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(57) ABSTRACT 

According to embodiments of the invention, there is provided 
a method of producing an artificial neural network capable of 
predicting the survivability of a patient, the method includ 
ing: storing in an electronic database patient health data, the 
patient health data comprising a plurality of sets of data, each 
set having at least one of a first parameter relating to heart rate 
variability data and a second parameter relating to Vital sign 
data, each set further having a third parameter relating to 
patient Survivability; providing a network of nodes intercon 
nected to form an artificial neural network, the nodes com 
prising a plurality of artificial neurons, each artificial neuron 
having at least one input with an associated weight; and 
training the artificial neural network using the patient health 
data Such that the associated weight of the at least one input of 
each artificial neuron of the plurality of artificial neurons is 
adjusted in response to respective first, second and third 
parameters of different sets of data from the patient health 
data, such that the artificial neural network is trained to pro 
duce a prediction on the survivability of a patient. 

storing in an electronic database patient health data, the patient 
health data comprising a plurality of sets of data, each set having 
at least one of a first parameter relating to heart rate variability 
data and a second parameter relating to vital sign data, each set 102 
further having a third parameter relating to patient survivability 

providing a network of nodes interconnected to form an artificial 
neural network, the nodes comprising a plurality of artificial 
neurons, each artificial neuron having at least one input with an 
associated weight 104 

training the artificial neural network using the patient health data 
such that the associated weight of the at least one input of each 
artificial neuron of the plurality of artificial neurons is adjusted in 
response to respective first, second and third parameters of 
different sets of data from the patient health data, such that the 
artificial neural network is trained to produce a prediction on the 106 
survivability of a patient 
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storing in an electronic database patient health data, the patient 
health data comprising a plurality of sets of data, each set having 
at least one of a first parameter relating to heart rate variability 
data and a second parameter relating to vital sign data, each set 102 
further having a third parameter relating to patient survivability 

providing a network of nodes interconnected to form an artificial 
neural network, the nodes comprising a plurality of artificial 
neurons, each artificial neuron having at least one input with an 
associated weight 104 

training the artificial neural network using the patient health data 
such that the associated weight of the at least one input of each 
artificial neuron of the plurality of artificial neurons is adjusted in 
response to respective first, second and third parameters of 
different sets of data from the patient health data, such that the 
artificial neural network is trained to produce a prediction on the 106 
survivability of a patient 
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(N=100) 
65.21 (15.95) 

37 (37.00) 

73 (73.00) 
15 (15.00) 
7 (7.00) 
5 (5.00) 

87 (87.00) 
13 (13.00) 

36.81 (0.75) 
19.47 (4.34) 

Pulse (/min) 91.82 (27.35) 
SBP (mmHG) 135.99 (37.80) 
DBP (mmHG) 75.94 (20.89) 
Sp02 95.19 (7.12) 
GCS 14.01 (2.77) 
Poin Score 1.84 (3.15) 
Patient outcome (%) 
Died 40 (40.00) 
Survived 60 (60.00) 
ECG characteristics (SD) 
Mean length (min) 207.52 (102.07) 
% sinus rhythm 89.64 (13.99) 
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Classifier Activation/ Accuracy Sensitivity Specificity 
kernel function (%) (%) (%) 
Hordim 61.44 41.20 74.93 
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RBF 71.6O 41.20 91.87 

SVM Linear 69.76 46.6O 85.2O 
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Classifier Activation/ Accuracy Sensitivity Specificity 
kernel function (%) (%) (%) 
Hordim 65.76 51.27 72.13 

ELM Sigmoid 67.6O 53.25 72.53 
Sine 68.48 54.04 72.83 
RBF 71.2O 59.6O 78.93 

SVM Linear 7104 58.OO 79.73 
Sigmoid 66.08 48.8O 77.60 
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Classifier Activation/ Accuracy Sensitivity Specificity 
kernel function (%) (%) (%) 
Hordlim 68.48 51. O7 76.71 

ELM Sigmoid 72.4O 53.47 78.42 
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Sigmoid 71.O4 47.OO 88.40 
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Classifier Activation/ Number of Selected Segments 
kernel function M = 1 M' = 3 M' = 5 M' = 7 M' = 9 
Hordlin 65.6O 68.48 69.44 67.28 67.52 

ELM Sigmoid 68.48 72.4-O 73.44 71.12 69.36 
Sine 64.96 68.8O 68.24 67.36 65.84 
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Table 7 Classification accuracy with different predictive strategies using combined features. 
Classifier Activation/ Global Local Toto Selective 

kernel function (%) (%) segment (%) segment (%) 
Hordlin 60.48 6O.96 67.52 68.48 

ELM Sigmoid 64.24 65.28 69.36 72.4-O 
Sine 59.92 61.12 65.84 68.8O 
RBF 62.J.2 66.72 7O.96 73.68 

SVM Linedr 70.00 68.64 74.24 78.32 

Sigmoid 60.64 60.72 70.24 71.04 
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METHOD OF PREDICTING ACUTE 
CARDOPULMONARY EVENTS AND 
SURVIVABILITY OF A PATIENT 

FIELD OF THE INVENTION 

0001. The invention relates to a method of predicting acute 
cardiopulmonary (ACP) events and survivability of a patient. 
The invention also relates to a system for predicting acute 
cardiopulmonary events and Survivability of a patient. 

BACKGROUND OF THE INVENTION 

0002 Triage is an important part of any Emergency Medi 
cal Response. This is the clinical process of rapidly screening 
large numbers of patients to assess severity and assign appro 
priate priority of treatment. Triage is a reality as medical 
resources are never enough for all patients to be attended 
instantaneously. It is thus important to be able to quickly 
identify patients of higher severity, who would need such 
resources more urgently. Therefore, a device for automatic 
patient outcome (cardiac arrest and mortality) analysis could 
be helpful to conduct triage, especially in disaster or mass 
casualty situations, where demand overwhelms resources. 
0003 Current triage systems are based on clinical judg 
ment, traditional vital signs and other physiological param 
eters. They tend to be subjective, and are not so convenient 
and efficient for clinicians. Moreover, the clinical vital signs 
including heart rate, respiratory rate, blood pressure, tem 
perature and pulse oximetry have not been shown to correlate 
well with short or long-term clinical outcomes. 

SUMMARY OF THE INVENTION 

0004. According to embodiments of the invention, there is 
provided a method of producing an artificial neural network 
capable of predicting ACP events and the survivability of a 
patient, the method including: Storing in an electronic data 
base patient health data, the patient health data comprising a 
plurality of sets of data, each set having at least one of a first 
parameter relating to heart rate variability data and a second 
parameter relating to Vital sign data, each set further having a 
third parameter relating to patient Survivability; providing a 
network of nodes interconnected to form an artificial neural 
network, the nodes comprising a plurality of artificial neu 
rons, each artificial neuron having at least one input with an 
associated weight; and training the artificial neural network 
using the patient health data Such that the associated weight of 
the at least one input of each artificial neuron of the plurality 
of artificial neurons is adjusted in response to respective first, 
second and third parameters of different sets of data from the 
patient health data, such that the artificial neural network is 
trained to produce a prediction on the ACP events and surviv 
ability of a patient. 
0005 According to embodiments of the invention, there is 
provided a method of predicting the ACP events and surviv 
ability of a patient, the method including: measuring a first set 
of parameters relating to heart rate variability data of a 
patient; measuring a second set of parameters relating to vital 
sign data of the patient; providing an artificial neural network 
comprising a network of interconnected nodes, the nodes 
comprising a plurality of artificial neurons, each artificial 
neuron having at least one input with an associated weight 
adjusted by training the artificial neural network using an 
electronic database having a plurality of sets of data, each set 
having at least a parameter relating to heart rate variability 
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data and a parameter relating to vital sign data, each set 
further having a parameter relating to patient Survivability; 
processing the first set of parameters and the second set of 
parameters to produce processed data Suitable for input into 
the artificial neural network; providing the processed data as 
input into the artificial neural network; and obtaining an out 
put from the artificial neural network, the output providing a 
prediction on the ACP events and survivability of the patient. 
0006. According to embodiments of the invention, there is 
provided a patient ACP events and survivability prediction 
system including: a first input to receive a first set of param 
eters relating to heart rate variability data of a patient; a 
second input to receive a second set of parameters relating to 
Vital sign data of the patient; a memory module storing 
instructions to implement an artificial neural network com 
prising a network of interconnected nodes, the nodes com 
prising a plurality of artificial neurons, each artificial neuron 
having at least one input with an associated weight adjusted 
by training the artificial neural network using an electronic 
database having a plurality of sets of data, each set having at 
least a parameter relating to heart rate variability data and a 
parameter relating to Vital sign data, each set further having a 
parameter relating to patient Survivability; a processor to 
execute the instructions stored in the memory module to 
perform the functions of the artificial neural network and 
output a prediction on the ACP events and survivability of the 
patient based on the first set of parameters and the second set 
of parameters; and a display for displaying the prediction on 
the ACP events and survivability of the patient. 
0007 According to embodiments of the invention, there is 
provided a method of predicting the ACP events and surviv 
ability of a patient, the method including: measuring a first set 
of parameters relating to heart rate variability data of a 
patient; measuring a second set of parameters relating to vital 
sign data of the patient, obtaining a third set of parameters 
relating to patient characteristics; providing the first set of 
parameters, the second set of parameters and the third set of 
parameters as sets of normalized data values, where required, 
to a scoring model implemented in an electronic database, the 
scoring model having a respective category associated to each 
parameter of the first set of parameters, the second set of 
parameters and the third set of parameters, each category 
having a plurality of pre-defined value ranges, each of the 
plurality of value ranges having a pre-defined score; deter 
mining a score for each parameter of the first set of param 
eters, the second set of parameters and the third set of param 
eters by assigning the sets of normalized data to respective 
pre-defined value ranges, encompassing the sets of normal 
ized data values, of the plurality of value ranges of the cat 
egory associated to the respective parameter of the first set of 
parameters, the second set of parameters and the third set of 
parameters; obtaining a total score, being a Summation of the 
score for each parameter of the first set of parameters, the 
second set of parameters and the third set of parameters, the 
total score providing an indication on the ACP events and 
survivability of the patient. 
0008 According to aspects of embodiments, a system for 
the detection of impending acute cardiopulmonary medical 
events that, left untreated, would with areasonable likelihood 
result in either severe injury or death includes: an electro 
cardiogram (ECG) module including a plurality of electrodes 
for sensing a patient's ECG and having an ECG output; a 
sensor for sensing a patient's physiologic parameter other 
than ECG, a first input for receiving the ECG output; a second 
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input for receiving signals from the sensor for sensing a 
patient's physiologic parameter other than ECG: a third input 
constructed and arranged to receive: parametric information 
describing at least one element of a patient's demographic 
information; and parametric information describing a 
patient's medical history; a digitizing unit for digitizing the 
ECG and the physiologic signal other than ECG: a housing 
containing a memory unit and processing unit, for storing and 
processing, respectively, the ECG, the physiologic signal 
other than ECG, patient demographic information and medi 
cal history; and a user communication unit; wherein the pro 
cessing unit calculates at least one measure of heart rate 
variability (HRV), combines that at least one measure of HRV 
with at least one parameter each of patient demographic infor 
mation and medical history, and calculates a statistical prob 
ability of an ACP event within 72 hours of the calculation. The 
system may further be constructed and arranged to be carried 
by the patient in a wearable configuration. The sensor may 
measure the perfusion status of the microvasculature. The 
sensor may be a pulse oximeter. The system may further 
include: an electromagnetic stimulator of physiologic tissue. 
which may stimulate cardiac tissue. The user communication 
unit may have key entry. The third input may be a key entry. 
The user communication unit may be in the main housing. 
The user communication unit may be separate from the main 
housing. The user communication unit may be a display. The 
stimulation may be pacing or the stimulation may be defibril 
lation. The stimulation may be magnetic stimulation. 
0009. According to aspects of embodiments, a system for 
predicting mortality of a patient being treated for trauma or as 
part of a mass casualty occurrence, includes: an electro-car 
diogram (ECG) module including a plurality of electrodes for 
sensing a patient's ECG and having an ECG output; a sensor 
for sensing a patient's physiologic parameter other than ECG: 
a first input for receiving the ECG output; a second input for 
receiving signals from the sensor for sensing a patient's 
physiologic parameter other than ECG: a third input con 
Structed and arranged to receive: parametric information 
describing at least one element of a patient's demographic 
information; and parametric information describing a 
patient's medical history; a digitizing unit for digitizing the 
ECG and the physiologic signal other than ECG, a housing 
containing a memory unit and processing unit, for storing and 
processing, respectively, the ECG, the physiologic signal 
other than ECG, patient demographic information and medi 
cal history; and a user communication unit; wherein the pro 
cessing unit calculates at least one measure of heart rate 
variability (HRV), combines that at least one measure of HRV 
with at least one parameter each of patient demographic infor 
mation and medical history, and calculates a statistical prob 
ability of mortality for the patient. The system may be con 
structed and arranged to be carried by the patient in a 
wearable configuration. The sensor may measure the perfu 
Sion status of the microvasculature. The sensor may be a pulse 
Oximeter. 

0010. According to aspects of embodiments of the inven 
tion, a method of treating a cardiac condition of a patient, 
includes: measuring heart rate variability (HRV) of the 
patient; measuring vital sign data of the patient; predicting, 
using a computing apparatus constructed and arranged for the 
purpose, a likelihood of survival of the patient to one or more 
selected time limits based on HRV in combination with the 
measured Vital sign data; and treating the cardiac condition as 
indicated by the vital sign data when the likelihood of survival 
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of the patient to one or more selected time limits is below a 
desired threshold. The method may further include: collect 
ing at least one of patient demographic information and 
patient history information; wherein predicting further com 
prises: computing the likelihood of survival additionally in 
View of the collected patient demographic information and 
patient history information. The method may yet further 
include: selecting a time limit of between 4 and 24 hours or a 
time limit of between 4 and 72 hours. 
10011. According to aspects of embodiments of the inven 
tion, an apparatus for predicting a likelihood of survival of a 
patient to one or more selected time limits due to cardiac 
causes, includes: a heart rate sensor having a heart rate output; 
a vital sign sensor having a vital sign output; a computational 
module receiving the heart rate output and the vital sign 
output, and performing: computing heart rate variability 
(HRV) from the heart rate output received; and computing the 
likelihood of survival of the patient to the one or more 
Selected time limits due to cardiac causes, from a combination 
of the HRV computed and the vital sign output; and, an output 
device displaying to a user the likelihood of survival of the 
patient to the one or more selected time limits due to cardiac 
causes. The apparatus may further include: a data input device 
constructed and arranged to collect at least one of patient 
demographic information and patient history information: 
and computing the likelihood of survival additionally in view 
of the collected patient demographic information and patient 
history information. The apparatus may yet further include: a 
time limit of between 4 and 24 hours or a time limit of 
between 4 and 72 hours. 
0012. The invention will be further illustrated in the fol 
lowing description, with reference to the drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

(0013. In the drawings, like reference characters generally 
refer to the same parts throughout the different views. The 
drawings are not necessarily to scale, emphasis instead gen 
erally being placed upon illustrating the principles of the 
invention. In the following description, various embodiments 
of the invention are described with reference to the following 
drawings, in which: 
I0014 FIG. 1 is a flow chart illustrating a method, accord 
ing to one embodiment of the present invention, used to 
produce an artificial neural network capable of predicting the 
ACP events and survivability of a patient. 
0015 FIG. 2 is a schematic representation of an artificial 
neural network according to one embodiment of the present 
invention. 

10016 FIG. 3 is a schematic representation of an artificial 
neural network according to one embodiment of the present 
invention. 
I0017 FIG. 4 shows a block diagram of a system used to 
predict the ACP events and survivability of a patient. 
0018 FIG. 5 shows a flow chart, in accordance with 
embodiments of the invention, implemented by a signal 
acquisition block. 
0019 FIG. 6 shows a flow chart, in accordance with 
embodiments of the invention, implemented by a signal pro 
cessing module. 
0020 FIG. 7 shows a flow chart, in accordance with 
embodiments of the invention, implemented by a beat detec 
tion and post processing module. 
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0021 FIG. 8 shows a flow chart, in accordance with 
embodiments of the invention, implemented by a HRV 
parameter calculation module. 
0022 FIG.9 shows a block diagram representation of how 
data flows in an analysis block. 
0023 FIG. 10 shows a flow chart illustrating use of a 
system, in accordance with embodiments of the invention, 
utilizing wireless technology. 
0024 FIG. 11 summarizes raw ECG data characteristics 
of patients. 
0.025 FIG. 12 shows a flow chart, in accordance with 
embodiments of the invention, illustrating how an ECG signal 
is pre-processed to calculate HRV parameters. 
0026 FIG. 13 shows how data extraction is performed. 
0027 FIG. 14 shows a flow chart illustrating a method, 
according to one embodiment of the present invention, of 
predicting the ACP events and survivability of a patient. 
0028 FIG. 15 shows a schematic of a patient ACP events 
and Survivability prediction system in accordance with 
embodiments of the invention. 
0029 FIG. 16 shows a schematic of a patient ACP events 
and Survivability prediction system in accordance with 
embodiments of the invention. 
0030 FIG. 17 shows pictures of a patient ACP events and 
survivability prediction system in accordance with embodi 
ments of the invention. 
0031 FIGS. 18 to 21A show snap shots of the output of a 
patient ACP events and survivability prediction system in 
accordance with embodiments of the invention. 
0032 FIG. 21B shows a flow chart illustrating a method, 
according to one embodiment of the present invention, used 
to predict the ACP events and survivability of a patient. 
0033 FIG. 22 shows a flow chart used by a validation 
system. 
0034 FIGS. 23, 24 and 25 respectively show classification 
results using vital signs, HRV measures, and combined fea 
tures. 

0035 FIG. 26 shows results from using a different number 
of selected segments using combined features. 
0036 FIG. 27 shows four different predictive strategies. 
0037 FIG. 28 shows results from different predictive 
strategies using combined features. 
0038 FIG. 29 shows classification results from using vital 
signs, HRV measures, and combined features. 
0039 FIGS. 30, 31 and 32 depict the performances of 
extreme learning machine (ELM) in terms of different num 
ber of hidden nodes. 
0040 FIG. 33 shows results from different predictive 
strategies using combined features. 
0041 FIG. 34 shows an embodiment of the invention in a 
wearable medical device. 

DETAILED DESCRIPTION 

0042. According to aspects of embodiments, a system is 
able to reliably predictacute cardiopulmonary medical events 
that, left untreated, would with a high likelihood result in 
either severe injury or death. Examples of such acute cardiop 
ulmonary (ACP) events would include cardiac or respiratory 
arrest, hypovolemic shock particularly due to blunt trauma 
injury or acute decompensated heart failure. 
0043 Previous systems seeking to determine and predict 
patient morbidity and patient mortality under various trauma, 
stress, and shock conditions have included in the battery of 
signs monitored, heart rate variability (HRV). HRV measure 
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ment quantifies the variability over time of the R-R interval in 
the electrocardiographic signal of the patient. The R-wave of 
a particular heartbeat corresponds to the point in the cardiac 
cycle of the early systolic phase, and from a signal processing 
point of view, provides a reliable time-fiducial for making 
cardiac cycle interval measurements. HRV is affected by the 
autonomic nervous system, which consists of the sympathetic 
nervous system (SNS) and the parasympathetic nervous sys 
tem (PNS). Observed HRV is believed to be an indicator of 
the dynamic interaction and balance between the SNS and 
PNS, providing a measure of nervous system competence. 
HRV serves as an indicator for the diagnosis and assessment 
of a variety of conditions that are affected by the autonomic 
system ranging from congestive heart failure to sleep apnoea. 
For example, decreased HRV has been found to be a predictor 
of increased mortality in the elderly for coronary heart dis 
ease. Decreased HRV is also seen after sudden cardiac arrest 
and in patients with diseases such as diabetes, uraemia and 
hypertension. Unfortunately, heart rate variability alone, 
while being able to predict increased mortality, is only a poor 
predictor of ACP events with any time specificity. 
0044) A variability measure related to HRV is T-wave 
alternans which is a measure of the variation in the recovery 
of the myocardium during the diastolic (relaxation) phase, 
and measures the fluctuations in the amplitude of the T-wave 
of the ECG. Because of the need to measure minute fluctua 
tions in ECG amplitude, it is relatively susceptible to patient 
motion-induced artifact and so not useful for continuous 
monitoring of a patient's ECG. 
0045. In accordance with aspects of embodiments, for 
example in triage systems, it would be of value to be able to 
reliably predict acute cardiopulmonary medical events that, 
left untreated, would with a high likelihood result in either 
severe injury or death. Examples of Such acute cardiopulmo 
nary (ACP) events would include cardiac or respiratory 
arrest, hypovolemic shock particularly due to blunt trauma 
injury or acute decompensated heart failure. Conventional 
clinical signs, symptoms and physiologic measurements pro 
vide little warning for these types of events. For instance, 
implantable cardioverter defibrillators (ICDs) or wearable 
external defibrillators such as the Lifevest (ZOLL Medical) 
will continuously analyze the patient's electrocardiographic 
(ECG) signal during their daily activities and deliver a life 
saving electrical shock to the heart. 
0046. In U.S. Application 2009/0234.410A1, a system is 
described for the prediction of heart failure decompensation. 
This, and similar, systems require the detection of a cardiac 
arrhythmia via the ECG, which unfortunately limits the dura 
tion of predictive forecast accuracy. For instance, arrhythmia 
detectors on ICDs and wearable defibrillators only detect a 
shockable event after the patient is in a lethal arrhythmia 
requiring a shock. Despite extensive research, utilizing 
arrhythmia analysis for the reliable prediction of impending 
ACP events has been problematic, lacking in both predictive 
accuracy as well as event time specificity (prediction of when 
the event might occur). U.S. 2009/0234410 may utilize heart 
rate variability in conjunction with the arrhythmia analysis, 
but again, the use of the arrhythmia detector will limit the 
predictive accuracy. 
0047 More sophisticated analytic methods of cardiac 
arrhythmias such as T-wave alternans also require very accu 
rate measurement of ECG voltages to better than 1 microvolt 
typically and thus tend to be very Susceptible to signal artifact 
generated in systems where the ECG is monitored on a rela 
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tively continuous basis such as a wearable monitoring and 
therapeutic device. U.S. Pat. No. 4,957,115 describes a sys 
tem using ECG arrhythmia analysis along with other physi 
ological measurements to generate a probability Score of 
impending death due to a cardiovascular event. Other sys 
tems, such as that described in U.S. Pat. No. 7,272.435, might 
be used in a stress test laboratory where patients are viewed 
under controlled conditions unlike those conditions that 
would likely be encountered on a wearable device. Under 
Such strictly controlled conditions, noise-Susceptible mea 
Surement techniques such as T-wave alternans might be appli 
cable. 

0048 U.S. Pat. Nos. 6,665,559 and 5,501,229 describe 
systems that determine a probability of cardiovascular risk 
based on serial comparisons of ECG arrhythmia analysis. It 
would thus be advantageous, according to aspects of embodi 
ments of the invention, to have a system that is both more 
robust in the presence of ECG signal artifact often encoun 
tered during continuous monitoring from an external wear 
able device, and further advantageous to have a system that is 
able to predict with some reliability when an ACP event is 
most likely to occur. 
0049 Aspects of embodiments of the invention combine 
HRV with other vital sign data, as distinct from US Published 
Patent Application 2007/112.275 A1, which describes a sys 
tem which alerts a user on any vital sign going out of a desired 
range. Further, aspects of embodiments of the invention pre 
dict the likelihood of occurrence of acute cardio-pulmonary 
(ACP) events by combining HRV with other vital sign data, as 
compared with US Published Patent Application 2007/276, 
275 A1, which describes predicting morbidity and mortality 
due to an entirely different and unrelated type of injury, trau 
matic brain injury, using HRV combined with one or more 
other vital signs. 
0050. Measurements of HRV data according to aspects of 
embodiments provide a measure of the interaction between 
the autonomic nervous system and the cardiovascular system. 
While HRV has become a well-known technique used by 
researchers in attempts to predict ACP events (See for 
instance, Insights from the Study of Heart Rate Variability, P. 
K. Stein, R. E. Kleiger, Annu. Rev. Med. 1999.50:249-61), as 
Stein etal. point out, HRV alone is insufficient to predict, with 
any reasonable degree of accuracy, future clinical events. 
0051 Aspects of embodiments of the invention differ 
from commercial devices for HRV analysis currently avail 
able in the market in yet other ways. Some commercial HRV 
analysis devices are bulky. Aspects of embodiments are more 
portable and therefore field ready, so as to be convenient for 
routine use in hospitals and for outfield environments such as 
ambulances. Moreover, aspects of embodiments do more 
than simply correlate some HRV measures with particular 
abnormalities of cardiovascular system, as commercial 
device currently do. Aspects of embodiments, in a portable 
package, predict risk scores for patient outcomes. Some com 
mercial devices are portable but have limited functions. Expe 
rienced clinicians interpret the outputs and some current com 
mercial devices only provide simple information Such as the 
health condition of a normal person. Aspects of some embodi 
ments thus also improve upon existing commercial devices, 
which lack the combination of portability and ability of auto 
matically predicting patient outcomes that is crucial to triage. 
0052. In one embodiment of the invention, there is pro 
vided a patient-wearable device such as device 10, shown in 
overall view in FIG. 34. the patient-worn device may include 
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a waist-encompassing belt 14 of Suitable fabric, webbing or 
the like, and may incorporate sprung elements the belt having 
a low-profile connector or buckle 16 and a shoulder strap 18 
of like material connected between front and rear portions of 
the belt. First and second sensing and pulse electrode assem 
blies 20 are carried respectively on belt 14 and shoulder strap 
18. Belt 14 also carries an electronics housing 24 which may 
have a Supporting strap connection 26 with strap 18 and 
electrical conductors, diagrammatically indicated at 28 and 
30, for receiving electrical signals from and delivering elec 
trical pulses to the respective electrode assemblies 20. 
Assemblies 20 have respective sensing electrodes 22 and 
pulse electrodes 32. 
0053. In use of the device as thus far described, assemblies 
20 are held in comfortable contact with a patient's chest wall 
and continuously monitor and detect the heart rhythm by 
means of the respective sensing electrodes 22. Alternatively, 
sensing electrodes may be traditional disposable ECG elec 
trodes placed on the patient's skin in a location separate from 
the pulse electrodes 32. Device 10 may be worn over a com 
fortable undergarment 34, such as a T-shirt, which may have 
apertures 36 that receive the respective electrode assemblies 
20. Attachments 38, such as patches of loop and pile Velcro 
typefabric, may be provided betweenbelt 14, strap 18 and the 
undergarment. 
0054 The housing for the electrode assemblies 20 may 
contain signal conditioning and amplification electronics for 
the EGG electrode. The EGG electrode 22 may be capacitive, 
conductive carbon, or any other design that permits long-term 
use without skin irritation. It is understood that the printed 
circuits of the respective electrodes are connected to the pulse 
generator 24 through conductors 28 and 30. 
0055. A sensor for measuring a second physiologic 
parameter Such as a pulse Oximeter 38 is used to measure 
additional physiologic status of the patient. In the case of the 
pulse oximeter the physiologic parameter is that of tissue 
perfusion. 
0056. The sensor might also be impedance plethysmogra 
phy (IP), known to those skilled in the art. IP is accomplished 
by measuring Small variations in the electrical impedance of 
the tissue underlying the sense electrodes, typically by apply 
ing a Small current to the electrodes and measuring the 
induced Voltage. As the Volume of the tissue changes, as a 
result of physiological activity Such as blood perfusion or as 
increased air in the lungs with respiration, its electrical 
impedance also changes. Thus the physiologic parameter 
sensed can be both blood flow and respiration simultaneously 
via the same set of impedance electrodes. It is also possible, 
and known to those skilled in the art that the ECG electrodes 
22 can also be used for both impedance measurements as well 
as ECG simultaneously as the impressed current for IP is 
typically at 30 kHz or higher and thus can be filtered from the 
input signal to the ECG amplifiers prior to processing, since 
ECG signals contain relevant frequencies no higher than 100 
HZ. More than one sensor may be provided to obtain multiple 
measures for two or more physiological parameters. 
0057 The ECG signal may be detected using passive 
devices such as an electrode making an electrical contact, 
using Sticky pads, pastes or gel with the at least one patient's 
skin Surface. Other means such as an active device, which 
need not necessarily contact the at least one patient's skin 
surface to detect the patient's ECG signal, may be used. Such 
an active device may be an insulated bioelectrode (IBE). The 
IBE may measure the electric potential on the skin without 
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resistive electrical contact and with very low capacitive cou 
pling. The IBE may be connected, wirelessly or via cable, to 
a processing unit. To achieve a wireless IBE, a wireless node 
platform may be integrated into the IBE. An example of a 
system that may function with a wireless IBE is the “Tmote 
Sky' platform, using three wireless IBEs to form a 3-lead 
system. The “Tmote Sky' platform has an 802.15.4 radio 
interface at 250Kbps and is controlled by the MSP430F1611 
microcontroller. 

0058 Referring to FIG. 4, the system 400 has three main 
functional blocks: a signal acquisition block 402, a signal 
processing block 404 and an analysis block 406. The signal 
acquisition block 402 has sensor and signal conditioning 
hardware 408 for acquiring an ECG signal and other vital 
signs from a patient 401. The sensor and signal conditioning 
hardware 408 may include sensors that detect ECG signals, 
and other physiological parameters such as blood pressure, 
tissue perfusion Such as SpO2 and respiration rate. 
0059. The signal acquisition block 402 has a data acqui 
sition (DAQ) electronics 410, which in one embodiment con 
tains the signal conditioning circuits used for processing out 
put from the sensor and signal conditioning hardware 408. 
The signal conditioning circuits are designed to process sig 
nals from these sensors. The signal conditioning circuits com 
prise electronic components that perform functions such as 
isolation and amplification of the various signals measured by 
the sensors as well as conversion of the analog signals to 
digital signals. The DAQ electronics 410 communicate the 
digitized ECG and other physiological parameters to the pro 
cessing unit 430. The processing unit contains circuit ele 
ments known to those skilled in the art of a processing unit 
Such as a microprocessor, a program storage circuit such as a 
disk drive or solid state storage element such as a ROM or 
Flash memory; a dynamic data storage element such as 
DRAM, a communication circuit Such as a serial data chan 
nel, Bluetooth, USB, etc. for communicating with both the 
DAQ 410 and external devices such as a WiFi network or 
cellular network; a user interface circuit containing a display, 
audio channel and speaker, a touchscreen interface and 
Switches; a battery and power Supply circuit. An input panel 
also accepts additional information Such as age and gender of 
the patient 401. 
0060. The signal processing block 404 includes a signal 
processing module 426, a vital sign module 420 and a patient 
information module 418. The circuitry may be configured in 
Such a way as to optimize functions, with the Signal Process 
ing Module 426 and Analysis Module 406 functions being 
provided by a digital signal processor (DSP) chip such as the 
Texas Instruments Blackfin processor family, and the user 
interface and other functions being provided by a general 
purpose microprocessor such as Dual-Core Intel Xeon Pro 
cessor running a Linux operating system. By the word 'mod 
ule', we refer only to the particular functions performed by 
the processing unit 430; the module boundary in the figure 
may or may not correspond to actual circuitry. The signal 
processing module 426 includes an ECG pre-processing 
module 412, a beat detection and post processing module 
414, and a HRV parameter calculation module 416. The ECG 
pre-processing module 412 processes raw ECG data from the 
signal acquisition block 402 to Suppress unwanted signals 
Such as noise, motion artifacts and power line interference 
which may affect the accuracy of HRV parameters eventually 
extracted from the ECG data. The beat detection and post 
processing module 414 acts on de-noised signal from the 
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ECG pre-processing module 412 to detect a heartbeat and to 
exclude non-sinus beats during post-processing. The duration 
between consecutive sinus beats are compiled into an RRI 
(beat to beat interval) sequence from which HRV parameters 
are computed. Extraction is preferably from an ECG signal 
derived from the patient's sinus rhythm. 
0061. In one embodiment of the present invention, extract 
ing the heart rate variability data comprises filtering the ECG 
signal to remove noise and artifacts; locating a QRS complex 
within the filtered ECG signal; finding a RR interval between 
Successive R waves of the QRS complex; and processing the 
sequence of information within the RR interval to obtain the 
heart rate variability data. 
0062. In one embodiment of the present invention, a band 
pass filter is used to filter the ECG signal and locate the QRS 
complex. Aband pass filter with an operating frequency range 
wider than the frequency components of the QRS complex 
has to be used. The frequency components of the QRS com 
plex lie between 10 to 25 Hz. Thus, in one embodiment of the 
present invention, the operation frequency range of the band 
pass filter is between about 5 Hz to about 28 Hz. 
0063. In one embodiment of the present invention, the R 
wave may be located as follows. A maximum peak data value 
first occurring in the filtered ECG signal is located. An upper 
amplitude threshold and a lower amplitude threshold from the 
located maximum peak value are determined. A peak value 
and minimum values on either side of the peak value are 
located. In this embodiment of the invention, either side refers 
to the left and right sides of the peak value. The conditions of 
whether the peak value is above the upper amplitude thresh 
old, while the minimum values are below the lower amplitude 
threshold are met is checked. If the conditions are met, the 
location of the peak value is denoted as an R position. The 
location of the minimum value occurring closest on the left 
side of the R position is denoted as a Q position, and the 
location of the minimum value occurring closest on the right 
hand side of the R position is denoted as an S position. With 
reference to a time scale that the filtered ECG signal is plotted 
against, the Q position occurs at where the minimum value 
first occurs before the R position, while the S position occurs 
at where the minimum value first occurs after the R position. 
The location of a QRS peak within the filtered ECG signal is 
thus determined. 
0064. In one embodiment of the present invention, where 
a 1D array of ECG sample points x(n) are provided, the upper 
and lower amplitude thresholds (T. and T) are set 
after finding the maximum value (ref peak) within the first 
few seconds of data. The thresholds are defined as: 

T =ref peak+0.4* ref peak zier 

T. ref peak-0.35*ref peak 

Then an R wave is said to occur at the point i if the following 
conditions are met, 
0065 x(i) lies between T and T zipper over 

where the R-peak is the point with maximum value. 
0066. The positions of other R waves within the filtered 
ECG signal may be located by iterating the process of locat 
ing another peak value and locating other minimum values on 
either side of the another peak value. When the another peak 
value is above the upper amplitude threshold while the other 
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minimum values are both below the lower threshold, the 
location of the peak value is denoted as an R position. The 
location of the minimum value occurring closest on the left 
side of the R position is denoted as a Q position and the 
location of the minimum value occurring closest on the right 
side of the R position is denoted as an S position. In this 
manner, the location of another QRS peak is determined. 
0067 Processing the sequence of information within the 
RR interval may further comprise removing outliers from the 
sequence of information within the RR interval. A median 
value and a standard deviation value for the RR interval may 
be found. A tolerance factor based on the standard deviation 
value may be calculated. A portion of information that lies 
within the RR interval spanning either side of the median 
value by the tolerance factor may be retained. Heart rate 
variability data may be obtained from the retained portion of 
information and the remaining portion of the information 
from the sequence of information may be discarded. 
0068. In embodiments of the invention, the heart rate vari 
ability data may include time domain data, frequency domain 
data and geometric domain data. 
0069. The time domain data may include information on 
any one or more of the following parameters: mean of RR 
intervals (mean RR), standard deviation of RR intervals 
(STD), mean of the instantaneous heart rate (mean HR), 
standard deviation of the instantaneous heart rate (STD HR), 
root mean square of differences between adjacent RR inter 
vals (RMSSD), number of consecutive RR intervals differing 
by more than 50 ms (NN50), and percentage of consecutive 
RR intervals differing by more than 50 ms (pNN50). 
0070 The frequency domain data may include informa 
tion on any one or more of the following parameters: power in 
very low frequency range (<=0.04 Hz) (VLF), power in low 
frequency range (0.04 to 0.15 Hz) (LF), power in high fre 
quency range (0.15 to 0.4 Hz) (HF), total power which is 
estimated from the variance of NN intervals in the segment 
and is measured in ms (TP), ratio of LF power to HF power 
(LF/HF), LF power in normalized units: LF/(TP-VLF)x100 
(LFnorm), and HF power in normalized units: HF/(TP 
VLF)x100 (HFnorm). 
0071. The geometric domain data may include informa 
tion on any one of the following data: total number of all RR 
intervals divided by height of histogram of intervals (HRV 
Index) and base width of triangle fit into RR histogram using 
least squares method (TINN). 
0072. In embodiments of the invention, the vital sign data 
may include any one or more of the following: systolic blood 
pressure, diastolic blood pressure, pulse rate, pulse oximetry, 
respiratory rate, glasgow coma Scale (GCS), pain score, tem 
perature. The vital sign measurement may be either a con 
tinuous variable in the form of a waveform. The vital sign 
measurement may also be a measurement taken at a single 
point in time, or the vital sign measurement may be a series of 
measurements, typically sampled at regular intervals that 
may sometimes be stored in the form of so-called trend data. 
0073. In embodiments of the invention, the patient health 
data used to train the artificial neural network may be standard 
deviation of the instantaneous heart rate (STD HR), power in 
low frequency range (0.04 to 0.15 Hz) in normalized units 
(LFnorm), age, pulse rate, pulse oximetry, systolic blood 
pressure and diastolic blood pressure. 
0.074. In embodiments of the invention, the measured first 
set of parameters are standard deviation of the instantaneous 
heart rate (STD HR) and power in low frequency range (0.04 
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to 0.15 Hz) in normalized units (LFnorm); and the measured 
second set of parameters are age, pulse rate, pulse oximetry, 
systolic blood pressure and diastolic blood pressure. 
0075. The patient health data includes parameters relating 
to heart rate variability data, vital sign data, patient Surviv 
ability and patient characteristics. The patient health data may 
include a plurality of sets of data, where each set of data may 
be formed from a single category of these parameters, i.e. 
either the first parameter relating to heart rate variability, the 
second parameter relating to vital sign data, the third param 
eter relating to patient characteristics or a fourth parameter 
relating to patient survivability. On the other hand, each set of 
data may have a combination of categories of these param 
eters, such as at least one of the first parameter relating to 
heart rate variability, the second parameter relating to vital 
sign data and the third parameter relating to patient charac 
teristics Such as age, gender, or other demographic character 
istic, as well as specific conditions in the patient's health 
history such as diabetes, myocardial infarction, high blood 
pressure. Severity of the specific condition is also recorded 
and provided to the system, such as the date of occurrence of 
the myocardial infarction, the post-infarction ejection frac 
tion or the percentage extent of the Ventricular tissue damage. 
Other descriptors may be the specific medications that a 
patient uses to treat various medical conditions. A fourth 
parameter may be provided relating to patient Survivability 
Such as an outcome like Survival to hospital discharge. The 
fourth parameter is used as a means of training the algorithm 
during the training phase of algorithm development and dur 
ing use as a means of improving the accuracy by recording the 
predictive algorithm's actual accuracy and making Suitable 
modifications to improve that accuracy. The set of data may 
not even necessarily include the parameter relating to patient 
survivability. Alternatively, each set of patient health data 
may include all four parameters. It will thus be appreciated 
that within the patient health data, one set of data may not 
contain the same number of parameters compared to another 
set of data. Further, the patient health data is stored as digital 
data converted from the form in which each of the four param 
eters is originally obtained (such as an analog signal), 
whereby the original form of the obtained measurements. 
0076 Data for patient characteristics such as demograph 
ics, health history and Survivability may be communicated to 
the device 10 or system 400 via a wireless network distributed 
through a hospital, such as 802.11. 
0077 According to embodiments of the present invention, 
a method of producing an artificial neural network capable of 
predicting the survivability of a patient is provided. The 
method includes storing patient health data in an electronic 
database. The patient health data includes a plurality of sets of 
data, each set having at least one of a first parameter relating 
to heart rate variability data and a second parameter relating 
to vital sign data. Each of the plurality of sets of data further 
has a third parameter relating to patient Survivability. A net 
work of nodes interconnected to form an artificial neural 
network is provided. The nodes include a plurality of artificial 
neurons, each artificial neuron having at least one input with 
an associated weight. The artificial neural network is trained 
using the patient health data Such that the associated weight of 
the at least one input of each artificial neuron of the plurality 
of artificial neurons is adjusted in response to respective first, 
second and third parameters of different sets of data from the 
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patient health data. This results in the artificial neural network 
being trained to produce a prediction on the survivability of a 
patient. 
0078. The electronic database used to store patient health 
data may be a memory module Such as a hard disk drive, an 
optical disc, or solid state devices (for examplethumb drives). 
During the training phase of the algorithm, the patient health 
data may be obtained from hospital records or from conduct 
ing field studies of a pool of patient(s), where the pool 
includes a group of patients acting as a control group. Thus, 
the patient health data may include data of patients suffering 
from various ailments, patients who are healthy (i.e. having 
no symptoms of illnesses), patients of various race and age 
and/or patients who are terminally ill. 
0079. It was earlier mentioned that vital sign data may be 
one of the parameters (referred to as the second parameter in 
the plurality of sets of data related to patient health) used to 
train the artificial neural network that can be used to imple 
ment a clinical decision Support program or device. 
0080 Vital sign data is defined as clinical measurements 
that indicate the state of a patient's essential body functions. 
These measurements relate to systolic blood pressure, dias 
tolic blood pressure, pulse rate, pulse oximetry, respiratory 
rate, glasgow coma scale (GCS), pain score and temperature. 
0081 Training phase vital sign data may be obtained from 
hospital records or from conducting field studies of a pool of 
patient(s). When conducting field studies, each vital sign may 
be measured as follows. For example, systolic blood pressure 
and diastolic blood pressure may be measured using a blood 
pressure measurement device such as the “statMAPTM Model 
7200 from “CardioCommand. Alternatively, devices such 
as a sphygmomanometer or a mercury manometer may be 
used. Pulse rate, pulse Oximetry and respiratory rate may be 
measured using a pneumogram. Glasgow coma Scale (GCS) 
refers to the degree of spontaneity of the patient's physical 
(such as limbs, eyes) motor and/or verbal response to instruc 
tions from a medical professional. Pain score refers to the 
degree of response (such as adduction, pronation or extension 
of a limb or body part; flexion or withdrawal) to pain applied 
to the patient. Temperature may be recorded using a ther 
mometer. 

0082 Turning to another parameter that may be used to 
train the artificial neural network, patient survivability (re 
ferred to as the third parameter in the plurality of sets of data 
related to patient health) refers to the outcome, i.e. either 
death or Survival, of a patient. Thus, data on the patient 
survivability is typically associated with a respective set of 
both heart rate variability data and vital sign data for the same 
patient. 
0083. Another parameter that may be used to train the 

artificial neural network is patient characteristics. Patient 
characteristics include information Such as patient age, gen 
der and medical history. At the conclusion of the training 
phase, the parameters found to be most relevant to achieving 
a high level of accuracy will then be used as inputs to the real 
time detection system. 
0084 An electronic device may incorporate a processor or 
memory module storing instructions to implement the trained 
artificial neural network, so that the device can analyse health 
data of a patient being examined. The output of the electronic 
device can then be used to assist an operator or a medical 
professional to predict the outcome of the patient and thereby 
make appropriate clinical decisions on how to treat the 
patient. 
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0085. In embodiments of the invention, the artificial neu 
ral network (ANN) may be a mathematical model or compu 
tational model simulating the structure and/or functional 
aspects of a biological neural network. In embodiments of the 
invention, the nodes of the ANN include at least one input 
(being the at least one actual input of the ANN), at least one 
artificial neuron and at least one output (being the at least one 
actual output of the ANN). The at least one artificial neuron 
may be present in a single hidden layer of the ANN. In other 
embodiments of the invention where the ANN has a plurality 
of artificial neurons, the plurality of artificial neurons may be 
distributed across one or more hidden layers. Where there is 
more than one layer, each layer may be interconnected with a 
previous and a Subsequent layer. 
I0086. The artificial neurons may processes information 
using a connectionist approach to computation. The ANN 
may be an adaptive system, where it changes based on exter 
nal or internal information that flows through the ANN during 
the training or learning phase. Specifically, the weight (or 
strength) of the connections (such as between adjacent arti 
ficial neurons, or between an input and an artificial neuron) 
within the ANN is adapted to change. 
I0087. In embodiments of the invention, the first parameter 
(heart rate variability data), the second parameter (vital sign 
data) or a combination of the first parameter and the second 
parameter may be classified as feature vectors of the patient 
health data. The artificial neural network may be trained with 
the feature vectors. 

I0088. The artificial neural network may be implemented 
as instructions stored in a memory that when executed by a 
processor cause the processor to perform the functions of the 
artificial neural network. 

0089. In embodiments of the invention, the artificial neu 
ral network may be based on Support vector machine archi 
tecture, wherein the associated weight of the at least one input 
of each artificial neuron of the plurality of artificial neurons is 
initialized from a library used by the support vector machine. 
The Support vector machine may have an aggregated output 
comprising a decision function, the decision function given 
by 

whereinsgn() is a sign function, (X,x,) is set of feature vector, 
k(X.X.) is a kernel matrix constructed by X and x, y, is 1 or -1. 
which is the label of feature vectorx, C, and b are parameters 
used to define an optimal decision hyperplane so that the 
margin between two classes of patterns can be maximized in 
the feature space. 
0090. In embodiments of the invention, the artificial neu 
ral network may be based on an extreme learning machine 
architecture, wherein the associated weight of the at least one 
input of each artificial neuron of the plurality of artificial 
neurons is initialized through random selection by the 
extreme learning machine. The artificial neural network may 
be realized as a single-layer feed-forward network, whereby 
the prediction on the survivability of the patient is derived 
from the function, 
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whereinx, is an input vector to an input of one of the plurality 
of artificial neurons for j=1,2,..., N input vectors; w, is the 
associated weight of the input of the artificial neuron receiv 
ing the X, input vector; g(w,x+b) is an output of the artificial 
neuron receiving the X, input vector . . . for i=1,2,..., N. 
artificial neurons; B, is the output weight vector that associates 
ani" hidden neuron with a respective output neuron; and b, is 
the bias for the i' hidden neuron. 
0091. In embodiments of the invention, training of the 

artificial neural network may be based on back-propagation 
learning. 
0092. In embodiments of the invention, the back-propaga 
tion learning may use the Levenberg-Marquardt algorithm. 
0093. In embodiments of the invention, each of the plural 

ity of artificial neurons of the artificial neural network may 
have an activation function, the activation function being 
selected from a group of functions comprising hardlim, sig 
moid, sine, radial basis and linear. 
0094. In embodiments of the invention, the sequence of 
information within the RR interval may be partitioned into 
non-overlapping segments; and the non-overlapping seg 
ments may be used to train the artificial neural network. A 
length of signal within the RR interval of each of the filtered 
ECG signal may be extracted. The length of signal may be 
partitioned into non-overlapping segments; and at least one of 
the non-overlapping segments may be selected to train the 
artificial neural network. 

0.095. In embodiments of the invention, each of the non 
overlapping segments may be of Substantially equal length. In 
embodiments of the invention, the non-overlapping segments 
may have a fixed length. 
0096. According to embodiments of the present invention, 
a method of predicting the survivability of a patient is pro 
vided. The method includes measuring a first set of param 
eters relating to heart rate variability data of a patient. A 
second set of parameters relating to Vital sign data of the 
patient is also measured. An artificial neural network includ 
ing a network of interconnected nodes is provided, the nodes 
including a plurality of artificial neurons. Each artificial neu 
ron has at least one input with an associated weight adjusted 
by training the artificial neural network using an electronic 
database having a plurality of sets of data. Each set of data has 
at least a parameter relating to heart rate variability data and 
a parameter relating to vital sign data, each set of data further 
having a parameter relating to patient Survivability. The 
method includes processing the first set of parameters and the 
second set of parameters to produce processed data Suitable 
for input into the artificial neural network. The processed data 
is provided as input into the artificial neural network. An 
output is then obtained from the artificial neural network, the 
output providing a prediction on the survivability of the 
patient. 
0097. In embodiments of the invention, the processed data 
of the first set of parameters and the processed data of the 
second set of parameters may be represented as a feature 
Vector. 
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0098. In embodiments of the invention, the processed data 
may be the first set of parameters and the second set of 
parameters being represented as normalized data. 
0099. In embodiments of the invention, the processed data 
may be partitioned into non-overlapping segments, so that the 
input into the artificial neural network may include sets of one 
or more of the non-overlapping segments of processed data. A 
result may be obtained for each of the sets of one or more of 
the non-overlapping segments of processed data, so that each 
of the results may be considered to predict the survivability of 
the patient. 
0100. In embodiments of the invention, majority voting 
may be used to determine the prediction on the survivability 
of the patient, the majority Voting represented by the function 

wherein D, is an intermediate variable for final decision 
making, D, assigned a value of 1 if a m" classifier chooses 
class j in the decision ensemble, and 0 otherwise. 
0101. In embodiments of the invention, the result of the 
artificial neural network may be coded as a two class label. 
The method of predicting the survivability of a patient may 
then further include applying a label-based algorithm to each 
of the two class label results to decide the output from the 
artificial neural network, thereby providing a prediction on 
the survivability of the patient. 
0102. In embodiments of the invention, the prediction on 
the survivability of the patient is either death or survival of the 
patient. 
0103) In embodiments of the invention, a patient surviv 
ability prediction system includes: a first input to receive a 
first set of parameters relating to heart rate variability data of 
a patient; a second input to receive a second set of parameters 
relating to vital sign data of the patient; and a memory module 
storing instructions to implement an artificial neural network. 
The artificial neural network includes a network of intercon 
nected nodes, the nodes including a plurality of artificial 
neurons. Each artificial neuron has at least one input with an 
associated weight adjusted by training the artificial neural 
network using an electronic database having a plurality of sets 
of data. Each set of data has at least one a parameter relating 
to heart rate variability data and a parameter relating to vital 
sign data. Each set of data further has a parameter relating to 
patient survivability. The patient survivability prediction sys 
tem further includes a processor to execute the instructions 
stored in the memory module to perform the functions of the 
artificial neural network and output a prediction on the Sur 
vivability of the patient based on the first set of parameters 
and the second set of parameters; and a display for displaying 
the prediction on the survivability of the patient. 
0104. In embodiments of the invention, the patient surviv 
ability prediction system may further include a port to receive 
the first set of parameters from the first input and the second 
set of parameters from the second input. 
0105. In embodiments of the invention, the patient surviv 
ability prediction system may further include a first port to 
receive the first set of parameters from the first input; and a 
second port to receive the second set of parameters from the 
second input. 
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0106. According to embodiments of the invention, a 
method of predicting the survivability of a patient is provided. 
The method includes: measuring a first set of parameters 
relating to heart rate variability data of a patient; measuring a 
second set of parameters relating to Vital sign data of the 
patient and obtaining a third set of parameters relating to 
patient characteristics. The first set of parameters, the second 
set of parameters and the third set of parameters are provided 
as sets of normalized data values, where required, to a scoring 
model implemented in an electronic database. The scoring 
model has a respective category associated to each parameter 
of the first set of parameters, the second set of parameters and 
the third set of parameters. Each category has a plurality of 
pre-defined value ranges, each of the plurality of value ranges 
having a pre-defined score. A score for each parameter of the 
first set of parameters, the second set of parameters and the 
third set of parameters is determined by assigning the sets of 
normalized data to respective pre-defined value ranges, 
encompassing the sets of normalized data values, of the plu 
rality of value ranges of the category associated to the respec 
tive parameter of the first set of parameters, the second set of 
parameters and the third set of parameters. A total score, 
being a Summation of the score for each parameter of the first 
set of parameters, the second set of parameters and the third 
set of parameters is obtained. The total score provides an 
indication on the survivability of the patient. 
0107. It will be appreciated that in embodiments of the 
invention, only selected parameters of the first set of param 
eters, the second set of parameters and the third set of param 
eters may be provided to the scoring model implemented in 
the electronic database. For instance, the third set of param 
eters may entirely not be obtained from the patient or pro 
vided to the scoring model. In embodiments of the invention, 
further parameters of patient health data may be measured 
and provided to the scoring model. 
0108. The scoring model may be any suitable process or 
algorithm, implementable in an electronic database, which 
can assign a score to each range of values within each cat 
egory associated to each parameter of the first set of param 
eters, the second set of parameters and the third set of param 
eters. For instance, the scoring model may be based on a 
mathematical model using logistic regression, Such as 
univariate analysis. 
0109. In embodiments of the invention, the score may be a 
numerical value, which may be determined according to sta 
tistical information or standard medical information. The 
numerical value of the pre-defined score may also depend on 
the pre-defined value range, which the pre-defined score is 
assigned to, in the respective category. In embodiments of the 
invention, adjacent pre-defined value ranges within the same 
category may each have an assigned pre-defined score of the 
same numerical value. It will also be appreciated that pre 
defined value ranges within different categories may each 
have an assigned pre-defined score of the same numerical 
value. 

0110. The scope of the pre-defined value ranges may 
depend on the category to which they belong to and may be 
determined according to statistical information or standard 
medical information. The scope of a pre-defined value range 
for a category associated to a parameter of the first set of 
parameters may be different to the scope of a pre-defined 
value range for a category associated to a parameter of the 
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second set of parameters. In embodiments of the invention, 
there may be no overlap between pre-defined value ranges of 
the same category. 
0111. In embodiments of the invention, assigning sets of 
normalized data to respective pre-defined value ranges may 
involve first determining which category of the scoring model 
the normalized data belongs to. Subsequently, it may be deter 
mined which one of the pre-defined value ranges the normal 
ized data value belongs to, by ascertaining that the numerical 
value of the normalized data value falls within or is encom 
passed by the scope of the respective pre-defined value range. 
0112. In embodiments of the invention, scoring model 
may further include a plurality of risk categories, each cat 
egory having a pre-defined range of values. The method of 
predicting the survivability of a patient may further include 
assigning the total score to the category having the pre-de 
fined range of values encompassing the total score, to deter 
mine which of the plurality of risk categories the total score 
belongs to. 
0113. While embodiments of the invention will be shown 
and described with reference to specific embodiments, it 
should be understood by those skilled in the art that various 
changes in form and detail may be made therein without 
departing from the spirit and scope of the invention as defined 
by the appended claims. The scope of the invention is thus 
indicated by the appended claims and all changes which come 
within the meaning and range of equivalency of the claims are 
therefore intended to be embraced. 

0114. It will be appreciated that common numerals, used 
in the relevant drawings, refer to components that serve a 
similar or the same purpose. 
0115 FIG. 1 is a flow chart 100 illustrating a method, 
according to one embodiment of the present invention, used 
to produce an artificial neural network capable of predicting 
the survivability of a patient. 
0116. The method includes three steps 102, 104 and 106. 
0117. In step 102, patient health data is stored in an elec 
tronic database. The patient health data includes a plurality of 
sets of data, each set having at least one of a first parameter 
relating to heart rate variability data and a second parameter 
relating to vital sign data. Each of the plurality of sets of data 
further has a third parameter relating to patient survivability. 
0118. In step 104, a network of nodes interconnected to 
form an artificial neural network (ANN) is provided. The 
nodes include a plurality of artificial neurons, each artificial 
neuron having at least one input with an associated weight. 
The artificial neural network (ANN) provided in step 104 may 
be a mathematical model or computational model simulating 
the structure and/or functional aspects of a biological neural 
network. 

0119. In step 106, the artificial neural network is trained 
using the patient health data Such that the associated weight of 
the at least one input of each artificial neuron of the plurality 
of artificial neurons is adjusted in response to respective first, 
second and third parameters of different sets of data from the 
patient health data. This results in the artificial neural network 
being trained to produce a prediction on the survivability of a 
patient. 
0.120. As mentioned above, artificial neural networks 
(such as the ANN provided in step 104) are based on the way 
the human brain approaches pattern recognition tasks, pro 
viding an artificial intelligence based approach to solve clas 
sification problems. A model is learned during a training 
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process using previously known input-output pairs. The 
trained model is then tested with new data. 
0121 Various artificial neural network topologies are 
available, including single-layer and multi-layer feedforward 
networks. Such ANNs are typically BP (backpropagation) 
based, whereby weights of hidden layers are adjusted during 
training to minimize an error function. 
0122. In embodiments of the invention, the nodes of the 
ANN include at least one input (being the at least one actual 
input of the ANN), at least one artificial neuron and at least 
one output (being the at least one actual output of the ANN). 
0123 FIG. 2 is a schematic representation of an artificial 
neural network 200 according to one embodiment of the 
present invention. With reference to the flow chart 100 shown 
in FIG.1, the artificial neural network 200 may be provided in 
the step 104. 
0.124. In the embodiment shown in FIG. 2, the ANN 200 is 
a single hidden-layer feed forward network (SLFN). The 
ANN 200 has an input layer 202, a hidden layer 204 and an 
output layer 206. 
0.125. The input layer 202 includes one or more input 
nodes 202,202,202, ... and 202. While FIG.2 shows that 
the hidden layer 204 has only three artificial neurons 204, 
204, and 204, it will be appreciated that any number of 
artificial neurons may be used. The output layer has two 
output nodes 206 and 206. 
0126 The output of each of the input nodes 202, 202, 
202, ... and 202, may be connected to an input of every one 
of the artificial neurons 204, 204 and 204 in the hidden 
layer 204. However, for the sake of simplicity, only a few such 
connections between the input layer 202 and the hidden layer 
204 is illustrated in FIG.2. Similarly, the output of each of the 
artificial neurons 204,204 and 204 may be connected to an 
input of every one of the output nodes 206 and 206 in the 
output layer 206. In this manner, a network of interconnected 
nodes is formed. 
0127. Each of the artificial neurons 204, 204 and 204 
has at least one input. For simplicity, only inputs for one of the 
artificial neurons are labeled in FIG. 2, being inputs 208 and 
208 for the artificial neuron 204. Each input of the respec 
tive artificial neurons (204, 204 and 204) has an associated 
weight. 
0128. In training the ANN 200 to predict the survivability 
of a patient, the associated weight of the at least one input of 
each artificial neuron (for example inputs 208 and 208 of the 
artificial neuron 204) is adjusted in response to respective 
first, second and third parameters of different sets of data from 
the patient health data. With reference to step 102 of flow 
chart 100 of FIG. 1, the first parameter relates to heart rate 
variability data, the second parameter relates to vital sign data 
and the third parameter relates to patient survivability. 
0129. The trained ANN 200 can then be used to assist 
clinical decisions on whether a patient exhibiting certain 
symptoms will survive or will die, i.e. the trained ANN 200 
can assist in the prediction on the survivability of the patient. 
0130. The trained ANN 200 may be used to predict the 
survivability of the patient as follows. A first set of parameters 
relating to heart rate variability data of the patient is mea 
Sured. A second set of parameters relating to vital sign data of 
the patient is also measured. The first set of parameters and 
the second set of parameters are processed to produce pro 
cessed data suitable for input into the trained artificial neural 
network 200. The processed data is provided as input 212 into 
the artificial neural network 200, for example at the input 

Sep. 15, 2011 

layer 202. An output 214 is then obtained from the artificial 
neural network 202, the output 214 providing a prediction on 
the survivability of the patient. 
I0131 FIG. 3 is a schematic representation of an artificial 
neural network 300 according to one embodiment of the 
present invention. With reference to the flow chart 100 shown 
in FIG. 1, the artificial neural network 300 may be provided in 
the step 104. 
(0132. In the embodiment shown in FIG.3, the ANN 300 is 
a multi-layer feed forward network. The ANN 300 has an 
input layer 302, a hidden layer 304 and an output layer 306. 
0133. The main difference between the ANN 300 of FIG. 
3 and the ANN 200 of FIG. 2 is that the ANN 300 of FIG.3 has 
several layers of interconnected artificial neurons 304, 
instead of having a single layer of artificial neurons. Each 
layer of artificial neurons 304, may be interconnected with a 
previous and a Subsequent layer of artificial neurons 304. 
I0134. Another difference is that it takes a longer time to 
train the ANN 300 (compared to training the ANN 200 of 
FIG. 2) to predict the survivability of a patient, as there are 
more artificial neurons 304, having inputs (for instance 308 
and 308) where their associated weights have to be adjusted 
in response to patient health data. 
I0135 Functionally, the hidden layer 304 still works in the 
same manner as the hidden layer 204 of the ANN 200. Simi 
larly, the input layer 302 and the output layer 306 function in 
the same manner as the input layer 202 and the output layer 
206 respectively of the ANN 200. Thus, the functions of the 
input layer 302, the hidden layer 304 and the output layer 306 
are not further elaborated. 

0.136 Inafurther embodiment of the invention, the system 
may be used as a means of triaging patients such as in combat 
situations, other mass trauma situations such as multi-vehicu 
lar automobile accidents or terrorist incidents. The trained 
ANN 300 can be used to assist clinical decisions on whether 
a patient exhibiting certain symptoms will Survive or will die, 
i.e. the trained ANN 300 can assist in the prediction on the 
survivability of the patient. 
0.137 FIG. 4 shows a block diagram of a system 400 used 
to predict the survivability of a patient, the system 400 built in 
accordance to an embodiment of the invention. 

0.138. The system 400 acquires ECG signals real-time, 
filter noise and ectopic beats, generate HRV parameters and 
combine these with other vital parameters such as blood 
pressure, oxygen Saturation, respiratory rate, pulse rate and 
age into a composite triage score. The aim of the system 400 
is to have a portable, field usable, integrated device that will 
assist medical staff in rapid, real-time triage of patients based 
on risk prediction. Such a system 400 would be particularly 
applicable in mass disaster scenarios as well as high Volume 
patient load situations like the Emergency Department. 
0.139. There are known systems that use HRV as a predic 

tor, but such systems focused mainly on specific patient con 
ditions such as sepsis and head trauma. Further, available 
HRV analysis software packages either require the RR inter 
val (ECG beat-to-beat intervals) to be generated externally or 
have limited functionality in terms of the available features. 
These packages work off-line using the entire recording or 
on a selected segment and do not have automatic methods to 
identify and isolate non-sinus beats before computing HRV 
parameters. 
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0140. The system 400 has the following advantages over 
known existing systems: 
1. Dynamically acquire and process raw ECG signals from a 
patient to reduce the effects of noise and other artifacts such 
as movement and interference. 
2 Generate the RR interval sequence after automatically iso 
lating non-sinus beats and artifacts. 
3. Compute and display time and frequency domain HRV 
parameters. 
4. Acquire and display real time vital signs including blood 
pressure, respiration rate and SpO2 (Saturation of peripheral 
oxygen) using appropriate sensors and signal conditioning 
circuits. 
5. Compute and display a risk score(s) related to the various 
possible patient outcomes. 
The system 400 is able to perform the above functions in 
“real-time'. 
0141. The system 400 has three main functional blocks: a 
signal acquisition block 402, a signal processing block 404 
and an analysis block 406. 
0142. The signal acquisition block 402 has sensor and 
signal conditioning hardware 408 for acquiring an ECG sig 
nal and other vital signs from a patient 401. The sensor and 
signal conditioning hardware 408 may include sensors that 
detect ECG signals, blood pressure, SpO2 and respiration 
rate. 

0143. The signal acquisition block 402 has a data acqui 
sition (DAQ) card 410, which in one embodiment contains the 
signal conditioning circuits used for processing output from 
the sensor and signal conditioning hardware 408. The signal 
conditioning circuits are designed to process signals from 
these sensors. The signal conditioning circuits comprise elec 
tronic components that perform functions such as isolation 
and amplification of the various signals measured by the 
sensors. The output of each signal conditioning circuit is a 
signal with a peak amplitude of about 1 V. 
0144. The DAQ card 410 may also act as an interface to a 
computer. An input panel also accepts additional information 
such as age and gender of the patient 401. The DAQ card is 
used to perform analog-to-digital conversion of the acquired 
signals from the sensor and signal conditioning hardware 408 
for interfacing with a computer for further processing. A 
National Instruments PCMCIA or USB card may be used for 
this purpose. The DAQ card should preferably have a sam 
pling rate of around 10 kHz and use 16-bit quantization. 
0145 The signal processing block 404 includes a signal 
processing module 426, a vital sign module 420 and a patient 
information module 418. 
0146 The signal processing module 426 includes an ECG 
pre-processing module 412, a beat detection and post pro 
cessing module 414, and a HRV parameter calculation mod 
ule 416. 
0147 The ECG pre-processing module 412 processes raw 
ECG data from the signal acquisition block 402 to suppress 
unwanted signals such as noise, motion artifacts and power 
line interference which may affect the accuracy of HRV 
parameters eventually extracted from the ECG data. The beat 
detection and post processing module 414 acts on denoised 
signal from the ECG pre-processing module 412 to detect a 
heartbeat and to exclude non-sinus beats during postprocess 
ing. The duration between consecutive sinus beats are com 
piled into an RRI (beat to beat interval) sequence from which 
HRV parameters are computed. 
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0.148. The HRV parameter calculation module 416 is used 
to extract HRV parameters from the output of the beat detec 
tion and post processing module 414. 
014.9 The patient information module 418 receives input 
regarding additional information about the patient 401, Such 
as age, gender, Glasgow Coma Score (GCS) and medical 
history. The normalization is carried out with analysis block 
406. 
0150. Vital sign data such as blood pressure, SpO2 and 
respiration rate is processed by the vital sign module 420. The 
normalization is carried out with analysis block 406. 
0151. The analysis block 406 includes a HRV parameter 
and patient information analysis module 422 and a risk score 
module 424. It will be appreciated that the ANN in accor 
dance with embodiments of the invention (see for instance 
FIGS. 1 to 3) is implemented in the analysis block 406. 
0152 The analysis block 406 computes HRV parameters 
obtained from the signal processing block 404 and compiles 
them into feature sets using results obtained from patient 
health data obtained from hospital records or from conduct 
ing field studies. Patient 401 demographics such as age, gen 
der, Glasgow Coma Score, etc., which can be keyed into the 
system, are also used in the analysis along with the vital signs 
of the patient 401. A risk score providing a prediction on 
different outcomes Such as death, ward admission and inten 
sive care unit (ICU) admission of the patient 401 is computed 
and may be displayed on a computer screen. 
0153. The signal processing block 404 and the analysis 
block 406 may be implemented using software, such as “Lab 
View' deployed on a hand held electronic device 430 (illus 
trated in FIG. 4 as a dotted block). The “LabView” program 
performs signal acquisition, noise removal, beat detection, 
post-processing, computation of HRV parameters and dis 
play of the risk scores as described above. In this manner, the 
hand held electronic device 430 acts as a standalone device, 
where a suitable deployment platform for the handheld elec 
tronic device 430 would be “CompactRIO by “National 
Instruments. 
0154) In further detail, for an ECG signal from the signal 
acquisition block 402, noise removal is performed within the 
“LabView” program using a 1-50 Hz bandpass filter which 
Suppresses high frequency interference as well as low fre 
quency variations due to baseline wander and shift, and 
motion artifacts. The denoised signal is displayed on a screen 
432. 
0.155. In another embodiment (not shown), the signal 
acquisition block 402, the signal processing block 404 and the 
analysis module 406 are integrated into a single hand held 
electronic device. 
0156 Beat detection is performed from a 1Darray of ECG 
sample points X(n), as follows. In one embodiment of the 
present invention, where a 1D array of ECG sample points 
x(n) are provided, the upper and lower amplitude thresholds 
(T. and T.) are set after finding the maximum value 
(ref peak) within the first few seconds of data. The thresholds 
are defined as: 

T =ref peak+0.4* ref peak zier 

T. ref peak-0.35*ref peak 

Then a QRS peak is said to occur at the point i if the following 
conditions are met, 
(O157 x(i) lies between T zipper and Tower 

where the R-peak is the point with maximum value. 
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0158. The positions of other QRS peaks within the filtered 
ECG signal may be located by iterating the process of locat 
ing another peak value and locating other minimum values on 
either side of the another peak value. When the another peak 
value is above the upper amplitude threshold while the other 
minimum values are both below the lower threshold, the 
location of the peak value is denoted as an R position. The 
location of the minimum value occurring closest on the left 
side of the R position is denoted as a Q position and the 
location of the minimum value occurring closest on the right 
side of the R position is denoted as an S position. In this 
manner, the location of another QRS peak is determined. 
0159. The above technique of beat detection automatically 
generates RR interval sequences from given ECG data, after 
correcting for ectopic beats and noise, with minimal user 
input. The beat detection technique was tested using data 
from known databases (for example the MIT-BIHarrhythmia 
database, website: http://www.physionet.org/physiobank/da 
tabase/mitdb/) and results were found to match closely to 
manually annotated values. The technique was also tested on 
ambulance ECG data, which is subject to higher levels of 
noise and motion artifacts, with good results. 
0160 From detected QRS complexes, the processed RR 
interval (RRI) sequence can be obtained. The processed RRI 
is used to calculate the following HRV parameters, from 
which include time domain and frequency domain measures 
may be measured: 
Examples of time domain measures are: 

Time Domain Measures 

0161 1. Average length of the RR interval (aRR): Mean of 
all sinus RR intervals (N-N) in the sequence 
2. Standard deviation of all N-Ninterval (SDNN) 
3. Mean heart rate (mean HR) 
4. Standard deviation of all instantaneous heart rate values 
(SDHR) 
5. Square root of the mean squared differences of Successive 
N-Nintervals (RMSSD): The square root of the mean of the 
sum of the squares of differences between adjacent N-N 
intervals 

6. HRV triangular index: Total number of all N-Nintervals 
divided by the height of the histogram of all NN intervals. 
7. Baseline width of a triangle fit into the N-Ninterval histo 
gram using a least Squares technique (TINN) 
Examples of frequency domain measures are: 

Frequency Domain Measures 

0162 Frequency domain measures are calculated based 
on the power spectrum of the RRI sequence which is gener 
ated using a Lomb-Scargle periodogram. The following 
parameters are then calculated: 
1. Total power (TP): Variance of N-Nintervals over the seg 
ment till 0.4 HZ 

2. VLF: Power in very low frequency range <0.04 Hz, 
3. LF: Power in low frequency range. 0.04-0.15 Hz 
4. HF: Power in high frequency range. 0.15-0.4 Hz 
5. LF norm: LF power in normalized units: LF norm=LF/ 
(TP-VLF)x100% 
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6. HF norm: HF power in normalized units: HF norm=HF/ 
(TP-VLF)x100% 

7. LFAHF: Ratio of LFFHF 

0163. In addition to the above HRV parameters, a user can 
also input other patient 401 parameters such as age, gender, 
Glasgow Coma Score, respiration rate, blood pressure, SpO2 
and heart rate. These parameters for the patient 401 are used 
to calculate a risk score to predict the survivability of the 
patient 401. In calculating the risk score, it will be appreciated 
that the artificial neural network within the analysis block 406 
has been trained as outlined in FIGS. 1 to 3 above. The output 
of the analysis block 406 will be a risk score which will 
classify the patient as being high, medium or low risk for 
each of the hospital outcomes including death, hospital 
admission and ICU admission. 
(0164. Each of the FIGS. 5 to 9 show a flow chart, in 
accordance with embodiments of the invention, implemented 
by a respective functional block of the system 400 of FIG. 4. 
(0165 FIG. 5 shows a flow chart 500, in accordance with 
embodiments of the invention, implemented by the signal 
acquisition block 402 of FIG. 4. 
0166 In step 502 a patient is chosen to perform prediction 
on survivability. 
0167. In step 504, the patient's ECG signal, pulse rate, 
pulse oximetry, blood pressure and clinical information are 
obtained. Examples of clinical information include age, gen 
der and medical history (eg cancer, diabetes, heart disease). 
(0168. In step 506, the patient's ECG signal, pulse rate, 
pulse oximetry, blood pressure and clinical information is 
sent to a data acquisition (DAQ) card. All the information 
from step 506 will be acquired by the DAQ card sent as data 
to a computer or stand-alone device in real-time. 
(0169. In step 508, the information from step 506 is 
sampled and converted from an analog signal into digital data 
in step 510. 
0170 In step 512, the signal acquisition block 402 (see 
FIG. 4) checks the recording length of digital ECG data that 
has been collected. For reliable calculation of HRV param 
eters from the digital data obtained in step 510, it has been 
noticed that a recording length of at least six minutes is 
required. If six minutes worth of digital ECG data has yet to 
be collected, the flow chart 500 returns to step 504. On the 
other hand, if six minutes of digital ECG data has been 
recorded, the flow chart stops at step 514. In step 514, the 
digital ECG data is stored, along with vital signs and clinical 
information of the patient, into the computer or stand-alone 
device. 
(0171 FIG. 6 shows a flow chart 600, in accordance with 
embodiments of the invention, implemented by the signal 
processing module 426 of FIG. 4. 
(0172. The flow chart 600 begins with step 602 with the 
ECG pre-processing module 412 having a raw ECG data and 
Vital sign data as input. 
0173 Raw ECG data may not always contain a single 
continuous length of data points. Often, leads may be 
removed or settings may have been changed, resulting in gaps 
in the data. Hence in step 604, the calibration values are 
removed or trimmed, the data segments separated and con 
catenated to get one continuous stream of data. 
0.174. In step 606, the signal processing module 426 has 
unfiltered ECG data with calibration values trimmed. The 
effects of noise and artifacts in unfiltered ECG data are well 
known. The low amplitude of the ECG signal makes it highly 
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susceptible to noise and interference from a variety of 
Sources. These include high-frequency noise, power line 
interference, baseline wander, motion artifact, and other low 
frequency distortions. The presence of noise can result in 
false positives at the QRS detection stage and thus injects 
errors into the generation of the HRV sequence and in the 
subsequent HRV analysis. 
0175 Noise removal techniques exist (such as using band 
pass filters) to remove low frequency noise Such as baseline 
drift and also attenuate high frequency variations without 
significant distortion of the QRS complex. The presence of 
abrupt baseline shift and other artifacts can result in peaks 
being wrongly detected as QRS complexes. Since these arti 
facts may lie within the same frequency range as the QRS 
complex, they may be difficult to eliminate. Thus, in step 610 
baseline wandering is removed from the unfiltered trimmed 
ECG data and in step 612, the DC offset is removed. 
0176 Frequency components of the QRS complex typi 
cally lie between a range of 10 and 25 Hz. In step 614, the data 
from step 612 is processed using a band pass filter with an 
operating frequency range of 5 to about 28 Hz. It will thus be 
appreciated that the band pass filter facilitates location of 
QRS complex by enhancing the QRS complex inside the 
unfiltered trimmed ECG data from step 612 and to suppress 
high frequency variations. A bandpass frequency range, that 
is Successful in eliminating baseline drift and magnifying the 
QRS complex without significantly distorting the signal and 
increasing the chance of false detections, is applied. 
(0177. In step 616, a de-noised ECG signal is obtained 
which is used for further processing to detect QRS and cal 
culate HRV measures. In step 618, the de-noised ECG signal 
waveform is displayed for instance in the screen 432 (see FIG. 
4). 
0.178 FIG. 7 shows a flow chart 700, in accordance with 
embodiments of the invention, implemented by the beat 
detection and post processing module 414 of FIG. 4. 
(0179 The flow chart 700 begins with step 702 with the 
beat detection and post processing module 414 having a de 
noised ECG signal. 
0180. In summary, the objective of steps 704 to 726 is to 
detect the location of the QRS complexes, which allows us the 
calculation of RR intervals. The location, magnitude and 
shape of the QRS complex as well as the duration between 
adjacent complexes allows sifting out ectopic beats and other 
non-sinus rhythm which is to be excluded from the HRV 
analysis. In this manner, reliable heart rate variability data can 
be extracted from an ECG signal from a patient. 
0181. In steps 706 to 714, a maximum peak data value first 
occurring in the filtered ECG signal is located. An upper 
amplitude threshold and a lower amplitude threshold from the 
located maximum peak value are determined. A peak value 
and minimum values on either side of the peak value are 
located. In embodiments of the invention, either side refers to 
the left and right sides of the peak value. The conditions of 
whether the peak value is above the upper amplitude thresh 
old, while the minimum values are below the lower amplitude 
threshold are met is checked. If the conditions are met, the 
location of the peak value is denoted as an R position. The 
location of the minimum value occurring closest on the left 
side of the R position is denoted as a Q position, and the 
location of the minimum value occurring closest on the right 
hand side of the R position is denoted as an S position. The 
location of a QRS peak within the filtered ECG signal is thus 
determined. 
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0182. Further detail on steps 704 to 726 is provided as 
follows. 

0183 In step 704, a modified threshold-plus-derivative 
method is used as it has found to be effective and robust in the 
presence of noise. The modified algorithm works as follows. 
0184. In step 706, a maximum peak data (ref peak) value 

is found, given a 1D array of ECG sample points X(n), within 
the first few seconds of de-noised ECG data. In step 708, 
upper and lower amplitude thresholds are found. 
0185. In embodiments of the invention, the upper and 
lower amplitude thresholds (T. and T.) are set after 
finding the maximum value (ref peak) within the first few 
seconds of data. The thresholds are defined as: 

T =ref peak+0.4* ref peak zier 

T. ref peak-0.35*ref peak 

0186. In step 710, it is determined whether the ECG 
sample points cross the upper and lower amplitude thresholds 
(T. and T). The flow chart 700 does not proceed to 
step 712 if the ECG sample points do not pass this criteria. 
The use of the upper and lower amplitude thresholds (T. 
and T) for QRS complex detection ensures that large 
peaks due to noise (e.g. as a result of electrode placement or 
motion artifacts) are not detected as QRS complexes. 
0187 Step 712 occurs if the ECG sample points cross the 
upper and lower amplitude thresholds (T, and T). In 
step 712, it is determined whether the sample points that pass 
the criteria check at step 710 can be considered as a QRS 
peak. AQRS peak is said to occurat the point i if the following 
further conditions are met, 
0188 and T zipper over x(i) lies between T 

where the R-peak is the point with maximum value. 
0189 If the further conditions above are met, the points 
corresponding to the Q and S waves are then determined by 
locating the nearest local minimum within a window on either 
side of the R-peak. The exact locations of the Q, R and S 
positions are then saved in step 714. Otherwise (i.e. if the 
further conditions above are not met), the flow chart 700 
returns to step 710. The positions of other QRS peaks within 
the filtered ECG signal may be located by iterating the pro 
cess of steps 710 and 712, i.e. locating another peak value and 
locating other minimum values on either side of the another 
peak value. When another peak value is above the upper 
amplitude threshold while the other minimum values are both 
below the lower threshold, the location of the peak value is 
denoted as an R position. The location of the minimum value 
occurring closest on the left side of the R position is denoted 
as a Q position and the location of the minimum value occur 
ring closest on the right side of the R position is denoted as an 
S position. In this manner, the location of another QRS peak 
is determined. All positions of QRS peaks are then stored in 
step 714. 
0.190 Besides noise, ectopic beats and other outliers (due 
to exercise, muscle or other artifacts) have to be identified 
because they can perturb the RR interval sequence. 
0191) Ectopic beats are generated when autonomic modu 
lation of the sinoatrial node is temporarily lost, initiating a 
premature contraction of the atria or ventricles, occurring 
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both in normal Subjects as well as patients with heart disease. 
Generally, most Such ectopics are manifested with a wide 
QRS complex. 
(0192 Steps 716 to 726 are used to removing outliers from 
the sequence of information within the RR interval. The pro 
cess involves finding a median value and a standard deviation 
value for the RR interval. A tolerance factor based on the 
standard deviation value is calculated. A portion of informa 
tion that lies within the RR interval spanning either side of the 
median value by the tolerance factor is retained. Heart rate 
variability data may be obtained from the retained portion of 
information and the remaining portion of the information 
from the sequence of information is discarded. 
(0193 Further detail on steps 716 to 726 is provided as 
follows. 
0194 In step 716, non-sinus beats are isolated. Beats adja 
cent to the non-sinus beats are removed to produce a clean 
QRS peak in step 718. 
0.195 The RR interval sequence is then generated in step 
720 based on normal beats. Once this is done, the locations of 
beats corresponding to sinus rhythm are stored in an array for 
the next stage of processing. Using the detected peaks, the RR 
intervals correspond to the distance between successive QRS 
peaks. The calculated intervals are stored in an array for 
post-processing. Although noise, artifacts and isolated abnor 
mal beats are already been filtered, the beats can result in very 
short or very long RR intervals either due to compensatory 
pauses or by virtue of removal of some beats. Hence, the 
sequence may contain outliers. 
0196. To automatically identify these outliers, the statisti 
cal properties of the sequence are applied onto the RR interval 
sequence in step 720. 
(0197). In step 722, a RRI limit is calculated as follows. 
1. Find the median and standard deviation for the RR interval 
Sequence 
2. Calculate atolerance factor based on the standard deviation 
(s) 
3. Search for any intervals lying more than Ms away from the 
median interval, where M is the tolerance factor. Outliers 
exist within the intervals lying more than Ms away from the 
median interval. 
4. Separate these outliers, which occurs in step 724 
0198 In step 724, a tolerance factor is calculated based on 
the spread of the values. The tolerance factor this is used to 
separate the outliers, thus tackling both noisy as well as 
normal data. Therefore, sinus RRI sequences which are 
noise-free and ectopic-free are generated in step 726 before 
computing HRV parameters. 
(0199 To summarize FIGS. 6 and 7, extracting the heart 
rate variability data, in embodiments of the invention, com 
prises filtering the ECG signal to remove noise and artifacts, 
locating a QRS complex within the filtered ECG signal; find 
ing a RR interval between successive QRS peaks of the QRS 
complex; and processing the sequence of information within 
the RR interval to obtain the heart rate variability data. 
0200 FIG. 8 shows a flow chart 800, in accordance with 
embodiments of the invention, implemented by the HRV 
parameter calculation module 416 of FIG. 4. 
0201 The flow chart 800 begins with step 802 with the 
HRV parameter calculation module 416 having sinus RR 
interval (sinus RRI) sequences. 
0202 Three categories of HRV measures, time domain 
data, frequency domain data and geometric domain data are 
calculated from the sinus RRI sequences. 
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0203. In step 804, time domain data such as mean of RR 
intervals (mean RR), standard deviation of RR intervals 
(STD), mean of the instantaneous heart rate (mean HR), 
standard deviation of the instantaneous heart rate (STD HR), 
root mean square of differences between adjacent RR inter 
vals (RMSSD), number of consecutive RR intervals differing 
by more than 50 ms (NN50), and percentage of consecutive 
RR intervals differing by more than 50 ms (pNN50) is calcu 
lated. Time domain analysis is based on statistical parameters 
(primarily based on standard deviation) calculated from the 
RR intervals over time for both short-term (less than 5 mins) 
as well as long-term recordings (more than 24 h). 
0204 The meaning of each of the terms: mean RR, STD, 
mean HR, STD HR, RMSSD, NN50 and pNN50 is provided 
below. 
(0205 Mean RR (or alRR) is the average width of the RR 
interval measured in milliseconds or seconds. This gives a 
general idea of the heart rate and can be calculated for both 
long-term as well as short-term recordings. 
(0206 STD (or SDNN) is the standard deviation of all RR 
intervals in the data set 21, giving a general idea of the 
spread of the values. STD is suitable for both short-term as 
well as long-term recordings. 
0207 Mean HR is the mean of the instantaneous heart rate. 
0208 STD HR is the standard deviation of the instanta 
neous heart rate. 
(0209 RMSSD (or r-MSSD or SDSD) is found by taking 
the square root of the mean of the sum of the squares of 
differences between successive heart periods in a 24-hour 
interval. It is an index of the variation in RR interval length. 
RMSSD is not a sensitive measure of variation over long 
periods of time but it is particularly sensitive to misclassified 
or beat-labeling errors like retaining premature ventricular 
contractions. Among the time domain variables, this is the 
most sensitive to vagal influences, although it is unable to 
determine the sympathetic and parasympathetic contribu 
tions. 

0210. NN50 (or RR-50) is the total number of times in 24 
hours that the difference between 2 successive RR intervals 
exceeds 50 ms. It is the most sensitive of all measures to 
mislabeled beats and occurrences of premature ventricular or 
atrial contractions will rapidly increase the RR50 count. It is 
also highly sensitive to longer variations of the heart periods 
of normal sinus rhythm. 
0211 pNN50 (or % RR50) is the percentage of absolute 
differences between normal RR intervals that exceed 50 ms, 
normalized by the average heart rate. 
0212. In step 806, frequency domain data such as: power 
in very low frequency range (<=0.04 Hz) (VLF), power in low 
frequency range (0.04 to 0.15 Hz) (LF), power in high fre 
quency range (0.15 to 0.4 Hz) (HF) being an index of vagal 
activity, total power which is estimated from the variance of 
NN intervals in the segment and is measured in ms (TP), ratio 
of LF power to HF power (LF/HF), LF power in normalized 
units: LF/(TP-VLF)x100 (LFnorm), and HF power in nor 
malized units: HF/(TP-VLF)x100 (HFnorm) is calculated. 
Spectral analysis is a sensitive, quantitative method for evalu 
ating HRV in the frequency domain. The analysis is done by 
transforming the time series to the frequency domain and 
finding the power spectrum. The distribution of spectral 
energy in various bands is quantified and used as an index of 
variability. This distribution of energy reflects the contribu 
tion of the sympathetic and parasympathetic arms of the 
autonomic nervous system. 
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0213. In step 808, geometric domain data such as: total 
number of all RR intervals divided by height of histogram of 
intervals (HRV Index) and base width of triangle fit into RR 
histogram using least squares method (TINN) is obtained. 
0214) The meaning of the terms: HRV Index and TINN is 
provided below. 
0215 HRV index (or HRV triangular index or RR trian 
gular index) is obtained after the RR interval sequence is 
converted to a sample density distribution. The triangular 
index is the integral of the density distribution, i.e., the num 
ber of all RR intervals divided by the maximum of the density 
distribution. 
0216 TINN, the triangular interpolation of RR interval 
histogram, is the baseline width of the sample density distri 
bution measured as a base of a triangle approximating the RR 
interval distribution. 
0217. In step 810, the above 16 HRV parameters (Mean 
RR, STD, Mean HR, STD HR, RMSSD, NN50, pNN50, 
VLF, LF, HF, TPLF/HF, LFnorm, HFnorm, HRV Index and 
TINN) are combined and sent to the analysis block 406 (see 
FIG. 4) for classifier training (i.e. training of the artificial 
neural network within the analysis block 406) and patient 
outcome prediction. 
0218 FIG.9 shows a block diagram representation of how 
data flows in the analysis block 406 of FIG. 4. 
0219. The analysis block 406 is first configured to be 
trained (represented by reference numeral 902) using training 
data and subsequently the trained analysis block 406 is tested 
using testing data (represented by reference numeral 904). 
0220. In step 906, a training data set is constructed in 
which each patient is represented as a feature vector of HRV 
parameters, clinical information (like age, gender, ethnicity) 
and vital signs. 
0221. In step 908, the training data set represented as 
feature vectors is further processed with feature selection 
and/or extraction algorithms for reducing feature dimension 
ality so as to remove redundant information. 
0222 Besides discriminatory features, the selection of a 
classifier plays a key role in building an efficient prediction 
system. Judging a classifier usually depends on evaluating its 
generalization ability that refers to the classifier's perfor 
mance in categorizing unseen patterns. Since the same clas 
sifier may have various performances on different applica 
tions, the needs of the application should be analyzed before 
choosing a proper classifier. In order to predict the outcomes 
for unseen patients, the classifier should be trained with train 
ing samples prior to doing categorization on testing samples. 
Therefore, in step 910 a classification model, suitable for the 
application at hand, is learnt after choosing proper pattern 
representations in step 908. 
0223) In step 912, testing data from a patient is represented 
as a combined feature vector of HRV measures, clinical infor 
mation and vital signs. 
0224. In step 914, feature selection and/or extraction algo 
rithms are applied to the testing data from a patient repre 
sented as the combined feature vector for extracting discrimi 
natory information. 
0225. In step 916, the extracted discriminatory informa 
tion is processed using the classification model selected in 
step 910. The output 918 from step 916 is a label of the testing 
data, giving a prediction on the patient outcome. 
0226 FIG. 10 shows a flow chart 1000 illustrating a sys 
tem, in accordance with embodiments of the invention, ulti 
lizing wireless technology. 
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0227. The flow chart 1000 begins with step 1002, where a 
patient Survivability prediction system, has data on clinical 
information, HRV parameters, vital signs and a patient Sur 
vivability risk prediction. 
0228. In step 1004, wireless technologies such as GPRS or 
WAP are used to establish a network infrastructure between 
the patient survivability prediction system described in step 
1002 and peripheral systems such as a hospital server, other 
handheld devices or a emergency centre server. In steps 1006, 
1008 and 1010, the data of the patient survivability prediction 
system is transmitted to the hospital server, the handheld 
device and the emergency centre server. The steps 1006, 1008 
and 1010 allows clinicians to receive and analyze patients 
condition in real-time and remotely. 
0229 FIG. 11 summarizes raw ECG data characteristics 
of 100 patients chosen for analysis, including 40 cases of 
death and 60 cases of survival. The data set comprised 63 
male and 37 female patients between the ages of 25 and 92 
years. Vital signs and patient outcomes were obtained from 
hospital records, including information Such as patient demo 
graphics (age, race, gender) and priority code. 
0230. These 100 patients were acquired from critically ill 
patients attended at the Department of Emergency Medicine 
(DEM), Singapore General Hospital (SGH). “Critically ill” 
refers to patients triaged in the most severe categories P1 or 
P2 at the DEM. These include trauma and non-trauma 
patients who underwent ECG monitoring. ECG signals were 
acquired using LIFEPAK 12 defibrillator/monitor, down 
loaded using the CODE-STAT Suite and matched with the 
patients’ hospital records. Cases were included for review if 
they contained more than 70% sinus rhythm and excluded if 
there were large segments of non-sinus rhythm (atrial and 
Ventricular arrhythmias). 
0231. The raw ECG data shown in FIG. 11 has to be 
pre-processed to obtain reliable HRV measures. FIG. 12 
shows a flow chart 1200, in accordance with embodiments of 
the invention, illustrating how an ECG signal is pre-processed 
to calculate HRV parameters. 
0232. In step 1202, raw ECG data 1210 is processed to 
reduce the effects of noise and artifacts using a 5-28 Hz 
band-pass filter. This frequency range is found to enhance the 
QRS complex against the background noise for easy peak 
detection. 
0233. In step 1204, a modified threshold-plus-derivative 
method is implemented to detect the QRS complexes. 
0234. In step 1206, all ectopics and other non-sinus beats 
are excluded. 
0235. In step 1208, the RR intervals are calculated based 
on the sinus rhythm. Cases are included for review if they 
contain more than 70% sinus rhythm (measured as number of 
sinus beats detected/total number of detected beats) and 
excluded if they contain Sustained arrhythmias or large seg 
ments of noise/artifact. The resulting beat-to-beat (RR) inter 
val sequences 1210 are used for calculating various HRV 
CaSUS. 

0236. In embodiments of the invention, steps 1202 to 1208 
can use the methodology as described with reference to FIGS. 
6 and 7. Thus, no further elaboration is provided on steps 1202 
to 1208. 

Classification of the Artificial Neural Network 

0237. In training the artificial neural network used in 
embodiments of the invention, the first parameter, the second 
parameter or a combination of the first parameter and the 
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second parameter may be classified as feature vectors of the 
patient health data. The artificial neural network is then 
trained with the feature vectors. As one objective of the arti 
ficial neural network is to predict mortality, the artificial neu 
ral network will be implemented to solve a two-class classi 
fication problem (the patient outcome is either death or 
survival). 
0238. In embodiments of the invention, various training 
algorithms may be used to train the artificial neural network 
(200, 300) and determine the optimal hidden layer weights 
(see description in respect of FIGS. 2 and 3). 

Levenberg-Marquardt Algorithm 

0239 For instance, training of the artificial neural network 
(200, 300) may be based on back-propagation learning. The 
Levenberg-Marquardt algorithm may be used to perform the 
back-propagation learning. 

Extreme Learning Machine (ELM) 
0240 An extreme learning machine architecture may be 
used to train embodiments of the invention where a SLFN is 
used (such as the one shown in FIG. 2). Compared with 
conventional gradient-based learning approaches, ELM has a 
fast learning process and meanwhile retains good generaliza 
tion ability. The extreme learning machine has the advantage 
of improving training speed by eliminating the need to tune 
all the parameters of the artificial neural network. The 
extreme learning machine may be implemented for SLFN 
with either additive neurons or radial basis function (RBF) 
kernels. 
0241. In an extreme learning machine architecture, the 
associated weight and biases of the at least one input of each 
artificial neuron of the artificial neural network is initialized 
through random selection. The output weights of each artifi 
cial neuron may be determined by finding the least square 
Solution. 
0242 Given a training set consisting of Nsamples 

where X, is a px1 input vectorandt, is an qx1 target vector, an 
SLFN with Nhidden nodes is formulated as 

R (2) 

f(x) =Xfig (w; x + bi) = i, j = 1,... N 
i=1 

whereinx, is an input vector to an input of one of the plurality 
of artificial neurons for j=1,2,..., N input vectors; w, is the 
associated weight of the input of the artificial neuron receiv 
ing the X, input vector; g(w,x+b) is an output of the artificial 
neuron receiving the x, input vector. . . for i=1,2,..., N. 
artificial neurons; B, is the output weight vector that associates 
ani" hidden neuron with a respective output neuron; and b, is 
the bias for the i' hidden neuron. The prediction on the 
survivability of the patient is derived from the equation (2) 
above. 
0243 A compact format of equation (2) can be written as 

Hf=T (3) 

where H(W, .... WN; b, .... bN X1, ..., Xv) is hidden layer 
output matrix of the network, h, g(w,x+b) is the output of 
ith hidden neuron with respect to x-1,2,..., Nandj=1,2, 
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... , N: B-B, ..., fs and T-t, tware output weight 
matrix and target matrix, respectively. To obtain Small non 
Zero training error, random values can be assigned for param 
eters w, and b, and thus the system becomes linear so that the 
output weights can be estimated as f–HT, where H is the 
Moore-Penrose generalized inverse of the hidden layer output 
matrix H. 

b1, ... , b, x1, ... , XN) = (4) 

In general, the ELM algorithm can be summarized as follows: 
1) Generate parameters w, and b, for i=1,..., N, 
2) Calculate the hidden layer output matrix H, 
3) Calculate the output weight using B-HT. 

Support Vector Machine (SVM) 

0244 Another training algorithm is basing the artificial 
neural network on Support vector machine architecture. A 
Support vector machine is a learning machine designed for 
binary classification. In the Support vector machine, input 
vectors are non-linearly mapped to a very high-dimensional 
feature space in which a linear decision Surface (hyperplane) 
is constructed. The Surface is chosen such that it separates 
input vectors with maximum margin. 
0245. The associated weight of the at least one input of 
each artificial neuron is initialized from a library used by the 
Support vector machine. An example of a Suitable library 
would be the LIBSVM software package by Chang et al. 
0246 Consider a set of linearly separable features (x,y), 
... , (X,x,y,w) are given as training data, where X,eX.y.etl} 
with a hyperplane <w, x>+b=0. The set of vectors is said to be 
optimally separated by the hyperplane if it is separated with 
out errors and the margin is maximal. A canonical hyperplane 
has the constraint for parameters w and b: miny,((W, X,)+b) 
=1. A separating hyperplane in canonical form must satisfy 
the constraints: 

0247 Quadratic programming is used for Solving the con 
straint optimization problem in order to find the optimal 
hyperplane. The optimization criterion is the width of the 
margin between the class. Then for a new pattern X, the 
hyperplane decision function can be written as 

(6) 

Since most real-world data is nonlinearly distributed, a kernel 
trick has been used to extend the classifier to be nonlinear, in 
which kernel functions are used to replace the simple dot 
product. The weight vector then becomes an expansion in the 
feature space, and we obtain the decision function of the 
Support vector machine may be given by 
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(7) 

whereinsgn() is a sign function; (x:X) is set of feature vector; 
k(XX) is a kernel matrix constructed by X and x,y, is 1 or -1; 
which is the label of feature vectorx, C, and b are parameters 
used to define an optimal decision hyperplane so that the 
margin between two classes of patterns can be maximized in 
the feature space. 
0248. Three kernels may be used to provide diversified 
solutions, they are linear kernelk(x,x) X,x, sigmoid kernel 
k(x,x)=tanh(OX,x+y), and radial basis function (RBF) ker 
nel k(x,x)=exp(-|x-x/2O) where O is the width of RBF 
function. 

Segment Based Method 
0249. When measuring ECG signals from patients, the 
length of ECG signal varies from one patient to another, 
which will affect the calculation of HRV measures. 
0250. To avoid possible effects of length variation, seg 
ments of identical length of ECG signals are extracted for all 
patients. Since raw ECG data contains non-sinus beats and 
noise, extraction is done on the RR interval sequences. FIG. 
13 shows how the extraction is performed. In FIG. 13, a 
sequence of information (1302,1304 and 1306) within an RR 
interval (1308, 1310 and 1312) is partitioned into segments 
1314, in accordance with embodiments of the invention. 
0251. In embodiments of the invention, the sequence of 
information (1302, 1304 and 1306) within the RR interval 
(1308, 1310 and 1312) may be partitioned into non-overlap 
ping segments 1314. The non-overlapping segments 1314 
may be used to train an artificial neural network. 
0252. In other embodiments of the invention, a length of 
signal within the RR interval (1308, 1310 and 1312) of each 
of the filtered ECG signal may be extracted. The length of 
signal may be partitioned into non-overlapping segments 
1314; and at least one of the non-overlapping segments 1314 
may be selected to train the artificial neural network. 
0253. In embodiments of the invention, each of the non 
overlapping segments 1314 may be of Substantially equal 
length. In embodiments of the invention, the non-overlapping 
segments 1314 may have a fixed length. In embodiments of 
the invention, each of the non-overlapping segments 1314 
may be of unequal length. In embodiments of the invention, 
the non-overlapping segments 1314 may be of an adjustable 
length. 
0254 Extraction starts from the signal end 1306 as this 
portion of recording correlates better with the patient out 
come than any other segments in the original sequence. The 
entire sequence (1308, 1310 and 1312) and the extracted 
portion (1302, 1304 and 1306) as “global signal and “local” 
signal, respectively. 
0255 High prediction accuracy may not beachieved with 
only N (number of patients) feature vectors. The local 
sequence (1302, 1304 and 1306) may be further partitioned 
into several non-overlapped segments 1318, 1320 and 1322 
of fixed length and the prediction of the patient outcome is 
given by majority Voting using the patient’s corresponding 
Segments. 
0256 Firstly, an ensemble of classifiers with M segments 
of the same patient are combined to improve the overall 
predictive performance. Since the outputs of a predictor can 
be either class labels or class-specific continuous values (the 
degrees of support given to those classes), there are two types 
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of combination rules. The patient outcome is coded as either 
0 or 1, thus the label-based strategy such as majority Voting 
can be used as the combining method. This rule seeks the 
class that receives the highest number of votes and assigns it 
to the predicted label for the testing pattern. The details of the 
segment based prediction method is elaborated as follows, 
noting that while ECG data is shown in FIG. 13, the segment 
based prediction method is applicable to other 1-D biomedi 
cal signals such as electroencephalography (EEG). 
0257 Suppose a data set L. {(x,y), n=1,..., N, m=1,. 

. . . M. consists of N patients and each local sequence is 
divided into M segments. Assume that if x is the test data, y is 
predicted by p(x, L). Because M segments are used, we have 
a set of M predictive labels for x. The objective is to better 
predict y using M predictors instead of a single one. As a 
two-class problem is being considered, p(x, L) predicts a 
series of class labels co, e{0,1} where j=1, 2, and the predic 
tion of the m” classifier (constructed on m” segment) is D, f 
whose value is assigned to 1 if them" classifier chooses class 
co, and 0 otherwise. Then the decision on x is defined as 

(8) 

where the outputy is the value with highest number of votes. 
In applications where there are J classes, i.e., i=1,..., J., the 
predictive label is given by max, x', 'D, 
0258 Thus far, a total segment (TS) method approach is 
discussed as all M segments are used for decision making. 
The complete TS algorithm is provided below. 

TS Algorithm 
Inputs 

0259 ECG signals of N patients, S. . . . S. 
0260 Hospital records including vital signs and patient 
Outcomes y. . . . , yy. 
0261 Number of iterations K and number of total seg 
ments M. 

Calculation of HRV Measures 

0262. 1. Do pre-processing on the original ECG signals 
Such as filtering. QRS detection, non-sinus beat removal, etc. 
2. Extract “local RR interval signals to obtain sequences S' 
. . . . Sv. 
3. Partition S'y into M non-overlapped segments and calculate 
HRV measures Z," where n=1,..., N and m=1,..., M. 
4. Construct feature vectors X," with Z," and vital signs, 
where m=1,..., M. 

Prediction of ACP Event or Mortality 

0263. For k=1,..., K 
a) Partition the data set by randomly selecting N patients 
into training set and the rest of N. patients into testing set. 
Since each patient is represented by M feature vectors, there 
are NM samples in the training set and NM samples in the 
testing set. 
b) Train classifier with NM feature vectors and predict 
labels for NM samples in the testing set. Therefore, each 
testing patient receives M predicted outcomes. Applying 
majority Voting rule, final predictive results for all testing 
patients are obtained using equation (8). 



US 2011/0224.565 A1 

c) Calculate accuracy, sensitivity, and specificity from the 
predicted labels and their corresponding real labels. 

End for 

Outputs 

0264 Calculate averaged results of Kiterations. 
0265 Store, display, and analyze the final results. 
0266 Instead of selecting all segments, a selective seg 
ment (SS) method can be used. The SS method selects only 
Some of the segments. 
0267. The rationale behind the SS method is to select some 
“optimal’ segments to minimize the intra-class difference 
where Euclidean distance 6 is employed as the selection 
criteria. Specifically, within the feature set, the class center is 
determined and the distances between each of M segments of 
any patient and the center are calculated. Let M be the num 
ber of selected segments, then M segments will be retained, 
which are closer to the corresponding class center than the 
discarded segments. As a result, the size of data set has been 
reduced from NxM to NxM. Since the selecting operation is 
Supervised (the class information is used), the selection of 
segments can be considered as a pre-processing for the origi 
nal data set. The complete SS algorithm is provided below. 

SS Algorithm 
Inputs 

0268 ECG signals S. . . . S. 
0269 Vital signs and patient outcomes y. . . . . y. 
0270. Number of iterations K, number of total segments 
M, and number of selected segments M'. 

Calculation of HRV Measures 

0271 1. Do steps 1-3 in TS algorithm to obtain M seg 
ments for each patient. 
2. Calculate class centers as 

C = (X,x, and c = (X, 

where N is the number of samples in class (), for i=0, 1. 
3. Calculate Euclidean distances d" between N and M seg 
ments and the class centers Co., C. 
4. Sort the distances and select M segments that are closer to 
the corresponding center than other segments for each patient 
individually. 
5. Construct feature vectors x," with Z," and vital signs, 
where m'=1,..., M. 

Prediction of ACP Event or Mortality 
0272 For k=1,..., K 
0273 Do steps a)-c) in TS algorithm with a data set 
created by using M" selected segments instead of the 
total M segments. 

End for 

Outputs 

0274 Calculate averaged results of Kiterations. 
0275 Store, display, and analyze the final results. 
0276. In summary, any of the above methods may to clas 
sify an artificial neural network may be used to facilitate a 
method of predicting the survivability of a patient. 
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(0277 FIG. 14 is a flow chart 1400 illustrating a method, 
according to one embodiment of the present invention, of 
predicting the Survivability of a patient. 
0278. In step 1402, a first set of parameters relating to 
heart rate variability data of a patient is measured. 
0279. In step 1404, a second set of parameters relating to 
Vital sign data of the patient is measured. 
0280. In step 1406, an artificial neural network including a 
network of interconnected nodes is provided, the nodes 
including a plurality of artificial neurons. Each artificial neu 
ron has at least one input with an associated weight adjusted 
by training the artificial neural network using an electronic 
database having a plurality of sets of data. Each set of data has 
at least a parameter relating to heart rate variability data and 
a parameter relating to vital sign data, each set of data further 
having a parameter relating to patient Survivability. 
0281. In step 1408, the first set of parameters and the 
second set of parameters are processed to produce processed 
data suitable for input into the artificial neural network. 
0282. In step 1410, the processed data is provided as input 
into the artificial neural network. 
0283. In step 1412, an output is obtained from the artificial 
neural network, the output providing a prediction on the Sur 
vivability of the patient. 
0284. In embodiments of the invention, the processed data 
of the first set of parameters and the processed data of the 
second set of parameters may be represented as a feature 
Vector. 

0285. In embodiments of the invention, the processed data 
may be the first set of parameters and the second set of 
parameters being represented as normalized data. 
0286. In embodiments of the invention, the processed data 
may be partitioned into non-overlapping segments, so that the 
input into the artificial neural network may include sets of one 
or more of the non-overlapping segments of processed data. A 
result may be obtained for each of the sets of one or more of 
the non-overlapping segments of processed data, so that each 
of the results may be considered to predict the survivability of 
the patient. 
0287. In embodiments of the invention, majority voting 
may be used to determine the prediction on the survivability 
of the patient, the majority Voting represented by the function 

wherein D, is an intermediate variable for final decision 
making, D, assigned a value of 1 if a m" classifier chooses 
class j in the decision ensemble, and 0 otherwise. 
0288. In embodiments of the invention, the result of the 
artificial neural network may be coded as a two class label. 
The method of predicting the survivability of a patient may 
then further include applying a label-based algorithm to each 
of the two class label results to decide the output from the 
artificial neural network, thereby providing a prediction on 
the survivability of the patient. 
0289. In embodiments of the invention, the heart rate vari 
ability data may include time domain data, frequency domain 
data and geometric domain data. 
0290 FIG. 15 shows a schematic of a patient survivability 
prediction system 1500 in accordance with embodiments of 
the invention. 
0291. The patient survivability prediction system 1500 
includes a first input 1502 to receive a first set of parameters 
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relating to heart rate variability data of a patient and a second 
input 1504 to receive a second set of parameters relating to 
Vital sign data of the patient. 
0292. The patient survivability prediction system 1500 
includes a memory module 1506 storing instructions to 
implement an artificial neural network. The artificial neural 
network includes a network of interconnected nodes, the 
nodes including a plurality of artificial neurons. Each artifi 
cial neuron has at least one input with an associated weight 
adjusted by training the artificial neural network using an 
electronic database having a plurality of sets of data. Each set 
of data has at least one a parameter relating to heart rate 
variability data and a parameter relating to vital sign data. 
Each set of data further has a parameter relating to patient 
survivability. 
0293. The patient survivability prediction system 1500 
further includes a processor 1508 to execute the instructions 
stored in the memory module 1506 to perform the functions 
of the artificial neural network and output a prediction on the 
survivability of the patient based on the first set of parameters 
and the second set of parameters. A display 1510 displays the 
prediction on the survivability of the patient. 
0294. In embodiments of the invention, the patient surviv 
ability prediction system 1500 includes a port 1512 to receive 
the first set of parameters from the first input 1502 and the 
second set of parameters from the second input 1504. 
0295 FIG.16 shows a schematic of a patient survivability 
prediction system 1600 in accordance with embodiments of 
the invention. 
0296. The patient survivability prediction system 1600 
shares similar components with the patient Survivability pre 
diction system 1500 of FIG. 15. The main contrast between 
the patient survivability prediction system 1600 and the 
patient survivability prediction system 1500 of FIG. 15 is that 
the patient survivability prediction system 1600 does not use 
a single port to receive the first set of parameters from the first 
input 1502 and the second set of parameters from the second 
input 1504. Rather, the patient survivability prediction sys 
tem 1600 has a first port 1602 to receive the first set of 
parameters from the first input 1502 and a second port 1604 to 
receive the second set of parameters from the second input 
1504. 
0297 FIG. 17 shows pictures of a patient survivability 
prediction system 1700 in accordance with embodiments of 
the invention. 
0298. In FIG. 17, the patient survivability prediction sys 
tem has ECG sensors 1702 and a blood pressure sensor 1704. 
The artificial neural network used to predict patient surviv 
ability is implemented in a laptop 1706. 
0299 FIGS. 18 to 21 show snap shots of the output of the 
patient Survivability prediction system as shown in the laptop 
1706 Screen. 

0300 FIG. 18 shows the result of processing raw ECG 
data 1802 to produce filtered ECG data 1904. 
0301 FIG. 19 shows an input interface for a clinician to 
enter information on the patient that the patient survivability 
prediction system 1700 is used on. 
0302 FIG. 20 shows various signal graphs that the patient 
survivability prediction system 1700 is able to display. 
0303 FIG. 21A shows the prediction results of two differ 
ent patients, where in one case (2102), cardiac arrest is pre 
dicted to not occur within 72 hours. In the other case (2104), 
cardiac arrest is predicted to occur within 72 hours. 
0304 FIG. 21B shows a flow chart 2150 illustrating a 
method, according to one embodiment of the present inven 
tion, used to predict the survivability of a patient. 
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(0305. The method includes six steps, 2152, 2154, 2156, 
2158, 2160 and 2162. 
0306 In step 2152, a first set of parameters relating to 
heart rate variability data of a patient is measured. 
0307. In step 2154, a second set of parameters relating to 
Vital sign data of the patient is measured. 
0308. In step 2156, a third set of parameters relating to 
patient characteristics is obtained. 
0309. In step 2.158, the first set of parameters, the second 
set of parameters and the third set of parameters are provided 
as sets of normalized data values, where required, to a scoring 
model implemented in an electronic database. The scoring 
model has a respective category associated to each parameter 
of the first set of parameters, the second set of parameters and 
the third set of parameters, each category having a plurality of 
pre-defined value ranges, each of the plurality of value ranges 
having a pre-defined score. 
0310. In step 2160, a score for each parameter of the first 
set of parameters, the second set of parameters and the third 
set of parameters is determined. The score is determined by 
assigning the sets of normalized data (from step 2158) to 
respective pre-defined value ranges, encompassing the sets of 
normalized data values, of the plurality of value ranges of the 
category associated to the respective parameter of the first set 
of parameters, the second set of parameters and the third set of 
parameters. 
0311. In step 2162, a total score, being a summation of the 
score (see step 2160) for each parameter of the first set of 
parameters, the second set of parameters and the third set of 
parameters, is obtained. The total score provides an indication 
on the survivability of the patient. 
0312. The method illustrated in FIG. 21 B may be imple 
mented in accordance to the example that follows, the 
example relating to predicting cardiac arrest in a patient 
within 72 hrs of assessment. 
0313 When a patient is delivered to a triage area for 
assessment, the patient's characteristics (such as age), vital 
signs (such as GCS, temperature, pulse rate, respiratory rate, 
SBP. DBP. SpO2 and pain score) and HRV parameters (time, 
frequency and geometric domain) will be recorded and ana 
lyzed by a patient Survivability prediction system in accor 
dance to an embodiment of the invention. In this embodiment, 
the measured HRV parameters become a first set of param 
eters, while the measured vital sign data form a second set of 
parameters. The patient characteristics form a third set of 
parameters, which may also be obtained from the patient's 
hospital records. It will be appreciated that further patient 
health data may also be recorded by the patient survivability 
prediction system. 
0314. The patient survivability prediction system may 
have an electronic database in which a scoring model is 
implemented. The scoring model may be based on a math 
ematical model which may be based on logistic regression, 
Such as univariate analysis. In one embodiment, the logistic 
regression mathematical model may be used, for example, on 
data from Samples of cardiovascular (CVS) and non-cardio 
vascular (non-CVS) patients. The logistic regression math 
ematical model may be fitted separately with a combination 
of demographic parameters (age), vital signs and HRV 
parameters for the CVS and non-CVS patients. The predic 
tion performance may be investigated through Receiver 
Operating Characteristic (ROC) analysis as well as Sensitiv 
ity, Specificity, Positive Predictive Value (PPV) and Negative 
PredictiveValue (NPV). Table 1 below summarizes the orga 
nization of first set of parameters, the second set of param 
eters and the third set of parameters inside a scoring model, 
according to one embodiment of the invention. 
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TABLE 1. 

Model based scoring scheme for demographic, 
vital sign and HRV parameters. 

Parameter & respective range of values Score 

<40 
40-49 
50-59 
60-69 
70-79 
>=8O 
<=5 
6-10 
11-14 
15 

<36.5 
36.5-374 

>37.4 
<60 
60-99 

100-129 
>=130 

<10 
10-16 
>16 
<90 
90-120 
>120 
<60 
60-95 
>95 
<95 
>-95 

Pain score O 
1-5 
6-10 
<0.73 

O.73-0.95 
>0.95 
<0.04 

O.04-0.08 
>0.08 

<63.46 
63.46-83.24 

>83.24 
<3.84 

3.84-6.36 
>6.36 
<0.02 

O.O2-O.O7 
>0.07 
<3.34 

334-39.64 
>39.64 
<17.43 

>=17.43 
<3.20 

>=3.20 
<0.18 

O.18-033 
>0.33 
<0.15 

>=0.15 
<0.12 

>=0.12 
<0.08 

O.O8-O2O 
>0.2O 
<0.46 

>=0.46 
<41.91 

41.91-70.76 
>70.76 
<29.24 

29.24-58.09 
>58.09 

Age 

GCS 

Temperature 

Pulse rate 

Respiratory rate 

SBP 

DBP 

SPO2 

aRR(s) 

STD(s) 

avHR(bpm) 

sdHR(bpm) 

RMSSD 

ninSO (count) 

pnnsO (%) 

RR triangular index 

TINN (ms) 

LS-VLF power (ms2) 

LS-LF power (ms2) 

LS-HF power (ms2) 

LS-total power (ms2) 

LS-LF power (nu) 

LS-HF power (nu) 
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TABLE 1-continued 

Model based scoring scheme for demographic, 
vital sign and HRV parameters. 

Parameter & respective range of values Score 

LS-LF/HF ratio <0.62 3 
O.62-2.54 O 
>2.54 O 

0315. As shown in table 1, the scoring model has a plural 
ity of categories (Age, GCS, Temperature, Pulse rate. . . . . 
LS-LF/HF ratio), with each category having a plurality of 
pre-defined value ranges (for instance: the category "age has 
a range of values <40, 40-49,..., >=80). Each of the plurality 
of pre-defined value ranges has a pre-defined score (for 
instance: for the category "age, the range of values <40, 
40-49, ..., D=80 have scores 1, 2, ... and 4 respectively). 
0316 Each of the categories is associated to a respective 
parameter of the first set of parameters, the second set of 
parameters and the third set of parameters. For instance, the 
categories “aRR(s)”, “STD(s)', ... and “LS-LF/HF ratio” are 
HRV parameters and are therefore, in this embodiment, asso 
ciated with the first set of parameters. The “aRR, STD, ...and 
LS-LF/HF ratio’ parameters of the first set of parameters will 
be associated with the corresponding “aRR(s), STD(s). . . . 
and LS-LF/HF ratio” categories of the scoring model shown 
in table 1. 

0317. In table 1, both the predefined value ranges and their 
respective score values for the category “age are derived, for 
example, from samples of CVS and non-CVS patients to 
group variables. Both the predefined value ranges and their 
respective score values for vital signs (i.e. the categories 
“GCS', “temperature”, “pulse rate”, “respiratory rate”, 
“SBP”, “DBP”, “SpC2 and “pain score”) are derived 
according to data derived from samples of CVS and non-CVS 
patients. Both the predefined value ranges and their respective 
score values for the HRV parameters (i.e. the categories “aRR 
(s)”, “STD(s)', ... and “LS-LF/HF ratio’) are based on ECG 
studies of a healthy population in Singapore. 
0318. As shown in table 1, only required parameters from 
the first set of parameters, the second set of parameters and the 
third set of parameters are normalized. For instance, the 
parameter "age' from the first set of parameters and the 
parameter “temperature' from the second set of parameters 
do not need to be normalized as their corresponding catego 
ries in the scoring model are designed to process the actual 
recorded values from the patient. 
0319 Normalized data, where required, for each param 
eter of the first set of parameters, the second set of parameters 
and the third set of parameters is assigned to its associated 
category. Further, the normalized data is assigned to the 
respective value range within the associated category, the 
normalized data falling within or being encompassed by the 
respective value range. The purpose of assigning the normal 
ized data to its respective value range within its associated 
category is to determine a score, based on the scoring method 
summarized in table 1, of the normalized data. From table 1, 
it can be observed that a maximum possible score is 100 and 
a minimum possible score is 15. 
0320 Table 2 below shows a summary of individual 
scores, obtained from using the scoring method Summarized 
in table 1, for each parameter of a patient's demographic, vital 
sign and HRV parameters. 
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TABLE 2 

Patient demographic, vital sign and HRV parameters 

Parameter & categories Score 

Age >=8O 4 
GCS 11-14 3 
Temperature >37.4 4 
Pulse rate >=130 5 
Respiratory rate >16 4 
SBP >120 5 
DBP >95 3 
SPO2 <95 5 
Pain score 6-10 4 
aRR(s) >0.95 3 
STD(s) >0.08 3 
avHR(bpm) >83.24 3 
sdHR(bpm) >6.36 3 
RMSSD >0.07 3 
nni50 (count) >39.64 3 
pnn50 (%) <17.43 3 
RR triangular index <3.20 5 
TINN (ms) <0.18 3 
LS-VLF power (ms2) <0.15 3 
LS-LF power (ms2) <0.12 3 
LS-HF power (ms2) >0.2O 4 
LS-total power (ms2) <0.46 3 
LS-LF power (nu) <41.91 3 
LS-HF power (nu) >58.09 3 
LS-LF/HF ratio <0.62 3 

Total score 88 

0321. As shown in table 2, a total score, being a summa 
tion of each score for each parameter of the first set of param 
eters, the second set of parameters and the third set of param 
eters, is obtained. The total score provides an indication on 
the survivability of the patient. 
0322 Table 3 below summarizes organization of a plural 

ity of risk categories inside a scoring model in accordance to 
an embodiment of the invention. 

TABLE 3 

Organization of risk categories inside a scoring model 

Level of risk to 
have cardiac arrest 
within 72hrs Score 

Low 15-40 
Moderate 41-60 
High 61-8O 
Very high 81-100 

0323 Each category (such as low, moderate, high and very 
high) of the plurality of risk categories has a pre-defined range 
of values. The total score obtained in table 2 is assigning to the 
category having the pre-defined range of values encompass 
ing the total score. Thus, for the total score “88 from table 2, 
the patient is assessed to have a “very high level of risk to 
have cardiac arrest within 72 hours. In the embodiment shown 
in table 3, the numerical range of each of plurality of risk 
categories may be determined in an arbitrary manner. 
0324 Table 4 shows a summary of results obtained from 
using the scoring model, as shown in FIG.21B, against actual 
results of whether cardiac arrest occurred within 72 hours for 
a sample of 1021 patients. 
0325 From table 4, the results obtained by using the scor 
ing model of FIG.21B indicates that for the 1021 patients, 26 
(or 2.5% of the sample size) belonged to the “low” risk 
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category, 661 (or 64.7% of the sample size) belonged to the 
“moderate” risk category, 333 (or 32.6% of the sample size) 
belonged to the “high risk category, while 1 (or 0.1% of the 
sample size) belonged to the “very high risk category. Single 
decimal place accuracy applies for the percentage values of 
the sample sizes. 
0326 Among the 26 patients of the “low” risk category, 
cardiac arrest did not occur. Amongst the 661 patients of the 
“moderate” risk category, 3.2% suffered cardiac arrest within 
72 hours. Amongst the 333 patients of the “high risk cat 
egory, 9.0% suffered cardiac arrest within 72 hours. For the 1 
patient of the “very high risk category, cardiac arrest 
occurred within 72 hours. 

TABLE 4 

Assessment of scoring model against actual results 

cardiac arrest 
within 72hrs (% 

Level of risk to 
have cardiac arrest Patient-at-risk 

within 72hrs n (%) No Yes 

Low 26 (2.5) 1OOO O.O 
Moderate 661 (64.7) 96.8 3.2 
High 333 (32.6) 91.0 9.0 
Very high 1 (0.1) O.O 1OOO 

0327. From table 4, the area under curve (AUC) at a 95% 
CI (confidence interval) of the scores to predict cardiac arrest 
within 72 hrs ranges from 0.633 to 0.769, to have an average 
accuracy of 0.701. 

Experimental DataSet 1 

0328 Experiments were conducted where eight vital signs 
are used to form part of the feature vector for patient outcome 
prediction. These vital signs are temperature, respiration rate, 
pulse, systolic blood pressure (SBP), diastolic blood pressure 
(DBP), oxygen saturation (SpO2), Glasgow Coma Score 
(GCS), and pain score. 
0329. In the data set, each patient was represented as a 
24-dimensional feature vector and the corresponding out 
come coded as either 0 (survived and discharged) or 1 (died). 
Among 100 patients, 40 cases died and 60 cases survived. 
Prior to classification, the feature set is transformed into the 
interval -1.1 by performing min-max normalization on the 
original data. Suppose that min and max are the minimum 
and maximum values of an attribute vector AIX (i), ..., Xy 
(i) where i e 1, 24 and N is the total number of samples. 
Min-max normalization maps a value V, of A to V' in the range 
min' and max', by computing 

V - minA (9) 
- H - (max -min) + min. 
maXA-minA 

This type of normalization preserves the relationships among 
the original data values, and therefore facilitates the predic 
tion. To validate embodiments of the patient survivability 
prediction system, 75 patients were randomly selected for 
training and the rest 25 patients are used for testing. This 
partition and classification procedure is repeated 50 times, 
and the averaged output values are recorded. 
0330. It is known from FIG. 11 that 60 patients belong to 
class 0 and 40 patients are categorized into class 1. As a 
consequence, random selection may result in biased training 
and testing sets, i.e., the sample number of two classes are 
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unbalanced. Alternatively, random partitioning is done for 
both classes separately so that 75% samples in class 0 and 
75% samples in class 1 will go into the training set in each 
iteration. The validation system is illustrated in FIG. 22. It is 
seen that the architecture depicted in FIG. 22 is straight 
forward like most pattern recognition systems, in which data 
acquisition, feature extraction, and classification are indi 
vidually implemented. 
0331. In practice, the ECG recordings vary widely in 
length and signal quality. Therefore, several pre-processing 
steps are required to ensure qualified RR interval sequences. 
Before computing the HRV measures, the QRS detection and 
non-sinus beat detection algorithms were validated against 
the MIT-BIH database. These algorithms were found to per 
form well with high sensitivity (99.8%) and specificity (99. 
4%) in detecting QRS complexes and detecting non-sinus 
beats for ECG signals in the MIT-BIH database. 
0332. In the experiments, ELM and SVM are imple 
mented for classification. Therefore, several parameters used 
in these algorithms should be clarified. In ELM, the number 
of hidden neurons is assigned as 30. For SVM, the default 
settings of the parameters in the LIBSVM package are used. 
To evaluate the predictive performances, sensitivity and 
specificity are calculated in addition to classification accu 
racy. Serving as widely used statistical measures for binary 
classification, sensitivity measures the ratio of the number of 
correctly predicted positive samples to the actual number of 
positives, and specificity is the proportion of negatives which 
are correctly identified. The decision was defined as positive 
if the patient outcome is death, while negative case refers to 
survival. Therefore, the following measures are obtained 
0333 True positive (TP): Death case correctly predicted 
as death. 
0334 
as death. 
0335 True negative (TN): Survival case correctly pre 
dicted as survival. 

False positive (FP): Survival case wrongly predicted 

0336 False negative (FN): Death case wrongly predicted 
as Survival 
0337 Subsequently, sensitivity, specificity, and accuracy 
was determined and used to evaluate the proposed methods in 
the experiments. 

Sensitivity=TP/(TP+FN) 

Specificity=TN/(TN+FP) 

In general, high sensitivity, specificity, and accuracy are 
desired so that more cases in both classes can be correctly 
recognized. 

Segment Based Prediction 
0338. In the implementation, each segment is set as 250 
beats and 9 segments per patient are extracted from the origi 
nal RR interval sequences. By applying the Voting-based 
predictive strategy on three selected segments (M'=3), the 
classification results using vital signs, HRV measures, and 
combined features are presented in FIGS. 23, 24 and 25 
respectively. 
0339 FIGS. 23 and 24 show the prediction results with 
traditional vital signs and HRV measures, respectively. It can 
be observed that SVM generally outperforms ELM with 
respect to accuracy and specificity. Both ELM and SVM 
algorithms achieve comparable performance in terms of sen 
sitivity. Compared with the results based on vital signs, the 
results based on HRV measures give higher accuracy and 
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sensitivity using ELM. Using SVM, results based on vital 
signs and HRV measures produce similar performance in 
terms of accuracy. In addition, sensitivity is increased and 
specificity is reduced by replacing vital signs with HRV mea 
sures. In general, prediction of mortality with either HRV 
measures or vital signs individually is not satisfactory. By 
combining the HRV measures and the vital signs, the best 
results (Accuracy: 78.32%, Sensitivity: 65%, Specificity: 
87.2%) are obtained using SVM with linear kernel, as can be 
seen from FIG. 25. From these results, it is observed that 
combining the HRV measures and the vital signs can improve 
the performance of prediction in general. 
0340 Several parameters may affect the final results, par 
ticularly the number of selected segments M'. Hence, predic 
tion results with different values of the parameter M are 
investigated in the following. When M=M, the entire collec 
tion of segments are selected, i.e., the TS method. If M'<M, 
M" segments for generating a more compact data set (i.e., a 
Smaller intra-class variation) are employed for prediction. In 
applying the majority Voting for a two-class problem, an odd 
number of predictors should be used for decision combina 
tion. Consequently, different M segments are selected for 
voting and the results are shown in FIG. 26. It is observed that 
when M' is 3, SVM performs the best and ELM can achieve 
good results as well. Furthermore, with the increment of M', 
the number of samples in the data set increases. Therefore, M 
is set as 3 in order to maintain a simple but effective prediction 
system for clinical usage. 

Comparison of Different Predictive Strategies 

0341 The predictive strategies are summarized as follows 
and illustrated in FIG. 27. 

0342 Global: The HRV measures are calculated from the 
entire RR interval sequence where the length of signal varies 
from 2273 beats to 21697 beats. 

0343 Local: The HRV measures are calculated from a 
local sequence which is the last portion (2250 beats long) of 
the original signal. 

0344 Total segment: All non-overlapped segments in 
the local sequence are used for prediction by the major 
ity Voting rule. In this study, each segment is 250 beats 
long, and therefore 9 segments per patient are obtained 
from local sequence. 

0345 Selective segment: M' selected non-overlapped seg 
ments in the local sequence are used for prediction by the 
majority Voting rule. Since M' segments are selected, signal of 
M'x250 beats long per patient is used for analysis. 
0346. As seen in FIG. 28, in some cases the Global strat 
egy outperforms the Local strategy, and vice versa in other 
cases, but the best results are achieved by using the selective 
segment method. 

Experimental DataSet 2 

0347 In another study, eight vital signs and raw ECG data 
were acquired from critically ill patients at the Department of 
Emergency Medicine (DEM). Singapore General Hospital 
(SGH). These vital signs include temperature, respiration 
rate, pulse, systolic blood pressure (SBP), diastolic blood 
pressure (DBP), oxygen Saturation (SpO2), Glasgow coma 
score (GCS), and pain score. The ECG signals are acquired 
using LIFEPAK 12 defibrillator/monitor and downloaded 
using the CODESTAT Suite. To ensure that qualified RR 
intervals are used for calculating HRV measures, only cases 
containing more than 70% sinus rhythm are included in the 
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data set. In Summary, 100 patients are chosen for analysis, 
among which 40 cases are died and 60 cases are Survived to 
discharge. 
0348. In the data set, each patient is represented as a 24-di 
mensional feature vector (16 HRV measures and 8 vital signs) 
and the corresponding outcome is coded as either 0 (Survived 
to discharge) or 1 (died). In the experiments, 75 patients are 
randomly selected for training and the remaining 25 patients 
are used for testing. This procedure of partition and classifi 
cation is repeated 50 times, and the final results are the aver 
aged output values. However, random selection of Samples 
may result in unbalanced training and testing sets, we there 
fore do the random partition for each class individually so that 
75% samples in class 0 and 75% samples in class 1 will go 
into the training set in each iteration. 
0349 Prior to implementing ELM for classification, min 
max normalization is performed to transform the feature set 
into the interval -1,1, and the number of hidden neurons is 
heuristically determined as 30. Furthermore, sensitivity, 
specificity, and classification accuracy are calculated to 
evaluate the predictive performances. In the following, 
experimental results are reported and analyzed. 

Segment Based Analysis of Patient Outcome 

0350. Within the data set of 100 patients, the length of RR 
interval varies from 2273 beats to 21697 beats, hence the 
maximal length of local sequence is 2273 beats. The local 
sequence was divided into 9 segments (M=9), each of which 
was 250 beats long. By applying the segment based predictive 
strategy, the classification results using vital signs, HRV mea 
sures, and combined features are presented in FIG. 29. It can 
be observed that the best results (Accuracy: 70.88%, Sensi 
tivity: 47.93%, Specificity: 78.92%) are obtained using com 
bined features with sigmoid activation function, and predic 
tion of mortality with either HRV measures or vital signs is 
not satisfactory. When vital signs and HRV measures are used 
individually, higher sensitivity is achieved by HRV measures, 
whereas vital signs outperform in prediction specificity. From 
the FIG. 29, it is observed that combining the HRV measures 
and vital signs can generally improve the performance of 
prediction. 
0351. In practice, the number of hidden nodes in ELM 
usually controls the network complexity and learning perfor 
mance, and thus may affect the final results. 
0352 FIGS. 30, 31 and 32 depict the performances of 
ELM in terms of different number of hidden nodes. In FIGS. 
30 to 32, the following activation functions were respectively 
used: hard limit, sigmoid and sine. 
0353. It is seen that good prediction results are obtained 
when the number of hidden nodes varies from 20 to 30 regard 
less of activation functions. We also observe that the best 
results are obtained using 30 hidden neurons with sigmoid 
function. Moreover, as seen in FIG. 29, both training and 
testing with ELM can be accomplished within several milli 
seconds. 

Comparison of Different Predictive Strategies 

0354. The three predictive strategies used according to the 
way that the HRV measures are calculated from the ECG 
signal are the global, local, and segment based methods. 
Detailed descriptions of these strategies are as follows. 
0355 Global based method: The HRV measures are cal 
culated from the entire RR interval sequence. 
0356. Local based method: The HRV measures are calcu 
lated from a local sequence to represent the patient. 
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0357 Segment based method: All non-overlapped seg 
ments in he local sequence are used for prediction with major 
ity Voting rule. 
0358 It is obvious that one set of features are used to 
represent the patient when the global and local strategies are 
implemented, while M sets of features are calculated for one 
patient if the segment based method is adopted. As seen in 
FIG. 33, the local strategy outperforms the global strategy, 
and the best results are achieved by the segment based 
method. 

1. A method of producing an artificial neural network 
capable of predicting the survivability of a patient, the method 
comprising: 

storing in an electronic database patient health data, the 
patient health data comprising a plurality of sets of data, 
each set having at least one of a first parameter relating 
to heart rate variability data and a second parameter 
relating to vital sign data, each set further having a third 
parameter relating to patient Survivability; 

providing a network of nodes interconnected to form an 
artificial neural network, the nodes comprising a plural 
ity of artificial neurons, each artificial neuron having at 
least one input with an associated weight; and 

training the artificial neural network using the patient 
health data such that the associated weight of the at least 
one input of each artificial neuron of the plurality of 
artificial neurons is adjusted in response to respective 
first, second and third parameters of different sets of data 
from the patient health data, such that the artificial neural 
network is trained to produce a prediction on the surviv 
ability of a patient. 

2. The method of claim 1, wherein the heart rate variability 
data is extracted from an electrocardiogram (ECG) signal 
from at least one patient. 

3. The method of claim 2, wherein extracting the heart rate 
variability data comprises 

filtering the ECG signal to remove noise and artifacts; 
locating a QRS complex within the filtered ECG signal; 
finding a RR interval between successive QRS peaks of the 
QRS complex; and 

processing the sequence of information within the RR 
interval to obtain the heart rate variability data. 

4. The method of claim3, wherein a band pass filter is used 
to filter the ECG signal and locate the QRS complex. 

5. The method of claim 4, wherein the band pass filter 
frequency range is between about 5 Hz to about 28 Hz. 

6. The method of claim 3, wherein the QRS peaks are 
located by: 

locating a maximum peak data value first occurring in the 
filtered ECG signal; 

determining an upper amplitude threshold and a lower 
amplitude threshold from the located maximum peak 
value; 

locating a peak value 
locating minimum values on either side of the peak value; 

and 
denoting, when the peak value is above the upper ampli 

tude threshold while the minimum values are below the 
lower amplitude threshold, the location of the peak value 
as a R position, the location of the minimum value occur 
ring closest on the left side of the R position as a Q 
position, and the location of the minimum value occur 
ring closest on the right side of the R position as a S 
position, so as to form the location of a QRS peak within 
the filtered ECG signal. 



US 2011/0224.565 A1 

7. The method of claim 6, wherein the positions of other 
QRS peaks within the filtered ECG signal are located by 
iterating the process of: 

locating another peak value; 
locating other minimum values on either side of the another 

peak value; and 
denoting, when the another peak value is above the upper 

amplitude threshold while the other minimum values are 
both below the lower threshold, the location of the peak 
value as a R position, the location of the minimum value 
occurring closest on the left side of the R position as a Q 
position, and the location of the minimum value occur 
ring closest on the right side of the R position as a S 
position, so as to form the location of another QRS peak. 

8. The method of claim3, wherein processing the sequence 
of information within the RR interval further comprises 
removing outliers from the sequence of information within 
the RR interval by: 

finding a median value and Standard deviation value for the 
RR interval: 

calculating a tolerance factor based on the standard devia 
tion value; 

retaining a portion of information that lies within the RR 
interval spanning either side of the median value by the tol 
erance factor, so that the heart rate variability data is obtained 
from the retained portion of information; and 

discarding the remaining portion of the information from 
the sequence of information. 

9. The method of claim 1, further comprising classifying 
the first parameter, the second parameter or a combination of 
the first parameter and the second parameter as feature vec 
tors of the patient health data and training the artificial neural 
network with the feature vectors. 

10. The method of claim 1, wherein the artificial neural 
network is implemented as instructions stored in a memory 
that when executed by a processor cause the processor to 
perform the functions of the artificial neural network. 

11. The method of claim 10, wherein the artificial neural 
network is based on Support vector machine architecture, 
wherein the associated weight of the at least one input of each 
artificial neuron of the plurality of artificial neurons is initial 
ized from a library used by the support vector machine. 

12. The method of claim 11, the support vector machine 
comprises a decision function, the decision function given by 

whereinsgn() is a sign function; (XX) is set of feature vector; 
k(XX) is a kernel matrix constructed by X and x,y, is 1 or -1; 
which is the label of feature vectorx, C, and b are parameters 
used to define an optimal decision hyperplane so that the 
margin between two classes of patterns can be maximized in 
the feature space. 

13. The method of claim 10, wherein the artificial neural 
network is based on an extreme learning machine architec 
ture, wherein the associated weight of the at least one input of 
each artificial neuron of the plurality of artificial neurons is 
initialized through random selection by the extreme learning 
machine. 
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14. The method of claim 13, wherein the artificial neural 
network is realized as a single-layer feed-forward network, 
whereby the prediction on the survivability of the patient is 
derived from the function, 

R 

f(x) = Xfig (w; x + bi) = ti i = 1, ... , N 
i=1 

whereinx, is an input vector to an input of one of the plurality 
of artificial neurons for j=1,2,..., N input vectors; w, is the 
associated weight of the input of the artificial neuron receiv 
ing the X, input vector; g(w,x+b) is an output of the artificial 
neuron receiving the X, input vector . . . for i=1, 2, . . . . N 
artificial neurons; B, is the output weight vector that associates 
ani' hidden neuron with a respective output neuron; and b, is 
the bias for the i' hidden neuron. 

15. The method of claim 1, wherein the training of the 
artificial neural network is based on back-propagation learn 
1ng. 

16. The method of claim 15, wherein the back-propagation 
learning uses the Levenberg-Marquardt algorithm. 

17. The method of claim 1, wherein each of the plurality of 
artificial neurons has an activation function, the activation 
function being selected from a group of functions comprising 
hardlim, sigmoid, sine, radial basis and linear. 

18. The method of claim 3, further comprising 
partitioning the sequence of information within the RR 

interval into non-overlapping segments; and 
using the non-overlapping segments to train the artificial 

neural network. 
19. The method of claim 3, further comprising 
extracting a length of signal within the RR interval of each 

of the filtered ECG signal; 
partitioning the length of signal into non-overlapping seg 

ments; and 
selecting at least one of the non-overlapping segments to 

train the artificial neural network. 
20. The method of claim 19, wherein each of the non 

overlapping segments is of Substantially equal length. 
21. The method of claim 19, wherein each of the non 

overlapping segments is of an unequal length. 
22. The method of claim 18, wherein the non-overlapping 

segments have a fixed length. 
23. The method of claim 18, wherein the non-overlapping 

segments have an adjustable length. 
24. The method of claim 1, wherein each set of the plurality 

of sets of data further comprises a fourth parameter relating to 
patient characteristics. 

25. The method of claim 24, wherein the patient character 
istics comprises any one or more of the following: age, gender 
and medical history. 

26. A method of predicting the survivability of a patient, the 
method comprising 

measuring a first set of parameters relating to heart rate 
variability data of a patient; 

measuring a second set of parameters relating to vital sign 
data of the patient; 

providing an artificial neural network comprising a net 
work of interconnected nodes, the nodes comprising a 
plurality of artificial neurons, each artificial neuron hav 
ing at least one input with an associated weight adjusted 
by training the artificial neural network using an elec 
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tronic database having a plurality of sets of data, each set 
having at least aparameter relating to heart rate variabil 
ity data and a parameter relating to vital sign data, each 
set further having a parameter relating to patient Surviv 
ability; 

processing the first set of parameters and the second set of 
parameters to produce processed data Suitable for input 
into the artificial neural network; 

providing the processed data as input into the artificial 
neural network; and 

obtaining an output from the artificial neural network, the 
output providing a prediction on the survivability of the 
patient. 

27. The method of claim 26, wherein the processed data of 
the first set of parameters and the processed data of the second 
set of parameters are represented as a feature vector. 

28. The method of claim 26, wherein the processed data is 
the first set of parameters and the second set of parameters 
being represented as normalized data. 

29. The method of claim 26, 
wherein the processed data is partitioned into non-overlap 

ping segments, so that the input into the artificial neural 
network comprises sets of one or more of the non-over 
lapping segments of processed data; and wherein 

a result is obtained for each of the sets of one or more of the 
non-overlapping segments of processed data, so that 
each of the results is considered to predict the surviv 
ability of the patient. 

30. The method of claim 29, wherein majority voting is 
used to determine the prediction on the survivability of the 
patient, the majority Voting represented by the function 

wherein D, is an intermediate variable for final decision 
making, D, assigned a value of 1 if a m" classifier chooses 
class j in the decision ensemble, and 0 otherwise. 

31. The method of claim 26, wherein the result of the 
artificial neural network is coded as a two class label, so that 
the method further comprises 

applying a label-based algorithm to each of the two class 
label results to decide the output from the artificial neu 
ral network, thereby providing a prediction on the Sur 
vivability of the patient. 

32. The method of claim 1, wherein the heart rate variabil 
ity data comprises time domain data, frequency domain data 
and geometric domain data. 

33. The method of claim32, wherein the time domain data 
comprises information on any one or more of the following 
parameters: mean of RR intervals (mean RR), standard devia 
tion of RR intervals (STD), mean of the instantaneous heart 
rate (mean HR), standard deviation of the instantaneous heart 
rate (STD HR), root mean square of differences between 
adjacent RR intervals (RMSSD), number of consecutive RR 
intervals differing by more than 50 ms (NN50), and percent 
age of consecutive RR intervals differing by more than 50 ms 
(pNN50). 

34. The method of claim32, wherein the frequency domain 
data comprises information on any one or more of the follow 
ing parameters: power in very low frequency range (<0.04 
HZ) (VLF), power in low frequency range (0.04 to 0.15 Hz) 
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(LF), power in high frequency range (0.15 to 0.4 Hz) (HF), 
total power which is estimated from the variance of NN 
intervals in the segment and is measured in ms (TP), ratio of 
LF power to HF power (LF/HF), LF power in normalized 
units: LF/(TP-VLF)x100 (LFnorm), and HF power in nor 
malized units: HF/(TP-VLF)x100 (HFnorm). 

35. The method of claim32, wherein the geometric domain 
data comprises information on any one of the following data: 
total number of all RR intervals divided by height of histo 
gram of intervals (HRV Index) and base width of triangle fit 
into RR histogram using least squares method (TINN). 

36. The method of claim 1, wherein the vital sign data 
comprises any one or more of the following: systolic blood 
pressure, diastolic blood pressure, pulse rate, pulse oximetry, 
respiratory rate, glasgow coma Scale (GCS), pain score, tem 
perature and age. 

37. The method of claim 1, wherein the patient health data 
used to train the artificial neural network are standard devia 
tion of the instantaneous heart rate (STD HR), power in low 
frequency range (0.04 to 0.15 Hz) in normalized units 
(LFnorm), age, pulse rate, pulse Oximetry, systolic blood 
pressure and diastolic blood pressure. 

38. The method of claim 24, wherein the measured first set 
of parameters are standard deviation of the instantaneous 
heart rate (STD HR) and power in low frequency range (0.04 
to 0.15 Hz) in normalized units (LFnorm); and the measured 
second set of parameters are age, pulse rate, pulse oximetry, 
systolic blood pressure and diastolic blood pressure. 

39. The method of claim 1, wherein the prediction on the 
survivability of the patient is either death or survival of the 
patient. 

40. A patient Survivability prediction system comprising: 
a first input to receive a first set of parameters relating to 

heart rate variability data of a patient; 
a second input to receive a second set of parameters relat 

ing to vital sign data of the patient; 
a memory module storing instructions to implement an 

artificial neural network comprising a network of inter 
connected nodes, the nodes comprising a plurality of 
artificial neurons, each artificial neuron having at least 
one input with an associated weight adjusted by training 
the artificial neural network using an electronic database 
having a plurality of sets of data, each set having at least 
one a parameter relating to heart rate variability data and 
a parameter relating to vital sign data, each set further 
having a parameter relating to patient Survivability; 
processor to execute the instructions stored in the 
memory module to perform the functions of the artificial 
neural network and output a prediction on the Surviv 
ability of the patient based on the first set of parameters 
and the second set of parameters; and 

a display for displaying the prediction on the Survivability 
of the patient. 

41. The patient survivability prediction system of claim 40, 
further comprising a port to receive the first set of parameters 
from the first input and the second set of parameters from the 
second input. 

42. The patient survivability prediction system of claim 40, 
further comprising 

a first port to receive the first set of parameters from the first 
input; and 

a second port to receive the second set of parameters from 
the second input. 
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43. A method of predicting the survivability of a patient, the 
method comprising: 

measuring a first set of parameters relating to heart rate 
variability data of a patient; 

measuring a second set of parameters relating to vital sign 
data of the patient; 

obtaining a third set of parameters relating to patient char 
acteristics; 

providing the first set of parameters, the second set of 
parameters and the third set of parameters as sets of 
normalized data values, where required, to a scoring 
model implemented in an electronic database, the scor 
ing model having a respective category associated to 
each parameter of the first set of parameters, the second 
set of parameters and the third set of parameters, each 
category having a plurality of pre-defined value ranges, 
each of the plurality of value ranges having a pre-defined 
Score; 

determining a score for each parameter of the first set of 
parameters, the second set of parameters and the third set 
of parameters by assigning the sets of normalized data to 
respective pre-defined value ranges, encompassing the 
sets of normalized data values, of the plurality of value 
ranges of the category associated to the respective 
parameter of the first set of parameters, the second set of 
parameters and the third set of parameters; 

obtaining a total score, being a Summation of the score for 
each parameter of the first set of parameters, the second 
set of parameters and the third set of parameters, the total 
score providing an indication on the Survivability of the 
patient. 

44. The method of claim 41, wherein the scoring model 
further comprises a plurality of risk categories, each category 
having a pre-defined range of values, the method further 
comprising assigning the total score to the category having 
the pre-defined range of values encompassing the total score, 
to determine which of the plurality of risk categories the total 
score belongs to. 

45. A system for the detection of impending acute cardiop 
ulmonary medical events that, left untreated, would with a 
reasonable likelihood result in either severe injury or death 
comprising: 

an electro-cardiogram (ECG) module including a plurality 
of electrodes for sensing a patient's ECG and having an 
ECG output; 

a sensor for sensingapatient's physiologic parameter other 
than ECG: 

a first input for receiving the ECG output; 
a second input for receiving signals from the sensor for 

sensing a patient's physiologic parameter other than 
ECG: 

a third input constructed and arranged to receive: 
parametric information describing at least one element of a 
patient's demographic information; and 

parametric information describing a patient's medical his 
tory; 

a digitizing unit for digitizing the ECG and the physiologic 
signal other than ECG: 

a housing containing a memory unit and processing unit, 
for storing and processing, respectively, the ECG, the 
physiologic signal other than ECG, patient demographic 
information and medical history; and 

a user communication unit; 
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wherein the processing unit calculates at least one measure 
of heart rate variability (HRV), combines that at least 
one measure of HRV with at least one parameter each of 
patient demographic information and medical history, 
and calculates a statistical probability of an ACP event 
within 72 hours of the calculation. 

46. The system of claim 45 constructed and arranged to be 
carried by the patient in a wearable configuration. 

47. The system of claim 45 wherein the sensor measures 
the perfusion status of the microvasculature. 

48. The system of claim 47 wherein the sensor is a pulse 
Oximeter. 

49. The system of claim 45 further comprising: 
an electromagnetic stimulator of physiologic tissue. 
50. The system of claim 49 wherein the electromagnetic 

stimulator stimulates cardiac tissue. 
51. The system of claim 45 wherein the user communica 

tion unit has key entry. 
52. The system of claim 51 wherein the third input is a key 

entry. 
53. The system of claim 45 wherein the user communica 

tion unit is in the main housing: 
54. The system of claim 45 wherein the user communica 

tion unit is separate from main housing. 
55. The system of claim 45 wherein the user communica 

tion unit is a display. 
56. The system of claim 50 wherein the stimulation is 

pacing. 
57. The system of claim 50 wherein the stimulation is 

defibrillation. 
58. The system of claim 50 wherein the stimulation is 

magnetic stimulation. 
59. A system for predicting mortality of a patient being 

treated for trauma or as part of a mass casualty occurrence, 
comprising: 

an electro-cardiogram (ECG) module including a plurality 
of electrodes for sensing a patient's ECG and having an 
ECG output; 

a sensor for sensingapatient's physiologic parameter other 
than ECG: 

a first input for receiving the ECG output; 
a second input for receiving signals from the sensor for 

sensing a patient's physiologic parameter other than 
ECG: 

a third input constructed and arranged to receive: 
parametric information describing at least one element of a 
patient's demographic information; and 

parametric information describing a patient's medical his 
tory; 

a digitizing unit for digitizing the ECG and the physiologic 
signal other than ECG: 

a housing containing a memory unit and processing unit, 
for storing and processing, respectively, the ECG, the 
physiologic signal other than ECG, patient demographic 
information and medical history; and 

a user communication unit; 
wherein the processing unit calculates at least one measure 

of heart rate variability (HRV), combines that at least 
one measure of HRV with at least one parameter each of 
patient demographic information and medical history, 
and calculates a statistical probability of mortality for 
the patient. 

60. The system of claim 59 constructed and arranged to be 
carried by the patient in a wearable configuration. 
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61. The system of claim 59 wherein the sensor measures 
the perfusion status of the microvasculature. 

62. The system of claim 61 wherein the sensor is a pulse 
Oximeter. 

63. A method of treating a cardiac condition of a patient, 
comprising: 

measuring heart rate variability (HRV) of the patient; 
measuring vital sign data of the patient; 
predicting, using a computing apparatus constructed and 

arranged for the purpose, a likelihood of survival of the 
patient to one or more selected time limits based on HRV 
in combination with the measured vital sign data; and 

treating the cardiac condition as indicated by the vital sign 
data when the likelihood of survival of the patient to one 
or more selected time limits is below a desired threshold. 

64. The method of claim 63, further comprising: 
collecting at least one of patient demographic information 

and patient history information; wherein predicting fur 
ther comprises: 

computing the likelihood of survival additionally in view 
of the collected patient demographic information and 
patient history information. 

65. The method of claim 63, further comprising: 
Selecting a time limit of between 4 and 24 hours. 
66. The method of claim 63, further comprising: 
selecting a time limit of between 4 and 72 hours. 
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67. Apparatus for predicting a likelihood of survival of a 
patient to one or more selected time limits due to cardiac 
causes, comprising: 

a heart rate sensor having a heart rate output; 
a vital sign sensor having a vital sign output; 
a computational module receiving the heart rate output and 

the vital sign output, and performing: 
computing heart rate variability (HRV) related measures 

from the heart rate output received; and 
computing the likelihood of survival of the patient to the 

one or more selected time limits due to cardiac causes, 
from a combination of the HRV related measures com 
puted and the vital sign output; and, 

an output device displaying to a user the likelihood of 
survival of the patient to the one or more selected time 
limits due to cardiac causes. 

68. The apparatus of claim 67, further comprising: 
a data input device constructed and arranged to collect at 

least one of patient demographic information and patient 
history information; and 

computing the likelihood of survival additionally in view 
of the collected patient demographic information and 
patient history information. 

69. The apparatus of claim 67, further comprising: 
a time limit of between 4 and 24 hours. 
70. The method of claim 67, further comprising: 
a time limit of between 4 and 72 hours. 
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