(54) Title: RECURSIVE SAW-FILTER WITH A LOW CHIP LENGTH

(54) Bezeichnung: REKURSIVES OFW-FILTER MIT GERINGER CHIPLÄNGE

(57) Abstract: The invention relates to a recursive surface wave filter with directed reflexion, characterized in that the desired transmission behavior is formed by superimposing the signals of three electrically connected individual tracks.

(57) Zusammenfassung: Für ein rekursives Oberflächenwellenfilter mit gerichteter Reflexion wird vorgeschlagen, das gewünschte Übertragungsverhalten durch Überlagerung der Signale von drei elektrisch verschalteten Einzelspuren zu modellieren.
Veröffentlicht:
— mit internationalem Recherchenbericht
— vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.
Beschreibung

Rekursives OFW-Filter mit geringer Chiplänge

5 Oberflächenwellenfilter, kurz auch OFW-Filter genannt, können beispielsweise als Zwischenfrequenzfilter im Empfangsteil eines Mobiltelefons Verwendung finden. Dabei müssen sie verschiedene Anforderungen erfüllen, insbesondere ein ausreichend breites Paßband, eine hohe Flankensteilheit und eine bestmögliche Selektion auf kleinstmöglicher Chipfläche aufweisen.

35 Oberflächenwellenfilter, die das gewünschte Übertragungsverhalten zeigen, wurden bislang mit verschiedenen Methoden rea-

Möglich ist es auch, die Reflexionen in den Oberflächenwellenstrukturen der Wandler oder Reflektoren zu erhöhen. Damit werden stärkere Resonanzen erzeugt, mit denen die Dauer der Impulsantwort verlängert wird. Bei Quarzsubstraten ist die Reflexion allerdings stark von der relativen Schichtdicke der Metallisierung abhängig. Die notwendige starke Reflexion wird nur mit einer großen Metallisierungsschichtdicke erreicht, was aber zu einer erhöhten Empfindlichkeit gegenüber technologiebedingten Fertigungsstreuungen bei der Herstellung der Filter führt.

Eine andere Möglichkeit besteht darin, ein OFW-Filter mit genau zwei unterschiedlichen akustischen Spuren zu verwenden, in dem sowohl am Filtereingang als auch am Filterausgang je zwei Interdigitalwandler parallel verschaltet sind. Dabei wird eine größere Anzahl von Freiheitsgraden beim Design des

Aufgabe der vorliegenden Erfindung ist es daher, ein OFW-Filter anzugeben, welches die geforderten Anforderungen an das Übertragungsverhalten auf einer reduzierten Chiplänge realisieren kann. Der Aufbau des Filters soll dabei so sein, daß Fehlertoleranzen bei der Herstellung nicht zu einer Verschlechterung des Übertragungsverhaltens des Gesamtfilters führen.

Diese Aufgabe wird erfindungsgemäß durch ein Oberflächenwellenfilter mit den Merkmalen von Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung gehen aus weiteren Ansprüchen hervor.

Die Erfindung erzielt ein verbessertes Übertragungsverhalten des Filters bei gegenüber dem Stand der Technik reduzierter Chiplänge dadurch, daß zumindest drei akustische Spuren elektrisch seriell oder parallel geschaltet werden. Jede Spur umfaßt dabei zumindest zwei als Ein- und Ausgangswandler dienende Interdigitalwandler, die in jeder Spur zwischen zwei Reflektoren angeordnet sein können. Die zumindest drei Spuren sind voneinander verschieden, so daß die Anforderungen an die Filterübertragungsfunktion auf alle unterschiedlichen Spuren aufgeteilt werden können. Bei der Verschaltung dieser Spuren ergibt sich der Vorteil, daß bis zu sechs unterschiedliche Wandler im Filter angeordnet werden können, mit denen auch komplexe Optimierungsprobleme gelöst werden können. Jede akustische Spur stellt dabei ein Teilfilter dar, wobei in zumin-

Bei der Erfindung dagegen führt die dritte und ggf. die weiteren Spuren dazu, daß die beiden ersten Spuren völlig unabhängig voneinander entworfen werden können. Die dritte Spur und ggf. die weiteren Spuren sorgen dann dafür, daß die Summe der komplexen Zeiger innerhalb des gesamten Stoppbandbereichs gegen Null geht.

Unter Gitterstruktur wird dabei eine regelmäßige Streifenstruktur verstanden, die beispielsweise auf einem \(\lambda/2 \)-Raster angeordnet ist. Die vertikal zur Wellenausbreitungsrichtung angeordneten Streifen können miteinander verbunden sein, oder alternativ auch Einzelstreifen ohne gegenseitige Verbindung sein. Die Länge einer Gitterstruktur kann beispielsweise im Bereich von 5 bis 20 Wellenzügen liegen, ist aber nicht auf diese Länge beschränkt. Bei alleiniger Verwendung als Abschirmung ist die Gitterstruktur vorzugsweise reflexionsfrei.
Dies kann mit einer Splitfingerstruktur (λ/8 oder λ/6 Finger) erreicht werden.

Beträgt der Phasenwinkel zwischen dem Anregungs- und dem Reflektionszentrum einer SPUDT-Zelle 45°, so führt dies zu einer elektroakustischen Konversion, also einer Übertragungskurve, die symmetrisch zur Mittenfrequenz ist. Weicht der Phasenwinkel von diesem Wert ab, so wird durch die entstehende Unsymmetrie eine Flanke des Passbands steiler ausgebildet als die andere Flanke.

In einer Ausführungsform der Erfindung weist zumindest ein Teilfilter SPUDT-Zellen mit einen Phasenwinkel zwischen dem Anregungs- und dem Reflektionszentrum von 45° ± 90° auf, wo-
bei z eine ganze Zahl ist. Hierbei handelt es sich um einen klassischen SPUDT (Teil-)Filter.

Eine weitere Variationsmöglichkeit eines erfindungsgemäßen Wandlers besteht darin, die Mittenfrequenz der Interdigitalwandlern den einzelnen Spuren unterschiedlich zu gestalten. Durch den damit erreichten Versatz der Mittenfrequenzen wird ein breiteres Paßband und damit ein größerer Durchlaßbereich erhalten.

Wenn sämtliche Spuren parallel verschaltet sind, ist es nicht nötig, die einzelnen Spuren an separate Anschlußpads anschließen. Vielmehr ist es möglich, die Elektrodenfinger von Interdigitalwandlern zweier in transversaler Richtung benachbarten Spuren einzeln miteinander zu verbinden. Wenn in mehreren Spuren die Anschlußfolge der Elektrodenfinger übereinstimmend ist, ist es auch möglich, die Finger mehrerer benachbarter Spuren miteinander zu verbinden.

Trotz verbundener Elektrodenfinger ist es möglich, entsprechende Variationen der Einzelspuren vorzunehmen, die zu dem erfindungsgemäß optimierten Übertragungsverhalten des Gesamtfilters führen. Werden die Elektrodenfinger eines Interdigitalwandlers mit den Elektrodenfingern des in transversa-
ler Richtung direkt benachbarten Interdigitalwandlers der be-
achbarten Spur miteinander verbunden, so ist es möglich, die
Elektrodenfinger der verbleibenden übrigen Wandler auf her-
kömmlche Weise anzuschließen. Auf diese Weise können zwei
unterschiedliche Anschlußmöglichkeiten für die Interdigital-
wandler in dem Filter beziehungsweise in einzelnen Spuren ge-
genommen.

Die Verbindung von Elektrodenfingern einander benachbarter
Interdigitalwandler in unterschiedlichen Spuren erfordert
nicht identische Fingeranordnungen, sondern nur gleiche Fin-
geranschußfolgen. Liegen die Elektrodenfinger in den benach-
barten Interdigitalwandern auf unterschiedlichem großem oder
geneinander verschobenem Raster, so können dennoch die Elek-
trodenfinger der benachbarten Interdigitalwandler miteinander
verbunden sein. Die Verbindung erfolgt dann in einem Übergangsbereich, in dem die Fingerverbindungsstücke nicht mehr
parallel zueinander und nicht vertikal zur Wellenausbrei-
tungsrichtung verlaufen müssen.

Bei Interdigitalwandern mit unterschiedlichem Raster bzw.
unterschiedlicher Fingerperiode und dementsprechend unter-
schiedlicher Mittenfrequenz ist es möglich, die Aperturen der
Einzelspuren immer kleiner zu machen, die Anzahl der Spuren
dagegen im gleichen Umfang zu erhöhen, so daß für das Ge-
samtfilter die Summe der Aperturen unverändert oder nahezu
unverändert bleibt. Gehört die Apertur der Einzelspur gegen
Null, so wird auf diese Weise ein Interdigitalwandler mit un-
endlich vielen Spuren erhalten, der in transversaler Richtung
gesehen eine kontinuierliche Veränderung des Fingerabstands
(Raster) beziehungsweise der Mittenfrequenz aufweist. Ein
solcher auch als FAN-Wandler bekannter Interdigitalwandler
hat den Vorteil einer erhöhten Bandbreite des Passbands. Er-
fundungsgemäß kann ein oder mehrere Interdigitalwandler
durch FAN-Wandler ersetzt sein.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und der dazugehörigen Figuren näher erläutert.

Figur 1 zeigt ein erfindungsgemäßes Oberflächenwellenfilter mit drei Spuren in schematischer Darstellung.

Figur 2 zeigt eine einzelne Spur mit zusätzlichen Gitterstrukturen.

Figur 3 zeigt ein dreispuriges Oberflächenwellenfilter, bei dem in den Spuren unterschiedliche Abstände zwischen Ein- und Ausgangswandler gewählt sind.

Figur 4 zeigt ausschnittsweise miteinander verbundene Elektrodenfinger zweier benachbarter Interdigitalwandler.

Figur 5 zeigt zwei Interdigitalwandler mit verbundenen Elektrodenfingern, wobei in beiden Spuren unterschiedliche Fingerperioden gewählt sind.

Figur 6 zeigt einen Interdigitalwandler mit kontinuierlich variierender Fingerperiode.
Figur 7 zeigt das Übertragungsverhalten von Einzelspuren mit unterschiedlichem Phasenwinkel zwischen Anregung und Reflektion.

Figur 8 zeigt ein Zeigerdiagramm als vereinfachte Darstellung für die Signaladdition im Filter.

nenfalls vorhandenen Reflektoren 3 können mit Masse verbunden sein, können aber auch als sogenannte floatende Reflektoren ausgebildet sein.

Figur 3 zeigt in schematischer Darstellung drei miteinander parallel verschaltete Einzelspuren, bei denen sich die Einzelspuren A, B und C dadurch unterscheiden, daß der Abstand zwischen Eingangswandler 1 und Ausgangswandler 2 in den einzelnen Spuren unterschiedlich ist. Zusätzlich ist in den drei Spuren die gesamte Spurlänge variiert.

Figur 4 zeigt ausschnittsweise einen Bereich eines erfindungsgemäßen Filters, bei dem die Elektrodenfinger zweier in benachbarten Spuren nebeneinander angeordneter Interdigitalwandler einzeln miteinander verbunden sind. Spur A und Spur B unterscheiden sich dabei in ihrer Fingerperiode, die von der Spur A nach der Spur B ansteigt. In einem Übergangsbereich E sind die Verbindungsstücke zwischen den einzelnen Elektrodenfingern nicht mehr vertikal zur Ausbreitungsrichtung x der Oberflächenwelle angeordnet, sondern schräg dazu, um sich den unterschiedlichen Raster (Fingerperiode) der unterschiedlichen Spuren anzupassen. Der Anschaulichkeit halber ist der Unterschied in der Fingerperiode in der Figur übertrieben dargestellt. Nicht dargestellt ist die entsprechende Fingeranschlussfolge, die in diesem Bereich des Interdigitalwandlers beispielsweise alternierend sein kann.

Figur 5 zeigt einen Ausschnitt aus einem erfindungsgemäßen Oberflächenwellenfilter, bei dem die Elektrodenfinger zweier in benachbarten Spuren nebeneinanderliegender Interdigital-
wandler einzeln miteinander verbunden sind. Im Unterschied zu der Anordnung gemäß Figur 4 weisen die beiden Spuren A und B hier gleiche Fingerperiode auf. Neben den anregenden Fingern sind hier reflektierende Finger angeordnet, wobei die Anordnung so ist, daß die dargestellten Strukturen eine gerichtete Reflexion aufweisen. Die dunkel dargestellten Elektrodenfinger können beispielsweise mit einer oberen Stromschiene, die heller dargestellten Elektrodenfinger mit einer unten liegenden Stromschiene verbunden werden. Zwischen den beiden Spuren sind daher keine separaten Stromschiienen zum Anschluß der Elektrodenfinger erforderlich. Figur 5 zeigt auch, daß bei unterschiedlicher Fingeranschlußfolge trotzdem einzelne Elektrodenfinger einander benachbarter Interdigitalwandler in unterschiedlichen Spuren einzeln miteinander verbunden werden können, was durch den Übergangsbereich B ermöglicht ist, in dem die Verbindungssstücke zwischen den Elektrodenfingern unterschiedlicher Interdigitalwandler schräg gegen die Ausbreitungsrichtung der Oberflächenwelle verlaufen können.

In Figur 7 sind die Kurven für das Übertragungsverhalten von drei akustischen Spuren dargestellt, bei denen unterschiedliche Phasenwinkel zwischen den Anregungs- und Reflexionszentrren der Interdigitalwandler eingestellt sind. Bei einem von 45° abweichenden Phasenwinkel wird eine Übertragungskurve erhalten, die ein unsymmetrisches Paßband aufweist. Als wesent-

Die Erfindung wird hier nur anhand einiger exemplarischer Ausführungsbeispiele dargestellt, ist natürlich aber nicht
Patentansprüche

1. Oberflächenwellenfilter
 mit zumindest drei unterschiedlichen, elektrisch seriell, parallel, oder seriell und parallel geschalteten akustischen Spuren (A,B,C),
 bei dem jede Spur zumindest zwei als Ein- und Ausgangswandler dienende Interdigitalwandler (1, 2) aufweist,
 bei dem jede Spur ein Teilfilter ist, in dem zwischen den Zentren von Anregung und Reflexion ein Phasenwinkel eingestellt ist, der ungleich einem Vielfachen von 90° ist,
 bei dem die einzelnen Spuren so ausgebildet sind, daß sich ein gewünschtes und bezüglich Flankensteilheit, Passband und Einfügedämpfung vorgegebenes Übertragungsverhalten erst aus der Überlagerung des Verhaltens der drei akustischen Spuren ergibt.

2. Oberflächenwellenfilter nach Anspruch 1,
 bei dem zumindest zwei Interdigitalwandler (1,2) in den unterschiedlichen Spuren (A,B,C) unterschiedlich ausgebildet sind.

3. Oberflächenwellenfilter nach Anspruch 1 oder 2,
 bei dem innerhalb zumindest einer Spur (A,B,C) eine zusätzliche Gitterstruktur (4,5) oder eine metallisierte Laufstrecke zwischen den beiden Interdigitalwandlern (1,2) oder zwischen einem Interdigitalwandler und dem Reflektor (3) angeordnet ist, die elektrisch nicht mit einem Ein- oder Ausgangswandler verbunden ist.

4. Oberflächenwellenfilter nach einem der Ansprüche 1-3,
 bei dem die Gitterstruktur (4,5) oder die metallisierte Laufstrecke mit Masse verbunden ist, reflexionsfrei ausgebildet und zwischen Ein- und Ausgangswandler (1,2) angeordnet ist.
5. Oberflächenwellenfilter nach einem der Ansprüche 1-4, bei dem die Aperturen der akustischen Spuren (A,B,C) unterschiedlich sind.

6. Oberflächenwellenfilter nach einem der Ansprüche 1-5, bei dem die Abstände der Anregungszentren und der Reflexionszentren zwischen Ein- und Ausgangswandler (1,2) in den akustischen Spuren unterschiedlich sind.

7. Oberflächenwellenfilter nach einem der Ansprüche 1-6, bei dem mehr als drei akustische Spuren (A,B,C) seriell, parallel, oder teils seriell und teils parallel geschaltet sind.

8. Oberflächenwellenfilter nach einem der Ansprüche 1-7, bei dem zumindest einige der akustischen Spuren (A,B,C) auf einem Chip parallel zueinander angeordnet sind, bei dem zumindest zwei Interdigitalwandler (1,2) aus einander benachbarten Spuren nebeneinander angeordnet sind und bei dem Elektrodenfinger aus beiden Interdigitalwandlern einzeln miteinander spurübergreifend verbunden sind.

11. Oberflächenwellenfilter nach einem der Ansprüche 1-11, bei dem die Mittenfrequenz in den unterschiedlichen Spu-
ren unterschiedlich ist.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H03H9/64

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H03H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 910 839 A (WRIGHT PETER) 27 March 1990 (1990-03-27) column 9, line 40 - line 44 column 10, line 35 -column 16, line 13</td>
<td>1, 6, 9</td>
</tr>
<tr>
<td>A</td>
<td>US 5 475 348 A (HODE JEAN-MICHEL ET AL) 12 December 1995 (1995-12-12) column 8, line 4 - line 59</td>
<td>1, 7, 8</td>
</tr>
<tr>
<td>A</td>
<td>US 5 896 071 A (CAMERON THOMAS PHILIP ET AL) 20 April 1999 (1999-04-20) column 5, line 5 - line 20</td>
<td>1, 7, 8</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

*"A" document defining the general state of the art which is not considered to be of particular relevance

*A" earlier document but published on or after the international filing date

*L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"XX" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*"&" document member of the same patent family

Date of the actual completion of the international search 21 September 2001

Date of mailing of the international search report 01/10/2001

Name and mailing address of the ISA
European Patent Office, P.B. 5816 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx 31 651 epc nl, Fax: (+31-70) 340-3016

Authorized officer D/L PINTA BALLE... , L
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 3586199 T2</td>
<td>14-01-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0184508 A2</td>
<td>11-06-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2168212 A,B</td>
<td>11-06-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1183990 B</td>
<td>22-10-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61136313 A</td>
<td>24-06-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9406926 B1</td>
<td>29-07-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2121477 A1</td>
<td>29-04-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69205437 D1</td>
<td>16-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69205437 T2</td>
<td>21-03-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0608249 A1</td>
<td>03-08-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9308641 A1</td>
<td>29-04-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1254455 A</td>
<td>24-05-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0981857 A1</td>
<td>01-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000513181 T</td>
<td>03-10-2000</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEFZIERUNG DES ANMELDUNGSSTANDES
IPK 7 H03H/64

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE
Rechercheerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 H03H

Rechercheierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 475 348 A (HODE JEAN-MICHEL ET AL) 12. Dezember 1995 (1995-12-12) Spalte 8, Zeile 4 - Zeile 59</td>
<td>1,7,8</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Besondere Kategorien von angegebenen Veröffentlichungen :
A: Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutungsvoll anzusehen ist
E: älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
L: Veröffentlichung, die genannt ist, wenn Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt worden soll oder die aus einem anderen besonderen (Grund angegeben ist (wie ausgeführt)
OP: Veröffentlichung, die sich auf eine mündliche Offenbarung etc. in Verbindung oder andere Maßnahmen bezieht
PP:Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beantragten Prioritätsdatum veröffentlicht worden ist

X: Siehe Anhang Patentfamilie

Datum des Abschusses der internationalen Recherche
21. September 2001

Absendedatum des internationalen Recherchenberichts
01/10/2001

Name und Postanschrift der Internationalen Recherchebehörde
Europäisches Patentamt, P.B. 5818 Patentkabin 2 NL - 2200 HV, Pijnacker
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Bevollmächtigter Beamtenerster
D/L PINTA BALLE..., L
<table>
<thead>
<tr>
<th>Recherchebericht</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglieder der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 3586199 T2</td>
<td>14-01-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0184508 A2</td>
<td>11-06-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2168212 A,A,B</td>
<td>11-06-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1183990 B</td>
<td>22-10-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61136313 A</td>
<td>24-06-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 9406926 B1</td>
<td>29-07-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2121477 A1</td>
<td>29-04-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69205437 D1</td>
<td>16-11-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69205437 T2</td>
<td>21-03-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0608249 A1</td>
<td>03-08-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9308641 A1</td>
<td>29-04-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1254455 A</td>
<td>24-05-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0981857 A1</td>
<td>01-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000513181 T</td>
<td>03-10-2000</td>
</tr>
</tbody>
</table>