发明名称
一种在镁及其合金构件表面制备防蚀、耐磨损镀层的方法

摘要
一种在镁及其合金构件表面制备防蚀、耐磨损镀层的方法，其特征在于先进行转化处理，再进行化学镀镍：转化处理溶液成分为 Na$_2$SnO$_3$•3H$_2$O 30—50g/L、Na$_4$P$_2$O$_7$ 30—50g/L、NaOH 5—15g/L、NaCl\cdotCOOH•3H$_2$O 5—15g/L，温度 70—90℃，处理时间 50—70min，中等搅拌；镀镍溶液成分为 Ni(C$_6$H$_5$COOH)$_2$•4H$_2$O 或 NiCO$_3$•2Ni(OH)$_2$•4H$_2$O 15—30g/L 或 10—20g/L、NaH$_2$PO$_4$•H$_2$O 0.15—30g/L、NH$_4$HF$_3$10—20g/L、C$_3$H$_6$O$_2$•H$_2$O 5—15g/L、NH$_4$•H$_2$O 20—30ml/L、KIO$_3$ 或 腐蚀 0.01—0.02g/L 或 0.001—0.002g/L、CH$_3$COONa 5—15g/L、十二烷基苯磺酸钠 0.01—0.025g/L，溶液 pH 值 5.0—6.5，温度 80—90℃。本发明既解决了镁合金直接化学镀镍前处理的环保问题。在 AZ91D 和 AM50 镁合金实施例上得到了良好防蚀、耐磨损效果的镀层，为镁合金的防护提供了一种有效的措施。
1. 一种在镁及其合金构件表面制备防蚀、耐磨镀镍层的方法，其特征在于在构件表面进行化学转化处理，再对构件进行化学镀镍；

化学转化处理溶液成分为 Na₃SnO₃·3H₂O 30-50g/L、Na₄P₂O₇ 30-50g/L、NaOH 5-15g/L、NaCH₃COO·3H₂O 5-15g/L，温度 70-90°C，处理时间50-70min，中等搅拌；

化学镀镍溶液成分为 Ni(CH₃COOH)₂·4H₂O 或 NiCO₃·2Ni(OH)₂·4H₂O 15-30g/L 或 10-20g/L，NaH₂PO₄·H₂O 15-30g/L、NH₄HF₂ 10-20g/L、C₆H₈O₇·H₂O 5-15g/L、NH₄·H₂O 20-30ml/L、KIO₃ 或硫脲 0.01-0.02g/L 或 0.001-0.002g/L、CH₃COONa 5-15g/L、十二烷基苯磺酸钠 0.01-0.025g/L，溶液 pH 值 5.0-6.5，温度 80-90°C。

2. 按照权利要求 1 所述在镁及其合金构件表面制备防蚀、耐磨镀镍层的方法，其特征在于化学转化处理前对构件表面碱洗：碱液成分为 NaOH 10-20g/L、Na₂CO₃ 15-25g/L，在 85-95°C 温度下清洗 5-15min。

3. 按照权利要求 1 所述在镁及其合金构件表面制备防蚀、耐磨镀镍层的方法，其特征在于化学镀镍前对化学转化处理后的构件进行前处理，包括：

——敏化处理，溶液成分为 SnCl₂ 5-15g、HCl 5-10mL，H₂O 1000mL，处理温度为室温，时间 1-5min，中等搅拌；

——活化处理，溶液成分为 PdCl₂ 0.5-1.5g、C₂H₅OH 400-600mL、H₂O 500mL，处理温度为室温，时间 1-5min，中等搅拌；

——还原处理，溶液成分为 NaH₂PO₄·H₂O 20-50g/L、H₂O 1000mL，处理温度为室温，时间 10s-2min，中等搅拌。
说明 书

一种在镁及其合金构件表面制备防护、耐磨镍镀层的方法

技术领域：

本发明涉及金属表面的处理技术，具体为在镁及其合金表面利用化学转化处理和化学镀镍相结合的方法沉积一层耐磨、耐蚀的Ni-P防护层。

背景技术：

镁合金作为最轻的结构材料，被誉为二十一世纪的“绿色工程材料”，它具有很高的比强度、比刚度、比弹性模量和良好的铸造性、切削加工性及尺寸稳定性，同时具有很好的阻尼性能和电磁屏蔽性能。在汽车、航空、电子、通讯等行业得到广泛关注，几年应用增长率超过20%。然而由于镁合金的化学活性较高，在空气中很容易氧化，生成疏松、保护能力差的氧化膜，导致镁合金在潮湿的大气、土壤和海水中都将发生严重的腐蚀，阻碍了镁合金的广泛应用。

为了提高镁合金的耐腐蚀性能，一般采用化学转化、阳极氧化、物理气相沉积涂层等表面处理方法，可以起到一定的效果，但耐蚀性、耐磨性仍不够理想。化学镀镍作为一种功能性镀层具有良好的耐磨性、耐腐蚀性以及其它性能特点。如果能将化学镀镍成功应用于镁合金的防护方面，将极大地提高镁合金的耐腐蚀性能，并且还能拓宽其使用范围，目前化学镀镍在镁合金的防护方面研究的很多。

ASTM B480-88给出镁合金化学镀镍主要有浸锌和直接化学镀两种方法。浸锌法是在含有焦磷酸盐的锌盐溶液中浸锌后，通过氯化物镀铜打底，然后进行化学镀。此工艺复杂、不适用于铝含量较高的镁合金，同时氯化物的使用安全和废液处理等问题也急需解决。因此直接化学镀镍的方法受到重视。直接化学镀镍的工艺是先碱性除油，再进行铬酸浸渍和氢氟酸活化处理，最后进行化
学镍。在前处理过程中的铬酸和氢氟酸都对健康和环保不利，因此改进镁合金直接化学镀镍的前处理工艺，开发环保型的前处理方法具有很大的应用价值。

发明的技术内容：

本发明的目的是通过在镁合金构件表面提供一种复合化学镀镍涂层，来对镁合金进行防腐蚀，既解决了化学转化膜本身防护性能不显著的缺点，又解决了镁合金直接化学镀镍前处理工艺中存在的问题，并且转化膜作为过渡层，避免了镀镍层与镁合金基体的直接结合，降低了两者之间的电位差，避免了镀镍层破坏后强烈的电偶腐蚀的发生，可对镁合金起到理想的防护作用，同时整个工艺过程符合环境保护的要求。

本发明提供了一种在镁及其合金构件表面制备防蚀、耐磨镍镀层的方法，其特征在于在构件表面进行化学转化处理，再对构件进行化学镀镍；

化学转化处理溶液成分为 Na₂SnO₃·3H₂O 30-50g/L、Na₃P₂O₇ 30-50g/L、NaOH 5-15g/L、NaCH₃COO·3H₂O 5-15g/L，温度 70-90℃，处理时间 50-70min，中等搅拌。

化学镀镍溶液成分为 Ni(CH₃COOH)₂·4H₂O 或 NiCO₃·2Ni(OH)₂·4H₂O 15-30g/L 或 10-20g/L、NaH₂PO₃·H₂O 15-30g/L、NH₄HF₂ 10-20g/L、CaH₂O₇·H₂O 5-15g/L、NH₄H₂O 20-30ml/L、KIO₃ 或硫脲 0.01-0.02g/L 或 0.001-0.002g/L、CH₃COONa 5-15g/L、十二烷基苯磺酸钠 0.01-0.025g/L，溶液 pH 值 5.0-6.5，温度 80-90℃。

从环保的角度出发，本发明采用锡酸盐进行转化处理。溶液成分为碱金属的锡酸盐和焦磷酸盐为主要成分的碱性溶液。其中锡酸盐是主要的成膜剂，焦磷酸盐可很好的去除合金表面的氧化物或油污，在适当的 pH 下可得到具有良好吸附能力且相对均匀、致密的转化膜。
学镀镍。在前处理过程中铵酸和氢氟酸都对健康和环保不利，因此改进镁合金直接化学镀镍的前处理工艺，开发环保型的前处理方法具有很大的应用价值。

发明的技术内容：

本发明的目的是通过在镁合金构件表面提供一种复合化学镀镍涂层，来对镁合金进行防腐蚀，既解决了化学转化膜本身防护性能不显著的缺点，又解决了镁合金直接化学镀镍前处理工艺中存在的问题，并且转化膜作为过渡层，避免了镀镍层与镁合金基体的直接结合，降低了两者之间的电位差，避免了镀镍层破坏后强烈的电偶腐蚀的发生，可对镁合金起到理想的防护作用，同时整个工艺过程符合环境保护的要求。

本发明提供了一种在镁及其合金构件表面制备防腐蚀、耐磨镍镀层的方法，其特征在于在构件表面进行化学转化处理，再对构件进行化学镀镍；

化学转化处理溶液成分为 Na₂SnO₃·3H₂O 30-50g/L、Na₄P₂O₇ 30-50g/L、NaOH 5-15g/L、NaCH₃COO·3H₂O 5-15g/L，温度 70-90℃，处理时间 50-70min，中等搅拌。

化学镀镍溶液成分为 Ni(CH₃COOH)₂·4H₂O 或 NiCO₃·2Ni(OH)₂·4H₂O 15-30g/L 或 10-20g/L、NaH₂PO₄·2H₂O 15-30g/L、NH₄HF₂ 10-20g/L、C₆H₅O₇·H₂O 5-15g/L、NH₄H₂O 20-30ml/L、KIO₃ 或硫脲 0.01-0.02g/L 或 0.001-0.002g/L、CH₃COONa 5-15g/L、十二烷基苯磺酸钠 0.01-0.025g/L，溶液 pH 值 5.0-6.5，温度 80-90℃。

从环保的角度出发，本发明采用锡酸盐进行转化处理。溶液成分为碱金属的锡酸盐和焦磷酸盐为主要成分的碱性溶液。其中锡酸盐是主要的成膜剂，焦磷酸盐可很好的去除合金表面的氧化物或油污，在适当的 pH 下可得到具有良好吸附能力且相对均匀、致密的转化膜。
子还原掉，以防止这些离子破坏化学镀镍溶液的稳定性。由于镁合金的化学活性很高，敏化处理溶液的酸度要适当。

本发明的优点是将化学转化和化学镀镍合理的结合起来，既解决了化学转化膜本身防护效果不显著的缺点，又充分利用了化学转化膜本身的多孔性的特点，它为化学镀镍的前处理过程提供了良好的吸附条件，可在化学转化膜上成功的进行化学镀镍，极大的提高了镁合金的防蚀、耐磨性能。

附图说明：

图 1 为 AZ91D 合金锡酸盐转化处理后的表面形貌；
图 2 为 AZ91D 合金锡酸盐转化处理后的截面形貌；
图 3 为 AM50 合金锡酸盐转化处理后的表面形貌；
图 4 为 AM50 合金锡酸盐转化处理后的截面形貌；
图 5 为 AZ91D 合金转化膜上沉积镍的表面形貌；
图 6 为 AZ91D 合金转化膜上沉积镍的截面形貌；
图 7 为 AM50 合金转化膜上沉积镍的表面形貌；
图 8 为 AM50 合金转化膜上沉积镍的截面形貌。
图 9 为 AZ91D 和 AM50 合金锡酸盐转化膜上镀镍样品在 3.5wt% NaCl 溶液中极化至自腐蚀电位以上 1.0V 时的极化曲线；
图 10 为 AZ91D 和 AM50 合金锡酸盐转化膜上化学镀镍层极化测试后的表面形貌（两者形貌类似）。

具体实施方式：

1）样品碱洗：碱液成分为 NaOH 10-20g/L、Na₂CO₃ 15-25g/L，在 85-95 ℃温度下清洗 5-15min，以去除表面的油污和杂质。
2) 丙酮超声清洗 5-10min。

3) 化学转化处理：化学转化处理可以采用铬酸盐、磷酸盐、高锰酸盐、
锡酸盐为成膜剂的溶液。铬酸盐溶液的溶液成分可选择 Na₂Cr₂O₇·2H₂O
150-180g/L、H₂NO₃ 120-180 g/L、NH₄HF₂ 5-15 g/L，温度 20-35℃，处理时间
2-5min，中等搅拌；锡酸盐转化处理的溶液成分可选择 Na₂SnO₃·3H₂O 30-50g/L、
Na₃P₃O₈ 30-50g/L、NaOH 5-15g/L、NaCH₃COO·3H₂O 5-15g/L，温度 70-90℃，
处理时间 50-70min，中等搅拌。

4) 蒸馏水清洗。

5) 丙酮超声清洗 5-10min，以去除表面在化学转化时的残存物质。

6) 敏化处理：目的是在化学转化膜上吸附一层具有还原性的 Sn⁺⁺⁺，以便
在敏化处理时，将钯离子还原成有催化作用的钯原子，在化学镀时产生活性中
心。溶液成分为 SnCl₂ 5-15g、HCl 5-10mL、H₂O 1000mL、处理温度为室温，
时间 1-5min，中等搅拌。

7) 活化处理：目的是为了在化学转化膜表面产生一薄层催化性的贵金属
Pd，作为化学镀镍时氧化还原反应的催化剂。溶液成分为 PdCl₂ 0.5-1.5g、
C₂H₅OH 400-600mL、H₂O 500mL、处理温度为室温，时间 1-5min，中等搅拌。

8) 还原处理：试样经过敏化处理后，要进行还原处理，将吸附的多余的贵
金属离子还原掉，以防止这些离子破坏化学镀镍溶液的稳定性。溶液成分为
NaH₂PO₂·H₂O 20-50g/L、H₂O 1000mL，处理温度为室温，时间 10s-2min，中
等搅拌。

9) 蒸馏水清洗、冷风吹干。

10) 化学镀镍：化学镀镍时镀液基本组分如下：

(1) 主盐：对于镍及其合金而言，由于其本身的高活性，决定了其主盐不
宜选择硫酸镍或氯化镍，主盐定为醋酸镍或者碱式碳酸镍。

② 还原剂可选择次亚磷酸钠、硼氢化钠、烷基氨硼和肼等，它们在结构上的共同特征是含有两个或多个活性氢，还原 Ni²⁺就是靠还原剂的催化脱氢进行的。由于次亚磷酸钠价格低廉、镀液容易控制，而且 Ni-P 合金镀层性能优良，还原剂选择次亚磷酸钠。

③ 络合剂是除主盐和还原剂外，最重要的镀液组成部分，其主要作用是防止镀液析出沉淀，增加镀液的稳定性并延长使用寿命，提高镀液工作的 pH 范围和改进镀层质量。络合剂选择柠檬酸。

④ 稳定剂的作用在于抑制镀液的自发分解，使镀液过程在控制条件下有序进行。选择 KIO₃ 或硫脲作为稳定剂。

⑤ 缓冲剂的作用是确保镀液过程中镀液的 pH 值不至于变化太大，能维持在一定的 pH 值范围之内，选择醋酸钠为缓冲剂。

⑥ 表面活性剂有助于气体（H₂）的逸出，降低镀层的孔隙率；另外，由于表面活性剂兼有发泡剂的作用，施镀过程中在逸出气体的搅拌下，镀液表面形成一层白色的泡沫，它可以保温、降低镀液的蒸发损失，还有助于脏物的清除，保持镀液和镀件的清洁。选择十二烷基苯磺酸钠作为表面活性剂。

⑦ pH 值是影响镀层质量的重要因素，它的变化影响镀层的沉积速度、磷含量、应力分布和镀液的稳定性等，镁及其合金施镀过程中需严格控制 pH 值的范围，一般在 5.0-6.5 之间。

⑧ 温度是对化学镀镍沉积速度影响最大的因素，施镀温度要适当且控温均匀，保持在 80-85℃，避免局部过热。总体成分见表 1。
宜选择硫酸镍或氯化镍，主盐定为醋酸镍或者碱式碳酸镍。

② 还原剂可选择次亚磷酸钠、硼氢化钠、烷基氨硼和肼等，它们在结构上的共同特征是含有两个或多个活性氢，还原 Ni²⁺就是靠还原剂的催化脱氢进行的。由于次亚磷酸钠价格低廉、镀液容易控制，而且 Ni-P 合金镀层性能优良，还原剂选择次亚磷酸钠。

③ 络合剂是除主盐和还原剂外，最重要的镀液组成部分，其主要作用是防止镀液析出沉淀，增加镀液的稳定性并延长使用寿命，提高镀液工作的 pH 范围和改进镀层质量。络合剂选择柠檬酸。

④ 稳定剂的作用在于抑制镀液的自发分解，使施镀过程在控制条件下有序进行。选择 KIO₃ 或硫酸作为稳定剂。

⑤ 缓冲剂的作用是确保施镀过程中镀液的 pH 值不至于变化太大，能维持在一定的 pH 值范围之内，选择醋酸钠为缓冲剂。

⑥ 表面活性剂有助于气体（H₂）的逸出，降低镀层的孔隙率；另外，由于表面活性剂兼有发泡剂的作用，施镀过程中在逸出气体的搅拌下，镀液表面形成一层白色的泡沫，它可以保温、降低镀液的蒸发损失，还有助于赃物的清除，保持镀液和镀件的清洁。选择十二烷基苯磺酸钠作为表面活性剂。

⑦ pH 值是影响镀层质量的重要因素，它的变化影响镀层的沉积速度、磷含量、应力分布和镀液的稳定性等，镍及其合金施镀过程中需严格控制 pH 值的范围，一般在 5.0-6.5 之间。

⑧ 温度是对化学镀镍沉积速度影响最大的因素，施镀温度要适当且控温均匀，保持在 80-85℃，避免局部过热。总体成分见表 1。
表 1

<table>
<thead>
<tr>
<th>成分</th>
<th>含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni(CH₃COOH)₂•4H₂O 或 NiCO₃•2Ni(OH)₂•4H₂O</td>
<td>15-30g/L 或 10-20g/L</td>
</tr>
<tr>
<td>Na₂H₂PO₄•H₂O</td>
<td>15-30g/L</td>
</tr>
<tr>
<td>NH₄HF₂</td>
<td>10-20g/L</td>
</tr>
<tr>
<td>C₆H₅O₇•H₂O</td>
<td>5-15g/L</td>
</tr>
<tr>
<td>NH₄•H₂O</td>
<td>20-30ml/L</td>
</tr>
<tr>
<td>KIO₃ 或硫脲</td>
<td>0.01-0.02g/L 或 0.001-0.002g/L</td>
</tr>
<tr>
<td>CH₃COONa</td>
<td>5-15g/L</td>
</tr>
<tr>
<td>十二烷基苯磺酸钠</td>
<td>0.01-0.025g/L</td>
</tr>
<tr>
<td>pH 值</td>
<td>5.0-6.5</td>
</tr>
<tr>
<td>温度</td>
<td>80-90℃</td>
</tr>
</tbody>
</table>

实施例 1

选材为铸态 AZ91D 合金，样品尺寸为 15mm×10mm×3mm，用 1000 grit 砂纸打磨，以保证基体具有相同的表面粗糙度，然后进行碱性除油→丙酮超声清洗→化学转化处理→水洗→丙酮超声清洗→化学镀镍前处理→化学镀镍。化学镀镍的溶液成分和操作条件相同，如表 2 所示。化学转化处理的溶液成分和操作条件以及化学镀镍的前处理工艺的溶液成分和操作条件如表 3 所示。

实施例 2

选材为铸态 AM50 合金，样品尺寸为 15mm×10mm×3mm，用 1000 grit 砂纸打磨，以保证基体具有相同的表面粗糙度，然后进行碱性除油→丙酮超声清洗→化学转化处理→水洗→丙酮超声清洗→化学镀镍前处理→化学镀镍。化学镀镍的溶液成分和操作条件相同，如表 2 所示。化学转化处理的溶液成分和操作条件以及化学镀镍的前处理工艺的溶液成分和操作条件如表 3 所示。
两种实施例的化学转化膜的表面和截面形貌如图 1-4 所示，可见锡酸盐转化膜由细小的球形颗粒密积而成，颗粒之间存在间隙，将为后续化学镀镍的前处理过程提供良好的吸附条件，转化膜与基体的结合情况良好，转化膜的成分主要为 MgSnO₃·3H₂O。转化膜上化学镀镍的表面和截面形貌如图 5-8 所示，可见在 AZ91D 和 AM50 合金化学转化膜上沉积的化学镀镍层的组织都十分致密，无表面缺陷，从截面形貌可见，化学镀镍层的结合情况良好，在化学镀镍层与基体之间存在锡酸镁的过度层。能谱分析表明镀层的磷含量达到了 7-13wt%，从组织和成分上为镀层的耐腐蚀性能提供了良好的保证。在 3.5wt% NaCl 溶液中的动电位极化测试结果表明，两种合金的化学镀镍层在阳极极化的过程中都发生明显的钝化现象，如图 9 所示。极化测试后的表面形貌如图 10 所示，即使阳极极化到自腐蚀电位以上 1.0V 时，镀镍层也只是产生一些极其细小的蚀孔，但并未蚀穿或开裂，仍可对基体起到理想的防护作用。