Title: RECYCLING FLUID PRINTING SYSTEM AND METHOD

Abstract: A printing system for applying a printing fluid to a substrate, comprising a printing fluid applicator and a recirculating printing fluid supply supplying printing fluid to the applicator, wherein the printing fluid comprising water and a water dispersible polyurethane additive of the general formula of (I) wherein Z is the central portion of a monomer unit that is the polymerization product of a diolocyanate; X′-Y'-X represents one or more soft segments wherein Y represents the central portion of a unit that is the polymerization product of a diol or diol prepolymer having a molecular weight of greater than 300 Daltons; W is the central portion of one or more units containing an acid group; X'-Y'-X'2 represents one or more hard segments wherein Y' represents the central portion of a unit that is the polymerization product of a C-C diol or diol having a molecular weight of less than 250 Daltons; and X', V and X'2 can be the same or different and are an -O- or -N- atom; and further wherein the polyurethane additive has a weight average molecular weight of at least 6,000 Daltons and a sufficient number of acid groups to provide an acid number greater than 35, and the one or more X'-Y'-X'2 hard segments are present at from 1 wt% to less than 13 wt % of the polyurethane additive.
Published:
— without international search report and to be republished upon receipt of that report (Rule 48.2(g))
FIELD OF THE INVENTION

The invention relates generally to the field of printing systems and methods, and in particular to printing systems employing recirculating printing fluids such as continuous inkjet printing systems. More specifically, the invention relates to use of specially formulated pigmented and clear inks for continuous inkjet printing systems which result in durable printed images without printer fluid destabilization and filter plugging during recirculation.

BACKGROUND OF THE INVENTION

Inkjet printing is a non-impact method for producing printed images by the deposition of ink droplets in a pixel-by-pixel manner to an image-recording element in response to digital signals. There are various methods that can be used to control the deposition of ink droplets on the image-recording element to yield the desired printed image. In one process, known as drop-on-demand inkjet, individual droplets are projected as needed onto the image-recording element to form the desired printed image. Common methods of controlling the ejection of ink droplets in drop-on-demand printing include thermal bubble formation (thermal inkjet (TIJ)) and piezoelectric transducers. In another process known as continuous inkjet (CIJ), a continuous stream of droplets is generated and expelled in an image-wise manner onto the surface of the image-recording element, while non-imaged droplets are deflected, caught, and recycled to an ink sump. Inkjet printers have found broad applications across markets ranging from desktop document and photographic-quality imaging, to commercial printing and industrial labeling.

Ink compositions containing colorants used in inkjet printers can be classified as either pigment-based, in which the colorant exists as pigment particles suspended in the ink composition, or as dye-based, in which the colorant exists as a fully solvated dye species that includes one or more dye molecules.

Pigments are highly desirable since they are far more resistant to fading than dyes. However, pigment-based inks have a number of drawbacks. Great lengths are
undertaken to reduce a pigment particle to a sufficiently small particle size and to provide sufficient colloidal stability to the particles. Pigment-based inks often require a lengthy milling operation to produce particles in the sub-micron range needed for most modern ink applications. If the pigment particles are too large light scattering can have a detrimental effect on optical density and gloss in the printed image.

A second drawback of pigmented inks is their durability after printing, especially under conditions where abrasive forces have been applied to the printed image. Pigment-based inks typically reside at the surface of the imaging receiver to which they are printed and this makes the printed images particularly susceptible to abrasive forces. To this extent, pigmented inks have been formulated with various polymers, dispersants, and other addenda to provide durable images that can withstand post printing physical abuse and environmental conditions.

The degree of abrasion resistance of a printed image is also a function of time after printing. At short time intervals after printing, typically from a few minutes to a few hours, the ink undergoes several complex dynamic changes. As the ink contacts the receiver, some of the components penetrate into the receiver and the droplets can simultaneously spread laterally on the receiver surface. Carrier fluids such as water and humectants are drawn into the receiver by capillary forces and the polymer binders begin to film form. At short time intervals the binder film formation is incomplete and the resulting pigment cake is particularly susceptible to abrasive forces. Typically, the more total fluid that is printed to the receiver (and hence more water) the longer it takes for the ink to dry and form a durable image. The abrasion resistance of the image is further affected by the presence of humectants, which are employed for optimal firing performance, but which are retained in the pigment cake for some period of time. Since most humectants have much lower vapor pressures than water, they are relatively slow to evaporate and can be retained in the image receiver for several hours. Humectants can have the effect of plasticizing the polymer binder and making the surface of the image tacky or softer than if no humectant was present.
Once the humectants evaporate, the resulting pigment cake, consisting primarily of pigment and binders, reaches a steady state composition, and determines the long-term abrasion resistance of the printed image.

Images printed from an inkjet printer are also susceptible to abrasive forces as the image receiver is advanced through the printer. Typically, there is some mechanism for advancing the print past the printhead and out of the printer. In some designs a spur wheel is used to advance the printed receiver. Spur wheels are often made from a hard plastic or metal and have the shape of a disk with points or spurs located on the periphery of the wheel. The spurs contact the printed receiver and can physically penetrate the uppermost area of the printed image leaving behind a small hole. In extreme cases the spurs can plow into the receiver and tear off small sections of the imaged areas. In either case, the mechanical abrasion caused by the spur wheel occurs at short time intervals on the order of a few seconds after printing and results in a defect that is objectionable to the eye. Further, in some cases, the incomplete polymer binder film formation results in a tacky surface that can stick to such surfaces within the printer that transport the printed image.

Pigmented inks for inkjet printing have been formulated with acrylic polymers; however, the acrylic polymers alone are insufficient in providing durable images that resist scratches and other forms of physical abuse. A second class of polymers that have been used as abrasion resistance additives in pigment-based inks are the polyurethanes, or urethane resins as they are sometimes called. US Patent No. 6,136,890 discloses a pigment-based inkjet ink wherein the pigment particles are stabilized by a polyurethane dispersant. US Publication No. 2004/0242726 discloses a pigment dispersed by a cross-linking step between a resin having a urethane bond and a second water-soluble polymer.

Although polyurethanes are known for their excellent abrasion resistance, they also have a number of drawbacks. For example, not all polyurethane polymers are conducive to jetting from a thermal inkjet head. In particular, water-dispersible polyurethane particles, such as those disclosed in US Patent Numbers 6,533,408 and 6,268,101, Statutory Invention Registration No.
US H21 13H, and US Publication Numbers 2004/0130608 and 2004/0229976 are particularly difficult to jet from a thermal inkjet printhead at high firing frequencies. It is highly desirable to fire inks at high firing frequencies from an inkjet printer since this is one variable that controls the speed at which the image can be printed.

Another way to improve the abrasion resistance of a printed image is to apply a clear ink as an overcoat to the image. The clear inks, also known as overcoat solutions or colorless ink compositions, are typically formulated with polymer, water, and other components commonly used in aqueous-based inkjet ink formulations, for example, humectants, organic solvents, surfactants, and biocides. US Publication Numbers 2006/0100306 and 2006/0100308 disclose the use of polyurethanes and mixtures of polyurethanes and acrylic polymers having specified acid numbers for use in clear ink compositions. Clear inks formulated with polyurethanes, however, also suffer from the same short term durability issues as colored inks since they have many components in common with their colored ink counterparts. In addition, the application of a clear ink increases the total amount of water applied to the receiver and therefore slows down the drying of the imaged area of the prints. Although the application of clear ink can improve the long term durability, its application can adversely affect the short term durability due to the increased water load on the receiver.

Both pigment and clear inks can be difficult to jet through inkjet printheads having small nozzle diameters especially by the thermal inkjet printing process. In recent years, thermal inkjet printers have moved to higher jetting frequencies and smaller nozzle diameters to provide faster printing speeds with higher image quality. Thermal inkjet printers are now capable of printing (in drop volumes of 3 picoliters or less) at jetting frequencies in excess of 10 kHz and the need for higher velocity firings is a highly desirable feature. However, this high frequency firing often comes at the cost of variability in the firing velocity, which leads to poor image quality in the final printed image. In addition, the demands of current thermal inkjet printing require that the nozzles fire for a large number of firings during the life-time of a printer. As an example, a typical inkjet nozzle
may be required to fire in excess of 5×10^7, and up to as many as 1×10^9 individual firing events without malfunctioning or ceasing to fire altogether. Thus, although polyurethane binders have found use in inkjet inks there remains the need to provide inkjet printing fluids, including both pigment-based and clear inkjet inks, capable of providing durable images and which satisfy the demands of high frequency thermal inkjet printing.

Continuous inkjet (CIJ) printers typically consist of two main components, a fluid system and one or more printheads. Ink is delivered through a supply line from a supply reservoir to a manifold that distributes the ink to a plurality of orifices, typically arranged in linear array(s), under sufficient pressure to cause ink streams to issue from the orifices of the printhead. Stimulations are applied to the printhead to cause those ink streams to form streams of spaced droplets, which are deflected into printing or non-printing paths. The non-printing droplets are returned to the supply reservoir via a droplet catcher and a return line. US Patent Nos 4,734,711 and 5,394,177 and EP 1,013,450 describe in detail the design of a fluid system for CIJ apparatus. The more recent development of CIJ printing apparatus and printhead fabrication can be found in US Patent Nos.6,588,888 and 6,943,037.

Ink drop uniformity requires maintaining a uniform pressure in the printhead cavity. US Patent No. 4,614,948 describes that a positive displacement pump, such as gear pump, is preferred for use as the ink supply pump. The need to limit pulsation produced by the pump is recognized in US Patent No. 4,971,527. In addition, filters are employed at appropriate locations in fluid system to remove oversized particles prior to ink entering into printhead orifices and avoid printhead clogging.

CIJ inks traditionally have been mostly aqueous dye-based inks, where issues regarding robust system runnability, such as easy start up/shut down, extended printing time without crooked jet, and reduced frequency for filter changing have been minimized. In such traditional dye-based inks, no particles are observable under the microscope. Although there have been many recent advances in the art of dye-based inkjet inks, such inks still suffer from deficiencies
such as low optical densities on coated glossy paper and poor light-fastness. When water is used as the carrier, such inks also generally suffer from poor water fastness and poor smear resistance. Accordingly, the advantages associated with the use of pigmented inks would also be desirable for use in continuous inkjet printing systems.

It has been discovered, however, that severe filter plugging issues may be encountered when running pigment inks in a CIJ fluid system, requiring frequent change of filters, e.g., over the time period of a few hours vs. a few months for dye-based inks. The consequence of filter plugging is the loss of fluid pressure and fluid jets, leading to system shutdown. Further investigation has discovered that the gear pump commonly used in the fluid system to maintain fluid pressure with minimal pulsation can cause agglomeration of pigment particles, leading to filter clogging and system shutdown. Further, addition of polyurethanes can also substantially increase the viscosity of a printing fluid, and cause printing fluids to become destabilized upon recirculation, which may be especially undesirable for continuous inkjet printing applications. Such destabilization and filter plugging can also be a problem with other printing systems employing recirculating printing fluids, such as where a recirculation system is used to recirculate printing fluid continuously through a drop on demand printhead, or to an ink tank associated with such a printhead.

SUMMARY OF THE INVENTION

In accordance with one embodiment, the invention provides a printing system for applying a printing fluid to a substrate, comprising a printing fluid applicator and a recirculating printing fluid supply supplying printing fluid to the applicator, wherein the printing fluid comprising water and a water dispersible polyurethane additive of the general formula of (I):
wherein \(Z \) is the central portion of a monomer unit that is the polymerization product of a diisocyanate; \(X^1-Y^1-X^1 \) represents one or more soft segments wherein \(Y^1 \) represents the central portion of a unit that is the polymerization product of a diamine or diol prepolymer having a molecular weight of greater than 300 Daltons; \(W \) is the central portion of one or more units containing an acid group; \(X^2-Y^2-X^2 \) represents one or more hard segments wherein \(Y^2 \) represents the central portion of a unit that is the polymerization product of a \(C_2-C_8 \) diol or diamine having a molecular weight of less than 250 Daltons; and \(X^1, V \) and \(X^2 \) can be the same or different and are an -O- or -N- atom; and further wherein the polyurethane additive has a weight average molecular weight of at least 6,000 Daltons and a sufficient number of acid groups to provide an acid number greater than 35, and the one or more \(X^2-Y^2-X^2 \) hard segments are present at from 1 wt% to less than 13 wt% of the polyurethane additive.

The invention provides an improved recirculating printing fluid printing system for applying printing fluids to a substrate, wherein the printing fluid, such as inkjet printing fluid compositions, including pigment-based inks and clear inks, contains an aqueous polyurethane binder that provides abrasion resistance to an image and enables the printing fluid to be recirculated for extended periods without significant fluid destabilization or pressure build up or filter clogging.

The invention further provides a method for of continuous inkjet printing comprising:
A) providing a main fluid supply of a continuous inkjet printer with an aqueous ink composition comprising a polyurethane additive of the general formula of (I) as described herein;

B) delivering the ink composition from the main fluid supply to a printhead and ejecting a continuous stream of the ink composition from the printhead which continuous stream is broken into spaced droplets; and

C) in response to electrical signals received from a control mechanism, controlling the spaced droplets to select between printing droplets for marking a substrate and nonprinting droplets that are collected and returned to the main fluid supply.

BRIEF DESCRIPTION OF THE DRAWINGS

In the detailed description of the example embodiments of the invention presented below, reference is made to the accompanying drawing, in which:

FIG. 1 shows a schematic diagram of a continuous inkjet printing system employed in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Recirculating printing fluid printing systems in accordance with the present invention are designed for applying a printing fluid to a substrate, and comprise a printing fluid applicator and a recirculating printing fluid supply supplying printing fluid to the applicator. Printing fluid applicators include, e.g., conventional inkjet printheads and fluid spray devices.

In a particular embodiment, the invention is directed towards a continuous inkjet printer. In such CIJ printers, a continuous stream of droplets is generated, a portion of which are deflected in an image-wise manner onto the surface of the image-recording element, while un-imaged droplets are caught and returned to an ink sump. In the system of continuous inkjet printing a main fluid supply is provided with the printing fluid composition, which is then delivered from the main fluid supply to a printhead, where a continuous stream of the ink composition is ejected from the printhead, which continuous stream then is broken into spaced droplets. In response to electrical signals received from a control
mechanism, the droplets are then selected between printing droplets for marking a
substrate and nonprinting droplets that are collected and returned to the main fluid
supply. Continuous inkjet systems which may be used in accordance with specific
embodiments of the present invention include those disclosed, e.g., in US Patent
Numbers 6,588,888, 6,554,410, 6,682,182, and 6,575,566 to Jeanmaire et al.; US
Publication No. 2003/0202054 to Jeanmaire et al.; US Patent Numbers 6,793,328
and 6,866,370 to D. Jeanmaire; and US Patent No. 6,517,197 to Hawkins et al.;
the disclosures of which are herein incorporated in their entirety by reference. In
another embodiment, an apparatus capable of controlling the direction of the
formed printing and non-printing drops by asymmetric application of heat to the
fluid stream that initializes drop break-up and serves to steer the resultant drop
may be employed, as disclosed in US Patent Numbers 6,079,821 and 6,505,921 to
Chwalek et al., the disclosures of which are herein incorporated in their entirety by
reference. Useful ink agitation, heated ink supply and printhead and fluid filtration
means for CIJ pigmented inkjet ink compositions are described in US Patent No.
6,817,705 to Crockett et al., the disclosure of which is herein incorporated in its
entirety by reference. Printer replenishing systems for maintaining ink quality and
countering the effects of ink volatile component evaporation are described in US
Patent No. 5,526,026 to M. Bowers and 5,473,350 to Mader et al., and EP 0 597
628 A1 to Loyd et al., the disclosures of which are herein incorporated in their
entirety by reference.

Referring to FIG. 1, a continuous printing system 20 includes an
image source 22 such as a scanner or computer which provides raster image data,
outline image data in the form of a page description language, or other forms of
digital image data. This image data is converted to half-toned bitmap image data by
an image processing unit 24 which also stores the image data in memory. A plurality
of drop forming mechanism control circuits 26 read data from the image memory
and apply time-varying electrical pulses to a drop forming mechanism(s) 28 that are
associated with one or more nozzles of a printhead 30. These pulses are applied at
an appropriate time, and to the appropriate nozzle, so that drops formed from a
continuous inkjet stream will form spots on a recording medium 32 in the
appropriate position designated by the data in the image memory. Recording
medium 32 is moved relative to printhead 30 by a recording medium transport
system 34, which is electronically controlled by a recording medium transport
control system 36, and which in turn is controlled by a micro-controller 38. The
recording medium transport system shown in FIG. 1 is a schematic only, and many
different mechanical configurations are possible. For example, a transfer roller could
be used as recording medium transport system 34 to facilitate transfer of the ink
drops to recording medium 32. Such transfer roller technology is well known in the
art. In the case of page width printheads, it is most convenient to move recording
medium 32 past a stationary printhead. However, in the case of scanning print
systems, it is usually most convenient to move the printhead along one axis (the sub-
scanning direction) and the recording medium along an orthogonal axis (the main
scanning direction) in a relative raster motion.

Ink is contained in an ink reservoir 40 under pressure. In the non-
printing state, continuous inkjet drop streams are unable to reach recording
medium 32 due to an ink catcher 42 that blocks the stream and which may allow a
portion of the ink to be recycled by an ink recycling unit 44. The ink recycling unit
reconditions the ink and delivers it back to reservoir 40. Such ink recycling units
are well known in the art. The ink pressure suitable for optimal operation will
depend on a number of factors, including geometry and thermal properties of the
nozzles and thermal properties of the ink. A constant ink pressure can be achieved
by applying pressure to ink reservoir 40 under the control of ink pressure regulator
46. Alternatively, the ink reservoir can be left unpressurized, or even under a
reduced pressure (vacuum), and a pump is employed to deliver ink from the ink
reservoir under pressure to the printhead 30. In such an embodiment, the ink
pressure regulator 46 can comprise an ink pump control system. As shown in FIG.
1, catcher 42 is a type of catcher commonly referred to as a "knife edge" catcher.
The ink is distributed to printhead 30 through an ink channel 47. The ink
preferably flows through slots or holes etched through a silicon substrate of
printhead 30 to its front surface, where a plurality of nozzles and drop forming
mechanisms, for example, heaters, are situated. When printhead 30 is fabricated
from silicon, drop forming mechanism control circuits 26 can be integrated with the printhead. Printhead 30 also includes an ink drop deflection mechanism (not shown), such as described in the above referenced patents.

In an alternative embodiment of the invention, an independently operated printing fluid applicator (such as a drop-on-demand printhead) may be employed with a separate recirculating printing fluid supply which delivers the printing fluid from a main fluid supply to the printhead, or an ink tank associated with the printhead, and recirculates non-printed printing fluid (i.e., printing fluid which has not been ejected through printing jets of the printhead) back to the main fluid supply. Such alternative system may be applicable, e.g., when it is desired to maintain a relatively large ink supply for a drop-on-demand system, or where it is otherwise desired to maintain the printing fluid supply in a state of agitation by recirculation. In drop-on-demand inkjet, individual ink droplets are projected as needed onto the image-recording element to form the desired printed image.

Common methods of controlling the projection of ink droplets in drop-on-demand printing include piezoelectric transducers, thermal bubble formation (thermal inkjet), or an actuator that is made to move. Exemplary thermal drop-on-demand printheads, e.g., are described in US Patent No. 7,350,902. Drop on demand printers typically include one or more ink tanks that supply ink to the printhead, and a source of image data that provides signals that are interpreted by a controller as being commands to eject drops of a selected ink from the printhead. Printheads may be integral with the ink tanks, or separate. A separate recirculating printing fluid supply may be employed to deliver printing fluid from a main fluid supply to the printhead, or to an ink tank associated with the printhead, and continuously recirculate non-printed printing fluid (i.e., printing fluid which has not been ejected through printing jets of the printhead) back to the main fluid supply.

The printing fluids employed in the present invention are aqueous-based printing fluids. "Aqueous-based" is defined herein to mean the printing fluid comprises mainly water as the carrier medium for the remaining printing fluid components. In a preferred embodiment, the printing fluids employed in the present invention comprise at least 50 weight percent water. In a specific
embodiment, the printing fluid is a pigment-based ink. Pigment-based inks are
defined as inks containing at least a dispersion of water-insoluble pigment
particles. In a further embodiment, the printing fluid may be a clear ink. A clear
ink in the present invention is defined as an ink composition that does not contain
colorants, including colored pigments or colored dyes. The clear ink is typically
aqueous based and can contain humectants and polymers used in the art of inkjet
printing. The clear ink can be slightly colored due to the presence of humectants,
polymers, or impurities, but is not intentionally colored by the addition of a
colorant.

An ink set is defined as a set of two or more inks. An ink set may
contain pigment-based inks of different colors, for example, cyan, magenta,
yellow, red, green, blue, orange, violet, or black. In one embodiment, a carbon
black pigmented ink is used in an ink set comprising at least three inks having
separately, a cyan, a magenta, and a yellow colorant. Useful ink sets also include,
in addition to the cyan, magenta, and yellow inks, complimentary colorants such
as red, blue, violet, orange, or green inks. In addition, the ink set may comprise
light and dark colored inks, for example, light cyan and light magenta inks
commonly used in the ink sets of wide format printers. It is possible to include
one or more inks that comprise a mixture of different colored pigments in the ink
set. An example of this is a carbon black pigment mixed with one or more colored
pigments or a combination of different colored pigments. An ink set may also
include one or more pigment-based inks in combination with one or more clear
inks. An ink set may also include at least one or more pigment-based inks in
combination with additional inks that are dye-based ink. An ink set may further
comprise one or more inks containing a self-dispersing carbon black pigment ink
which is used primarily for printing of text and a plurality of cyan, magenta,
yellow, and black inks which are used primarily for photographic quality printing.

Printing fluid compositions employed in the present invention
comprise at least one water-dispersible polyurethane compound. "Water-
dispersible" is defined herein to mean individual polymer molecules or colloidal
assemblies of polymer molecules which are stably dispersed in the printing fluid
without the need for a dispersing agent. Water dispersible polyurethanes employed in the present invention have the general formula of (I):

\[
\begin{array}{c}
\text{O} \\
\text{C} - \text{NH - } Z - \text{NH - C} \\
\text{X}^1 - \text{Y}^1 - \text{X}^1 \\
\text{V - W - V} \\
\text{X}^2 - \text{Y}^2 - \text{X}^2
\end{array}
\]

wherein Z is the central portion of a monomer unit that is the polymerization product of a diisocyanate; \(X'-Y'-X \) represents one or more soft segments wherein \(Y \) represents the central portion of a unit that is the polymerization product of a diamine or diol prepolymer having a molecular weight of greater than 300 Daltons; \(W \) is the central portion of one or more units containing an acid group; \(X^2-Y^2-X^2 \) represents one or more hard segments wherein \(Y^2 \) represents the central portion of a unit that is the polymerization product of a \(\text{C}_2-\text{C}_8 \) diol or diamine having a molecular weight of less than 250 Daltons; and \(X^1, V \) and \(X^2 \) can be the same or different and are an \(-\text{O-}\) or \(-\text{N-}\) atom. The polyurethane additive has a weight average molecular weight of at least 6,000 Daltons, and a sufficient number of acid groups to provide an acid number greater than 35, and the one or more \(X^2-Y^2-X^2 \) hard segments are present at from 1 wt% to less than 13 wt% of the polyurethane additive.

\(Z \) in the above formula (I) is typically a hydrocarbon group having a valence of two, more desirably containing a substituted or unsubstituted alicyclic, aliphatic, or aromatic group, preferably represented by one or more of the following structures:
segments wherein Y represents the central portion of a unit that is the polymerization product of a diamine or diol prepolymer having a molecular weight of greater than 300 Daltons, preferably from 400 to 20,000 Daltons. Such soft segments may be derived from, e.g., a polyether polyl, polyester polyl, polycarbonate polyl, polydimethyl siloxane diol, polyester diamine, polycarbonate diamine, or aminoalkyl terminated polydimethyl siloxane. Useful polyether diols and diamines are those sold under the trade name TERATHANE from Dupont and trade name JEFFAMINE D, ED, and M series from Huntsman. A particularly useful polyether polyl useful for forming the soft segment is tetramethylene glycol and can desirably have a molecular weight between 300 and 2500. A particularly useful polyether diamine is a bis(3-aminopropyl) terminated polytetrahydrofuran having a molecular weight between 600 and 2000. Additional useful soft segments for the polyurethane include a polydimethylsiloxane diol or aminoalkyl terminated polydimethyl siloxane, and fluorinated prepolymer comprising fluorinated side chains. Useful fluorinated side chains include fluoroalkyls and fluorinated polyethers. Fluorinated soft segments may be similarly introduced into the polyurethane backbone by using a prepolymer with both ends terminated with a hydroxyl (diol) or an amino (diamine) group. Polyurethane additives employed in the present invention may comprise a mixture of two or more distinct soft segments. The X^1-Y^1-X^1 soft segments are preferably present in the polyurethane at from 1% to 75% by weight, more preferably from 2% to 70%, and desirably from 5% to 60% based on the total weight of the polymer.
W is preferably the central portion of a monomeric unit containing a phosphoric acid, carboxylic acid, or sulfonic acid group, most preferably being carboxylic acids, such as 2,2'-bis(hydroxymethyl)propionic acid, 2,2'-bis(hydroxymethyl)butyric acid, and hydroxyethylether of 4,4'-bis(4-hydroxyphenyl)valeric acid.

\[X^2-Y^2-X^2 \] represents one or more hard segments present at from 1 wt% to less than 13\%, preferably 5 to 11\%, of the polyurethane additive, wherein \(Y^2 \) represents the central portion of a unit that is the polymerization product of a \(\text{C}_2-\text{C}_8 \) diol or diamine having a molecular weight of less than 250 Daltons. Such hard segments preferably comprise the polymerization product of a \(\text{C}_2-\text{C}_8 \) diol, e.g., ethylene glycol, 1,3-propane diol, 1,4-butane diol, 1,5-pentanediol, 1,6-hexane diol, 2-methyl 1,3-propane diol, 3-methyl 1,5-pentane diol, or cyclohexane dimethanol, most preferably 1,4-butanediol.

Conventional processes of making polyurethane dispersions involve the steps of preparing a prepolymer having a relatively low molecular weight and a small excess of isocyanate groups and chain-extending with a chain extender the prepolymer into a high molecular weight polyurethane during the dispersion process. Besides the raw materials the polyurethane dispersions sold by various manufacturers differs in the process used to prepare the prepolymer (e.g. Solvent free prepolymer process, Ketimine and Ketazine process, Hybrid system, and Ethyl acetate process), and the type of chain extender used in the dispersion step. Such materials and processes have been disclosed in, for example, US Patent No. 4,335,029; in "Aqueous Polyurethane Dispersions," by B.K. Kim, Colloid & Polymer Science, Vol. 274, No. 7 (1996) 599-611, Steinopff Verlag, 1996; and in "Polyurethane Dispersion Process," by Manea et al., Paint and Coating Industry, Jan 2007, Page 30.

The polyurethane dispersions useful for the practice of this invention are desirably to be prepared without involving the chain-extension step during the dispersion step. Instead it is preferable to have the chemical reaction for forming urethane or urea linkages completed prior to the dispersion step. This will insure that the polyurethane dispersions used in the printing fluid
compositions employed in the invention have well-controlled molecular weight and molecular weight distribution and be free of gel particles.

In one particularly useful process the polyurethane used in the present invention is prepared in a water miscible organic solvent such as tetrahydrofuran, followed by neutralizing the hydrophilic groups, e.g. carboxylic acid groups, with an organic amine, e.g., dimethylethanol amine or Methanol amine, or aqueous inorganic base, e.g. potassium hydroxide solution. The polyurethane solution is then diluted with doubly distilled de-ionized water. Finally the water miscible organic solvent is removed by distillation to form stable polyurethane dispersions. In this process the polyurethane particles are formed by precipitation during solvent evaporation.

In a second desirable process the polyurethane useful for the invention is prepared in a water immiscible organic solvent, e.g. ethyl acetate. The polyurethane is neutralized with an organic amine, e.g., dimethylethanol amine or triethanol amine, or aqueous inorganic base and water is added to form an aqueous dispersion comprising primarily minute drops of polyurethane-water immiscible organic solvent solution suspended in water. The water immiscible organic solvent is then removed to form the desired polyurethane dispersion.

In another desirable process the polyurethane is formed by a sequential polymerization process where a soft polyurethane segment is formed first by reacting a diisocyanate compound with a polyether diol or diamine. The soft polyurethane segment then reacts further with a mixture of diisocyanate compound, a hard segment polyol, and a low molecular weight diol having a hydrophilic group, e.g. a carboxylic acid group.

The polyurethane of this invention has a sufficient amount of acid groups in the molecule to make the polymer usable in an aqueous based printing fluid. In one embodiment the polyurethane has an acid number of greater than 35. The acid number is defined as the milligrams of potassium hydroxide required to neutralize one gram of dry polymer. The acid number of the polymer may be calculated by the formula given in the following equation: Acid number = (moles of acid monomer) * (56 grams/mole) * (1000) / (total grams of monomers) where,
moles of acid monomer is the total moles of all acid group containing monomers that comprise the polymer, 56 is the formula weight for potassium hydroxide, and total grams of monomers is the summation of the weight of all the monomers, in grams, comprising the target polymer. In order to achieve optimal jetting from a drop-on-demand thermal inkjet printhead while maintaining durability, the acid number is typically from 65 to 135, more desirably from 75 to 120, and most desirably from 80 to 120. In contrast to drop-on-demand printing, CIJ is a very high speed printing process, and it is desired to operate at substrate transport speeds in excess of 200 m/min. Printing speed alone imposes some limitations on ink formulation relative to slower drop-on-demand printing techniques, simply on the basis of the short time requirements for adequately drying the printed substrate moving at full speed in the press before roll wind-up. Surprisingly, features of CIJ printhead operation can allow wider ink formulation latitude than is possible in DOD printing in other respects, however. Ink formulation considerations specific to traditional CIJ printing are described in W. Wnek, IEEE Trans. 1986, 1475-81, which elucidates the ink performance requirements for drop formation, deflection and catching of non-printing drops, recirculation of the ink to the printhead from the storage reservoir for future printing, and also for commercial ink-media image quality and durability. In order to achieve improved durability and water resistance for printed images in continuous inkjet systems, while maintaining dispersion stability, use of polyurethanes of formula (I) with an acid number of from 40 to 100 (more preferably 50 to 95, and most preferably 50 to 70) are preferably employed.

The acid groups on the polyurethane compounds employed in the present invention are at least partially neutralized (converted into salts) using organic amine, e.g., dimethylethanol amine or triethanol amine, or monovalent inorganic base, preferably an alkaline metal hydroxide selected from the group of potassium hydroxide, sodium hydroxide, rubidium hydroxide, or lithium hydroxide. In a preferred embodiment, at least 70 percent of the available acid groups on the polymer are converted into salts using inorganic base, more preferably, at least 90% of the available acid groups are converted. From a
manufacturing perspective, preferably less than 100% of the acid groups are neutralized as this can lead to lack of control of the pH of the printing fluids.

The polyurethanes employed in the invention have a minimum weight average molecular weight of at least 6,000 Daltons, more preferably at least 8,000 Daltons. Desirably, the polyurethane has a maximum weight average molecular weight of 150,000. Polyurethanes having too low molecular weight may provide insufficient durability and often exhibit poor jetting performance. For improved durability and optical density, a weight average molecular weight of at least 25,000 is preferred for use in continuous inkjet systems. Molecular weights above 150,000, on the other hand, may have negative impacts on the relatively low viscosity requirements of an inkjet printing fluid which are desirably jetted at high frequencies and with low variability. More typically the molecular weight of polyurethanes employed in the invention is from 10,000 to 100,000, more desirably from 15,000 to 70,000. The polyurethane dispersions useful for the practice of this invention preferably have a mean particle size of less than 100 nm.

Printing fluid compositions, both pigment-based and clear, can comprise polyurethanes of the present invention at levels from 0.1 to 20% by weight based on the total printing fluid components. More desirable abrasion resistance can be imparted to the inkjet images when the printing fluid composition contains from 0.5 to 15% by weight of inventive polyurethane. For drop-on-demand thermal printhead systems, polyurethane concentrations of from 0.1% to 5%, more preferably 0.5 to 3%, based on the total printing fluid composition may be employed. These ranges of polyurethane provide excellent jetting of the printing fluid composition from the printhead while minimizing viscosity effects that could affect jetting performance. For continuous inkjet printing systems, polyurethane concentrations of from 1% to 15%, more preferably 2 to 12%, and in one particular embodiment between 5% and 10%, based on the total printing fluid composition may be employed. These ranges provide
improved durability of printed images, and improved recirculation stability for the
printing fluid.

Unless otherwise specifically stated, use of the term "substituted" or "substituent" means any group or atom other than hydrogen. Additionally, when the term "group" is used, it means that when a substituent group contains a substitutable hydrogen, it is also intended to encompass not only the substituent's unsubstituted form, but also its form further substituted with any substituent group or groups as herein mentioned, so long as the substituent does not destroy properties necessary for device utility. Suitably, a substituent group may be halogen or may be bonded to the remainder of the molecule by an atom of carbon, silicon, oxygen, nitrogen, phosphorous, sulfur, selenium, or boron. The substituent may be, for example, halogen, such as chloro, bromo or fluoro; nitro; hydroxyl; cyano; carboxyl; or groups which may be further substituted, such as alkyl, including straight or branched chain or cyclic alkyl, such as methyl, trifluoromethyl, ethyl, t-butyl, 3-(2,4-di-t-pentylphenoxy) propyl, and tetradesyl; alkenyl, such as ethylene, 2-butene; alkoxy, such as methoxy, ethoxy, propoxy, butoxy, 2-methoxyethoxy, sec-butoxy, hexyloxy, 2-ethylhexyloxy, tetradeceloyloxy, 2-(2,4-di-t-pentylphenoxy)ethoxy, and 2-dodecylxyloxyethoxy; aryl such as phenyl, 4-t-butylphenyl, 2,4,6-trimethylphenyl, naphthyl; aryloxy, such as phenoxy, 2-methylphenoxy, alpha- or beta-naphthyloxy, and 4-tolyloxy; carbonamido, such as acetamido, benzamido, butyramido, tetradecanamido, alpha-(2,4-di-t-pentyl-phenoxy)acetamido, alpha-(2,4-di-t-pentylphenoxy)butyramido, alpha-(3-pentadecylphenoxy)-hexanamido, alpha-(4-hydroxy-3-t-butylphenoxy)-tetradecanamido, 2-oxo-pyrrolidin-l-yl, 2-oxo-5-tetradecylpyrrolin-l-yl, N-methyltetradecanamido, N-succinimido, N-phthalimido, 2,5-dioxo-1-oxazolidinyl, 3-dodecyl-2,5-dioxo-l-imidazolyl, and N-acetyl-N-dodecylamino, ethoxycarbonylamino, phenoxy carbonylamino, benzyloxycarbonylamino, hexadecyloxy carbonylamino, 2,4-di-t-butylphenoxy carbonylamino, phenyl carbonylamino, 2,5-(di-t-pentylphenyl) carbonylamino, p-dodecyl-phenyl carbonylamino, p-tolyl carbonylamino, N,N'-dimethylureido, N,N'-dimethylureido, N-methyl-N-dodecylureido, N-hexadecylureido, N,N'-dioctadecylureido, N,N'-dioctyl-N'-ethylureido, N-phenylureido, N,N-
diphenylureido, N-phenyl-N-p-tolylureido, N-(m-hexadecylphenyl)ureido, N,N-(2,5-di-r-pentylphenyl)-N'-ethylureido, and r-butylcarbonamido; sulfonamido, such as methylsulfonamido, benzenesulfonamido, p-tolylsulfonamido, p-dodecylbenzenesulfonamido, N-methyltetradecylsulfonamido, N,N-dipropyl-sulfamoylamino, and hexadecylsulfonamido; sulfamoyl, such as N-methylsulfamoyl, N-ethylsulfamoyl, N,N-dipropylsulfamoylamino, N,N-dimethylsulfamoylamino, N-[3-(dodecylxy)propyl]sulfamoyl, N-[4-(2,4-di-r-pentylphenoxy)butyl]sulfamoyl, N-methyl-N-tetradecylsulfamoyl, and N-dodecylsulfamoyl; carbamoyl, such as N-methylcarbamoyl, N,N-dibutylcarbamoyl, N-octadecylcarbamoyl, N-[4-(2,4-di-r-pentylphenoxy)butyl]carbamoyl, N-methyl-N-tetradecylcarbamoyl, and N,N-dioctylcarbamoyl; acyl, such as acetyl, (2,4-di-r-amylyphenoxy)acetyl, phenoxycarbonyl, /?-dodecyloxyphenoxycarbonyl methoxycarbonyl, butoxycarbonyl, tetradecyloxy carbonyl, ethoxycarbonyl, benzyloxy carbonyl, 3-pentadecyloxy carbonyl, and dodecylxycarbonyl; sulfonyl, such as methoxysulfonyl, octyloxsulfonyl, tetradeceyloxy sulfonyl, 2-ethylhexyloxsulfonyl, phenoxy sulfon yl, 2,4-di-r-pentylphenoxysulfon yl, methylsulfon yl, 2-ethylhexylsulfon yl, dodecyl sulfon yl, hexadecylsulfon yl, phenylsulfon yl, 4-nonylphenylsulfon yl, and /?-tolylsulfon yl; sulfonyloxy, such as dodecylsulfonyloxy, and hexadecylsulfonyloxy; sulfinyl, such as methylsulfinyl, octysulfinyl, 2-ethylhexylsulfinyl, dodecylsulfinyl, hexadecylsulfinyl, phenylsulfinyl, 4-nonylphenylsulfinyl, and p-tolylsulfinyl; thio, such as ethylthio, octythio, butythio, tetradecylthio, 2-(2,4-di-r-pentylphenoxy)ethylthio, phenythio, 2-butoxy-5-t-octylphenthio, and /?-tolylthio; acyloxy, such as acetoxy, benzoyloxy, octadecanoyloxy, p-dodecylamidobenzoyloxy, N-phenylcarbamoyloxy, N-ethylcarbamoyloxy, and cyclohexylcarbonyloxy; amine, such as phenylanilino, 2-chloroanilino, diethylamine, dodecylamine; imino, such as 1-(N-phenylimido)ethyl, N-succinimido or 3-benzylhydantoinyl; phosphate, such as dimethylphosphate and ethylbutylphosphate; phosphite, such as diethyl and dihexylphosphite; a heterocyclic group, a heterocyclic oxy group or a heterocyclic thio group, each of which may be substituted and which contain a 3 to 7 membered heterocyclic ring composed of carbon atoms and at least one hetero atom selected from the group consisting of
oxygen, nitrogen, sulfur, phosphorous, and boron, such as 2-furyl, 2-thienyl, 2-
benzimidazo[1,2-a]pyrazol, or 2-benzothiazoly; quaternary ammonium, such as
triethylammonium; quaternary phosphonium, such as triphenylphosphonium; and
silyloxy, such as trimethylsilyloxy.

If desired, the substituents may themselves be further substituted
one or more times with the described substituent groups. The particular
substituents used may be selected by those skilled in the art to attain desirable
properties for a specific application and can include, for example, electron-
withdrawing groups, electron-donating groups, and steric groups. When a
molecule may have two or more substituents, the substituents may be joined
together to form a ring such as a fused ring unless otherwise provided. Generally,
the above groups and substituents thereof may include those having up to 48
carbon atoms, typically 1 to 36 carbon atoms and usually less than 24 carbon
atoms, but greater numbers are possible depending on the particular substituents
selected.

Pigment-based ink compositions employing non-self-dispersed
pigments that are useful in pigmented printing fluids employed in the invention may
be prepared by any method known in the art of inkjet printing. Useful methods
commonly involve two steps: (a) a dispersing or milling step to break up the
pigments to desirable particle size, and (b) a dilution step in which the pigment
dispersion from step (a) is diluted with the remaining printing fluid components to
give a working strength ink. The milling step (a) is carried out using any type of
grinding mill such as a media mill, a ball mill, a two-roll mill, a three-roll mill, a
bead mill, an air-jet mill, an attritor, or a liquid interaction chamber. In the milling
step (a), pigments are optionally suspended in a medium that is typically the same as
or similar to the medium used to dilute the pigment dispersion in step (b). Inert
milling media are optionally present in the milling step (a) in order to facilitate break
up of the pigments to desired particle size. Inert milling media include such
materials as polymeric beads, glasses, ceramics, metals and plastics as described, for
example, in U.S. Patent Number 5,891,231. Milling media are removed from either
the pigment dispersion obtained in step (a) or from the ink composition obtained in step (b).

A dispersant is present in the milling step (a) in order to facilitate break up of the pigments. For the pigment dispersion obtained in step (a) or the ink composition obtained in step (b), a dispersant is present in order to maintain particle stability and prevent settling. The dispersant for the pigment particles can be a surfactant, such as for example, potassium oleylmethyl taurate (KOMT), sodium dodecyl sulfate or sodium dioctyl sulfosuccinate.

Polymeric dispersants can be used to disperse the pigment particles prior to, or during the milling step. Typically, these polymeric dispersants are copolymers made from hydrophobic and hydrophilic monomers. Examples of polymeric dispersants for pigment particles include random and block copolymers having hydrophilic and hydrophobic portions; see for example, US Patent Nos. 4,597,794, 5,085,698, 5,519,085, 5,272,201, 5,172,133, and 6,043,297, and PCT Patent Publication Number WO 2004/111140A1; and graft copolymers; see for example, US Patent Nos. 5,231,131, 6,087,416, 5,719,204, and 5,714,538. Among these polymeric dispersants anionic polymeric dispersants are especially useful.

Polymeric dispersants useful for dispersing the pigment particles employed in the present invention are not limited in the arrangement of the monomers comprising the dispersant. The arrangement of monomers may be totally random, or they may be arranged in blocks such as AB or ABA wherein, A is the hydrophobic monomer and B is the hydrophilic monomer. In addition, the polymer may take the form of a random terpolymer or an ABC tri-block wherein, at least one of the A, B and C blocks is chosen to be the hydrophilic monomer and the remaining blocks are hydrophobic blocks dissimilar from one another.

Polymeric dispersants useful for dispersing the pigment particles can be selected from acrylics and styrene-acrylics. Styrene-acrylic polymeric dispersants especially useful in the present invention are copolymers of styrenic monomers and carboxylate monomers. Examples of such dispersants include copolymers of styrene or alphamethyl styrene and acrylic acid or methacrylic acid
(such as the JONCRYLBASF or TRUDOT Mead Westvaco polymers) or styrene maleic anhydride and styrene maleic anhydride amic acid copolymers (such as SMA-1440, SMA-17352, SMA-1000, SMA-2000 Sartomer Inc.).

Acrylic polymeric dispersants useful in the present invention are typically formed from one or more acrylic monomer and one or more ionizable monomer, such as, for example carboxyalted or sulfonated monomers. Acrylic polymeric dispersants are typically formed from one or more hydrophobic acrylate monomer including, for example, methylmethacrylate, ethylmethacrylate, butylmethacrylate, hexylmethacrylate, octylmethacrylate and decylmethacrylate.

Other especially useful polymeric dispersants are those where the hydrophobic monomer is selected from benzyl methacrylate or acrylate, or from acrylic acid esters containing an aliphatic chain having twelve or more carbons and where the hydrophilic monomer is a carboxylated monomer. Examples of acrylic acid esters having twelve or more carbons include; lauryl acrylate, lauryl methacrylate, tridecyl acrylate, tridecyl methacrylate, tetradecyl acrylate, tetradecyl methacrylate, cetyl acrylate, iso-cetyl acrylate, stearyl methacrylate, wo-stearyl methacrylate, stearyl acrylate, stearyl methacrylate, decyltetradecyl acrylate, and decyltetradecyl methacrylate. Preferably the methacrylate or acrylate monomer is stearyl or lauryl methacrylate or acrylate. The hydrophobic portion of the polymer may be prepared from one or more of the hydrophobic monomers. Desirable carboxylated hydrophilic monomers are acrylic acid or methacrylic acid, or combinations thereof.

Typically, the weight average molecular weight of the polymeric dispersant has an upper limit such that it is less than 50,000 Daltons. Desirably the weight average molecular weight of the copolymer is less than 25,000 Daltons; more desirably it is less than 15,000 and most desirably less than 10,000 Daltons. The copolymer dispersants preferably have a weight average molecular weight lower limit of greater than 500 Daltons.

In one exemplary embodiment, the pigment particles are dispersed with a copolymer where the hydrophobic monomer is benzyl methacrylate and is
present from 50 weight percent to 80 weight percent relative to the total weight of the polymeric dispersant and the hydrophilic monomer is methacrylic acid.

In a second embodiment, copolymer dispersants are employed which comprise a hydrophobic monomer having a carbon chain length of greater than or equal to 12 carbons present in an amount of at least 10% by weight of the total copolymer, and more desirably greater than 20% by weight, an optional additional hydrophobic monomer comprising an aromatic group and a hydrophilic monomer that is methacrylic acid. For example, the additional aromatic group containing monomer may be benzyl acrylate or benzyl methacrylate. An especially useful additional monomer is benzyl methacrylate.

The total amount of hydrophobic monomers, comprising the monomer having a chain with greater than or equal to 12 carbons and optionally, monomer containing an aromatic group, may be present in the polymer in an amount of 20 to 95% by weight of the total polymer. The hydrophobic aromatic-group containing monomer may be present in an amount from 0 to 85% by weight of the total polymer, more typically from 0 to 60%, and desirably from 0 to 50%. A particularly useful embodiment of a polymeric dispersant for the pigment particles is a terpolymer of benzyl methacrylate, stearyl methacrylate and methacrylic acid. Particularly useful polymeric pigment dispersants are further described in US Patent Publication Numbers 2006/0012654 and 2007/0043144, the disclosures of which are incorporated by reference herein.

Encapsulating type polymeric dispersants and polymeric dispersed pigments thereof can also be used in the invention. Specific examples are described in US Patent Numbers 6,723,785, 6,852,777, and US Patent Publication Numbers 2004/0132942, 2005/0020731, 2005/0009951, 2005/0075416, 2005/0124726, 2004/0077749, and 2005/0124728. Encapsulating type polymeric dispersants can be especially useful because of their high dispersion stability on keeping and low degree of interaction with ink components. Composite colorant particles having a colorant phase and a polymer phase are also useful in aqueous pigment-based printing fluids used in the invention. Composite colorant particles are formed by polymerizing monomers in the presence of pigments; see for
example, US Patent Publication Numbers 2003/0199614, 2003/0203988, or 2004/0127639. Microencapsulated-type pigment particles are also useful and consist of pigment particles coated with a resin film; see for example US Patent Number 6,074,467.

The pigment particles useful in the invention may have any particle size that can be jetted through a printhead. Preferably, the pigment particles have a volume weighted mean particle size of less than 0.5 micron. The pigment dispersions useful in pigment-based printing fluid compositions employed in the present invention desirably have a median particle diameter of less than 200 nm and more desirably less than 150 nm. In a particularly useful embodiment, 90 percent of the weight of the pigment particles in the distribution have a diameter less than 150 nm and desirably less than 100 nm.

Self-dispersing pigments, i.e., pigments that are dispersible without the use of a separate dispersant or surfactant, useful for the practice of the invention are those that have been subjected to a surface treatment such as oxidation/reduction, acid/base treatment, or functionalization through coupling chemistry. The surface treatment can render the surface of the pigment with anionic, cationic, or non-ionic groups. The preparation and use of covalently funcctionalized self-dispersed pigments suitable for inkjet printing are reported by Bergemann et al. in US 6,758,891 and US 6,660,075; Belmont in US 5,554,739; Adams and Belmont in US 5,707,432; Johnson and Belmont in US 5,803,959 and US 5,922,118; Johnson et al. in US 5,837,045; Yu et al. in US 6,494,943; in published applications WO 96/18695, WO 96/18696, WO 96/18689, WO 99/51690, WO 00/05313, and WO 01/51566; Osumi et al. in US Patents 6,280,513 and US 6,506,239; Karl et al. in US 6,503,311; Yeh, et al. in US 6,852,156; Ito et al. in US 6,488,753; and Momose et al. in EP 1,479,732. Examples of commercially available self-dispersing type pigments include CAB-O-JET 200, CAB-O-JET-250, CAB-O-JET-260, CAB-O-JET-270, and CAB-O-JET 300 (Cabot Specialty Chemicals, Inc.); BONJET CW-1, CW-2 and CW-3 (Orient Chemical Industries, Ltd.); and AQUA BLACK 162 and 001 (Tokai Carbon, Ltd.).
A wide variety of organic and inorganic pigments, alone or in combination with additional pigments or dyes, can be in the present invention. Pigments that may be used in the invention include those disclosed in, for example, US Patent Nos. 5,026,427; 5,085,698; 5,141,556; 5,160,370; and 5,169,436. The exact choice of pigments will depend upon the specific application and performance requirements such as color reproduction and image stability. Dispersed pigment particles are typically present at from 1 to 10 wt% in the pigmented inkjet printing fluids employed in the invention, preferably 1 to 6 wt%. Pigments suitable for use in the invention include, but are not limited to, azo pigments, monoazo pigments, disazo pigments, azo pigment lakes, β-Naphthol pigments, Naphthol AS pigments, benzimidazolone pigments, disazo condensation pigments, metal complex pigments, isoindolinone and isoindoline pigments, polycyclic pigments, phthalocyanine pigments, quinacridone pigments, perylene and perinone pigments, thiouindigo pigments, anthrapyrimidone pigments, flavanthrone pigments, anthanthrone pigments, dioxazine pigments, triarylcarbonium pigments, quinophthaline pigments, diketopyrrolo pyrrole pigments, titanium oxide, iron oxide, and carbon black.

Typical examples of organic pigments that may be used include

66, bridged aluminum phthalocyanine pigments; C.I. Pigment Black 1, 7, 20, 31, 32; C.I. Pigment Orange 1, 2, 5, 6, 13, 15, 16, 17, 17:1, 19, 22, 24, 31, 34, 36, 38, 40, 43, 44, 46, 48, 49, 51, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69; C.I. Pigment Green 1, 2, 4, 7, 8, 10, 36, 45; C.I. Pigment Violet 1, 2, 3, 5:1, 13, 19, 23, 25, 27, 29, 31, 32, 37, 39, 42, 44, 50; and C.I. Pigment Brown 1, 5, 22, 23, 25, 38, 41, 42.

Printing fluid compositions, both pigment-based and clear, useful in the invention may also preferably comprise a humectant in order to achieve reliable firing at high frequency with low velocity variability. Representative examples of humectants which may be employed in the present invention include:

(1) triols, such as glycerol, 1,2,6-hexanetriol, 2-ethyl-2-hydroxymethyl-propane diol, trimethylolpropane, alkoxylation triols, alkoxylation pentaerythritols, saccharides, and sugar alcohols; and (2) diols, such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, polyalkylene glycols having four or more alkylene oxide groups, 1,3-propane diol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,2-pentanediol, 1,5-pentanediol, 1,2-hexanediol, 1,6-hexanediol, 2-methyl-2,4-pentanediol, 1,2-heptanediol, 1,7-hexanediol, 2-ethyl-1,3-hexanediol, 1,2-octanediol, 2,2,4-trimethyl-1,3-pentanediol, 1,8-octanediol; and thioglycol or a mixture thereof. Desirable humectants are polyhydric alcohols having three or more hydroxyl groups. A particularly useful humectant is glycerol.

Typical aqueous-based ink compositions for drop-on-demand thermal printhead systems useful in the invention may contain, e.g., 5-35 weight percent humectant(s), especially from 6-25% humectant, most desirably from 7-20% humectant. Inks comprising humectants having the aforementioned viscosity and concentration ranges are ideal for maintaining ink viscosities in an acceptable range for high speed firing from a thermal inkjet printhead with low variability in firing velocity. While higher levels may be typically preferred for use in drop-on-demand printers, the total humectant level of printing fluid compositions for CIJ printing is desirably 10% or less by weight, more preferably 8% or less by weight, and most preferably 6% or less by weight. A preferred range of humectant for CIJ
printing fluids is from 0.5 to 8% by weight, more preferably from 0.5 to 6% by weight. The total humectant level of the ink is the sum of the individual sources of humectant ingredients, which may include humectant added directly during ink formulation, and for example humectant associated with a commercial biocide preparation as a supplemental ingredient, or with a commercial pigment dispersion preparation that may be present to prevent so-called "paint-flakes" of dried pigment cake forming around a bottle cap, as described in US Patent publication no. 2005/0075415 A1 to Harz et al. More desirably, the total humectant level is from 1% to less than 10%, in order to facilitate drying of the inkjet printing recording material in a high speed printer while simultaneously encouraging higher equilibrium moisture content in dried ink film on hardware for redispersion and clean-up by ink, or by start-up and shut-down fluids, or by a printhead storage fluid.

The printing fluid compositions employed in the present invention may also include a water miscible co-solvent or penetrant. Representative examples of co-solvents used in the aqueous-based printing fluid compositions include: (1) alcohols, such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, iso-butyl alcohol, furfuryl alcohol, and tetrahydrofurfuryl alcohol; (2) lower mono- and di-alkyl ethers derived from the polyhydric alcohols; such as ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether, and diethylene glycol monobutyl ether acetate; (3) nitrogen-containing compounds, such as urea, 2-pyrrolidinone, N-methyl-2-pyrrolidinone, imidazolidinone, and 1,3-dimethyl-2-imidazolidinone; and (4) sulfur-containing compounds, such as 2,2'-thiodiethanol, dimethyl sulfoxide, and tetramethylene sulfone. Typical aqueous-based printing fluid compositions useful in the invention may contain 2-15 weight percent co-solvents).

The pH of the aqueous printing fluid compositions employed in the invention may be adjusted by the addition of organic or inorganic acids or bases. Inorganic bases are preferred; however, small amounts of organic bases, such as
triethanolamine, may be used to adjust the pH of the printing fluid. Useful printing fluids for drop-on-demand applications may have a preferred pH of from 4 to 10, depending upon the type of pigment being used. Preferably, the pH of such printing fluid is from 6 to 9, more preferably from 7 to 9. The pH of the inkjet ink composition directed at CIJ is desirably adjusted from 7 to 12; more desirably, the pH is 8 to 10. When the ink composition is used in hardware with nickel or nickel-plated apparatus components, an anticorrosion inhibitor such as the sodium salt of 4- or 5-methyl-1-H-benzotriazole is desirably added and the pH adjusted to be from 10 to 11. When the ink composition is used with printheads with components fabricated from silicon that are in contact with the fluid, the ink composition pH is desirably adjusted to be from 7 to 9.5; more desirably, the pH ranges from 7.5 to 9. In order to reduce the risk of excessively protonating carboxylate anions associated with polymeric dispersants and anionic charge stabilized anti-abrasion polymers that might render the ink composition more susceptible to flocculation, pH levels lower than 7 are desirably avoided. With hardware components fabricated from silicon in contact with the ink composition, pH levels higher than 10 can induce significant rates of etch and corrosion that may impair the operation of the device over time. Typical inorganic acids include nitric, hydrochloric, phosphoric, and sulfuric acids. Typical organic acids include methanesulfonic, acetic, formic, and lactic acids. Typical inorganic bases include alkali metal hydroxides and carbonates. Typical organic bases include ammonia, triethanolamine, and tetramethylethlenediamine. Amine bases especially desirable in the application of the invention to CIJ printing include 3-amino-1-propanol, N,N-dimethanolamine, N,N-dimethylethanolamine, N,N-diethylethanolamine, and triethanolamine. The well known Goods buffers can also be employed.

The inks employed in the invention may contain surfactants added to adjust the static surface tension or dynamic surface tension of the ink to an appropriate level. The surfactants may be anionic, cationic, amphoteric, or nonionic and used at, e.g., levels of 0.01 to 5% of the ink composition.

Defoaming agents comprised of phosphate esters, polysiloxanes, or acetylenic diols may further optionally be used with the ink compositions directed at CIJ to
reduce foam formation caused by the fluid agitation associated with drop catching and ink recirculation.

The pigment-based and clear printing fluid compositions employed in the present invention may also contain a water-soluble acrylic polymer comprising carboxylic acid groups. The term "water-soluble" is defined herein as when the polymer is dissolved in water and when the polymer is at least partially neutralized with an inorganic monovalent base the resultant solution is visually clear.

The monomers for the water-soluble acrylic polymer can be selected from methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, n-octyl acrylate, lauryl methacrylate, 2-ethylhexyl methacrylate, nonyl acrylate, benzyl methacrylate, 2-hydroxypropyl methacrylate, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl propionate, vinylidene chloride, vinyl chloride, styrene, a-methyl styrene, t-butyl styrene; vinyl toluene, butadiene, isoprene, N,N-dimethyl acrylamide, acrylic acid, methacrylic acid, chloromethacrylic acid, maleic acid, and derivatives thereof. Examples of suitable monomers include allyl compounds such as allyl esters (e.g., allyl acetate, allyl caproate, etc.); vinyl ethers (e.g., methyl vinyl ether, butyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, chloroethyl vinyl ether, 1-methyl-2,2-dimethylpropyl vinyl ether, hydroxyethyl vinyl ether, diethylene glycol vinyl ether, dimethylaminoethyl vinyl ether, butylaminoethyl vinyl ether, benzyl vinyl ether, tetrahydrofurfuryl vinyl ether, etc.); vinyl esters (such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl dimethyl propionate, vinyl ethyl butyrate, vinyl chloroacetate, vinyl dichloroacetate, vinyl methoxyacetate, vinyl phenyl acetate, vinyl acetoacetate, etc.); vinyl heterocyclic compounds (such as N-vinyl oxazolidone, N-vinylimidazole, N-vinylpyrrolidone, N-vinylcarbazole, vinyl thiophene, N-vinylethyl acetamide, etc.); styrenes (e.g., styrene, divinylbenzene, methylstyrene, dimethylstyrene, ethylstyrene, isopropylstyrene, sodium styrenesulfonate, potassium styrenesulfinate, butylstyrene, hexylstyrene, cyclohexylstyrene, benzylstyrene, chloromethylstyrene, trifluoromethylstyrene, acetoxymethylstyrene, acetoxy styrene, vinylphenol, (t-butoxycarbonyloxy)
styrene, methoxystyrene, 4-methoxy-3-methylstyrene, dimethoxystyrene, chlorostyrene, dichlorostyrene, trichlorostyrene, bromostyrene, iodostyrene, fluorostyrene, methyl vinylbenzoate ester, vinylbenzoic acid, etc.); crotonic acids (such as crotonic acid, crotonic acid amide, crotonate esters (e.g., butyl crotonate, etc.)); vinyl ketones (e.g., methyl vinyl ketone, etc.); olefins (e.g., dicyclopentadiene, ethylene, propylene, 1-butene, 5,5-dimethyl-l-octene, etc.); itaconic acids and esters (e.g., itaconic acid, methyl itaconate, etc.), other acids such as sorbic acid, cinnamic acid, methyl sorbate, citraconic acid, chloroacrylic acid mesaconic acid, maleic acid, fumaric acid, and ethacrylic acid; halogenated olefins (e.g., vinyl chloride, vinylidene chloride, etc.); unsaturated nitriles (e.g., acrylonitrile, etc.); acrylic or methacrylic acids and esters (such as acrylic acid, methyl acrylate, methacrylic acid, methyl methacrylate, ethyl acrylate, butyl acrylate, butyl methacrylate, 2-hydroxyethyl methacrylate, 2-acetoacetoxyethyl methacrylate, sodium-2-sulfoethyl acrylate, 2aminoethylmethacrylate hydrochloride, glycidyl methacrylate, ethylene glycol dimethacrylate, etc.); and acrylamides and methacrylamides (such as acrylamide, methacrylamide, N-methylacrylamide, N,N-dimethylacrylamide, N-isopropylacrylamide, N-s-butylacrylamide, N-t-butylacrylamide, N-cyclohexylacrylamide, N-(3-aminopropyl)methacrylamide hydrochloride, N-(3-dimethylaminopropyl)methacrylamide hydrochloride, N,N-dipropylacrylamide, N-(1,1-dimethyl-3-oxobutyl)acrylamide, N-(1,1,2-trimethylpropyl) acrylamide, N-(1,1,3,3-tetramethylbutyl)acrylamide, N-(1-phthalamidomethyl)acrylamide, sodium N-(1,1-dimethyl-2-sulfoethyl) acrylamide, N-butylacrylamide, N-(1,1-dimethyl-3-oxobutyl)acrylamide, N-(2-carboxyethyl)acrylamide, 3-acrylamido-3-methylbutanoic acid, etc.).

The water-soluble acrylic polymer can be prepared by emulsion polymerization, solution polymerization, or bulk polymerization technique well known in the art. Typically, the water-soluble acrylic polymer has a weight average molecular weight of less than 20,000. Desirably, the polymer has a sufficient number of acid groups such that the acid number of the polymer is greater than 115.
The acid groups on the acrylic polymers are at least partially neutralized (converted into salts) using monovalent inorganic bases, typically aqueous alkaline metal hydroxides, selected from: potassium hydroxide, sodium hydroxide, rubidium hydroxide, and lithium hydroxide. In a particularly useful embodiment, at least 70 percent of the available acid groups on the polymer are converted into salts using monovalent inorganic base, more desirably at least 90% of the available acid groups are converted. Monovalent inorganic bases are highly preferred over organic bases such as amines as the neutralizing agents for the acrylic polymers since printing fluids containing acrylic polymers neutralized with organic amines show very poor jetting performance in a thermal inkjet printhead.

Acrylic polymers which may be employed in the present invention are exemplified by those disclosed in US Patent No. 6,866,379. Specific examples of preferred water-soluble polymers useful in the present invention are copolymers prepared from at least one hydrophilic monomer that is an acrylic acid or methacrylic acid monomer, or combinations thereof. Preferably, the hydrophilic monomer is methacrylic acid.

Water-soluble polymers particularly useful in the printing fluid employed in the present invention are copolymers prepared from at least one hydrophobic monomer that is an (meth)acrylic acid ester. Examples of hydrophobic monomers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, octyl (meth)acrylate, decyl (meth)acrylate, lauryl(methacrylate), stearyl (meth)acrylate, benzyl (meth)acrylate, phenyl (meth)acrylate, and combinations thereof. Preferred hydrophobic monomers are benzyl (meth)acrylate.

The water-soluble polymer may also be a styrene-acrylic copolymer comprising a mixture of vinyl or unsaturated monomers, including at least one styrenic monomer and at least one acrylic monomer, at least one of which monomers has an acid or acid-providing group. Such polymers are disclosed in, for example, US Patent Numbers 4,529,787; 4,358,573; 4,522,992; and 4,546,160. Preferred polymers include, for example, styrene-acrylic acid, styrene-acrylic acid-alkyl acrylate, styrene-maleic acid, styrene-maleic acid-alkyl acrylate, styrene-
methacrylic acid, styrene-methacrylic acid-alkyl acrylate, and styrene-maleic acid half ester, wherein each type of monomer may correspond to one or more particular monomers. Examples of preferred polymers include but are not limited to styrene-acrylic acid copolymer, (3-methyl styrene)-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-butyl acrylate-acrylic acid terpolymer, styrene-methyl methacrylate-acrylic acid terpolymer, styrene-butyl acrylate-ethyl acrylate-acrylic acid tetrapolymer, and styrene-(a-methylstyrene)-butyl acrylate-acrylic acid tetrapolymer.

The water-soluble acrylic polymer is not limited in the arrangement of the monomers comprising the copolymer. The arrangement of monomers may be totally random, or they may be arranged in blocks such as AB or ABA wherein, A is the hydrophobic monomer and B is the hydrophilic monomer. In addition, the polymer may take the form of a random terpolymer or an ABC triblock wherein, at least one of the A, B, and C blocks is chosen to be the hydrophilic monomer and the remaining blocks are hydrophobic blocks dissimilar from one another.

The water-soluble acrylic polymer useful in pigment-based printing fluids employed in the present invention, when employed, is typically present at a concentration of greater than 0.6 weight percent based on the total weight of the printing fluid. In a useful embodiment of the present invention particularly for use with thermal printhead systems, the printing fluid composition comprises a polyurethane described above and a water-soluble acrylic polymer described above wherein, the ratio of total amount of polyurethane and acrylic polymer(s) to pigment is from 0.5 to 1.5 and the ratio of polyurethane polymer to acrylic polymer is from 0.5 to 2.

The exact choice of ink components will depend upon the specific application and performance requirements of the printhead from which they are to be jetted. Desirable viscosities are no greater than 10 cP, preferably in the range of 1.0 to 5.0 cP. Printing fluid compositions defined by these desirable
embodiments are capable of achieving high firing frequencies with low variability for a large number of firing events.

Surfactants may be added to adjust the surface tension of the printing fluid to an appropriate level. In a particular embodiment, relative dynamic and static surface tensions of various pigment based printing fluids and clear protective printing fluid of an ink set may be controlled as described in US Publication Number 2008/0207805, the disclosure of which is incorporated by reference herein, to control intercolor bleed between the inks. The surfactants may be anionic, cationic, amphoteric, or nonionic and used at levels of 0.01 to 5% of the ink composition. Examples of suitable nonionic surfactants include, linear or secondary alcohol ethoxylates (such as the TERGITOL 15-S and TERGITOL TMN series available from Union Carbide and the BRIJ series from Uniquema), ethoxylated alkyl phenols (such as the TRITON series from Union Carbide), fluoro surfactants (such as the ZONYLS from DuPont; and the FLURADS from 3M), fatty acid ethoxylates, fatty amide ethoxylates, ethoxylated and propoxylated block copolymers (such as the PLURONIC and TETRONIC series from BASF, ethoxylated and propoxylated silicone based surfactants (such as the SILWET series from CK Witco), alkyl polyglycosides (such as the GLUCOPONS from Cognis), and acetylenic polyethylene oxide surfactants (such as the Surfynols from Air Products, Inc.).

Examples of anionic surfactants include carboxylated (such as ether carboxylates and sulfosuccinates), sulfated (such as sodium dodecyl sulfate), sulfonated (such as dodecyl benzene sulfonate, alpha olefin sulfonates, alkyl diphenyl oxide disulfonates, fatty acid taurates, and alkyl naphthalene sulfonates), phosphated (such as phosphated esters of alkyl and aryl alcohols, including the STRODEX series from Dexter Chemical), phosphonated and amine oxide surfactants, and anionic fluorinated surfactants. Examples of amphoteric surfactants include betaines, sultaines, and aminopropionates. Examples of cationic surfactants include quaternary ammonium compounds, cationic amine oxides, ethoxylated fatty amines, and imidazoline surfactants. Additional examples of the above surfactants

A biocide (0.01-1.0% by weight) may also be added to prevent unwanted microbial growth which may occur in the printing fluid over time. A preferred biocide for the printing fluids employed in the present invention is PROXEL GXL (Zeneca Colours Co.) at a concentration of 0.05-0.1 % by weight or/ and KORDEK (Rohm and Haas Co.) at a concentration of 0.05-0.1 % by weight (based on 100% active ingredient). Additional additives which may optionally be present in an inkjet printing fluid composition include thickeners, conductivity enhancing agents, anti-kogation agents, drying agents, waterfast agents, dye solubilizers, chelating agents, binders, light stabilizers, viscosifiers, buffering agents, anti-mold agents, anti-curl agents, stabilizers, and defoamers.

The invention is summarized above. Inkjet printing systems useful in the invention comprise a printer, at least one printing fluid as described above, and an image recording element, typically a sheet (herein also "media"), suitable for receiving printing fluid from an inkjet printer. The method used in the invention employs the inkjet printing system used in the invention to provide an image on media. Inkjet printing is a non-impact method for producing printed images by the deposition of printing fluid droplets in a pixel-by-pixel manner to an image-recording element in response to digital data signals. There are various methods that may be utilized to control the deposition of printing fluid droplets on the image-recording element to yield the desired printed image, as further discussed above.

The following examples illustrate, but do not limit, the utility of the present invention.

Example 1

Synthesis of the Inventive Polyurethanes PU-1 through PU-19

PU-1:

In a round bottom flask equipped with thermometer, stirrer, water condenser, and a vacuum outlet was placed 77.16 g (0.1187 moles) of Terathane 650 polyether glycol having a average $M_n = 650$ (Aldrich 25190-06-1, 48.56 g
(0.3620 moles) of 2,2-bis(hydroxymethyl) propionic acid (DMPA), 22.69 g of 90.2518 moles) of 1,4-butane diol, 350 g of ethyl acetate (EA), and 0.85 g of dibutyl tin dilaurate. The temperature was adjusted to 65°C, and when a homogeneous solution was obtained, 162.82 g (0.7523 moles) of isophorone diisocyanate (IPDI) was slowly added, followed by 10 mL EA. The temperature was raised to 78°C and maintained overnight to complete the reaction. The reaction mixture was diluted with 65 g of isopropanol (IPA) before being neutralized with a mixture of 45.13 g of 45 wt.% KOH solution and 45 g of distilled water to achieve 100 % stoichiometric ionization based on the amount of DMPA. Under high shear, 918 g of distilled water was added and EA and IPA were subsequently removed by heating under vacuum. The resultant aqueous dispersion was filtered and resulted in a solid concentration of 26.53% and a pH value of 6.3. The molecular weight of the dispersion is $M_w = 46000$ and $M_n = 11200$; and the acid number AN = 65. The PU dispersion is designated as PU-1.

Typical reaction conditions outlined above were used to prepare other polyurethane dispersions by varying the types and amount of Y1 and Y2 and the percent acid containing monomer. The PU dispersions prepared in accordance with the present invention all have a final solid concentration of 25 to 35%. All were stable and were easy to filter. These dispersions are considered to be easily manufacturable.
Table 1

<table>
<thead>
<tr>
<th>ID</th>
<th>Y1 diol</th>
<th>wt%</th>
<th>Y2 diol</th>
<th>wt%</th>
<th>AN</th>
<th>Mw/Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU-1</td>
<td>Terathane 650</td>
<td>24.8</td>
<td>1,4 BD</td>
<td>7.3</td>
<td>65</td>
<td>46000/11200</td>
</tr>
<tr>
<td>PU-2</td>
<td>Terathane 2000</td>
<td>30.1</td>
<td>1,4 BD</td>
<td>7.3</td>
<td>65</td>
<td>42700/10500</td>
</tr>
<tr>
<td>PU-3</td>
<td>Terathane 1000</td>
<td>27.1</td>
<td>1,4 BD</td>
<td>7.3</td>
<td>65</td>
<td>39200/10800</td>
</tr>
<tr>
<td>PU-4</td>
<td>Terathane 2000</td>
<td>42.8</td>
<td>1,4 BD</td>
<td>3.2</td>
<td>65</td>
<td>57500/13100</td>
</tr>
<tr>
<td>PU-5</td>
<td>Terathane 2000</td>
<td>20.2</td>
<td>1,4 BD</td>
<td>10.4</td>
<td>65</td>
<td>35300/10400</td>
</tr>
<tr>
<td>PU-6</td>
<td>Terathane 2000</td>
<td>38.9</td>
<td>1,4 BD</td>
<td>7.2</td>
<td>50</td>
<td>49600/13600</td>
</tr>
<tr>
<td>PU-7</td>
<td>Terathane 2000</td>
<td>21.4</td>
<td>1,4 BD</td>
<td>7.3</td>
<td>80</td>
<td>33800/8680</td>
</tr>
<tr>
<td>PU-8</td>
<td>Terathane 2000</td>
<td>10.5</td>
<td>1,4 BD</td>
<td>7.2</td>
<td>100</td>
<td>44600/10200</td>
</tr>
<tr>
<td>PU-9</td>
<td>Terathane 2000</td>
<td>50.7</td>
<td>1,4 BD</td>
<td>3.4</td>
<td>50</td>
<td>65900/16800</td>
</tr>
<tr>
<td>PU-10</td>
<td>Terathane 2000</td>
<td>29.6</td>
<td>1,4 BD</td>
<td>10.1</td>
<td>50</td>
<td>42600/12500</td>
</tr>
<tr>
<td>PU-11</td>
<td>Terathane 2000</td>
<td>33.6</td>
<td>1,4 BD</td>
<td>3.3</td>
<td>80</td>
<td>42100/11100</td>
</tr>
<tr>
<td>PU-12</td>
<td>Terathane 2000</td>
<td>12.6</td>
<td>1,4 BD</td>
<td>10.1</td>
<td>80</td>
<td>23500/7940</td>
</tr>
<tr>
<td>PU-13</td>
<td>Terathane 2000</td>
<td>26.6</td>
<td>1,3 PD (1)</td>
<td>7.4</td>
<td>65</td>
<td>49700/12200</td>
</tr>
<tr>
<td>PU-14</td>
<td>Terathane 2000</td>
<td>32.3</td>
<td>1,5 PD (2)</td>
<td>7.3</td>
<td>65</td>
<td>51300/12000</td>
</tr>
<tr>
<td>PU-15</td>
<td>Terathane 2000</td>
<td>33.6</td>
<td>1,6 HD (3)</td>
<td>7.4</td>
<td>65</td>
<td>59200/12200</td>
</tr>
<tr>
<td>PU-16</td>
<td>Terathane 2000</td>
<td>36.3</td>
<td>CHDM (4)</td>
<td>7.2</td>
<td>65</td>
<td>54300/13100</td>
</tr>
<tr>
<td>PU-17</td>
<td>PC diol 2000 (5)</td>
<td>29.7</td>
<td>1,4 BD</td>
<td>7.3</td>
<td>65</td>
<td>29200/8920</td>
</tr>
<tr>
<td>PU-18</td>
<td>PC diol 860 (6)</td>
<td>26.5</td>
<td>1,4 BD</td>
<td>7.3</td>
<td>65</td>
<td>33000/8580</td>
</tr>
<tr>
<td>PU-19</td>
<td>Terathane 2000 (7)</td>
<td>30.1</td>
<td>1,4 BD</td>
<td>7.3</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

(1) 1,3 propane diol
(2) 1,5-pentane diol
(3) 1,6 hexane diol
(4) Cyclohexane dimethanol
(5) Polycarbonate diol with an average Mn=2000
(6) Polycarbonate diol with an average Mn=860
(7) Neutralized with dimethyl ethanol amine (DMEA)
Example 2
Synthesis of the Comparative Polyurethanes CPU-1 through CPU-9

CPU-1 through CPU-6 were prepared in a similar manner to the inventive examples. CPU-1 through CPU-4 do not contain any Y2 diol and are stable dispersions. CPU-5 and CPU-6 contained 13% of 1,4 butane diol and the resultant dispersions were less stable as reflected by filter plugging or excessive amount of foam formed during solvent removing under vacuum. CPU-5 and CPU-6 are considered to be non-manufacturable.

CPU-7 was prepared in accordance with the recipe disclosed in US Patent No. 6,508,548. CPU-8 was prepared in accordance with the recipe disclosed in US Patent No. 6,533,408 (PU-2). CPU-9 was prepared in accordance with the recipe disclosed in US Patent No. 6,533,408 (PU-3). All three dispersions had to be diluted very significantly to lower solids for filtration. They are considered to be less manufacturable.

Table 2

<table>
<thead>
<tr>
<th>ID</th>
<th>Y1 diol</th>
<th>Wt%</th>
<th>Y2 diol</th>
<th>Wt%</th>
<th>AN</th>
<th>Mw/Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU-1</td>
<td>Terathane 2000</td>
<td>44.1</td>
<td>None</td>
<td>-</td>
<td>80</td>
<td>64800/13900</td>
</tr>
<tr>
<td>CPU-2</td>
<td>Terathane 2000</td>
<td>52.7</td>
<td>None</td>
<td>-</td>
<td>65</td>
<td>56900/13400</td>
</tr>
<tr>
<td>CPU-3</td>
<td>Terathane 2000</td>
<td>61.4</td>
<td>None</td>
<td>-</td>
<td>50</td>
<td>126000/22000</td>
</tr>
<tr>
<td>CPU-4</td>
<td>PC diol 2000</td>
<td>70.8</td>
<td>None</td>
<td>-</td>
<td>35</td>
<td>23700/7610</td>
</tr>
<tr>
<td>CPU-5</td>
<td>Terathane 2000</td>
<td>4.6</td>
<td>1,4-BD</td>
<td>13</td>
<td>80</td>
<td>26400/8450</td>
</tr>
<tr>
<td>CPU-6</td>
<td>Terathane 2000</td>
<td>19.8</td>
<td>1,4-BD</td>
<td>13.4</td>
<td>50</td>
<td>32000/9700</td>
</tr>
<tr>
<td>CPU-7</td>
<td>PC diol 860</td>
<td>32.9</td>
<td>1,4-BD</td>
<td>9.5</td>
<td>19</td>
<td>52500/12500</td>
</tr>
<tr>
<td>CPU-8</td>
<td>Tone 0260 (1)</td>
<td>25.5</td>
<td>1,4-BD</td>
<td>13</td>
<td>21</td>
<td>28300/9970</td>
</tr>
<tr>
<td>CPU-9</td>
<td>PC diol 860</td>
<td>24.9</td>
<td>1,4-BD</td>
<td>12</td>
<td>19</td>
<td>42900/12800</td>
</tr>
</tbody>
</table>

(1) Tone 0260 polyester diol MW 3,000
Example 3

Preparation of Polymeric Dispersant P-l

A 5-liter, three-necked round bottom flask equipped with a mechanical stirrer, a reflux condenser, and a gas inlet was charged with 225 g of l-methoxy-2-propanol and was sparged with nitrogen. Akzo-Nobel Chemicals, Inc., initiator Perkadox AMBN-GR (1.9 g) was added with stirring. A reactant reservoir was charged with 225 g of l-methoxy-2-propanol, 23.4 g of 1-dodecanethiol, 203.5 g of benzyl methacrylate, 165.0 g of stearyl methacrylate, and 181.5 g of methacrylic acid, and the solution was degassed by nitrogen sparging. AMBN-GR (7.7 g) was added and mixed in. The reactor temperature was raised to 77 °C and the reactants were pumped from the reservoir at 2.3 mL/min over a 360-min period. The reaction mixture was stirred for at least 12 h at 77 °C. The polymer was neutralized to completion with dimethylaminoethanol and stirred for 45 min. The reaction mixture was diluted with 2,580 g of water and filtered through a Pall Corp. Ultipleat polypropylene cartridge filter. The final polymer solution had a concentration of ca. 20 wt. % solids and its pH was 8.6. The weight average molecular weight was 9,070 Daltons.

Preparation of pigment black NIPEX 180 dispersion PB-1

To a 2.5-gallon, 9-inch diameter and 12-inch deep, double-walled stainless steel mixing vessel containing four baffles is added water (1,273 g) and a solution of the Polymeric Dispersant P-l (727 g of a 20.6 wt % solution). A nominal 4-inch, ring-style disperser impeller (Hockmeyer Equipment Corp. D-Blade) driven by a Charles Ross & Son Co. Model HSM-100LH-2 High Shear Mixer is centered 2 inches above the bottom of the mixing vessel, and stirring is initiated. Degussa GmbH. NIPEX 180 IQ carbon black pigment (500 g) is slowly integrated into the fluid. Milling media comprising beads of polystyrene resin (copolymer of styrene and divinylbenzene/ethylvinylbenzene mixture) with an average particle diameter of 50 micrometers (3,000 g) is added slowly while increasing impeller speed. The mixture is milled with an impeller blade tip speed
of ca. 19 m/sec for 20 h at an internal temperature of 25 - 35 °C. Samples are periodically removed, diluted and filtered for particle size determination by a Microtrac, Inc., NANOTRAC 150 dynamic light scattering analyzer. When milling is complete, the dispersion/media milling mixture is further diluted with a solution of water (2,475 g) and Rohm and Haas Co. KORDEK MLX preservative (25 g) to a final pigment concentration of 10% and theoretical dispersion batch size of 5000 g. The impeller is removed from the dispersion/media milling mixture, and a vacuum separator filter probe is immersed. The filter probe comprised a 0.25-inch ID TYGON plastic tubing connected to a sealed 2-inch length of 1.25-inch OD tubular, 38-micrometer screen (Johnson Screens, Inc.). A peristaltic pump is used to separate the dispersion from the milling media and it is subsequently filtered through a 0.3-micrometer removal efficiency Pall Corp. PROFILE II depth filter. Roughly 4 kg of dispersion is recovered, approximately 80% yield. The volume-weighted 50th percentile particle size distribution diameter is 62 nm, and the 95th percentile particle size distribution diameter is 110 nm.

Inventive Ink-PU-1 through Ink-PU-19

Preparation Inventive Ink-PU-1

Inventive Ink-PU-1 was prepared according to the following ink formulation in Table 3 using PB-1

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigment black Nipex 180 using PB-1</td>
<td>4.5</td>
</tr>
<tr>
<td>Glycerol</td>
<td>5</td>
</tr>
<tr>
<td>Methyl diethanolamine</td>
<td>0.6</td>
</tr>
<tr>
<td>Cobratec TT-50S</td>
<td>0.1</td>
</tr>
<tr>
<td>Proxel GXL</td>
<td>0.1</td>
</tr>
<tr>
<td>PU-1 (Table 1)</td>
<td>9</td>
</tr>
<tr>
<td>DI water</td>
<td>Balance to 100%</td>
</tr>
</tbody>
</table>

Table 3
Inventive Ink-PU-2 through Ink-PU-19 were prepared in a similar manner to Ink-PU-1 except using PU-2 through PU-19 in Table 1.

Comparative Ink-PU-0 and Ink-CPU-1 through Ink-CPU-3

Comparative Ink-CPU-1 through CPU-3 were prepared in a similar manner to Ink-PU-1 except using CPU-1 through CPU-3 in Table 2.

Comparative Ink-PU-0 was prepared in a similar manner to Ink-PU-1 except without PU dispersion.

Evaluation of Ink Performance

Ink viscosity was measured using Paar Physica AMVn Rolling Ball Viscometer at 25 °C. The result is shown in Table 4. Optical printing density was evaluated using the drawdown method. 16.35 mL/m² of inks were applied to a paper surface using #6 wire rod. The ink on the paper substrate was air dried. The optical density was measured using Greytag Macbeth Spectroscan. The results of the measurement are shown in Table 4.

<table>
<thead>
<tr>
<th>Ink</th>
<th>Viscosity (mPa.s)</th>
<th>Optical Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventive Ink PU-1</td>
<td>2.64</td>
<td>1.40</td>
</tr>
<tr>
<td>Inventive Ink PU-2</td>
<td>2.83</td>
<td>1.35</td>
</tr>
<tr>
<td>Inventive Ink PU-3</td>
<td>2.65</td>
<td>1.38</td>
</tr>
<tr>
<td>Inventive Ink PU-4</td>
<td>3.74</td>
<td>1.38</td>
</tr>
<tr>
<td>Inventive Ink PU-5</td>
<td>2.74</td>
<td>1.41</td>
</tr>
<tr>
<td>Inventive Ink PU-6</td>
<td>2.94</td>
<td>1.40</td>
</tr>
<tr>
<td>Inventive Ink PU-7</td>
<td>2.96</td>
<td>1.34</td>
</tr>
<tr>
<td>Inventive Ink PU-8</td>
<td>3.17</td>
<td>1.36</td>
</tr>
<tr>
<td>Inventive Ink PU-9</td>
<td>3.32</td>
<td>1.25</td>
</tr>
<tr>
<td>Inventive Ink PU-10</td>
<td>2.82</td>
<td>1.44</td>
</tr>
<tr>
<td>Inventive Ink PU-11</td>
<td>3.27</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Inventive Ink PU-12</td>
<td>1.96</td>
<td>1.03</td>
</tr>
<tr>
<td>Inventive Ink PU-13</td>
<td>3.34</td>
<td>1.40</td>
</tr>
<tr>
<td>Inventive Ink PU-14</td>
<td>3.24</td>
<td>1.37</td>
</tr>
<tr>
<td>Inventive Ink PU-15</td>
<td>3.71</td>
<td>1.42</td>
</tr>
<tr>
<td>Inventive Ink PU-16</td>
<td>3.39</td>
<td>1.40</td>
</tr>
<tr>
<td>Inventive Ink PU-17</td>
<td>2.71</td>
<td>1.39</td>
</tr>
<tr>
<td>Inventive Ink PU-18</td>
<td>2.72</td>
<td>1.37</td>
</tr>
<tr>
<td>Inventive Ink PU-19</td>
<td>3.60</td>
<td>1.33</td>
</tr>
<tr>
<td>Comparative Ink CPU-1</td>
<td>7.65</td>
<td>1.36</td>
</tr>
<tr>
<td>Comparative Ink CPU-2</td>
<td>4.27</td>
<td>1.19</td>
</tr>
<tr>
<td>Comparative Ink CPU-3</td>
<td>4.88</td>
<td>1.35</td>
</tr>
<tr>
<td>Comparative Ink-PU-0</td>
<td>1.43</td>
<td>1.05</td>
</tr>
</tbody>
</table>

The inventive inks containing aqueous polyurethane dispersions in accordance to the present invention had low ink viscosity (less than 4 mPa.s). The printed papers showed high optical density. Comparative Ink CPU-1 through Ink CPU-3 contained aqueous polyurethane dispersions which have no Y2 hard segment diols. These inks showed a significant increase in the viscosity. The Comparative Ink PU-0 contained no aqueous polyurethane dispersion. The printed paper showed very low optical density.

Example 4

Inventive Ink-PU-50

Ink-PU-50 was prepared using PB-1 and PU-6 having an acid number of 50 according to formulation in Table 5.
Table 5

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigment black Nipex 180 using PB-1</td>
<td>4.5</td>
</tr>
<tr>
<td>Glycerol</td>
<td>4.5</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>2.5</td>
</tr>
<tr>
<td>Cobratec TT-50S</td>
<td>0.1</td>
</tr>
<tr>
<td>Proxel GXL</td>
<td>0.1</td>
</tr>
<tr>
<td>Surlynol 440</td>
<td>0.06</td>
</tr>
<tr>
<td>PU-6 (Table 1)</td>
<td>7.5</td>
</tr>
<tr>
<td>Surlynol DF-110</td>
<td>0.08</td>
</tr>
<tr>
<td>DI water</td>
<td>Balance to 100%</td>
</tr>
</tbody>
</table>

Ink-PU-65, Ink-PU-80, and Ink-PU-100 were prepared in a similar manner to Ink-PU-50 except using PU-2, PU-7 and PU-8 in Table 1. PU-2 has an acid number of 65. PU-7 has an acid number of 80, and PU-8 has an acid number of 100.

Ink-CPU-19 and Ink-CPU-35 were prepared in a similar manner to Ink-PU-50 except using CPU-9 and CPU-4 in Table 2. CPU-4 has no Y2 hard segment diol and an acid number of 35, and CPU-9 has an acid number of 19.

Evaluation: Recirculation of the inks

125 mL of the above ink prepared were run through a system capable of in-line monitoring of the destabilization of the ink. This system comprised a small reservoir to contain the ink sample, a gear pump, and a filter holder, all connected in a recirculation loop. Reservoir volume was 125 mL. The gear pump used was a Micropump Model 180. The filter used was a 1.2 µm pore size Versapor disk filter. The recirculation flow rate was 1 L/min with a pressure approximately 45 to 50 psi at the start. The initial difference in the pressure is primarily caused by differences in ink viscosity. To simulate a continuous printing process, it is desirable to have ink keep recirculating through the gear pump with minimal change in the recirculation pressure. The testing results are shown in Table 6.
Table 6

<table>
<thead>
<tr>
<th>Example</th>
<th>Recirculation Time (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ink-PU-50</td>
<td>45 psi</td>
</tr>
<tr>
<td></td>
<td>change %</td>
</tr>
<tr>
<td>Ink-PU-65</td>
<td>48 psi</td>
</tr>
<tr>
<td></td>
<td>change %</td>
</tr>
<tr>
<td>Ink-PU-80</td>
<td>51.7 psi</td>
</tr>
<tr>
<td></td>
<td>change %</td>
</tr>
<tr>
<td>Ink-PU-100</td>
<td>49 psi</td>
</tr>
<tr>
<td></td>
<td>change %</td>
</tr>
<tr>
<td>Ink-CPU-35</td>
<td>49.4 psi</td>
</tr>
<tr>
<td></td>
<td>change %</td>
</tr>
<tr>
<td>Ink-CPU-19</td>
<td>Failed immediately</td>
</tr>
</tbody>
</table>

Ink-CPU-19 using CPU-9 was prepared in accordance with the recipe disclosed in US Patent No. 6,533,408 (PU-3). The ink failed the recirculation test immediately. Ink-CPU-35 was prepared with CPU-4 dispersion having no Y2 diol segment and an acid number of 35. It showed a significant increase in recirculation pressure. On the other hand, minimal recirculation pressure change was observed for inks prepared with PU dispersions in accordance with the present invention.
CLAIMS:

1. A printing system for applying a printing fluid to a substrate, comprising a printing fluid applicator and a recirculating printing fluid supply supplying printing fluid to the applicator, wherein the printing fluid comprises water and a water dispersible polyurethane additive of the general formula of (I):

\[
\begin{array}{c}
\text{O} \\
\text{C} \quad \text{NH} \quad \text{Z} \quad \text{NH} \quad \text{C} \\
\end{array}
\]

\[
\begin{array}{c}
\text{X}^1 \quad \text{Y}^1 \quad \text{X}^1 \\
\text{V} \quad \text{W} \quad \text{V} \\
\text{X}^2 \quad \text{Y}^2 \quad \text{X}^2
\end{array}
\]

wherein Z is the central portion of a monomer unit that is the polymerization product of a diisocyanate; \(X^1\)-\(Y^1\)-\(X^1\) represents one or more soft segments wherein \(Y^1\) represents the central portion of a unit that is the polymerization product of a diamine or diol prepolymer having a molecular weight of greater than 300 Daltons; W is the central portion of one or more units containing an acid group; \(X^2\)-\(Y^2\)-\(X^2\) represents one or more hard segments wherein \(Y^2\) represents the central portion of a unit that is the polymerization product of a C_2-C_8 diol or diamine having a molecular weight of less than 250 Daltons; and \(X^1\), \(V\) and \(X^2\) can be the same or different and are an -O- or -N- atom; and further wherein the polyurethane additive has a weight average molecular weight of at least 6,000 Daltons and a sufficient number of acid groups to provide an acid number greater than 35, and the one or more \(X^2\)-\(Y^2\)-\(X^2\) hard segments are present at from 1 wt% to less than 13 wt% of the polyurethane additive.

2. The printing system of claim 1, wherein the printing fluid further comprises a humectant.
3. The printing system of claim 1, wherein the printing fluid further comprises a colorant.

4. The printing system of claim 3, wherein the colorant comprises dispersed pigment particles.

5. The printing system of claim 4, wherein the pigment particles are dispersed with a polymeric dispersant.

6. The printing system of claim 4, wherein the pigment particles are dispersed with a surfactant.

7. The printing system of claim 4, wherein the pigment particles are self dispersed without the need for a separate dispersant.

8. The printing system of claim 4, wherein the pigment particles are present in the printing fluid at a weight concentration of from 1 to 10 wt%, the polyurethane additive has an acid number of from 40 to 100, and the polyurethane additive is present at a weight concentration greater than that of the pigment.

9. The printing system of claim 8, wherein the printing fluid further comprises at most 10 wt % of humectants and wherein the polyurethane additive has an acid number of from 50 to 95.

10. The printing system of claim 1, wherein the soft segment comprises a polycarbonate, polyester, or polyether prepolymer.

11. The printing system of claim 1 wherein the soft segment has a weight average molecular weight between 400 and 20,000 daltons.
12. The printing system of claim 1, wherein the hard segment is present at between 5 to 11% by weight of the total polyurethane polymer.

13. The printing system of claim 1, wherein the \(\text{X}^2-\text{Y}^2-\text{X}^2 \) hard segment comprises the polymerization product of a \(\text{C}_2-\text{C}_8 \) diol.

14. The printing system of claim 1, wherein the \(\text{X}^2-\text{Y}^2-\text{X}^2 \) hard segment comprises the polymerization product of 1,4-butanediol.

15. The printing system of claim 1, wherein the acid groups on the polyurethane are at least partially neutralized using a monovalent inorganic base.

16. The printing system of claim 1, wherein the printing fluid applicator comprises a printhead of a continuous inkjet printer, and the recirculating printing fluid supply continuously delivers the printing fluid from a main fluid supply through the printhead to form a continuous stream of the printing fluid which is broken into spaced droplets comprising printing droplets and nonprinting droplets, and the nonprinting droplets are collected and returned to the main fluid supply.

17. A method of continuous inkjet printing comprising:
A) providing a main fluid supply of a continuous inkjet printer with an aqueous ink composition comprising water, a dispersed pigment colorant and a water dispersible polyurethane additive of the general formula of (I)
wherein Z is the central portion of a monomer unit that is the polymerization product of a diisocyanate; \(X^1-Y^1-X^1 \) represents one or more soft segments wherein \(Y^1 \) represents the central portion of a unit that is the polymerization product of a diamine or diol prepolymer having a molecular weight of greater than 300 Daltons; \(W \) is the central portion of one or more units containing an acid group; \(X^2-Y^2-X^2 \) represents one or more hard segments wherein \(Y^2 \) represents the central portion of a unit that is the polymerization product of a \(\text{C}_2-\text{C}_8 \) diol or diamine having a molecular weight of less than 250 Daltons; and \(X^1, V \) and \(X^2 \) can be the same or different and are an -O- or -N- atom; and further wherein the polyurethane additive has a weight average molecular weight of at least 6,000 Daltons and a sufficient number of acid groups to provide an acid number greater than 35, and the one or more \(X^2-Y^2-X^2 \) hard segments are present at from 1 wt% to less than 13 wt% of the polyurethane additive;

B) delivering the ink composition from the main fluid supply to a printhead and ejecting a continuous stream of the ink composition from the printhead which continuous stream is broken into spaced droplets; and

C) in response to electrical signals received from a control mechanism, controlling the spaced droplets to select between printing droplets for marking a substrate and nonprinting droplets that are collected and returned to the main fluid supply.

18. A method of continuous inkjet printing according to claim 17, wherein polyurethane additive has a weight average molecular weight of from 25,000 to 150,000 Daltons and a sufficient number of acid groups to provide an
acid number of from 40 to 100, and the one or more X^δ-Y^δ-X^δ hard segments are present at from 5 wt% to 11 wt% of the polyurethane additive.

19. A method of continuous inkjet printing according to claim 17, wherein the ink composition is pumped from the main fluid supply to the printhead through a positive displacement pump.

20. A method of continuous inkjet printing according to claim 19, wherein the positive displacement pump is a gear pump.