
JP 5462254 B2 2014.4.2

10

20

(57)【特許請求の範囲】
【請求項１】
　実行可能命令を含むコンピューター記憶媒体であって、該実行可能命令は、プロセッサ
ーによって実行されると、
　前記プロセッサー上で動作するオペレーティングシステムを用意するステップであって
、前記プロセッサーは前記オペレーティングシステムを介してアプリケーションを実行す
る、ステップと、
　前記プロセッサーが、前記アプリケーションによりアクセスされるリソース及び前記ア
プリケーションがなすことができるコールを制御するために前記オペレーティングシステ
ムを介してセキュリティインフラストラクチャーを実施するステップであって、前記プロ
セッサーは、
　　前記プロセッサーがランタイムオブジェクトを作成する場合、前記プロセッサーが、
関連付けられるサブジェクトのための一意の識別子を定義し、該関連付けられるサブジェ
クトに関連付けられるアカウントを指定するためのセキュリティ識別子を設けるステップ
、
　　前記一意の識別子をメモリーに保持されるアカウントデータベース内のエントリにマ
ッピングするステップであって、前記セキュリティ識別子に割り当てられた基本特権及び
拡張特権を求める、マッピングするステップ、
　　前記プロセッサーが、前記関連付けられるサブジェクトのマイグレーションに沿って
関連付けられるサブジェクトの識別子を蓄積するステップ、

(2) JP 5462254 B2 2014.4.2

10

20

30

40

50

　　前記プロセッサーが、前記セキュリティ識別子に割り当てられた前記基本特権及び前
記拡張特権を求めることに基づいて、識別情報のセット及び該識別情報のセットに割り当
てられた特権の集合を定義するためのセキュリティトークンを作成するステップ、並びに
　　前記プロセッサーが、
　　　前記関連付けられるサブジェクトの前記蓄積された識別子のすべて及び前記特権の
集合をインターセクトするステップ、並びに
　　　前記リソースへのアクセスを付与する前に、前記関連付けられるサブジェクトのコ
ールチェーンコンテキストをキャプチャするステップと、前記関連付けられるサブジェク
トを分析して、前記コールチェーンにおける蓄積された各前記識別情報及び各前記関連付
けられるサブジェクトが、前記要求されたリソースへのアクセスを有することを検証し、
それによって、デフォルトにより最小特権を可能にするステップであって、前記コールチ
ェーンはレジストリを開くためのレジストリオープンキーに対するアプリケーションコー
ルを含み、前記レジストリは低い特権によって読み出すことができない保護されたキーを
含み、前記アプリケーションコールは、前記レジストリのアクセスキーを携行しレジスト
リアプリケーションプログラムインターフェース（ＡＰＩ）を実施するサーバープロセス
へマイグレーションされる、ステップ
　　によって前記関連付けられるサブジェクトのアクセス特権を求めるステップ
　によって、前記セキュリティインフラストラクチャーを実施する、ステップと
によって、関連付けられるサブジェクトによるリソースへのアクセスを制御するためのセ
キュリティインフラストラクチャーを提供する、実行可能命令を含むコンピューター記憶
媒体。
【請求項２】
　前記関連付けられるサブジェクトは、プロセス又はプロセスのスレッドを含む、請求項
１に記載のコンピューター記憶媒体。
【請求項３】
　前記セキュリティトークンとセキュリティ記述子との間の関係が、要求されたリソース
への関連付けられるサブジェクトによるアクセス権の制御を決定する、請求項１に記載の
コンピューター記憶媒体。
【請求項４】
　アクセス特権を求める前記ステップは、セキュリティトークンにおける各前記セキュリ
ティ識別子を使用して、セキュリティトークンが、セキュリティ記述子によって指定され
たリソースへのアクセスを要求したか否かを判断し、コンタクトチェーン内のあらゆるコ
ーラーが、要求されたリソースへのアクセスを付与する特権を有するときにのみ、前記要
求されたリソースへのアクセスが付与される、請求項１に記載のコンピューター記憶媒体
。
【請求項５】
　前記リソースへのアクセス権を定義するセキュリティ記述子を構築するステップと、
　前記セキュリティトークンに従って前記関連付けられるサブジェクトを識別するステッ
プと、
　前記セキュリティ記述子において定義された前記識別情報が前記セキュリティ記述子に
おけるアクセス制御エントリに含まれるか否かを判断するステップと、
　前記アクセス制御エントリに基づいて前記識別情報にとって利用可能なアクセス権を求
めるステップと、
　前記求めたアクセス権に従って前記識別情報にアクセス権を付与するステップと
をさらに含む、請求項１に記載のコンピューター記憶媒体。
【請求項６】
　関連付けられるサブジェクトに関係するすべてのトークンのリストをセキュリティトー
クンリスト内に保持するステップをさらに含み、現在のアクティブトークンは、常に前記
セキュリティトークンリストの先頭にあり、前記関連付けられるサブジェクトに対するす
べてのアクセスチェック及び特権チェックは、関連付けられるサブジェクトがアクセスを

(3) JP 5462254 B2 2014.4.2

10

20

30

40

50

要求するリソースを前記セキュリティトークンリストの先頭の前記現在のアクティブセキ
ュリティトークンと比較することにより、前記現在のアクティブセキュリティトークン及
び前記関連付けられるサブジェクトの現在のコンテキストを使用してハンドリングされる
、請求項１に記載のコンピューター記憶媒体。
【請求項７】
　クライアント側において、関連付けられるサブジェクトのセキュリティコンテキストを
メッセージキューに書き込むステップと、前記サーバー側において、前記メッセージキュ
ーから前記関連付けられるサブジェクトの前記セキュリティコンテキストを非同期にリト
リーブするステップと、及び偽装される前記関連付けられるサブジェクトの前記リトリー
ブしたセキュリティコンテキストをコピーすることによって前記関連付けられるサブジェ
クトを偽装するステップとをさらに含む、請求項１に記載のコンピューター記憶媒体。
【請求項８】
　関連付けられるサブジェクトの現在のセキュリティトークンに関連付けられるすべての
識別情報が要求リソースにアクセスすることができるときに、前記要求されたリソースへ
のアクセスを付与するステップをさらに含み、現在の関連付けられるサブジェクトのコー
ルスタックにおけるすべてのチャンバーに関連付けられるすべての識別情報は、前記要求
リソースにアクセスすることができ、前記関連付けられるサブジェクトのための保存され
たコンテキストに関連付けられるすべての識別情報は、前記要求されたリソースにアクセ
スすることができる、請求項１に記載のコンピューター記憶媒体。
【請求項９】
　オフライン処理用に、オフラインデータベース内にセキュリティコンタクトを記憶する
ステップをさらに含む、請求項１に記載のコンピューター記憶媒体。
【請求項１０】
　プロセッサーによってオペレーティングシステムを介して実施されるセキュリティイン
フラストラクチャーであって、
　関連付けられるサブジェクトのための一意の識別子を定義し、該関連付けられるサブジ
ェクトに関連付けられるアカウントを指定するための、前記プロセッサーによって作成さ
れるセキュリティ識別子と、
　前記セキュリティ識別子に割り当てられた基本特権及び拡張特権を求めることに基づい
て、識別情報のセット及び該識別情報のセットに割り当てられた特権の集合を定義するた
めの、前記プロセッサーによって作成されるセキュリティトークンであって、前記基本特
権及び前記拡張特権は、前記関連付けられるサブジェクトの１つ又は複数のアクセス特権
を含み、前記１つ又は複数のアクセス特権は、
　　前記識別情報のセット及び前記特権の集合をインターセクトするステップ、並びに
　　前記リソースへのアクセスを付与する前に、前記関連付けられるサブジェクトのコー
ルチェーンコンテキストをキャプチャするステップと、前記関連付けられるサブジェクト
を分析して、前記コールチェーンにおける識別情報及び前記関連付けられるサブジェクト
が、要求されたリソースへのアクセスを有することを検証し、それによって、デフォルト
により最小特権を可能にするステップであって、前記コールチェーンはレジストリを開く
ためのレジストリオープンキーに対するアプリケーションコールを含み、前記レジストリ
は低い特権によって読み出すことができない保護されたキーを含み、前記アプリケーショ
ンコールは、前記レジストリのアクセスキーを携行しレジストリアプリケーションプログ
ラムインターフェース（ＡＰＩ）を実施するサーバープロセスへマイグレーションされる
、ステップ
　によって求められる、セキュリティトークンと、
　要求されたリソースにアクセスすることができるアカウント及び前記プロセスに関する
ルールを定義するための、前記プロセッサーによって作成されるセキュリティ記述子と、
　前記プロセッサーによって作成されるアクセス制御リストであって、該アクセス制御リ
ストは、セキュリティ識別子のアクセス権を識別するための少なくとも１つのアクセス制
御エントリを含む、アクセス制御リストと

(4) JP 5462254 B2 2014.4.2

10

20

30

40

50

を備える、セキュリティインフラストラクチャー。
【請求項１１】
　前記セキュリティトークンは、構造体のバージョン、フラグ、オフセット、直接グルー
プの個数、及びグループ識別子の総数を識別するためのフィールドを含む、請求項１０に
記載のセキュリティインフラストラクチャー。
【請求項１２】
　前記セキュリティトークンは、プライマリオーナーセキュリティ識別子、グループセキ
ュリティ識別子、基本特権、及び拡張特権をさらに含む、請求項１１に記載のセキュリテ
ィインフラストラクチャー。
【請求項１３】
　前記プライマリセキュリティ識別子及び前記グループセキュリティ識別子は、前記セキ
ュリティトークンの関連付けられるサブジェクトの識別情報を定義する、請求項１２に記
載のセキュリティインフラストラクチャー。
【請求項１４】
　前記基本特権は、前記セキュリティトークンにおいて指定された前記識別情報に有効な
特権のセットを含む、請求項１２に記載のセキュリティインフラストラクチャー。
【請求項１５】
　前記拡張特権は、前記セキュリティトークンにおいてセキュリティ識別子について定義
されたカスタム特権を含む、請求項１２に記載のセキュリティインフラストラクチャー。
【請求項１６】
　関連付けられるサブジェクトに最小特権アクセスを付与するための、プロセッサーによ
って実行される方法であって、
　プロセッサー上で動作するオペレーティングシステムを用意するステップであって、前
記プロセッサーは前記オペレーティングシステムを介してアプリケーションを実行する、
ステップと、
　前記プロセッサーが、前記アプリケーションによりアクセスされるリソース及び前記ア
プリケーションがなすことができるコールを制御するために前記オペレーティングシステ
ムを介してセキュリティインフラストラクチャーを実施するステップであって、前記プロ
セッサーは、
　　前記プロセッサーがランタイムオブジェクトを作成する場合、前記プロセッサーが、
関連付けられるサブジェクトのための一意の識別子を定義し、該関連付けられるサブジェ
クトに関連付けられるアカウントを指定するためのセキュリティ識別子を設けるステップ
、
　　前記一意の識別子をメモリーに保持されるアカウントデータベース内のエントリにマ
ッピングするステップであって、前記セキュリティ識別子に割り当てられた基本特権及び
拡張特権を求める、マッピングするステップ、
　　前記プロセッサーが、前記関連付けられるサブジェクトのマイグレーションに沿って
関連付けられるサブジェクトの識別子を蓄積するステップ、
　　前記プロセッサーが、前記セキュリティ識別子に割り当てられた前記基本特権及び前
記拡張特権を求めることに基づいて、識別情報のセット及び該識別情報のセットに割り当
てられた特権の集合を定義するためのセキュリティトークンを作成するステップ、並びに
　　前記プロセッサーが、
　　　前記関連付けられるサブジェクトの前記蓄積された識別子のすべて及び前記特権の
集合をインターセクトするステップ、並びに
　　　前記リソースへのアクセスを付与する前に、前記関連付けられるサブジェクトのコ
ールチェーンコンテキストをキャプチャするステップと、前記関連付けられるサブジェク
トを分析して、前記コールチェーンにおける蓄積された各前記識別情報及び各前記関連付
けられるサブジェクトが、前記要求されたリソースへのアクセスを有することを検証し、
それによって、デフォルトにより最小特権を可能にするステップであって、前記コールチ
ェーンはレジストリを開くためのレジストリオープンキーに対するアプリケーションコー

(5) JP 5462254 B2 2014.4.2

10

20

30

40

50

ルを含み、前記レジストリは低い特権によって読み出すことができない保護されたキーを
含み、前記アプリケーションコールは、前記レジストリのアクセスキーを携行しレジスト
リアプリケーションプログラムインターフェース（ＡＰＩ）を実施するサーバープロセス
へマイグレーションされる、ステップ
　　によって前記関連付けられるサブジェクトのアクセス特権を求めるステップ
　によって前記セキュリティインフラストラクチャーを実施する、ステップと
を含む方法。
【請求項１７】
　クライアント側において、関連付けられるサブジェクトのセキュリティコンテキストを
メッセージキューに書き込むステップと、
　前記サーバー側において、前記メッセージキューから前記関連付けられるサブジェクト
の前記セキュリティコンテキストを非同期にリトリーブするステップと、
　偽装される前記関連付けられるサブジェクトの前記リトリーブしたセキュリティコンテ
キストをコピーすることによって前記関連付けられるサブジェクトを偽装するステップと
、
　前記コピーしたセキュリティコンテキストを分析するステップであって、前記要求リソ
ースへのアクセス権を定義するセキュリティ記述子を構築する、分析するステップと、
　前記セキュリティトークンに従って前記関連付けられるサブジェクトを識別するステッ
プと、
　前記セキュリティ記述子に定義された前記識別情報が該セキュリティ記述子のアクセス
制御エントリに含まれるか否かを判断するステップと、
　前記アクセス制御エントリに基づいて前記識別情報に利用可能なアクセス権を求めるス
テップと
をさらに含む、請求項１６に記載の方法。
【請求項１８】
　関連付けられるサブジェクトの現在のセキュリティトークンに関連付けられるすべての
識別情報が要求リソースにアクセスすることができるときに、前記要求されたリソースへ
のアクセスを付与するステップをさらに含み、前記関連付けられるサブジェクトのコール
スタックのすべてのチャンバーに関連付けられるすべての識別情報は、前記要求リソース
にアクセスすることができ、前記関連付けられるサブジェクトの保存されたコンテキスト
に関連付けられるすべての識別情報は、前記要求されたリソースにアクセスすることがで
きる、請求項１６に記載の方法。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、コンピューティングプロセスのための最小特権アクセスの付与に関する。
【背景技術】
【０００２】
　[0001]デバイスは、リソース、アプリケーション等へのアクセスを制御するセキュリテ
ィインフラストラクチャーで構成される場合がある。現在、移動デバイスでは、トラスト
（trust）がコード識別情報に基づいて個々のアプリケーションに割り当てられる。セキ
ュリティインフラストラクチャーは、どのようなアプリケーションがデバイス上で動作し
得るのか、どのようなアプリケーションをロックアウトすることができるのか、どのよう
なアプリケーションをどのようなコンテキストで動作させることができるのか、及びこの
ようなアプリケーションがどのようなリソースにアクセスすることができるのかを判断す
る。現在のトラストレベルは、未署名のモジュールについて「トラステッド（信頼できる
、trusted）」、「ノーマル」、及び「アントラステッド（信頼できない、untrusted）」
を含む。アプリケーション又はモジュールは、トラステッド証明書、又はトラステッド証
明書ストアにチェーンする証明書で署名を受けることができる。この場合、そのモジュー
ルはトラステッドであるとみなされ、したがって、そのモジュールのどのコードも、シス

(6) JP 5462254 B2 2014.4.2

10

20

30

40

50

テム上のすべての特権を有するＡＰＩ及びリソースにアクセスすることができる。トラス
ト判定は、コーラー（caller）のアプリケーショントラストレベルに基づく。
【発明の概要】
【発明が解決しようとする課題】
【０００３】
　[0002]しかしながら、上述した現在のセキュリティモデルにはいくつかの問題がある。
スレッドがシステムの複数の保護されたサーバーライブラリ（ＰＳＬ）サーバーを通じて
マイグレーションするとき、コールチェーンの直接のコール側プロセスがシステムリソー
スへのアクセスに対するパーミッションを有することが可能であるが、コールチェーンコ
ンテキスト全体を検査することによって、リソースがアクセス可能であるべきでないこと
が明らかにされる場合がある。このようなセキュリティは、セキュリティ判定が常に直接
のコーラーのコンテキストにのみ基づいている場合に強制することができない。また、現
在のセキュリティモデルは、低い特権を有するアプリケーションがシステムサービスをコ
ールする場合において異なる識別情報に偽装することにも備えておらず、システムサービ
スは、コーラーのコンテキスト又はそれ自身のコンテキストのいずれかに基づいて要求を
処理するように求められる。またさらに、非同期アクセス要求について、現在のセキュリ
ティモデルは、コーラーのコンテキストが完全に利用可能でないことがあり得る場合にお
いて２次スレッドのセキュリティチェックに備えていない。
【０００４】
　[0003]本出願は、本発明が行ったこれらの検討事項及び他の検討事項に関するものであ
る。
【課題を解決するための手段】
【０００５】
　[0004]この概要は、詳細な説明でさらに後述する概念のうちの選択したものを簡略化し
た形態で紹介するために設けられている。この概要は、特許請求される主題の重要な特徴
も本質的な特徴も特定するように意図されたものではなく、また、特許請求される主題の
範囲を決定することを助けるものとして意図されたものでもない。
【０００６】
　[0005]デフォルトによる最小特権を可能にするために、現在のスレッドの識別情報及び
現在のスレッドのコールチェーンコンテキストの双方を考慮することによってセキュリテ
ィ判定を行う実施の形態が提供される。現在のスレッドコンテキストがキャプチャされ、
そのコピーが作成されて、セキュリティチェックを非同期に実行するのに使用される。シ
ステムにおけるあらゆるスレッドが、関連付けられる識別情報を有する。最初に、この識
別情報は、親プロセスから導出される。しかしながら、スレッドの寿命の間、この識別情
報はスレッドの任意の偽装に基づいて変化し得ることが可能である。
【０００７】
　[0006]これらの特徴及び利点並びに他の特徴及び利点は、以下の詳細な説明を読み、関
連付けられる図面をレビューすることによって明らかになるであろう。上述の一般的な説
明も以下の詳細な説明も、例示にすぎず、特許請求される本発明を限定するものではない
ことが理解されるべきである。
【図面の簡単な説明】
【０００８】
【図１】[0007]本発明の一実施形態によるセキュリティ識別子（ＳＩＤ）１００を示す図
である。
【図２】[0008]本発明の一実施形態によるセキュリティトークン構造体２００のレイアウ
トを示す図である。
【図３】[0009]本発明の一実施形態によるセキュリティ記述子のレイアウト３００の簡略
化された図である。
【図４】[0010]本発明の一実施形態によるアクセス制御リスト（ＡＣＬ）４００を示す図
である。

(7) JP 5462254 B2 2014.4.2

10

20

30

40

50

【図５】[0011]本発明の一実施形態によるアクセス制御エントリ（ＡＣＥ）５００のため
の構造体を示す図である。
【図６】[0012]本発明の一実施形態によるセキュリティ記述子（ＳＤ）６００のための構
造レイアウトを示す図である。
【図７】[0013]本発明の一実施形態によるスレッド７００のトークンリストのためのアレ
ンジメントを示す図である。
【図８】[0014]本発明の一実施形態によるＰＳＬコール８００におけるスレッドのための
コールスタックリストを示す図である。
【図９】[0015]本発明の一実施形態によるスレッド９００のための、偽装リストとコール
スタックリストとの間のリンク９００を示すブロック図である。
【図１０】[0016]本発明の一実施形態によるメッセージキューシステム１０００を示す図
である。
【図１１】[0017]本発明の実施形態を実施することができるコンピューティング環境を示
す図である。
【発明を実施するための形態】
【０００９】
　[0018]実施形態は、既存のオペレーティングシステムの上部で動作して、どのようなリ
ソースがアプリケーションによってアクセス可能であるのか及びどのようなＡＰＩをアプ
リケーションがコールすることができるのかを制御するように構成することができるセキ
ュリティインフラストラクチャーを提供する。デフォルトにより最小特権を可能にするた
めに、現在のスレッドの識別情報及び現在のスレッドのコールチェーンコンテキストの双
方を考慮することにより、セキュリティ判定が行われる。現在のスレッドコンテキストが
キャプチャされ、そのコピーが作成されて、セキュリティチェックを非同期に実行するの
に使用される。システムにおけるあらゆるスレッドは、関連付けられる識別情報を有する
、最初に、この識別情報は、親プロセスから導出されるが、スレッドの寿命の間、この識
別情報は、スレッドが行う任意の偽装に基づいて変化し得ることが可能である。
【００１０】
　[0019]実施形態は、どのようなコール又はアプリケーションが要求しているのかを分析
するだけでなく、そのコールがどこから生じたものであるのかも分析する。実施形態は、
エンドユーザー又はエンドオペレーターが自身の制御下にない場合がある異なるアプリケ
ーションをインストールすることができるようにオープンエンドであるシステムのための
セキュリティインフラストラクチャーも提供することができる。したがって、スレッドが
アクセスする権限を有しないリソースから該スレッドが誤ってアクセスされることに基づ
いてセキュリティ問題が発生することを防止するために、システムにおけるすべてのスレ
ッドは、デフォルトにより最小特権で動作することができる。それどころか、特定のリソ
ースにアクセスするときは、各コーラー及び各スレッドがそのリソースにアクセスするこ
とができることを確認するために、現在のスレッドのすべてのコーラーが分析される。各
コーラー及び各スレッドがそのリソースへアクセスすることができるときにのみ、そのコ
ーラーには、そのリソースへのアクセスが与えられる。
【００１１】
　[0020]本発明の実施形態は、どのリソースがアプリケーションによりアクセス可能であ
るのか及びアプリケーションがどのようなＡＰＩをコールすることができるのかを制御す
るためのセキュリティインフラストラクチャーを提供するデータ構造体を使用して実施す
ることができる。このデータ構造体は、次の要素、すなわち、セキュリティ識別子（ＳＩ
Ｄ）、セキュリティトークン、セキュリティ記述子（ＳＤ）、アクセス制御リスト（ＡＣ
Ｌ），及びアクセス制御エントリ（ＡＣＥ）を含む。
【００１２】
　[0021]図１は、本発明の一実施形態によるセキュリティ識別子（ＳＩＤ）１００を示す
。ＳＩＤ１００は、システム内で一意のＩＤを定義し、特定のスレッドがどのようなアカ
ウントで動作しているのかを指定する可変長データ構造体１１０である。ＳＩＤ１００は

(8) JP 5462254 B2 2014.4.2

10

20

30

40

50

、ユーザーアカウントのようなものであると考えることもできる。例えば、或る人がコン
ピューターにログオンしたとき、さまざまなユーザーアカウントが、適切なログオンパス
ワードを使用してアクセス可能になる場合がある。ユーザーアカウントは、コンピュータ
ーにログオンしている人を識別する。ＳＩＤ１００は、単にスレッド又はプロセスを識別
するアカウントである。ＳＩＤ１００は、特定のデバイス内においてのみ一意である。し
かしながら、当業者は、本明細書における本発明の実施形態の説明を分析した後、グロー
バルセキュリティ識別子を使用することができることを認識する。
【００１３】
　[0022]デスクトップ上において、ＳＩＤ１００を、個々のユーザーアカウント、一定の
システムアカウント、及び一定のユーザーグループに割り当てることができる。ＷＩＮＤ
ＯＷＳ（登録商標）ＣＥオペレーティングシステムにおけるアカウントは、例えば、デス
クトップのＷＩＮＤＯＷＳ（登録商標）オペレーティングシステムに関して使用されるも
のと必ずしも同じ定義であるとは限らないことに留意されたい。それにもかかわらず、当
業者は、何がアカウントを構成するのかを理解する。本明細書では、ＳＩＤ１００は、ア
カウントデータベース内のエントリにマッピングされる、例えばＷＩＮＤＯＷＳ（登録商
標）ＣＥオペレーティングシステムといったオペレーティングシステム全体にわたって一
意の識別子であるものと仮定される。アカウントデータベース内のエントリは、どのよう
な基本特権及び拡張特権が特定のアカウント（別称ＳＩＤ）に割り当てられているのかを
指定する。
【００１４】
　[0023]図２は、本発明の一実施形態によるセキュリティトークン構造体２００のレイア
ウトを示す。セキュリティトークン２００は、識別情報のセット及びそれらの識別情報に
割り当てられた特権の集合を定義するのに使用される。通常、セキュリティトークン２０
０は、プロセス、スレッド、同期のようなランタイムオブジェクト及びメッセージキュー
内の個々のメッセージに関連付けられる。セキュリティトークン２００は、この構造体の
バージョン２０２、フラグ２０４、オフセット２０６、直接グループ（immediate group
）の個数２０７、及びグループＩＤの総数２０８を識別するためのフィールドを含む。セ
キュリティトークン２００の構造体は、プライマリオーナーＳＩＤ２１０、グループＳＩ
Ｄ（複数可）２１２、基本特権（basic privilege）２１４、及び拡張特権（extended pr
ivilege）２１６も記憶することができる。
【００１５】
　[0024]プライマリＳＩＤ２１０及びグループＳＩＤ（複数可）２１２は、このセキュリ
ティトークン２００を有するオブジェクトに関連付けられる識別情報を定義する。基本特
権２１４及び拡張特権２１６は、どのような特権が、このセキュリティトークン２００に
関連付けられたオブジェクトに許可されるのかを定義する。基本特権２１４は、セキュリ
ティトークン２００において指定された識別情報に有効な特権のセットである。同様に、
拡張特権２１６は、セキュリティトークン２００におけるＳＩＤのリストについて定義さ
れたカスタム特権（custom privilege）である。
【００１６】
　[0025]基本セキュリティトークン構造体２００は、このセキュリティトークン２００に
関連付けられるプライマリＳＩＤ２１０及びグループＳＩＤ２１２並びにこのセキュリテ
ィトークン２００に関連付けられる拡張特権２１６等のセキュリティトークン２００のた
めの拡張（オプション）データへのオフセットポインタ２０６を有する。セキュリティト
ークン２００における個々の各ＳＩＤ２１０、２１２は、ＳＤが指定されたオブジェクト
に、所与のセキュリティトークン２００が所望のアクセスを行うことができるか否かを判
断するために、AccessCheck（アクセスチェック）ＡＰＩコールにおいて使用される。ま
た、セキュリティトークン２００における基本特権［［２１２］］２１４及び拡張特権［
［２１４］］２１６は、所与のセキュリティトークン２００が特権を必要としていたか否
かを判断するために、PrivilegeCheck（特権チェック）ＡＰＩコールにおいて使用される
。ＡＰＩ及びセキュリティトークン２００の使用は、本明細書の以下で説明するトークン

(9) JP 5462254 B2 2014.4.2

10

20

30

40

50

ＡＰＩの論述を参照してより詳細に論述される。
【００１７】
　[0026]アカウントの文字列表現が作成され、この文字列表現は、セキュリティトークン
構造体２００で使用されるDWordにマッピングされる。その場合、セキュリティトークン
２００は、システムにおける読み出されたスレッドに関連付けられるオブジェクトである
。したがって、あらゆるスレッドは、特定のセキュリティトークン２００で開始する。セ
キュリティトークン２００は、この特定のスレッドが、特定のアカウントＩＤを有する特
定のチャンバーに属することを示すと共に該スレッドが一定のグループのメンバであるこ
とも示す識別情報のリストを有する基本トークン構造体２２０を含む。各セキュリティト
ークン２００は、セットによって表される。したがって、セキュリティトークン構造体は
、構造体及び複数のセットを含む。第１のセットはオーナーセットである。それは、一意
のＩＤがシステム内の各チャンバー又はシステム内の各アカウントに与えられることを意
味する。その場合、ゼロ個又は１つ以上のグループメンバーシップであるグループアカウ
ントＩＤが存在する可能性がある。それらのグループアカウントＩＤは、拡張トークンデ
ータ２２２において与えられる。
【００１８】
　[0027]デスクトップ用のセキュリティトークン構造体も同様である。例えば、デスクト
ップをリセットするために定義された特権又はドライバーをインストールするために定義
された特権が存在する可能性がある。したがって、特定のコーラーが特定の特権セットを
有する場合、そのコーラーのみが、そのＡＰＩコールを行うことができ、そのコーラーの
みがデバイスをリセットするか又はドライバーをインストールすることができる。これら
は特有の特権である。基本特権は１つのDWordのみとすることができ、それによって、そ
のDWordは基本特権［［２１２］］２１４に結び付けられ、そして、拡張トークンデータ
２２２の一部である任意の個数の拡張特権［［２１４］］２１６が存在し得る。
【００１９】
　[0028]多くの特権２１４、２１６が存在し得るが、特権２１４、２１６は、アクセスチ
ェックがリソースについて動作するように正確に機能する。したがって、特定のＡＰＩが
特定の特権を必要とする場合、又は特定のＡＰＩが、特定のコーラーが特定の特権を有す
ることを必要とする場合、コンタクトチェーン内のあらゆるコーラーがその特定の特権を
有しなければならない。すべてのコーラーがその特権を有するときにのみ、そのコールは
通過することが許可される。あらゆるトークンは、基本トークン構造体２２０と少なくと
も同程度の情報を有するべきである。
【００２０】
　[0029]拡張トークン構造体２２２はオプションの設定である。したがって、一例として
、アカウントは、１つ又は複数のグループのメンバである場合がある。したがって、拡張
トークン構造体２２２は可変サイズを有し、すなわちサイズは固定でないのに対して、基
本トークン構造体のサイズは固定である。セキュリティトークン２００は、あらゆるプロ
セスに関連付けられ、それゆえ、プロセス内のあらゆるスレッドは、開始時にそのセキュ
リティトークン２００を受け取るか又は複製する。セキュリティトークン２００が異なる
サーバーにマイグレーションするとき、セキュリティトークン２００は変化する可能性が
ある。マイグレーションされたセキュリティトークン２００は、そのサーバーのセキュリ
ティトークンとインターセクトされる。実際のデータ構造体は変化しない。
【００２１】
　[0030]図３は、本発明の一実施形態によるセキュリティ記述子のレイアウト３００の簡
略化された図を示す。セキュリティ記述子３００は、パーミッションをリソースに関連付
けるのに使用されるデータ構造体である。特定のリソースについて、セキュリティ記述子
３００は、どのようなアカウントが、そのリソースに対してどのようなアクセスを有する
のかを定義し、その特定のオブジェクトに関するすべてのルールを定義する。通常、オブ
ジェクトのためのセキュリティ記述子３００は、オーナーＳＩＤ３２０、グループＳＩＤ
３３０、及び関連付けられるＡＣＬ３４０を定義する。

(10) JP 5462254 B2 2014.4.2

10

20

30

40

50

【００２２】
　[0031]これらのすべてはオプションのエントリであるので、ＳＤ３００は、オーナーＳ
ＩＤ３２０、グループＳＩＤ３３０、及びＡＣＬ３４０が構造体の最後にリストされた可
変サイズの構造体として定義される。バージョンフィールド３１０及びフラグフィールド
３１２は、どのような値がＳＤ３００に含まれるのかを指定するためにＳＤ構造体３００
内に設けられる。フィールド３１４も、ＳＤ構造体３００の合計サイズを定義するために
設けられる。
【００２３】
　[0032]セキュリティトークン（すなわち、図２の２００）とセキュリティ記述子３００
との間の関係によって、アクセス権の制御が決まる。スレッドがリソースにアクセスする
とき（例えば、ファイルである写真が例えば/windows/myphotos/に作成される）、［［．
］］［［That］］そのコールは最終的にはサーバーに入り、サーバーは、コーラーがこの
リソースにアクセスすることができるか否かを判断する。サーバーは、そのコールから、
リソースへのアクセス権を定義するセキュリティ記述子３００を構築する。したがって、
サーバーが、だれがこのリソースにアクセスすることができるのかを識別するセキュリテ
ィ記述子３００を一旦有すると、サーバーは、コーラーのセキュリティトークン（すなわ
ち、図２の２００）を見て、コーラーの識別情報を決定する。次に、サーバーは、セキュ
リティ記述子において定義された識別情報がＡＣＥのうちの１つにあるか否かを判断しよ
うと試みる。セキュリティ記述子で定義された識別情報がＡＣＥのうちの１つにある場合
、サーバーは、その識別情報のアクセス権が何であるのかを判断する。その識別情報のア
クセスが拒否される場合、そのコールは拒否される。その識別情報のアクセスが読み出し
（read）と書いてある場合、読み出しパーミッションのみがこのコーラーに与えられる。
【００２４】
　[0033]したがって、コールとそのコールを受け取った特定のリソースとの間のインター
セクションをセキュリティトークンを使用して識別しなければならず、その識別情報がど
のようなパーミッションをセキュリティ記述子３００において有するのかを判断しなけれ
ばならない。オペレーティングシステム内では、多数のアカウントＩＤを設けることがで
きる。プロセス内部で動作を開始するあらゆるスレッドが、そのプロセスのためのアカウ
ントＩＤを有するトークンを継承する。スレッドは、サービスの異なるフィールドをコー
ルするとき、トークンが更新される。
【００２５】
　[0034]図４は、本発明の一実施形態によるアクセス制御リスト（ＡＣＬ）４００を示す
。ＡＣＬ４００はアクセス制御エントリ（ＡＣＥ）の集合である。ＡＣＥは、ＡＣＥヘッ
ダー４２０、４２２及びＡＣＥに関連付けられるＳＩＤ４３０、４３２を含む。ＡＣＥは
、どのようなアクセス権が所与のＳＩＤについて定義されているのかを識別する。図４で
は、ＡＣＬ４００は、リビジョンフィールド４０２、未使用のフィールド４０４、構造体
の合計サイズを定義するフィールド４０６、ＡＣＬの最後におけるＡＣＥの個数を定義す
るフィールド４０８、及び第２の未使用フィールド４１０を含む。ＡＣＥの個数は事前に
定義されていないので、ＡＣＬ４００は可変長構造体である。
【００２６】
　[0035]各ＡＣＥは、アカウントＩＤと、そのアカウントＩＤがそのオブジェクトに対し
てどのようなパーミッションを有するのかとを指定する。例えば、或る特定のＡＣＥは、
アカウントＩＤ取得（account ID get）とすることができ、アクセスは、その特定のオブ
ジェクトの読み出し専用である。別の特定のＡＣＥは、アカウントＩＤアドミニストレー
ターアクセス読み出し／書き込み（account ID administrator access read/write）とす
ることができ、これはすべての異なるＡＣＥの集合を提供し、それらのＡＣＥのそれぞれ
は、特定のアカウントについて、どのようなアクセスがこのリソースについて指定されて
いるのかを定義する。
【００２７】
　[0036]デスクトップ上では、ＡＣＥは、各エントリについて異なるアクセス権を提供す

(11) JP 5462254 B2 2014.4.2

10

20

30

40

50

る。これらの異なるアクセス権は、Allow（許可）、Deny（拒否）、及びAudit（監査）を
含む。ＷＩＮＤＯＷＳ（登録商標）ＣＥオペレーティングシステムでは、権利は、所与の
ＡＣＥについて付与される。デフォルトの戻り値は、必要とされるアクセスマスクを有す
るＡＣＥがＡＣＬ内にないときの「拒否」である。
【００２８】
　[0037]図５は、本発明の一実施形態によるアクセス制御エントリ（ＡＣＥ）５００のた
めの構造体を示す。各ＡＣＥ５００は、どのようなタイプのアクセスがこのＡＣＥ５１０
によっていずれの識別情報（ＳＩＤによって与えられる）５２０に対して許可されている
のかを定義する。ＳＩＤ５２０は可変長データアイテムであるので、ＡＣＥ５００も可変
長構造体である。ＡＣＥ５００に関連付けられるＳＩＤデータ５２０は、ＡＣＥ構造体５
００の最後において開始する。ＡＣＥ５００は、フラグのフィールド５３０、構造体の合
計サイズを識別するためのフィールド５３２、及びマスクフィールド５３４も含む。
【００２９】
　[0038]図６は、本発明の一実施形態によるセキュリティ記述子（ＳＤ）６００のための
構造レイアウトを示す。セキュリティ記述子（ＳＤ）６００はヘッダー６１０を含む。Ｓ
Ｄヘッダー６１０は、ＳＤ６００のバージョン、フラグ、及びサイズを識別する。ＳＤ６
００は、次に、オーナーセキュリティ識別子（ＳＩＤ）６２０及びグループセキュリティ
識別子（ＳＩＤ）６３０を含む。残りのデータは、アクセス制御リスト（ＡＣＬ）６４０
を形成する。ＡＣＬ６４０は、ＡＣＬヘッダー６４２及び１つ又は複数のアクセス制御エ
ントリ（ＡＣＥ）６５０を含む。ＡＣＬヘッダー６４２は、ＡＣＥ６５０のバージョン、
サイズ、及び個数を識別する。各ＡＣＥ６５０は、ＡＣＥヘッダー６５２及び関連付けら
れるセキュリティ識別子（ＳＩＤ）６５４を含む。
【００３０】
　[0039]本発明の一実施形態によるセキュリティインフラストラクチャーは、プロセス又
はスレッドが作成されるときに、セキュリティ記述子、セキュリティ識別子、アクセス制
御リスト、及びアクセス制御エントリによって提供される。例えば、プロセストークンは
、不変であり、プロセスが作成されるときに割り当てられる。デフォルトにより、セキュ
リティが設けられていない場合、すべてのプロセスは（トークン特権について）等しく扱
われ、プロセスには、事前に定義されたシステムトークンが割り当てられる。これが、セ
キュリティが有効にされていないシステム上でのデフォルトの振る舞いである。このよう
なシステムでは、トラスト境界は、ユーザーモードとカーネルモードとの間の移行ポイン
トである。
【００３１】
　[0040]プロセストークンは、場合によっては、
　・アカウントデータベース内のＩＤにマッピングされるｅｘｅエビデンス（パス、ハッ
シュ、証明書）、
　・アカウントデータベース内の所与のアカウントのための基本特権、
　・アカウントデータベース内の所与のアカウントのための拡張特権、
　・コーラートークンに基づくグループＩＤのリスト、
のようないくつかのデータポイントの組み合わせとすることができる。
【００３２】
　[0041]所与の実行可能ファイル（executable）のエビデンスである最初の情報は、セキ
ュアなローダーコンポーネントによって求められ、この文書の範囲外のものである。この
特徴の目的で、エビデンスはアカウントデータベース内のＩＤにマッピングされるものと
仮定する。これを前提として、ＯＳは、アカウントデータベース内のアカウント情報から
トークンを作成する。このトークンは、プロセスが作成されるときにプロセスオブジェク
トに関連付けられ、プロセスの寿命の間中不変のままである。
【００３３】
　[0042]スレッドが作成されるとき、スレッドトークンが作成され、スレッドオブジェク
トに関連付けられる。デフォルトにより、スレッドトークンは、スレッドのオーナープロ

(12) JP 5462254 B2 2014.4.2

10

20

30

40

50

セスに関連付けられるトークンと同一である。プロセストークンとスレッドトークンとの
間の主な相違は、スレッドトークンは、スレッドの寿命を通じて変化する可能性があるの
に対して、プロセストークンは、プロセスの寿命を通じて不変のままであるということで
ある。例えば、スレッドトークンは、以下のときに変化する可能性がある。
【００３４】
　・所与のトークンを偽装するコール：このコールは、コール側のスレッドのアクティブ
トークンを、そのコールでImpersonate（偽装）に渡されるセキュリティトークンに変化
させる。
【００３５】
　・前の偽装をリバート（revert）するコール：このコールは、スレッドトークンを偽装
コール前のトークンに更新する。
【００３６】
　・現在のプロセスを偽装するコール：このコールは、現在のスレッドトークンを、現在
のアクティブプロセスのスレッドトークンとなるように更新する。
【００３７】
　・ＡＰＩコールからのスレッド復帰：ＡＰＩコールの復帰のとき、カーネルは、スレッ
ドが復帰している復帰元のＰＳＬコンテキストに関連付けられるすべてのスレッドトーク
ンを自動的に削除する。この場合、スレッドに関連付けられる現在のトークンも、ＡＰＩ
コール前のトークンに更新される。
【００３８】
　[0043]図７は、本発明の一実施形態によるスレッド７００のトークンリストのためのア
レンジメントを示す。所与のスレッドのための複数のトークンを管理するために、トーク
ンリスト７００が設けられる。トークンリスト７００は、スレッドに関連付けられるすべ
てのトークンのリンクリストである。スレッドのための現在のアクティブトークン７１０
は、常に、トークンリスト７００の先頭のトークンノードである。換言すれば、トークン
リスト７００は、リストに最後に追加されたトークンがスレッドの現在のトークンである
ＬＩＦＯキュー（別称スタック）のように振舞う。現在のスレッドに対するすべてのアク
セスチェック及び特権チェックは、その特有のトークンのみと、そのスレッドの現在のコ
ンテキストとを使用してハンドリングされる。加えて、スレッドがＡＰＩコールから復帰
すると、カーネルは、保護されたサーバーライブラリ（ＰＳＬ）７１２のコンテキストに
おいて偽装コールによってこのリストに追加されたあらゆるトークンノードを自動的に削
除する。この自動的なリバートによって、ＡＰＩコール時のあらゆる特権リークが防止さ
れる。
【００３９】
　[0044]例えば、ＷＩＮＤＯＷＳ（登録商標）ＣＥといったオペレーティングシステムで
は、スレッドは、対応するＡＰＩコールをハンドリングするサーバープロセス内に移行す
ることによってＡＰＩコールを行うことができる。各スレッドは、関連付けられるトーク
ンを、そのトークンについて定義された識別情報／特権のセットと共に有するので、ＡＰ
Ｉサーバーは、ＡＰＩコールが現在のスレッド上で許可されるか否かを判定するのに、ス
レッドの現在の特権を考慮する必要がある。ＡＰＩサーバーがＡＰＩコールを完了するの
に使用することができるトークンには２つの可能なトークンがある。
【００４０】
　　・コーラーのトークン：この場合、ＡＰＩサーバーは、CeAccessCheck（GetCurrentT
oken(), …）をコールする。これは、ＡＰＩコールが高い特権を有するチャンバーから低
い特権を有するチャンバー内へ入る場合に、潜在的なセキュリティリスクになる。実際に
は、高い特権という概念も低い特権という概念もない。しかしながら、この論述の目的で
、高い特権チャンバーは、低い特権チャンバーのすべての特権及びいくつかの追加の特権
を有するものと仮定する。
【００４１】
　・現在のプロセストークン：この場合、ＡＰＩサーバーは、現在のスレッドのトークン

(13) JP 5462254 B2 2014.4.2

10

20

30

40

50

が現在のプロセス（ＡＰＩサーバーのトークン）となるように更新されるCeAccessCheck
（ImpersonateCurrentProcess(), …）をコールする。これも、ＡＰＩコールが低い特権
を有するチャンバーから高い特権を有するチャンバー内へ入る場合に、潜在的なセキュリ
ティリスクになる。
【００４２】
　[0045]あらゆるスレッドが、最初にオーナープロセストークン７２０で開始する。した
がって、オーナープロセストークン７２０は、スレッド７００のためのトークンレイアウ
トを示す図７の下部にリストされている。スレッドは、異なるコーラーから又はメッセー
ジキューから非同期にトークンを受け取ることができる。さらに、スレッドがそのトーク
ンに基づいてリソースにアクセスしたいとき。スレッドは、プロセストークンを使用した
くないが、代わりに、自身の識別情報を変更したい。したがって、スレッドは、ＡＰＩの
うちの１つをコールしてそのＡＰＩを偽装することができる。このＡＰＩは、そのトーク
ンをトークンリストの最上部にプッシュする。したがって、スレッドがトークンをコール
し、そのトークンを偽装するときはいつでも、そのトークンはリストの最上部になる。図
７では、偽装されたトークン７３０が、オーナープロセストークン７２０の上に示されて
いる。図７には、Ｎ個の偽装されたトークン７３０～７５０のチェーンが示されている。
【００４３】
　[0046]スレッドがアクセスするどのリソースも、最上部のトークン７５０、すなわち現
在のトークン７１０内のトークンに対してチェックされる。偽装が起動されるときはいつ
でも、偽装トークン７５０が、常にオーナープロセストークン７２０とインターセクトさ
れる。したがって、スレッドがリソースにアクセスするときはいつでも、オーナープロセ
ストークン７２０は、そのリソースにおいてアクセス権を提示しなければならず、偽装さ
れただけのトークン７５０も、そのリソースにアクセス可能でなければならない。このよ
うに、スレッドは、異なるサーバーへ移行しているときに異なるサーバーにＡＰＩコール
を行うことができる。加えて、コンタクトチェーン上にいくつかのサーバーが存在する場
合、すべてのサーバーは、そのリソースにアクセス可能でなければならない。
【００４４】
　[0047]３つのすべてのチェックが検証された場合、スレッドへのアクセスが許可される
。重要なことに、このプロセスは、個々の特権を提供することとは異なる。例えば、動作
が現在のトークン７５０にのみ基づいている場合でかつ現在のトークン７５０が、より高
い特権を偶然有する場合には、それによって、特権が昇格される。逆に、動作がコーラー
のトークン７２０にのみ基づいている場合には、その動作は、高い特権サーバーから低い
特権サーバーへマイグレーションされたものである。したがって、どちらの場合にも、個
々の特権のみが使用されるとき、特権の可能な昇格に起因してセキュリティリスクがもた
らされる。
【００４５】
　[0048]一旦ＡＰＩコールが完了し、ＡＰＩコールが復帰されると、トークンは、あらゆ
る特権反復（iteration of privilege）のリークを防止するためにサーバー内で行われる
任意の偽装によってリバートされる。したがって、ＡＰＩコールが復帰するときは、たと
えサーバーが、自身が偽装したトークンをリバートするのを忘れても、サーバーは自動的
にリバートされる。このように、クライアントも、自身がＡＰＩコール前に何であろうと
も、ＡＰＩコールがそのトークンを返すときは、ＡＰＩコール前のものに常にリバートし
て戻る。
【００４６】
　[0049]ご覧のように、コーラーのスレッドトークンのみ又は現在のプロセススレッドト
ークンのみを使用する場合にはセキュリティ問題が存在する。この問題を解決するために
、本発明者らは、所与のスレッドによるリソースに対するアクセスをチェックするときに
以下のことを考慮することを提案している。
【００４７】
　・スレッドの現在のトークンに関連付けられるすべての識別情報がリソースにアクセス

(14) JP 5462254 B2 2014.4.2

10

20

可能であるべきである。
【００４８】
　・現在のスレッドコールスタック内のすべてのチャンバーに関連付けられるすべての識
別情報（偽装境界まで）がリソースにアクセス可能であるべきである。
【００４９】
　・そのスレッドに関する保存されたコンテキストに関連付けられるすべての識別情報が
リソースにアクセス可能であるべきである。このチェックは、主として、アクセスチェッ
クが、コール側スレッド以外の異なるスレッド内のコーラーのために実行されるときに使
用される。
【００５０】
　[0050]この変更は、アクセス／特権が所与のスレッド及びオブジェクトについてどのよ
うにチェックされるのかに影響を与える。コードが任意のオブジェクトにアクセスするに
は、スレッドの現在のトークン７５０及びＡＰＩサーバーのトークン、すなわちオーナー
プロセス／スレッドトークン７２０の双方が、そのオブジェクトにアクセス可能であるべ
きである。コードが任意の特権を取得するには、スレッドの現在のトークン７５０及びＡ
ＰＩサーバーのトークン７２０（この例では）がその特権セットを有するべきである。そ
の結果、スレッドの現在のトークン７５０は、現在のスレッドのコールスタックチェーン
７００と常に組み合わせられるので、コードは、デフォルトにより、常に最小アクセス／
特権セットで動作する。これによって、アクセス／特権チェックを現在のスレッドに対し
て実行するときに、コーラーのトークン７２０のみ又は現在のプロセストークン７５０の
みのいずれかを使用することから生じるセキュリティ問題をハンドリングするセキュアな
プロセスが提供される。トークンＡＰＩのいくつかの論述が、本明細書において表１を参
照して以下で提供される。
【００５１】

(15) JP 5462254 B2 2014.4.2

10

20

30

40

50

【表１】

【００５２】
　[0051]以下の説明は、コア偽装ＡＰＩ及びアクセスチェックＡＰＩについてのものであ
る。表１にリストされた最初のトークンはCeCreateToken(pToken, flags)であり、(pToke
n, flags)フィールドはトークン構造体へのポインタ及びフラグを提供する。トークンへ
のハンドルが返される。
【００５３】
　[0052]CeImpersonateTokenは、任意のアプリケーションが所与のトークンを偽装するの
に使用することができる。これは、コーラーのために非同期コールを実行するのにも使用
される。このＡＰＩのための実施は、このトークンを現在のスレッドのトークンリストの
ためのスタックの最上部にプッシュし、このトークンをそのスレッドの現在のトークンに
することである。このＡＰＩコールは、現在のプロセストークンを、このＡＰＩコールへ
の指定されたトークンと常にマージし、マージされたトークンは現在のスレッドのトーク
ンとして扱われる。

(16) JP 5462254 B2 2014.4.2

10

20

30

40

50

【００５４】
　[0053]加えて、（現在のプロセストークンによって与えられた）現在のプロセス識別情
報は、トークン識別情報の過去のもの（the passed）に暗黙的に追加される。これを行う
主な理由は、コーラーがこのＡＰＩコールで任意の特権を取得することを防止するためで
ある。換言すれば、このＡＰＩは、降格することに制限されるか、又は多くとも現在のプ
ロセスと同じ特権を有する。これによって、デフォルトにより最小特権レベルでのコード
実行が可能になる。その使用法は次の通りである。すなわち、ＡＰＩコール時に、現在の
スレッドのトークンはスタッシュされ、そのＡＰＩコールをコール時のコーラーのコンテ
キストで実行するためにＡＰＩサーバーいおいて非同期スレッドによって後に使用される
。
【００５５】
　[0054]CeImpersonateCurrentProcess(void)トークンは、現在のスレッドのトークンが
更新される場合にはＴＲＵＥを返し、そうでない場合にはＦＡＬＳＥを返す。CeRevertTo
Selfトークンは、現在のスレッドのトークンリストのトークンを「ポップ」するのに使用
される。通常、これは、CeImpersonateTokenＡＰＩコール又はCeImpersonateCurrentProc
essＡＰＩコールを介して行われたあらゆるトークン偽装をＡＰＩサーバーがアンドゥー
するのに使用される。CeImpersonateCurrentProcessトークンは、現在のスレッドのため
のトークンリストを現在のプロセストークンにトランケートするのに使用される。これは
、現在のプロセストークンを現在のスレッドのトークンリストの先頭に効果的に「プッシ
ュ」する。
【００５６】
　[0055]CeAccessCheckトークンは、３つの引数を取り込む。第１の引数は、アクセスを
要求しているオブジェクトのためのパーミッションセットを表すＳＤである。第２の引数
は、オブジェクトへのアクセスを要求する識別情報であるトークンである。第３の引数は
、オブジェクトへの所望のアクセスである。CeAccessCheckトークンは、所与のトークン
における各アカウントについて及び所与のＳＤにリストされた各ＡＣＥについて所与のア
クセスをチェックするのに使用される。このＡＰＩは、所与のトークンにおける各アカウ
ントについて及び所与のＳＤにリストされた各ＡＣＥについて所与のアクセスをチェック
する。
【００５７】
　[0056]CePrivilegeCheckトークンは、所与のトークンにおける所与の特権アクセスをチ
ェックする。このＡＰＩは、所与のトークンにおける所与の特権アクセスをチェックする
。ＡＰＩが成功するには、（pPrivilegesアレイで指定された）すべての所与の特権が、
トークンの基本特権リスト又は拡張特権リスト内に存在しなければならない。
【００５８】
　[0057]CeGetProcessAccount(hProcess)トークンは、所与のプロセスに関連付けられる
オーナーアカウントを返す。CeGetThreadAccount(hThread)トークンは、所与のスレッド
に関連付けられるオーナーアカウントを返す。CeGetOwnerAccount(hToken)トークンは、
所与のトークンに関連付けられるオーナーアカウントを返す。CeGetGroupAccount(hToken
, idx)トークンは、トークンのハンドル及びグループアカウントのインデックスを使用し
て、所与のトークンに関連付けられるグループアカウントを返す。GetCurrentToken (voi
d)トークンは、疑似ハンドルをスレッドの現在のトークンに提供する。
【００５９】
　[0058]図８は、本発明の一実施形態によるＰＳＬコール８００のためのスレッドのため
のコールスタックリストを示す。動作中、カーネルは、スレッドごとにそのスレッドと共
にコールスタック構造体のリストを保持する。ＰＳＬコール及びＰＬＳコール復帰ごとに
、スレッドのためのコールスタックリスト８００が更新される。図８では、４つのコール
スタック８１０、８２０、８３０、８４０が示されている。最後のコールスタック８４０
は、最上部にあり、現在のコールスタックである。ＰＬＳコールエントリ時に、新しいコ
ールスタックが追加される。ＡＰＩコール復帰時には、最上部のコールスタック構造体が

(17) JP 5462254 B2 2014.4.2

10

20

30

40

50

削除される。コールスタック構造体８００は、スレッドがマイグレーションした１つのＰ
ＳＬサーバーに対応する。
【００６０】
　[0059]図９は、本発明の一実施形態によるスレッドのための、偽装リストとコールスタ
ックリストとの間のリンク９００を示すブロック図である。コールスタック構造体と同様
に、スレッドのためのトークンは、トークンリストの最上部に、現在の偽装を有するリス
ト内に保持される。図９には、４つのコールスタック９１０、９２０、９３０、９４０が
示されている。最後のコールスタック９４０は、最上部にあり、現在のコールスタックで
ある。ＰＳＬコールにわたって特権リークがないことを確実にするために、カーネルは、
現在のスレッドのための偽装リストと現在のスレッドのためのコールスタックリストとの
間のリンクを保持する。各偽装ノードは、その偽装コールが発生したコールスタック構造
体に関連付けられる。
【００６１】
　[0060]したがって、図９では、アプリケーションに属するスレッドがＰＳＬサーバーＳ
１　９１０にマイグレーションしている。ＰＳＬサーバーＳ１は、偽装ＡＰＩをコールし
、その結果、偽装ノード９１２が偽装リストに追加され、関連付けられるコールスタック
Ｓ１が、偽装ノードＴ１　９１２においてマーキングされる。次に、ＰＳＬサーバーＳ１
がＰＳＬサーバーＳ２　９２０にマイグレーションする。Ｓ２は、偽装コールを行わない
。次に、スレッドが、同じコールでＳ３　９３０にマイグレーションし、Ｓ３サーバーが
偽装トークンをコールするとき。新しい偽装ノード９３２がトークンリストに追加され、
関連付けられるコールスタック構造体Ｓ３　９３０がＴ２　９３２に記される。
【００６２】
　[0061]リソースチェックは、スレッドの寿命の異なる段階で実行される。例えば、Ｓ１
　９１０からのアクセスチェックを考える。この場合、リソースは、スレッドがＳ１プロ
セス９１０にマイグレーションしたときにアクセスについてチェックを受けることになる
。以下のチェックが実行される。
【００６３】
　・トークンＴ１におけるすべての識別情報がリソースにアクセス可能であるべきである
。
【００６４】
　・プロセスＳ１に関連付けられるトークンにおけるすべての識別情報がリソースにアク
セス可能であるべきである。
【００６５】
　[0062]次に、Ｓ２　９２０からのアクセスチェックを考える。この場合、リソースは、
スレッドがＳ１　９１０プロセスを介してＳ２　９２０プロセスにマイグレーションした
ときにアクセスについてチェックを受けることになる。この場合、以下のチェックが実行
される。
【００６６】
　・トークンＴ１におけるすべての識別情報は、リソースにアクセス可能であるべきであ
る。
【００６７】
　・プロセスＳ２に関連付けられるトークンにおけるすべての識別情報がリソースにアク
セスできるべきである。
【００６８】
　・プロセスＳ１に関連付けられるトークンにおけるすべての識別情報がリソースにアク
セスできるべきである。
【００６９】
　[0063]Ｓ３　９３０からのアクセスチェックを実行する際、スレッドは、Ｓ１　９１０
を介しＳ２　９２０を介してプロセスＳ３　９３０にマイグレーションする。アクセスチ
ェックは、Ｓ３　９３０からコールされたものである。以下のチェックが実行される。

(18) JP 5462254 B2 2014.4.2

10

20

30

40

50

【００７０】
　・トークンＴ２におけるすべての識別情報がリソースにアクセス可能であるべきである
。
【００７１】
　・プロセスＳ３に関連付けられるトークンにおけるすべての識別情報がリソースにアク
セス可能であるべきである。
【００７２】
　[0064]この場合、たとえスレッドのフルコンテキストがプロセスＳ２　９２０及びＳ１
　９１０をそのコールチェーンに有していても、Ｓ３　９３０はトークンを偽装し、偽装
はコールスタックチェーンを効果的に切断するので、アクセスチェックは、これらのプロ
セスに対して行われないことに留意されたい。
【００７３】
　[0065]（コールスタックの最上部９４０としてリストされた）現在のプロセスからのア
クセスチェックを実行する際、スレッドコールスタックチェーン９００におけるＳ３プロ
セス９３０と現在のプロセス９４０との間にもはやトークン偽装はない。以下のチェック
が実行される。
【００７４】
　・トークンＴ２におけるすべての識別情報がリソースにアクセス可能であるべきである
。
【００７５】
　・コールスタックチェーンにおける現在のプロセス対プロセスＳ３に関連付けられるト
ークンにおけるすべての識別情報がリソースにアクセス可能であるべきである。
【００７６】
　[0066]したがって、アクセスチェックの基本ルールは、現在のスレッドのためのトーク
ンリストの先頭のトークンである現在のトークンがリソースにアクセス可能であるべきか
否か、及び偽装をコールした現在のプロセスから最後のプロセスまでのすべてのプロセス
（現在のプロセス及び最後のプロセスを含む）がリソースにアクセス可能であるべきか否
かを含む。
【００７７】
　[0067]CeGetAcccessMaskＡＰＩは、所与のＳＤのトークンに割り当てられた最大アクセ
スを返すために提供することができる。このようなＡＰＩは、３つの引数、すなわち
　・アクセスをチェックしたい識別情報のリストを有するトークン
　・所与のリソースのための異なるＩＤに関連付けられるＡＣＥをリストするセキュリテ
ィ記述子
　・所与のＳＤ及びトークンの組み合わせに関する最大アクセスセットを返す［出力］パ
ラメーター（[out] parameter）
を使用して実施することができる。
【００７８】
　[0068]このＡＰＩの実施は簡単である。すなわち、トークンにおける各ＩＤについて、
ＳＤ内にAllow ACEが存在するか否かを判断するチェックが実行される。存在する場合、
そのＡＣＥに関連付けられるアクセスマスクが、返されるアクセスマスク値に追加される
。このステップは、現在のスレッドコンテキストの各トークンについて（最後の偽装まで
）繰り返され、すべてのトークンにおいて設定されたそのアクセスマスクのみを返す。Ce
AccessCheckとは異なり、このＡＰＩコールは、ＳＤ内のすべてのＡＣＥをスキャンして
、一致するＩＤを有するすべてのアクセスマスクの和集合をトークンから得る必要がある
ことに留意されたい。
【００７９】
　[0069]加えて、CeDuplicateTokenＡＰＩは、以下の引数を取り込むことによって提供す
ることができる。
【００８０】

(19) JP 5462254 B2 2014.4.2

10

20

30

40

50

　・コーラーがコピーしようと試みているソーストークンへのハンドル
　・コール側プロセス内の新しくコピーされたトークンオブジェクトのコピーのトークン
オブジェクトへのハンドルへの［出力］ポインタ
　[0070]図１０は、本発明の一実施形態によるメッセージキューシステム１０００を示す
。メッセージキュー１０１０は、本発明の一実施形態によるクライアント１０２０のプロ
セスとサーバー１０３０のプロセスとの間の非同期メッセージングを提供する。このメッ
セージキュー１０１０によって、クライアント１０２０は、メッセージキュー１０１０の
書き込み側をオープンすることが可能になり、サーバー１０３０は、メッセージキュー１
０１０の読み出し側をオープンすることが可能になる。クライアント１０２０及びサーバ
ー１０３０は、メッセージ及び他のデータをメッセージキュー１０１０にポストすること
ができる。複数のメッセージキュー１０１０を設けることができ、このようなメッセージ
キュー１０１０は非同期に動作する。したがって、クライアント１０２０がメッセージを
書き込み、その後去ると、クライアント１０２０は、肯定応答も、どのタイプの信号も待
つことはない。サーバー１０３０は、その後、メッセージを取り出し、リトリーブしたメ
ッセージに基づいて或る動作を実行することができる。サーバー１０３０がメッセージを
取り出すとき、サーバー１０３０は、そのメッセージを書き込んだ時点においてそのメッ
セージを実際に保持するスレッドのセキュリティクレデンシャルを有しなければならない
。コンタクトは、サーバー１０３０がそのメッセージを読み出す時までに変化する可能性
があり、したがって、サーバー１０３０がメッセージを読み出すとき、サーバーが実際に
コンタクトスナップショットにアクセスすることができ、そのスナップショットを偽装し
、その後、メッセージを作成して結果を返信することができるように、コンタクトスナッ
プショットのコピーが作成されてメッセージと共に書き込まれていなければならない。
【００８１】
　[0071]メッセージ及びそのメッセージを送信した者の識別情報を、サーバー１０３０が
それらのために動作することができるように、サーバー１０３０に非同期に渡すプロセス
に加えて、メッセージ及びそのメッセージのポスターの識別情報、並びにメッセージがポ
ストされた時点で存在するメッセージのポスターのセキュリティコンタクト全体も、プロ
セスの一部である。このように、よりセキュアな判定をその後になって行うことができる
。しかしながら、当業者は、本発明が、本明細書で説明したようなメッセージキューを使
用することに限定されるよう意図されていないことを認識する。それどころか、スレッド
のためのコンタクトチェーンをサーバーに提供するための他の技法も可能である。
【００８２】
　[0072]プロセスが開始するとき、そのプロセスには或る識別情報が割り当てられ、その
プロセスにおけるスレッドのそれぞれにその識別情報が与えられる。スレッドがシステム
上の他のプロセスにマイグレーションするとき、これらのスレッドは、該スレッドに関す
るセキュリティ判定が開始されるときに、それらの識別情報のすべてをインターセクトし
てスレッドのアクセス特権を求めることができるように、それらの他のプロセスの識別情
報を累積する。さらに、プロセスは、どの特定のサーバーにも特有のものでないように意
図されている。それどころか、どのサーバーもこのモデルを使用することができる。例え
ばＷＩＮＤＯＷＳ（登録商標）オペレーティングシステム上では、データトークンが入力
される場合、特定の特権、すなわち偽装特権が存在しなければならない。偽装の結果、最
悪の場合に権利が降格されることから、偽装は許可される。
【００８３】
　[0073]例えばデスクトップ上での複数のコーラーを伴うシナリオでは、アプリケーショ
ンが、オペレーティングシステムによってエクスポートされるファイル作成（create fil
e）又は他の任意のＡＰＩをコールするとき、スレッドは、カーネルモードにおいてユー
ザーの境界で停止し、カーネル内部の別のスレッドが、そのＡＰＩのための動作をスピン
オフして実行し、その後、そのコールをスレッドに返す。したがって、スレッドは、デス
クトップ上において、実際には或るプロセスから別のプロセスに移行することになる。そ
れに対して、ＷＩＮＤＯＷＳ（登録商標）CEオペレーティングシステム上では、アプリケ

(20) JP 5462254 B2 2014.4.2

10

20

30

40

50

ーションがＡＰＩコールを行うとき、スレッドは、実際にはサーバープロセスに移行する
。
【００８４】
　[0074]通常、サーバープロセスは、クライアントよりも高い特権である。したがって、
アプリケーションがレジスタオープンキーをコールして、レジストリをオープンし、その
特定のレジストリが、低い特権アプリケーションが読み出すことができない保護されたキ
ーである場合、スレッド上のそのコール及びそのスレッドは、レジストリＡＰＩを実際に
実施するサーバープロセスにマイグレーションする。そのサーバープロセスがアクセスキ
ーを携行している場合、これは、コーラーのセキュリティコンタクトが考慮されていない
ので、その同じ種類の振る舞いとなる。一方、コーラーのセキュリティコンタクトが現在
のセキュリティコンタクトと比較される場合、その保護されたリソースへのアクセスは拒
否される。
【００８５】
　[0075]Ｗｉｎｄｏｗｓ　Ｍｏｂｉｌｅ（登録商標）オペレーティングシステムのスレッ
ドは実際にマイグレーションし、セキュリティコンタクト情報はスレッドと共に保持され
なければならないので、デスクトップＷＩＮＤＯＷＳ（登録商標）オペレーティングシス
テムとＷｉｎｄｏｗｓ　Ｍｏｂｉｌｅ（登録商標）オペレーティングシステムとは異なる
。その時になって初めて、コンタクト全体に基づいてリソースへのアクセスがいつ要求さ
れたのかの判定を行うことができる。デスクトップの場合、ユーザーモードからカーネル
モードへ移行する時点で、現在のスレッドコンタクトをコピーしなければならず、その後
、カーネルスレッド上で、コーラーが移行され、動作は、あたかもそのコーラーのために
完了されたかのように完了される。動作が一旦完了されると、元のセキュリティコンタク
トへ戻る移行が実行され、その結果がコーラーに返される。
【００８６】
　[0076]特定のスレッドのためのセキュリティコンタクトは、シリアル化及びデシリアル
化される。例えばＷｉｎｄｏｗｓ　Ｍｏｂｉｌｅ（登録商標）オペレーティングシステム
では、データベースレコードを更新することができる者及び編集することができる者を制
限するように、データベースレコードが保護される。セキュリティを提供するために、レ
コードのセキュリティコンタクトがレコードと共に保存される。したがって、例えば、レ
コードを更新するコールが行われたとき、コーラーが、要求されたデータベースオペレー
ションを実行するのに十分なアクセスを有するか否かを調べるために、そのレコードのセ
キュリティコンタクト及びコーラーも伝達することができる。このプロセスを成し遂げる
ために、データベースは永続的であることから、セキュリティコンタクトは、オフライン
データベースにおいて処理可能でなければならない。したがって、Ｗｉｎｄｏｗｓ　Ｍｏ
ｂｉｌｅ（登録商標）オペレーティングシステムを実行しているデバイスが設定され、そ
のデバイスが復帰するときは、データベースレコードが同じコンタクトをまだ保存してい
るか否かの判断が行われる。コーラーが識別されたとき、そのコンタクトチェーン内のす
べてのアカウントが求められ、その後、ファイルとして保存される。新しいコールが行わ
れたとき、コーラーがコンタクトチェーン内のアカウントのサブセットであることを保証
するために、ファイルが再び構築され、保存されたファイルと比較される。
【００８７】
　[0077]アプリケーションがサーバーをコールした場合、サーバーは、或るスレッドにお
いて動作を実行する。異なるスレッドでは、すべてのリソースがコーラーのためにアクセ
スされるように、コーラーを偽装することができる。クライアントからのセキュリティコ
ンタクトのスナップショットは、基本的には、送信者の名称、現在のコンタクトチェーン
内のすべてのコーラー、どのようなアカウント又は異なるアカウントがコンタクトチェー
ン内にあるのか、及び異なるサーバーへのマイグレーションが行われたか否かを読み出す
ことを含む。例えば、アプリケーション４ＲＸＥは、或るサーバーをコールしており、そ
の時、その同じスレッドが別のサーバーをコールする可能性がある。したがって、複数の
サーバーがコンタクトチェーン上に存在する可能性がある。しかしながら、それらのどの

(21) JP 5462254 B2 2014.4.2

10

20

30

40

50

１つも、適切にアクセス可能でなければならない。したがって、コンタクトスナップショ
ットがとられたとき、現在コンタクトにあるすべてのアカウントがキャプチャされなけれ
ばならない。
【００８８】
　[0078]特に、スレッドがシステムを通じてマイグレーションするとき、スレッドは異な
るサーバーを通過して異なる権利を有するので、そのスレッドのセキュリティコンタクト
は変化する。それらの権利のすべてのインターセクションを求めなければならない。セキ
ュリティ判定を行うには、一時点のスナップショットをとることができる必要がある。換
言すれば、セキュリティチェックが行われるとき、チェックを非同期又は後に実行するこ
とができるように、検証されるすべてのＩＤが保存される必要がある。
【００８９】
　[0079]上述したシステム及びコンポーネントは、ネットワーク接続環境、分散環境、又
は他のコンピューター実施される環境の一部として実施することができる。これらのシス
テム及びコンポーネントは、有線通信ネットワーク、無線通信ネットワーク、及び／又は
それらの通信ネットワークの組み合わせを介して通信することができる。デスクトップコ
ンピューター、ラップトップ、ハンドヘルド、又は他のスマートデバイスを含む複数のク
ライアントコンピューティングデバイスがこのシステムとインターラクトすることができ
かつ／又はこのクライアントコンピューティングデバイスをこのシステムの一部として含
めることができる。代替的な実施形態では、所望の実施態様に従ってさまざまなコンポー
ネントを組み合わせかつ／又は構成することができる。他の実施形態及び構成も利用可能
である。
【００９０】
　[0080]次に図１１を参照して、以下の論述は、本発明の実施形態を実施することができ
る適したコンピューティング環境の簡潔で一般的な説明を提供するように意図されている
。本発明は、パーソナルコンピューターのオペレーティングシステム上で動作するプログ
ラムモジュールと共に実行されるプログラムモジュールの一般的なコンテキストで説明さ
れるが、当業者は、本発明が、他のタイプのコンピューターシステム及びプログラムモジ
ュールと組み合わせて実施することもできることを認識するであろう。
【００９１】
　[0081]一般に、プログラムモジュールには、特定のタスクを実行するか又は特定の抽象
データタイプを実施するルーチン、プログラム、コンポーネント、データ構造体、及び他
のタイプの構造体が含まれる。その上、当業者は、ハンドヘルドデバイス、マルチプロセ
ッサシステム、マイクロプロセッサベースの民生用電子機器又はプログラマブル民生用電
子機器、ミニコンピューター、メインフレームコンピューター等を含む他のコンピュータ
ーシステム構成で本発明を実施することができることを認識するであろう。本発明は、タ
スクが、通信ネットワークを通じてリンクされたリモート処理デバイスによって実行され
る分散コンピューティング環境でも実施することができる。分散コンピューティング環境
では、プログラムモジュールをローカルメモリストレージデバイス及びリモートメモリス
トレージデバイスの双方に配置することができる。
【００９２】
　[0082]次に図１１を参照して、本発明の実施形態の実例となる動作環境を説明する。図
１１に示すように、コンピューター１１００には、汎用のデスクトップコンピューター、
ラップトップコンピューター、ハンドヘルドコンピューター、又は１つ又は複数のアプリ
ケーションプログラミングを実行することができる他のタイプのコンピューターが含まれ
る。コンピューター１１００は、少なくとも１つの中央処理装置１１０８（「ＣＰＵ」）
、ランダムアクセスメモリ１１１８（「ＲＡＭ」）及び読み出し専用メモリ（「ＲＯＭ」
）１１２０を含むシステムメモリ１１１２、並びにメモリをＣＰＵ１１０８に結合するシ
ステムバス１１１０を含む。スタートアップ中等にコンピューター内のエレメント間で情
報を転送するのに役立つ基本ルーチンを含む基本入出力システムが、ＲＯＭ１１２０内に
記憶される。コンピューター１１００は、オペレーティングシステム１１３２、アプリケ

(22) JP 5462254 B2 2014.4.2

10

20

30

40

50

ーションプログラム、及び他のプログラムモジュールを記憶するためのマスストレージデ
バイス１１１４をさらに含む。
【００９３】
　[0083]マスストレージデバイス１１１４は、バス１１１０に接続されたマスストレージ
コントローラ（図示せず）を通じてＣＰＵ１１０８に接続される。マスストレージデバイ
ス１１１４及びそれに関連付けられるコンピューター可読媒体は、コンピューター１１０
０のための不揮発性ストレージを提供する。本明細書に含まれるコンピューター可読媒体
の説明は、ハードディスク又はＣＤ－ＲＯＭドライブ等のマスストレージデバイスを指す
が、コンピューター可読媒体は、コンピューター１１００がアクセス又は利用することが
できる任意の利用可能な媒体とすることができることが当業者によって認識されるべきで
ある。
【００９４】
　[0084]限定ではなく例として、コンピューター可読媒体には、コンピューターストレー
ジ媒体及び通信媒体を含めることができる。コンピューターストレージ媒体には、コンピ
ューター可読命令、データ構造体、プログラムモジュール、又は他のデータ等の情報の記
憶のための任意の方法又は技術で実施される揮発性及び不揮発性の着脱可能及び着脱不能
な媒体が含まれる。コンピューターストレージ媒体には、ＲＡＭ、ＲＯＭ、ＥＰＲＯＭ、
ＥＥＰＲＯＭ、フラッシュメモリ、若しくは他のソリッドステートメモリ技術、ＣＤ－Ｒ
ＯＭ、デジタル多用途ディスク（「ＤＶＤ」）、若しくは他の光学ストレージ、磁気カセ
ット、磁気テープ、磁気ディスクストレージ、若しくは他の磁気ストレージデバイス、又
は所望の情報を記憶するのに使用することができかつコンピューター１１００がアクセス
することができる他の任意の媒体が含まれるが、これらに限定されるものではない。
【００９５】
　[0085]本発明のさまざまな実施形態によれば、コンピューター２は、例えばローカルネ
ットワーク、インターネット等のネットワーク１１０４を通じたリモートコンピューター
への論理接続を使用してネットワーク接続環境で動作することができる。コンピューター
１１００は、バス１１１０に接続されたネットワークインターフェースユニット１１１６
を通じてネットワーク１１０４に接続することができる。ネットワークインターフェース
ユニット１１１６は、他のタイプのネットワーク及びリモートコンピューティングシステ
ムに接続するのに利用することもできることが認識されるべきである。コンピューター１
１００は、キーボード、マウス等（図示せず）を含む複数の他のデバイスからの入力を受
け取って処理するための入出力コントローラー１１２２も含むことができる。同様に、入
出力コントローラー１１２２は、表示スクリーン、プリンタ、又は他のタイプの出力デバ
イスに出力を提供することもできる。
【００９６】
　[0086]上記で簡略的に述べたように、ワシントン州レドモンドのマイクロソフト社（Mi
crosoft Corporation）が提供しているＷＩＮＤＯＷＳ（登録商標）オペレーティングシ
ステム等、ネットワーク接続されたパーソナルコンピューターのオペレーションを制御す
るのに適したオペレーティングシステム１１３２を含めて、複数のプログラムモジュール
及びデータファイルをコンピューター１１００のマスストレージデバイス１１１４及びＲ
ＡＭ１１１８に記憶することができる。マスストレージデバイス１１１４及びＲＡＭ１１
１８は、１つ又は複数のプログラムモジュールも記憶することができる。特に、マススト
レージデバイス１１１４及びＲＡＭ１１１８は、クライアントアプリケーションプログラ
ム１１４０及び他のソフトウェアアプリケーション１１４２を記憶することができる。図
１１に示すようなコンピューター１１００は、図１～図１０で説明したような本発明の実
施形態によるセキュリティインフラストラクチャーを提供する命令を実行するように構成
することができる。
【００９７】
　[0087]本発明のさまざまな実施形態は、（１）コンピューター実施されるアクト若しく
はコンピューティングシステム上で動作するプログラムモジュールのシーケンスとしてか

(23) JP 5462254 B2 2014.4.2

10

つ／又は（２）コンピューティングシステム内の相互接続されたマシン論理回路若しくは
回路モジュールとして実施できることが認識されるべきである。この実施は、本発明を実
施するコンピューティングシステムの性能要件に応じた選択の問題である。したがって、
関係したアルゴリズムを含む論理オペレーションは、オペレーション、構造デバイス、ア
クト、又はモジュールとさまざまに呼ぶことができる。これらのオペレーション、構造デ
バイス、アクト、及びモジュールは、本出願で述べられた特許請求の範囲内に挙げられた
本発明の趣旨及び範囲から逸脱することなく、ソフトウェア、ファームウェア、専用デジ
タルロジック、及びそれらの任意の組み合わせで実施できることが当業者によって認識さ
れる。
【００９８】
　[0088]本発明を、さまざまな例示の実施形態に関して説明してきたが、当業者は、次の
特許請求の範囲の範囲内においてそれらの実施形態に多くの変更を行えることを理解する
。したがって、本発明の範囲が上記説明によっていかなる形においても限定されることは
意図されておらず、それよりむしろ、専ら次の特許請求の範囲を参照することによって判
断されることが意図されている。

【図１】 【図２】

(24) JP 5462254 B2 2014.4.2

【図３】 【図４】

【図５】

【図６】 【図７】

【図８】

(25) JP 5462254 B2 2014.4.2

【図９】

【図１０】

【図１１】

(26) JP 5462254 B2 2014.4.2

10

20

30

40

フロントページの続き

(72)発明者 コレス，ネイル・ローレンス
 アメリカ合衆国ワシントン州９８０５２－６３９９，レッドモンド，ワン・マイクロソフト・ウェ
 イ，マイクロソフト　コーポレーション，エルシーエイ－インターナショナル・パテンツ
(72)発明者 シェル，スコット・ランドール
 アメリカ合衆国ワシントン州９８０５２－６３９９，レッドモンド，ワン・マイクロソフト・ウェ
 イ，マイクロソフト　コーポレーション，エルシーエイ－インターナショナル・パテンツ
(72)発明者 サンダディ，アペンダー・レッディー
 アメリカ合衆国ワシントン州９８０５２－６３９９，レッドモンド，ワン・マイクロソフト・ウェ
 イ，マイクロソフト　コーポレーション，エルシーエイ－インターナショナル・パテンツ
(72)発明者 ヴァルス，アンジェロ・レナト
 アメリカ合衆国ワシントン州９８０５２－６３９９，レッドモンド，ワン・マイクロソフト・ウェ
 イ，マイクロソフト　コーポレーション，エルシーエイ－インターナショナル・パテンツ
(72)発明者 リオンス，マシュー・ジー
 アメリカ合衆国ワシントン州９８０５２－６３９９，レッドモンド，ワン・マイクロソフト・ウェ
 イ，マイクロソフト　コーポレーション，エルシーエイ－インターナショナル・パテンツ
(72)発明者 ジョルダン，クリストファー・ロス
 アメリカ合衆国ワシントン州９８０５２－６３９９，レッドモンド，ワン・マイクロソフト・ウェ
 イ，マイクロソフト　コーポレーション，エルシーエイ－インターナショナル・パテンツ
(72)発明者 ロジャース，アンドリュー
 アメリカ合衆国ワシントン州９８０５２－６３９９，レッドモンド，ワン・マイクロソフト・ウェ
 イ，マイクロソフト　コーポレーション，エルシーエイ－インターナショナル・パテンツ
(72)発明者 ゴパラン，ヤドヒュ
 アメリカ合衆国ワシントン州９８０５２－６３９９，レッドモンド，ワン・マイクロソフト・ウェ
 イ，マイクロソフト　コーポレーション，エルシーエイ－インターナショナル・パテンツ
(72)発明者 シエ，ボル－ミーン
 アメリカ合衆国ワシントン州９８０５２－６３９９，レッドモンド，ワン・マイクロソフト・ウェ
 イ，マイクロソフト　コーポレーション，エルシーエイ－インターナショナル・パテンツ

 審査官 戸島　弘詩

(56)参考文献 米国特許第０６３８５７２４（ＵＳ，Ｂ１）　　
 特開２００５－１２９０６３（ＪＰ，Ａ）　　　
 米国特許第０６４１２０７０（ＵＳ，Ｂ１）　　
 米国特許出願公開第２００６／０２５９９８０（ＵＳ，Ａ１）　　
 特表２００２－５１７８５４（ＪＰ，Ａ）　　　
 米国特許第０５５８６２６０（ＵＳ，Ａ）　　　
 米国特許出願公開第２００７／００１１４５２（ＵＳ，Ａ１）　　
 米国特許第０８３９７２９０（ＵＳ，Ｂ１）　　
 特開平０６－２０２９８７（ＪＰ，Ａ）　　　

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０６Ｆ２１／００－２１／８８

	biblio-graphic-data
	claims
	description
	drawings
	overflow

