reddy to be transmitted intgp TX FIFC
636]
638 -Interrupts Enabled
~N -"Encrypt Operation” SHI notification Recheck the
source
program
. unter/
i Oieratlon" SMiretunédd B Enioryp,‘z ata
using keys in
SMRAM

645 Notify that packets

ready fro transmission

DMA packets into
NIC memory

Notify device driver tha
packets transmitted

-

650

A

(o2
(-
o

l

WO 2006/012341 A1 I} 00 A00OH0 00 000 000

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, — before the expiration of the time limit for amending the
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, claims and to be republished in the event of receipt of
SE, SI, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, GN, amendments

GQ, GW, ML, MR, NE, SN, TD, TG).
For two-letter codes and other abbreviations, refer to the "Guid-
Published: ance Notes on Codes and Abbreviations" appearing at the begin-
— with international search report ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 2006/012341 PCT/US2005/022577

SYSTEM AND METHOD FOR SECURE INTER-PLATFORM AND INTRA-
PLATFORM COMMUNICATIONS
TECHNICAL FIELD

[0001] Embodiments of the invention generally relate to the field of network security
and, more particularly, to a system and method for inter-platform and intra-platform
communications.

BACKGROUND

[0002] Computer networks are widely used by businesses, public institutions, and
individuals. Software programs (or simply, programs) exchange information with each
other via computer networks. Protecting the integrity and confidentiality of these
communications is crucial in today’s networked computing environment. Obviously,
transmitting passwords, cryptographic keys, or other private information in clear text
makes a computing system vulnerable to compromise by hostile attackers. This is because
the keying material can be retrieved from memory by debuggers, malware, or other
software components on the system which have been compromised by an attacker. The
term “keying material” broadly refers to, for example, cryptographic keys, session keys,
passwords, digital certificates, and/or any sensitive information.

[0003] Conventional approaches to protecting confidential information in computing
systems are typically based on either virtual private networks (VPN) or specialized
hardware. Virtual private networks can easily be circumvented or tampered with because
they are implemented as application software and/or as a kernel level driver which can be
violated by other software components running in a privileged mode.

[0004] Hardware solutions may include, Trusted Platform Modules (TPMs) or

dedicated co-processors for implementing cryptographic functions. Trusted Platform

10

15

20

WO 2006/012341 PCT/US2005/022577

Modules are microchips that store, for example, cryptographic keys, passwords, and/or
digital certificates. Hardware based security solutions are expensive and use separate
hardware to isolate themselves from the rest of a system’s hardware. Moreover, TPMs are
typically connected to the chipset using a low bandwidth serial bus which makes it
unsuitable for applications that require high bandwidth exchange of data such as
encryption/decryption of network traffic. Hence, conventional systems lack a cost-
effective, secure, and tamper-resistant method for encrypting data in software running on

the host processor so that it is inline with the programs that directly interact with this data.

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] Embodiments of the invention are illustrated by way of example, and not by
way of limitation, in the figures of the accompanying drawings in which like reference

numerals refer to similar elements.

Figure 1 is a block diagram illustrating various communications that may be

protected by embodiments of the invention.

Figures 2A-2B illustrate a program utilizing security operations provided by a

protected region of memory, according to an embodiment of the invention.

Figure 3A is a flow diagram illustrating certain aspects of a method for initializing
a protected region of memory (e.g., System Management Random Access Memory),

according to an embodiment of the invention.

10

15

20

WO 2006/012341 PCT/US2005/022577

Figures 3B-3C are flow diagrams illustrating certain aspects of a method for
secure inter-platform and intra-platform communication, according to an embodiment of

the invention.

Figure 4 is a block diagram of a framework for encrypting outbound packets,

according to an embodiment of the invention.

Figure 5 is a block diagram illustrating an embodiment of the invention that

supports network security protocols at different network layers.

Figure 6 is a transaction diagram illustrating a transaction implemented according

to an embodiment of the invention.
DETAILED DESCRIPTION

[0006] A system and method are provided to preserve the confidentiality and/or
integrity of a sensitive communication (and the functionality that supports the
communication) from its source to its destination whether locally on the platform, between
platforms, or even the same program over time. As is further described below,
embodiments of the invention may be used by host residgnt software to implement any
security processing (for example, encryption) on any data (for example, network traffic)
that needs to be done in a tamper-resistant and confidential environment. Embodiments of
the invention may also correctly identify and protect the source of the program requesting
these services. Thus, embodiments of the invention may provide a mechanism to secure
keying material within an inline (yet hidden) processor mode. As is further described
below, embodiments of the invention may be used by ring-0 programs (e.g., kernel

programs) to secure communications with platform components, provide unspoofable

3

10

15

20

WO 2006/012341 PCT/US2005/022577

authentication/authorization, and even verify the integrity of the program’s internal state

from invocation to invocation.

[0007] For ease of explanation, embodiments of the invention are disclosed with
reference to the encryption of data transmitted over a network. Alternative embodiments,
however, may be directed to the security processing of any data that needs to be done in a
tamper-resistant and confidential environment. For example, embodiments of the
invention may be directed to protecting inter-platform and/or intra-platform

communication as well as inter-program and/or intra-program communication.

[0008] FIG. 1 is a block diagram illustrating various communications that may be
protected by embodiments of the invention. FIG. 1 includes platforms 110 and 120. The
term “platform” broadly refers to the hardware (e.g., processor), software (e.g., operating
system), microcode, chipset, firmware, etd, that provide data processing. Reference
number 130 illustrates inter-platform communication (e.g., between platforms 110 and
120). Platform 110 includes microcontroller sub-platform 112. The intra-platform
communication between program 114 (e.g., running on the host processor) and

microcontroller sub-platform 112 are illustrated by reference number 132.

[0009] Programs 114 and 116 may represent two programs executing on the host
processor (not shown). The term program may refer to a kernel component (e.g., a ring-0
program) or an application program (e.g., a ring-3 program). An example of inter-
program communication is the communication between p?ograms 114 and 116 as shown
by reference number 134. In an embodiment, a program (e.g., program 114) may securely
store its data structures and/or states and securely access the stored data structures and/or

states over time (e.g., to periodically check the integrity of its internal data structures

4

10

15

20

WO 2006/012341 PCT/US2005/022577

across context changes and/or process invocations). Reference number 136 illustrates an
intra-program embodiment in which program 114 securely stores its data structures and/or

states and securely accesses the stored data structures and/or states over time.

[00010] Embodiments of the invention may use a System Management Mode
(SMM) or similar specialized processor mode to protect keying material and the
cryptographic functions that utilize this keying material to encrypt/decrypt and/or validate
the integrity of any data. The SMM provides a partitioned memory and context in which
the keying material is protected from disclosure to other programs running on a host
system. Embodiments of the invention increase the security of keying material by
providing an isolated and tamper-resistant environment for key storage and processing
and, thereby, increase the difficulty for an attacker to obtain the keying material through

traditional attack vectors.

[00011] The SMM (or similar) specialized processor mode may also provide
security processing for program data. The term “security processing” broadly refers to
processes that enhance the security of data such as encryption, decryption, authorization,
authentication, integrity checking, and the like. The SMM is a special operating mode that
provides an isolated environment that is independent of the operating system. A processor
enters the SMM when a System Management Interrupt (SMI) is triggered and executes
code and data from a chipset protected region of main memory called System
Management Random Access Memory (SMRAM) that is inaccessible to software

executing in other processor operating modes.

[00012] For ease of reference, the SMM and similar specialized processor modes

are collectively called management modes. In an embodiment, the management mode

5

10

15

20

WO 2006/012341 PCT/US2005/022577

obtains state information from the program that triggers it. In one embodiment, the
program provides a saved state map or similar structure to the management mode when it
invokes the management mode. The saved state map (or similar structure) provides
information about processor state at the time of entering the management mode. For
example, a program executing in the management mode may recover the program counter
of the invoking program from the saved state map (or similar structure). Inan
embodiment, this provides a tamper proof way to detect the source of the call which can

be traced back to the program triggering the SML

[00013] Since the location of the invoking pro gram’s code store can be overwritten
by an attacking program, it may be desirable to verify or otherwise protect the integrity of
that code store. In an embodiment, program images that are sources of SMI notifications
are authenticated using a suitable hardware or software technique. Examples of
mechanisms for authenticating program images include, but are not limited to, validating
tﬁe image from the management mode (e.g., the SMM) or other protected system

component (such as a Navassa embedded processor), and the like.

[00014] FIGs. 2A-2B illustrate an invoking program utilizing security operations
provided by a protected region of memory. The illustrated embodiment may be described
with reference to the SMM and System Management Random Access Memory
(SMRAM). It is to be appreciated that different management modes and different

protected regions of memory may be used in an alternative embodiment of the invention.

[00015] In an embodiment, SMRAM 200 includes the following data structures:
Valid Program Identification (VPI) table 205; Program Identifier (ID) to Key Identifier

(PIKI) mapping table 210; and Program ID to Program Counter Range (PIPC) mapping
6

10

15

WO 2006/012341 PCT/US2005/022577

table 215. In an alternative embodiment, SMRAM 200 may include more data structures,

fewer data structures, and/or different data structures.

[00016] In an embodiment, VPI table 205 contains information on how to identify
particular programs and to determine whether in-memory program images are valid. In
one embodiment, the programs identified in VPI table 205 are the programs that are
allowed to invoke the security operations of the SMM. In one embodiment, VPI table 205
is provisioned over a secure channel from a trusted data store 220. Alternatively, VPI
table 205 may be provisioned by local trusted platform components such as an embedded
management microcontroller (e.g., the Proactive/Navassa platform developed by Intel
Corporation) that can provide secure remote Out-Of-Band (OOB) connections to the

platform.

[00017] Table 1 describes a number of data structures that may be included in VPI
table 205. In alternative embodiments, the data structures may have different names. In
addition, more data structures, fewer data structures, and/or different data structures may

be used in alternative embodiments of the invention.

TABLE 1
Data Structure Name Brief Description
Generic number/string that uniquely
Program Identifier (PID) identifies a program on the machine.
A string of bytes used to identify the
Program Marker (PM) location of a program image in memory

with a high probability (may be static
sequence of bytes compiled into the
program). This sequence should mark the
start of the program’s image in memory.

Bounds the program’s image size in
Program Size (PS) memory (how large the image is starting at
the PM).

10

WO 2006/012341 PCT/US2005/022577

Program Hash Value (PHV) Specifies the Secure Hash Algorithm 1
(SHA1) or Message Digest (MD35) hash
value that is computed over the program
image using the Program Hash Key (PHK).
The program image in memory should
compute the same PHYV if it has not been
modified from its expected form.

Program Hash Key (PHK) Key used to calculate the PHV for a
particular program image.

[00018] In an embodiment, PIKI table 210 contains protected key values and the
key identifiers used to identify the key values. In one embodiment, PIKI table 210
associates particular keying material with a particular program (e.g., via the PID). Inan
embodiment, administrator 225 provisions PIKI table 210 via out-of-band provisioning

process 230.

[00019] Table 2 describes a number of data structures that may be included in PIKI
table 210. In alternative embodiments, the data structures may have different names. In
addition, more data structures, fewer data structures, and/or different data structures may

be used in alternative embodiments of the invention.

TABLE 2
Data Structure Name Brief Description

Generic number/string that uniquely

Program Identifier (PID) 216 identifies a program on the machine.
Key identifier used by programs to

Key ID (KID) 214 communicate to the SMM component
which key should be used for its operation.

Key Length (KL) 213 Length of a particular key stored in
SMRAM identified by KID.

Key Value (KV) 212 The actual key value, stored in SMRAM
protected memory, identified by a KID.

WO 2006/012341 PCT/US2005/022577

[00020] In an embodiment, PIPC table 215 is created by an SMM component (or
other trusted agent) such as a security process. PIPC table 215 may be used to compute
the location in host memory of a particular program and to track the program’s status.
Table 3 describes a number of data structures that may be included in PIPC table 215. In
alternative embodiments, the data structures may have different names. In addition, more
data structures, fewer data structures, and/or different data structures may be used in

alternative embodiments of the invention.

TABLE 3

Data Structure Name Brief Description

Program Counter Base (PCB) 222 Program start location, should correspond
to the memory address where the PM was
actually found in host memory.

Program Counter Limit (PCL) 224 Program end location, should correspond to
the PCB + PS.

Program Identifier (PID) Generic number/string that uniquely
identifies a program on the machine.

Program Start Notification Completed Used to record whether the Program Start

(PSN) 218 Notification was properly called by a
: particular valid program. It is cleared on a
Program End Notification.

[00021] FIG 2B illustrates program memory 235 according to an embodiment of the
invention. The term “program memory” refers to a region of memory (e.g., Random
Access Memory (RAM)) that is accessible to a program executing on a host processor. In
one embodiment, SMRAM 200 and program memory 235 may both be part of a host
processor’s main memory. In an alternative embodiment, SMRAM 200 may be

implemented in a region of memory other than the host processor’s main memory.

10

15

WO 2006/012341 PCT/US2005/022577

[00022] In an embodiment, a program communicates with SMM components (€.g.,
the security programs stored in the SMM), at least in part, through Program Data Table
(PDT) 240. SMM components may access PDT 240 because the SMM is a highly
privileged processor mode that can access program memory 235 (as well as the operating
system’s memory). PDT 240 may specify particular security operations 245 to be
performed on program data. In addition, PDT 240 may specify the location of the
program data. For example, in the illustrated embodiment data buffer pointer (DBP) 250
points to data buffer 260 and integrity buffer pointer (IBP) 258 points to integrity buffer
265. In addition, PDT 240 may identify the keying material to be used to process the
program data via key identifier 268. For example, key identifier 268 may identify a key
stored in SMRAM 200 that may be used to process data stored, for example, in data buffer

260.

[00023] Table 4 describes a number of data structures that may be included in PDT
240. In alternative embodiments, the data structures may have different names. In
addition, more data structures, fewer data structures, and/or different data structures may

be used in alternative embodiments of the invention.

TABLE 4

Data Structure Name Brief Description

Operation Request (OpR) 245 Identifies the particular security operation
(e.g., integrity check, encrypt, decrypt, etc.)
the program wishes the SMM to apply to
its selected data buffers.

Data Buffer Length (DBL) Identifies the length of a program’s data
buffer.

Data Buffer Pointer (DBP) 250 Pointer to the program’s actual data buffer
used by SMM as input for requested
operations.

Data Mask Pointer (DMP) 252 Pointer to mask buffer that indicates which

10

10

15

WO 2006/012341 PCT/US2005/022577

bits in data buffer 260 the SMM operations

should skip.

Integrity Buffer Length (IBL) 255 Length of the integrity buffer allocated by
the program.

Integrity Buffer Pointer (IBP) 258 Pointer to program’s buffer holding

integrity information such as a Hash
Method Authentication Code (HMAC).

Error Code (EC) 272 Value returned by the SMM when a
particular operation fails. It may specify
the reason for the failure or indicate NONE
if there is no failure.

[00024] Since PDT 240 “lives” in a vulnerable memory region, in an embodiment,
the integrity of this data structure, as well as the integrity of the data buffers (e.g., data
buffer 260 and/or integrity buffer 265) needs to be assured. One mechanism for assuring
the validity of the data in these structures is to ensure that only the valid program that
owns these data structures is allowed to manipulate these.data structures. In one
embodiment, this mechanism is implemented by the program bounding all valid
modifications to PDT 240 between program start and program end notifications to the
SMM component. In this way, the SMM component can track which program is running

before PDT 240 is modified.

[00025] Program start notification 270 notifies an SMM component that a program
is going to invoke a security operation provided by the SMM component. In an
embodiment, program start notification 270 is issued by the program or device driver as
soon as it is invoked and before it starts modifying internal data structures of PDT 240. In
one embodiment, program start notification 270 is an SMI notification. In an
embodiment, a program start notification handler (not shown) may receive program start

notification 270. The handler may verify the program image and record the source of the

11

10

15

20

WO 2006/012341 PCT/US2005/022577

caller in PIPC table 215 by, for example, setting Program Start Notification (PSN)
indicator 218 to TRUE for the table entry if the program counter is in the proper range and
the program’s image in this range remains unmodified. Immediately after the PSN
handler returns, the program/driver may setup its internal data structures and configure
PDT table 240 which may be used as input for the Operation Notification handler (not
shown). The program/driver may disable interrupts when doing this to avoid context
switches (that can cause malicious code to execute) and thereby prevent malicious code

from changing the program’s data or state prior to the Operation Notification.

[00026] An “operation notification” refers to a request by a pro gram/driver for an
SMM component to provide a security operation (e.g., to provide secure data and/or to
process program data). In an embodiment, the operation notification may be implemented
with an SMI notification. In one embodiment, the SMI notification may be issued by the
program or device driver only after an SMI Program Start Notification 270 completed
successfully. In an embodiment, the SMI handler for this notification will recover the
invoker’s program counter from, for example, the Saved State Map (SSM) and find the
entry in PIPC table 215 where the recovered program counter is in the range between PCB
222 and PCL 224. If a matching range is found in PIPC table 215, the SMI handler may
then verify that the PSN value 218 for that PIPC entry is set to TRUE, meaning Program
Start Notification 270 was properly invoked previously by the same program. IfPSN
value 218 is TRUE, the handler may then read data from‘PDT 240 that was setup by the
program prior to this notification and apply the operation requests 245 specified there for

the provided Key IDs 268.

12

10

15

20

WO 2006/012341 PCT/US2005/022577

[00027] In an embodiment, operation request 245 specifies a security operation for
an SMM component. The security operation may include obtaining confidential data
and/or may include invoking a security process for program data. Examples of security
processes include, and are not limited to, an encrypt operation, a decrypt operation, and/or

an integrity check of encrypted and/or decrypted data.

[00028] In an embodiment, an encrypt operation may cause a handler (e.g., an SMI
handler) to execute a selected encryption algorithm on the buffer (e.g., data buffer 260)
referenced by the PDT entry’s DBP 250 skipping those regions masked by the mask buffer
referenced by DMP 252. In an embodiment, the encrypt code uses the keys stored in
SMRAM corresponding to the selected key ID 268. On SMM return, the data buffers 260
will be encrypted and ready to communicate securely. In an embodiment, the keying
material is not divulged to the invoking program. Rather, the management mode uses the
correct keying material (e.g., as identified by key ID 268) on behalf of the invoking
program (e.g., if the program image of the invoking program has been verified in

memory).

[00029] In an embodiment, an integrity check operation may cause a handler to
execute a selected integrity checking algorithm on, for example, integrity buffer 265 as
referenced by Integrity Buffer Pointer (IBP) 258. In an embodiment, the handler may skip
regions of buffer 265 that are specified by Data Mask Pointer (DMP) 252. The integrity
checking algorithm may be based, at least in part, on the associated session key identified
by key id 268. In one embodiment, the results of the integrity checking algorithm are

provided in a Hash Method Authentication Code (HMAC) that is stored in integrity buffer

13

10

15

20

WO 2006/012341 PCT/US2005/022577

265. Examples of integrity checking algorithms include, but are not limited to, Secure

Hash Algorithm 1 (SHA1) or Message Digest 5 (MD5).

[00030] Inan embodiment, a decrypt operation may cause an SMI handler to
execute a decryption algorithm on one or more buffers referenced by DBP 250, skipping
DMP 252 masked regions. In an embodiment, the SMM decrypt code (not shown) may
use the keys stored in SMRAM 200 corresponding to Key ID 268. On SMM return, the
buffers referenced by DBP 250 are decrypted and ready to be read or an error code Error

Code (EC) 272 is set for the appropriate entry in PDT 240.

[00031] In a similar fashion to the decrypt operation, the integrity of the data buffer
referenced by DBP 250 may be validated by the SMM code. The integrity check may be
based, at least in part, on an HMAC provided in the integrity buffer referenced by IBP 258
and the associated session key value for the Key ID 268 found in SMRAM 200. The
success or failure of the integrity check can then be communicated back to the program
that invoked the SMI through the PDT error code EC 272 for the corresponding PDT

entry.

[00032] In an embodiment, private keys (e.g., for public/private cryptographic
operations) can be protected by the SMM. In one embodiment, an SMM component may
provide pubic/private operations such as generating public/private key pairs. In an
embodiment, an SMM operation performs Diffie-Hellman exchange using protected
private keys. The SMM operation may encrypt data with a private key identified by key
ID 268. Similarly, an SMM operation may decrypt data with a private key identified by

key ID 268.

14

10

15

20

WO 2006/012341 PCT/US2005/022577

[00033] Inan embodiment, Program End Notification 275 may be issued by the
program or device driver to denote the end of the program segment’s use of the SMM
facilities prior to the program’s return to its caller. In an embodiment, Program End
Notification 275 is an SMI notification. The handler (e.g., SMI handler) for this
notification resets the PIPC table 215°s PSN value from TRUE to FALSE for the entry
matching the SSM recovered program counter. In one embodiment, the SMM module will
no longer act on future Operation Notifications from this program until Program Start
Notification 270 is again propetly initiated from the valid program image. This effectively
locks out other malicious programs from attempting to circumvent the SMM module for
this program ID by modifying the program’s data structures and then simply jumping into
the instruction just prior to the valid program’s code that invokes the SMI Operation
Notification. By bounding all Operation Notifications between Program Start Notification
270 and Program End Notification 275, the program writer can be assured that all program
segments between Notification 270 and Notification 275 have been executed before an

Operation Notification initiated from the program’s valid image will be allowed.

[00034] Turning now to FIGs. 3A-3C, the particular methods associated with
embodiments of the invention are described in terms of computer software and hardware
with reference to a flowchart. The methods to be performed by a computing device may
constitute state machines or computer programs made up of computer-executable
instructions. The computer-executable instructions may be written in a computer
programming language or may be embodied in firmware logic. If written ina
programming language conforming to a recognized standard, such instructions can be
executed on a variety of hardware platforms and for interface to a variety of operating

systems. In addition, embodiments of the invention are not described with reference to
15

10

15

20

WO 2006/012341 PCT/US2005/022577

any particular programming language. It will be appreciated that a variety of
programming languages may be used to implement embodiments of the invention as
described herein. Furthermore, it is common in the art to speak of software, in one form
or another (e.g., program, procedure, process, application, etc.), as taking an action or
causing a result. Such expressions are merely a shorthand way of saying that execution of
the software by a computing device causes the device to perform an action or produce a

result.

[00035] FIGs. 3A-3C are flow diagrams illustrating selected aspects of a method for
secure inter-platform and intra-platform communications, according to an embodiment of
invention. The method described in FIGs. 3A-3C may be implemented with the data
structures described with reference to FIGs. 2A-2B. In an alternative embodiment, the

method described in FIGs. 3A-3C may be implemented with different data structures.

[00036] FIG. 3A is a flow diagram illustrating certain aspects of a method for
initializing a protected region of memory (e.g., SMRAM 200, shown in FIG. 2A),
according to an embodiment of the invention. Referring to process block 305, a VPI table
(e.g., VPI table 205, shown in FIG. 2A) is populated with program identification
information. In one embodiment, the VPI table is populated via a secure out-of-band
channel. Referring to process block 310, a PIKI table (e.g., PIKI table 210, shown in FIG.
2A) is populated with confidential information such as key values (e.g., key values 212,
shown in FIG. 2A) and corresponding key identifiers (e.g., key IDs 214, shown in FIG.

2A) associated with program identifiers (e.g., program IDs 216, shown in FIG. 2A).

[00037] Referring to process block 315, an SMM module (or other trusted agent)

searches program memory (e.g., program memory 235, shown in FIG. 2B) for programs

16

10

15

20

WO 2006/012341 PCT/US2005/022577

corresponding to the program IDs provisioned in process block 310. Referring to process
block 320, the SMM module sets a Program Counter Base (PCB) (e.g., PCB 222, shown
in FIG. 2A) and a Program Counter Limit (PCL) (e.g., PCL 224, shown in FIG. 2A) for

the associated program ID of each found program.

[00038] FIGs. 3B-3C are a flow diagram illustrating certain aspects of a method for
secure inter-platform and intra-platform communication, according to an embodiment of
the invention. Referring to process block 325, a Program Start Notification (e.g., Program
Start Notification 270, shown in FIG. 2B) triggers the SMM. An SMM module recovers
the program counter from, for example, a saved state map at process block 330. Referring
to process block 335, the SMM module searches a PIPC table for an entry corresponding
to the program that sent the program start notiﬁca‘tion. In an embodiment, if an entry is
found, the SMM module checks to see whether the recovered program counter is between
the PCB and the PCL at process block 340. Checking to see whether the recovered
program counter is between the PCB and the PCL helps to ensure that the program start
notification was actually sent by the program and not by malicious software. In some
embodiments, the SMM module re-verifies that the invoking program image matches an
entry in the VPI table (e.g., by calculating a hash value and comparing the calculated hash
value to a predetermined hash value stored in the VPI table) as shown by process block

345.

[00039] Referring to process block 350, a program start notification flag is set to
true and control is returned to the invoking program. In an embodiment, the invoking
program is now allowed to modify the data in a program data table (PDT) (e.g., PDT 240,

shown in FIG. 2B). The program updates buffer locations (e.g., via DBP 250 and IBP

17

10

15

20

WO 2006/012341 PCT/US2005/022577

258, shown in FIG. 2B) and provides appropriate key identifiers (e.g., key identifiers 268,
shown in FIG. 2B) at process block 355. The program completes buffer related tasks (e.g.,
allocation of the buffers, etc.) at process block 360. Referring to process block 365, the
program triggers an operation notification (e.g., an SMI notification) and control returns to

the SMM.

[00040] Referring to process block 370, an SMM module recovers the program
counter from the saved state map (SSM). The SMM module searches the PIPC table for
an entry corresponding to the invoking program at 375. Referring to process block 376,
the SMM module determines whether the recovered program counter is between the PCB
and the PCL as recorded in the entry of the PIPC table that corresponds to the invoking
program. In one embodiment, there may be multiple allowed ranges for the PCB and the
PCL. In such an embodiment, the SMM module may determine whether the program
counter is within one of the multiple allowed ranges for the PCB and the PCL. Referring
to prdcess block 378, the SMM module determines whether the program start notification
flag in the invoking program’s PIPC table entry is set to true. In an embodiment, if either
of the conditions checked in process blocks 376 or 378 are not true, then the SMM module
sets the appropriate etror code (e.g., error code 272, shown in FIG. 2B) and returns control
to the invoking program as shown at 380. Referring to process bock 382, the SMM
module performs on operation as specified by an operation request (e.g., operation request
245, shown in FIG. 2B). The operation may be performed on data that is in a data buffer
as referenced by a data buffer pointer (e.g., DPB 250, shown in FIG. 2B). The SMM
module may use a key value (e.g., a key value 212, shown in FIG. 2A) for a corresponding

program ID and key ID to process the data. In an embodiment, the SMM module skips

18

10

15

20

WO 2006/012341 PCT/US2005/022577

masked areas as specified by a data mask buffer (e.g., data mask buffer 256, shown in

FIG. 2B).

[00041] If the operation is successful, the SMM module may set an error code to
NONE and return control to the invoking program at process block 384. Referring to
process block 386, the program may send a program end notification to prevent the
program data table from being modified by an unauthorized program. An SMM module
recovers the program counter for the invoking program at process block 388. The SMM
module searches the PIPC table for an entry corresponding to the invoking program at
390. In an embodiment, the SMM module determines whether the program counter for
the invoking program is between the PCB and the PCL at process block 392. The program
start notification flag is set to false at process block 394 and control is returned to the
invoking program at 396. In an embodiment, the program data table cannot be modified

while the program start notification flag is set to false.

[00042] FIG. 4 is a block diagram of framework 400 for encrypting outbound
packets, according to an embodiment of the invention. For the purposes of illustrating an
embodiment of the invention, FIG. 4 refers to the transmit queue of framework 400. Itis
to be appreciated that the operation described with reference to the outbound queue shown
in FIG. 4 may also apply to the inbound queue on the receive side of platform 400 (not

shown).

[00043] The illustrated embodiment of Framework 400 includes processor 403,
physical memory 410, Input/Output (I/O) controller hub 415, and Media Access Control
(MAC) device 420. Processor 405 may include a microprocessor, microcontroller, field

programmable gate array (FPGA), application specific integrated circuit (ASIC), central
19

10

15

20

WO 2006/012341 PCT/US2005/022577

processing unit (CPU), programmable logic device (PLD), and similar devices that access
instructions from system storage (e.g., memory 410), decode them, and execute those

instructions by performing arithmetic and logical operations.

[00044] Physical memory 410 may include a wide variety of memory devices
including read-only memory (ROM), erasable programmable read-only memory
(EPROM), electrically erasable programmable read-only memory (EEPROM), random
access memory (RAM), non-volatile random access memory (NVRAM), cache memory,
flash memory, and other memory devices. In an embodiment, Physical memory 410
includes SMRAM 425 and driver memory 430. In one embodiment, SMRAM 425 and
driver memory 430 are two regions of the same memory device. Inan alternative
embodiment, SMRAM 425 and driver memory 430 are implemented on separate memory

devices.

[00045] In one embodiment, I/O Controller Hub (ICH) 415 may provide an
interface between framework 400 and peripheral I/O devices as well as between
framework 400 and MAC device 420, which may provide an interface to an external

network (not shown).

[00046] In an embodiment, framework 400 transmits packets as described below. A
network device driver (not shown) generates an SMI Program Start Notification as shown
by reference number 435. An SMI handler recovers the program counter of the device
driver and compares the recovered program counter to a range of allowable program
counter values stored in PIPC table 440. In an embodiment, the device driver’s address is

retrieved from the recovered program counter.

20

10

15

20

WO 2006/012341 PCT/US2005/022577

[00047] The network device driver sets up buffer(s) 445 for transmission (e.g., with
interrupts disabled) at 450. After the buffer(s) 445 are set up, the network device driver
causes an SMI Operation Notification specifying Operation Requests of “encrypt” and/or
“integrity generation” notification types as shown by reference number 455. An SMI
handler records the physical addresses of frames deposited in buffer(s) 445 that are ready
for transmission. In an embodiment, a DBP in a PDT specifies the physical addresses of

buffer(s) 445.

[00048] In an embodiment, the SMI handler runs encrypt code 460 and/or integrity
generation code on, for example, buffer(s) 445 holding the data that is ready to be sent. In
an embodiment, buffer(s) 445 are encrypted in place and/or integrity HMAC is generated
in a buffer referenced by an integrity buffer pointer of a PDT (not shown) and control is
returned to the network device driver. In an embodiment, the device driver uses direct
memory access to send the frames stored buffer(s) 445 to MAC device 420. Reference
number 465 illustrates the buffered data being sent to MAC device 420 via direct memory
access. MAC device 420 sends a transmit complete signal to processor 405 after
transmitting the data it received from buffer(s) 445. In an embodiment, the device driver

triggers an SMI program end notification after the transmission is complete.

[00049] As shown in FIG. 4 (e.g., in reference numbers 435, 450, and 455),
embodiments of the invention may provide intra-platform communication as well as inter-
platform communication. One example of intra-platform comrr;unication is the exchange
of authenticated heartbeat messages between security software on the host and a firmware
security agent on an embedded management processor on the platform

(Proactive/Navassa) to establish the presence of the security components.

21-

10

15

20

WO 2006/012341 PCT/US2005/022577

[00050] Regular heartbeat communication establishes the presence of the security
agents on the platform. This communication is sensitive and, in an embodiment, it may be
protected against spoofing. This communication may be over any medium, for example,
via direct memory access, or over a dedicated management bus. In an embodiment, (as
described above) an integrity check and/or an encrypt operation may be applied to the
heartbeat message in a tamper-resistant and confidential environment. An embedded
management processor may set up the keys so that it can verify the heartbeat messages. In
an embodiment, the keys used are not divulged to the security software whose presence is
established by the heartbeat. The end-points communicating in this case may be the host
software and management software on the embedded management controller. The same
concept can be used for sensitive inter-program communication or for integrity
preservation of data for a single program (this single program is both the source and
destination of the data exchange). In one embodiment, a random nonce may be used in

conjunction with the key to prevent replay attacks in an alternate embodiment.

[00051] As shown in FIG. 4 (e.g., in reference numbers 435 and 452), embodiments
of the invention may provide intra-program communication as well as inter-program
communication. In an embodiment, the program may be a kernel component (e.g., a ring-
0 program). In one embodiment, the program may be an application (e.g., a ring-3
program). In an embodiment in which the program is an application, the protected
communications may be referred to as inter-process and/or intra-process communications.
For example, in an embodiment, a program may secure its own data and state over time,
from invocation to invocation, so that no other program can modify its data or state

unbeknownst to the program that owns the data or state.

22

10

15

20

WO 2006/012341 PCT/US2005/022577

[00052] In such an embodiment, the “legitimate” program may use the SMM
protected keys to hide and reveal data by encrypting and decrypting the data so that only
the same (or other) legitimate program(s) can access the data. Inan alternative
embodiment, the program can use the SMM protected keys to verify the integrity of its
state, from invocation to invocation, by calculating an HMAC for the internal program
state when the program is invoked to assure that the data is unchanged since the previous
invocation. Prior to the program’s return, the program may issue an SMI to generate 2
new HMAC for its internal state or other data to be verified at the time of the next
invocation. Alternatively, the program can create a hash value or running checksum for its
internal data structures and simply use the SMM component to sign or otherwise protect
the integrity of the program generated hash/checksum of its own data structures. In such
an embodiment, the program will calculate the hash/checksum of its internal data
structures prior to the SMI Program End Notification and after the SMI Program Start
Notification. Operation Notifications may be used to check the integrity of this
hash/checksum prior to its use, and new integrity HMACs may be generated again after
the program has finished manipulating its data structures and updated its hash/checksum.
In an embodiment, errors in integrity validation are reported to the calling program via

error codes in the PDT (e.g., PDT 240, shown in FIG. 2B).

[00053] FIG. 5 is a block diagram of framework 500 illustrating an embodiment of
the invention that supports network security protocols at different layers. In an
embodiment, framework 500 my support network layer security (e.g., Internet Protocol

Security (IPSEC)), Transport Layer Security (TLS), and/or application layer security.

23

10

15

20

WO 2006/012341 PCT/US2005/022577

[00054] In one embodiment, network driver 510 "tags" the frame descriptors
received from (and/or transmitted to) various network layer protocols 522-526 with
additional meta-data (e.g., 532, 534, and 536). These tags are also pre-provisioned in
SMRAM (along with the keys) and used by the SMI handlers to decide, for example,
which encryption algorithm to use, which keys to use, and what layers to encrypt. Inan
embodiment, the upper protocol layers (e.g., protocol layers 522-526) are also source
verified when calling into network driver 510 to prevent an attacker from injecting frames

into secured sessions.

[00055] FIG. 6 is a transaction diagram illustrating transaction 600 implemented
according to an embodiment of the invention. Transaction 600 includes host network
device driver 605, host physical memory 610, SMI haﬁdler 615, and network controller
620. In an embodiment, device driver 605 causes program start SMI notification 625 to be
sent to SMI handler 615. SMI handler 615 may identify device driver 605 as the program
that is the source for the transaction via, for example, a saved state map (not shown). SMI

handler returns control to device driver 605 at reference number 630.

[00056] In an embodiment, device driver 605 may disable interrupts to protect
against context switching during transaction 600 as shown by 632. Device driver 605 may
then insert frame buffers that are ready to be transmitted into a transmit First In First Out
(FIFO) queue (queue not shown) as shown by 634. In one embodiment, the interrupts are
enabled when the FIFO queue is loaded as shown by 636. Device driver 605 may then

send an encrypt operation SMI notification to SMI handler 615 as shown by 638.

[00057] SMI handler 615 may recheck the source program counter to confirm that it

corresponds to device driver 605. In an embodiment, SMI handler 615 encrypts data that

24

10

15

20

WO 2006/012341 PCT/US2005/022577

is specified in, for example, a program data table for device driver 605 using key material
that is stored in SMRAM. SMI handler 615 may then return control to device driver 605
via operation SMI return 640. Device driver 605 may then notify network controller 620
that the packets are ready for transmission as shown by reference number 645. Network
controller 620 may use, for example, direct memory access to send the packets to the
network interface card memory in host physical memory 610. In an embodiment, network

controller 620 notifies device driver 605 that the packets were transmitted at 650.

[00058] Elements of embodiments of the present invention may also be provided as
a machine-accessible medium for storing the machine-executable instructions. A
machine-accessible medium includes any mechanism that provides (e.g., stores and/or
transmits) information in a form accessible by a machine (e.g., a computer, a network
device, a personal digital assistant, a manufacturing tool, any device with a set of one or
more processors, etc.). For example, a machine-accessible medium includes
recordable@on—recordable media (e.g., road only memory (ROM); random access memory
(RAM); magnetic disk storage media; optical storage media; flash memory devices, etc.),
as well as electrical, optical, acoustical or other form of propagated signals (e.g., carrier

waves, infrared signals, digital signals, etc.); etc.

[00059] It should be appreciated that reference throughout this specification to “one
embodiment” or “an embodiment” means that a particular feature, structure or
characteristic described in connection with the embodiment is included in at least one
embodiment of the present invention. Therefore, it is emphasized and should be
appreciated that two or more references to “an embodiment” or “one embodiment” or “an

alternative embodiment” in various portions of this specification are not necessarily all

25

10

WO 2006/012341 PCT/US2005/022577

referring to the same embodiment. Furthermore, the particular features, structures or

characteristics may be combined as suitable in one or more embodiments of the invention.

[00060] Similarly, it should be appreciated that in the foregoing description of
embodiments of the invention, various features are sometimes grouped together in a single
embodiment, figure, or description thereof for the purpose of streamlining the disclosure
aiding in the understanding of one or more of the various inventive aspects. This method
of disclosure, however, is not to be interpreted as reflecting an intention that the claimed
subject matter requires more features than are expressly recited in each claim. Rather, as
the following claims reflect, inventive aspects lie in less than all features of a single
foregoing disclosed embodiment. Thus, the claims following the detailed description are
hereby expressly incorporated into this detailed description, with each claim standing on

its own as a separate embodiment of this invention.

26

10

15

20

WO 2006/012341 PCT/US2005/022577

CLAIMS

What is claimed is:
1. A method comprising:

invoking a management mode with an operation notification from a software
program executing in a program memory of a host system, the management mode having a
protected region of memory that is inaccessible to a host operating system, wherein the
host operating system temporarily relinquishes control of the host system to the
management mode; and

providing a security operation from the protected region of memory to the software

program executing in the program memory, if the management mode is invoked.

2. The method of claim 1, further comprising:

invoking the management mode with a start notification, the start notification to
indicate that the software program is executing in program memory; and

setting a start indicator in the protected region of memory to show that the software

program is executing in program memory.

3. The method of claim 2, wherein providing the security operation from the
protected region of memory to the software program executing in the program memory
further comprises:

providing the security operation from the protected region of memory to the

software program executing in the program memory, if the start indicator is set.

4, The method of claim 2, further comprising:

verifying that the software program provided the start notification.

27

10

15

20

WO 2006/012341 PCT/US2005/022577

5. The method of claim 4, wherein verifying that the software program provided the
start notification comprises:

obtaining a program counter value of the software program, responsive to
receiving the start notification; and

comparing the program counter value to an allowed range of program counter

values.

6. The method of claim 4, further comprising:

verifying the integrity of the software program.

7. The method of claim 6, wherein verifying the integrity of the software program

comprises:

computing a hash value of at least a portion of an image of the software program;

and

comparing the computed hash value to a predetermined hash value to determine
whether the software program is modified.
8. The method of claim 1, wherein the software program is a kernel program.
9. The method of claim 8, wherein the kernel program is a device driver.
10. The method of claim 1, wherein providing the security operation from the
protected region of memory to the software program executing in the program memory

comprises: accessing data stored in the protected region of memory for the software

program.

28

10

15

20

WO 2006/012341 PCT/US2005/022577

11. The method of claim 10, wherein accessing data stored in the protected region of
memory for the software program comprises:
accessing keying material for the software program, wherein the keying material is

stored in the protected region of memory.

12. The method of claim 11, wherein accessing keying material for the software
program comprises accessing at least one of:
an encryption key for a cryptographic operation; and

a session key for an integrity check operation.

13. The method of claim 1, wherein providing the security operation from the
protected region of memory to the software program executing in the program memory
comprises:

providing security processing for data of the software program.

14. The method of claim 13, wherein the data of the software program comprises at
least one of:

state information of the software program;

transmit buffer data to be transmitted to a second software program executing on
the same processor as the software program,;

transmit buffer data to be transmitted to a second software program executing on
another processor of the host system; and

transmit buffer data to be transmitted to a second software‘ program executing on

another host system.

15. The method of claim 13, wherein providing the security processing for data of the

software program comprises at least one of:

29

10

15

20

WO 2006/012341 PCT/US2005/022577

encrypting the data;
decrypting the data;
checking the integrity of the data; and

adding integrity information to the data.

16. The method of claim 15, wherein checking the integrity of the data comprises:
computing a hash value of the data; and

comparing the computed hash value to a predetermined hash value.

17. The method of claim 1, further comprising:

initializing the security operation over a secure channel.

18. The method of claim 17, wherein initializing the security operation over the secure
channel comprises:

storing one or more program identifiers in the protected region of memory,
wherein each program identifier is to identify a software program that is authorized to
invoke the management mode; and

storing keying material in the protected region of memory, the keying material to
be accessed by a software program identified by at least one of the one or more program

identifiers.

19. An apparatus comprising:

a host processor to execute instructions of a software program, the software
program having instructions to invoke a security operation resident in a secure memory,
wherein a host operating system temporarily relinquishes control of a host system to the

security operation, responsive to an invocation from the software program;

30

10

15

20

WO 2006/012341 PCT/US2005/022577

a program memory to store data of the software program communicatively coupled
to the host processor; and

the secure memory not visible to the host operating system, communicatively
coupled to the program memory, the secure memory to provide the security operation to

process the data of the software program.

20. The apparatus of claim 19, wherein the software program is a network device

driver and the program memory is a transmit buffer to store transmit data.

21. The apparatus of claim 20, wherein the security operation is at least one of:
encrypting the transmit data; and

checking the integrity of the transmit data.

22. The apparatus of claim 20, further comprising:
a network interface communicatively coupled with the program memory to receive
the transmit data from the program memory and to send the transmit data to another host

system over a network.

23. An article of manufacture comprising:

an electronically accessible medium providing instructions that, when executed by
an apparatus, cause the apparatus to

invoke a management mode with an operation notification from a software
program executing in a program memory of a host system, the management mode having a
protected region of memory that is inaccessible to a host operating system, wherein the
host operating system temporarily relinquishes control of the host system to the

management mode; and

31

10

15

20

WO 2006/012341 PCT/US2005/022577

provide a security operation from the protected region of memory to the software

program executing in the program memory, if the management mode is invoked.

24. The article of manufacture of claim 23, wherein the electronically accessible
medium provides further instructions that, when executed by the apparatus, cause the
apparatus to:

invoke the management mode with a start notification, the start notification to
indicate that the software program is executing in program memory; and

set a start indicator in the protected region of memory to show that the software

program is executing in program memory.

25. The article of manufacture of claim 24, wherein the instructions that, when
executed by the apparatus, cause the apparatus to provide the security operation from the
protected region of memory to the software program executing in the program memory
cause the apparatus to:

provide the security operation from the protected region of memory to the software

program executing in the program memory, if the start indicator is set.

26. The article of manufacture of claim 24, wherein the electronically accessible
medium provides further instructions that, when executed by the apparatus, cause the
apparatus to:

verify that the software program provided the start notification.
27. The article of manufacture of claim 26, wherein the instructions that, when

executed by the apparatus, cause the apparatus to verify that the software program

provided the start notification cause the apparatus to:

32

10

15

20

WO 2006/012341 PCT/US2005/022577

obtain a program counter value of the software program, responsive to receiving
the start notification; and

compare the program counter value to an allowed range of program counter values.

28. The article of manufacture of claim 26, wherein the electronically accessible
medium provides further instructions that, when executed by the apparatus, cause the
apparatus to:

verify the integrity of the software program.

29. The article of manufacture of claim 28, wherein the instructions that, when
executed by the apparatus, cause the apparatus to verify the integrity of the software
program cause the apparatus to:

compute a hash value of at least a portion of an image of the software program,

and

compare the computed hash value to a predetermined hash value to determine

whether the software program is modified.

30. The article of manufacture of claim 23, wherein the instructions that, when
executed by the apparatus, cause the apparatus to provide the security operation from the
protected region of memory to the software program executing in the program memory
cause the apparatus to:

access keying material for the software program, wherein the keying material is

stored in the protected region of memory.

31. The article of manufacture of claim 23, wherein the instructions that, when

executed by the apparatus, cause the apparatus to provide the security operation from the

33

10

15

20

WO 2006/012341 PCT/US2005/022577

protected region of memory to the software program executing in the program memory
cause the apparatus to:

provide security processing for data of the software program.

32. The article of manufacture of claim 31, wherein the instructions that, when
executed by the apparatus, cause the apparatus to provide security processing for data of
the software program cause the apparatus to perform at least one of:

encrypt the data;

decrypt the data; and

check the integrity of the data.

33. The article of manufacture of claim 23, wherein the electronically accessible

~ medium provides further instructions that, when executed by the apparatus, cause the

apparatus to:

initialize the security operation over a secure channel.

34, The article of manufacture of claim 33, wherein the instructions that, when
executed by the apparatus, cause the apparatus to provide security processing for data of
the software program cause the apparatus to:

store one or more program identifiers in the protected region of memory, wherein
each program identifier is to identify a software program that is authorized to invoke the
management mode; and

store keying material in the protected region of memory, the keying material to be
accessed by a software program identified by at least one of the one or more program

identifiers.

35. A system comprising:

34

10

15

20

WO 2006/012341 PCT/US2005/022577

a host processor to execute instructions of a software program, the software
program having instructions to invoke a security operation resident in a secure memory,
wherein a host operating system temporarily relinquishes control of a host system to the
security operation, responsive to an invocation from the software program;

a synchronous dynamic random access memory (SDRAM) device to store data of
the software program communicatively coupled to the host processor; and

the secure memory not visible to the host operating system, communicatively
coupled to the SDRAM device, the secure memory to provide the security operation to

process the data of the software program.

36. The apparatus of claim 35, wherein the software program is a network device

driver and the program memory is a transmit buffer to store transmit data.

37. The apparatus of claim 36, wherein the security operation is at least one of:
encrypting the transmit data; and

checking the integrity of the transmit data.

38. The system of claim 36, further comprising:
a network interface communicatively coupled with the SDRAM device to receive
the transmit data from the program memory and to send the transmit data to another host

system over a network.

35

WO 2006/012341

136

1/9

{ 1

Platform 10

=

4] Timeline

3

Progra

14

132

134 —~—

-——

Micro
controller

3

Progra

11

sub-platform
112

PCT/US2005/022577
130
Platform
120

PCT/US2005/022577

WO 2006/012341

2/9

ve "B

o

ge 'Old Wwold

0¢¢ 21018
eleq
pajsnI L

-

—y Y v v
asjed/enil
?mﬁw_wmoo 11ad Al ¥2Z 10d |22 €od
mo_ m_o_ 16 uoie20T ajgel. welbos HWI Jejunog | eseq Jejuno)d
HEQBHON ejeq weiboig ai d weiboid welbolid
uels wesboid
GlZ2aqel Odld
=
It enjep Aey | Ty yibue Ay aarfey | aid aiweibold
\ziz 0T¢ algeL piid \piz \ 9ig
€Le
MHA AsH Hd anjea Sd Wd 1exieN did
yseH weliboid | ysey wesbolq | azig weiboid welbold q| weiboid

S0z siqeL IdA

00¢ °PelI0lS peoalold NVHINS S.2INPON ININS

PCT/US2005/022577

WO 2006/012341

3/9

gz “b1d
(WIS Ag payipow) [eTor4 (NS 104 3ndui)
GOz Jayng Anbau| layng ysen eyeq DOz Jeyng ele(
A A A
o3 ddl Jsjuiod g1 yiouaT dWQ Blod [dgq Jsuiod | 79d wious anl ai Aes HdQ 1senbay |4~
apo) Joug | seung Aubay | Jeyng Aubaju) NSEe Bl Jsyng eieq | Jayng eieg uonesado
9ZIS
Ak A gr A g5z A et A_ 052 A_ 5oz eleq weiboid

G/Z uonesyiioN
pug weibold

0¥z (1ad) algel ejeq wesboid

0/Z uoueoynonN
uels weiboid

GE¢ AMOWBS weibold

¥y

VY2 old40L

Sve

WO 2006/012341

4/9

Initialization:

PCT/US2005/022577

SMM

VPI table populated
306

PIKI table poplulated
310

v

Search program memory for valid
programs
315

Valid
program image
found?

Populate PIPC table entry for valid
program
320

Fig. 3A

WO 2006/012341 PCT/US2005/022577

5/9
Operation:
SMM Program
Recovers Program Counter 330 + Program Start Notification 325
SMM searches PIPC table 335
Is PIPC 340
entry found where recovered
program counter is between
_ PCB & PCL2
} Y
Return to
. ' Program
(Optional) SMM reverifies
the program image
matches VPI entry 345
Set PSN flag to TRUE for found PIPC entry Updates PDT table with infout buffer
& Return to program 350 -+ locations & the operation and KIDs SMM is
— to apply to infout buffers 355
Program Completes all tasks on buffers
and internal data 360
Program Triggers SM! operation
l notification 365
SMM Recovers Program Counter 370
y
SMM searches PIPC 375

To hg. 30 Fig. 3B

SMM Recovers Program Counter 388

Y

SMM searches PIPC 390

392
Is PIPC

entry found where recovered
program counter is between
PCB & PCL2

set PSN flag to
FALSE

Return to program 394

[

WO 2006/012341 PCT/US2005/022577
6/9
From Fig. 3B
| Operation:
Program
376
Is PIPC

entry found where recoverea
program counter is between

PCB & PCL?

Set Appropriate
Error Code and
return to
program 380
A
For each PDT entry, perform
OpR operation
382
N]
Was Y Set Error Code Y
Operation in PDT to
P NONE Program End
uccessf 384 Notification
386

L —

Returh to invoker 396

Fig. 3C

WO 2006/012341 PCT/US2005/022577

7/9
452
\ Physical memory 410
\ SMRAM 425
P Program Counter
—p| Proc
405 450 Range 440
TX frame Address |«—
\\ Crypto code 460 Keys
ICH \
415 Buffer 443
>
435 455 /
I\ﬁ?g Driver code
— Driver Memory 430
465 09

Fig. 4

PCT/US2005/022577

Source verified via SMM

SMRAM

-Encryption Function

-key associations in SMRAM
532: alg1, k1, L1

534: alg2, k2, L2

536: alg1, k3, L1

WO 2006/012341
8/9
Network Network Network
protocol protocol protocol
Layer Layer Layer
522 524 526
=
536
532 534
pd
Network Driver 210
A
/5 32/534/536
NI
500

|

Fig. 5

WO 2006/012341 PCT/US2005/022577
9/9
Encryption of network traffic using SMM (Transmit side)
Host Network Host physical Network
Device Driver 605 memory 610 SMI handler 615 Controller 620

notification 625 Identify the
> program that
is the source
Program Start SMI for this
return 630 transacation
632 _ [@--m-m-mTTRRmTT R oo
634 Q- -Interrupts disabled
636 \- -Insert frame buffers ready to be transmitted intp TX FIFO
638 \- -Interrupts Enabled
L -"Encrypt Operation” SMI notification e Recheck the
source
program
Dperaton” SMireumedd 1/ emmmtana
using keys in
SMRAM
645 Notify that packets
5 ready fro transmission
—>

Program Start SM!

650

DMA packets into
NIC memory

-
Notify device driver th
packets transmitted

INgRNATIONAL SEARCH REPORT " wyv—

PCT/US2005/022577

A. CLASSIFICATION OF/SUBJECT MATTER
GO6F1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HOAL

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (hame of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

paragraph ‘0031!

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2003/229794 A1l (SUTTON JAMES A ET AL) 1,2,8,
11 December 2003 (2003-12-11) 10,13,
23,24,
30,31,
33,35
paragraph °0005!
paragraph ‘0018! - paragraph €0019!
paragraph ‘0021! - paragraph €0022!
paragraph ‘0028! - paragraph ‘0029!

-/

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

I. document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O* document referring to an oral disclosure, use, exhibition or
other means *

"P* document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

'Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
metr]\ts, ﬁuch combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

10 November 2005

Date of mailing of the intemational search report

24/11/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Chabot, P

Form PCT/ISA/210 (second sheet) (January 2004)

IMIiFH%ATKDNAi.SEIU?CFIREFKDRT

Int nal Application No
PCT/US2005/022577
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT
Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2004/039924 Al (BALDWIN ROBERT W ET AL) 1,2,4,6,
26 February 2004 (2004-02-26) 7,10-13,
15,16,
19,23,
24,26,
28-30,356
abstract
paragraph ‘0018!
paragraph ‘0034!
paragraph ‘0043!
paragraph ‘0067!
paragraph ‘0073!
paragraph ‘0090!
paragraph €0094!
X WO 01/42874 A (PHOENIX TECHNOLOGIES INC) 1-4,19,
14 June 2001 (2001-06-14) 23,24,
27,35
page 1, line 1 - 1ine 16
page 2, line 12 - 1ine 25
page 3, line 5 - line 12
page 4, line 4 - line 17
page 5, line 12 - 1ine 17
A US 5 944 821 A (ANGELO ET AL) 1-38
31 August 1999 (1999-08-31)
abstract
A US 6 105 137 A (GRAUNKE ET AL) 5,27
15 August 2000 (2000-08-15)
column 4, 1ine 13 - Tine 16
A US 2003/005272 Al (NALAWADI RAJEEV K ET 2,4,24,
AL) 2 January 2003 (2003-01-02) 26
paragraph ‘0009!
A US 6 658 515 B1 (LARSON MARK A ET AL) 14
2 December 2003 (2003-12-02)
column 6, Tline 39 - 1ine b2

Form PCT/ISA/210 {continuation of second sheet) (January 2004)

II\‘RNATIONAL SEARCH REPORT

Information on patent family members

Inte‘onal Application No

PCT/US2005/022577
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2003229794 Al 11-12-2003 AU 2003231237 Al 22-12-2003
CN 1675623 A 28-09-2005
EP 1512074 A2 09-03-2005
JP 2005529401 T 29-09-2005
WO 03104981 A2 18-12-2003

US 2004039924 Al 26-02-2004 CN 1380610 A 20-11-2002
JP 2002312242 A 25-10-2002
™ 589569 B 01-06-2004
Us 2003037237 Al 20-02-2003

WO 0142874 A 14-06-2001 AU 4705001 A 18-06-2001
CN 1460208 A 03-12-2003
GB 2371658 A 31-07-2002
JP 2004501407 T 15-01-2004
W 594577 B -21-06-2004

US 5944821 A 31-08-1999 NONE

US 6105137 A 15-08-2000 AU 4720699 A 24-01-2000
TW 435035 B 16-05-2001
WO 0002132 Al 13-01-2000

US 2003005272 Al 02-01-2003 NONE

US 6658515 Bl 02-12-2003 NONE

Fomn PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

