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FEC-BASED RELIABILITY CONTROL PROTOCOLS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from co-pending U.S. Provisional Patent Application No.
60/509,976 filed October 8, 2003 entitled FEC-BASED RELIABILITY CONTROL
PROTOCOLS which is hereby incorporated by reference, as if set forth in full in this

document, for all purposes.

BACKGROUND

The present invention relates to the problem of rapid transmission of data

between end systems over a data communication network.

Many data communication systems and high level data communication
protocols offer the convenient communication abstractions of reliable data transport, and
provide rate control, i.e., they automatically adjust their packet transmission rate based on
network conditions. Their traditional underlying implementations in terms of lower level
packetized data transports, such as the ubiquitous Transport Control Protocol (TCP), suffer
when at least one of the following conditions occurs: (a) the connection between the sender(s)
and the receiver(s) has a large round-trip time (RTT); (b) the amount of data is large and the
network suffers from bursty and transient losses.

One of the most widely used reliable transport protocols in use today is the
Transport Control Protocol (TCP). TCP is a point-to-point packet control scheme in common
use that has an acknowledgment mechanism. TCP works well for one-to-one reliable
communications when there is little loss between the sender and the recipient and the RTT
between the sender and the recipient is small. However, the throughput of the TCP drops
drastically when there is even very little loss, or when the sender and the recipient are far
apart.

Using TCP, a sender transmits ordered packets and the recipient acknowledges
receipt of each packet. If a packet is lost, no acknowledgment will be sent to the sender and
the sender will resend the packet. With protocols such as TCP, the acknowledgment
paradigm allows packets to be lost without total failure, since lost packets can just be
retransmitted, either in response to a lack of acknowledgment or in response to an explicit

request from the recipient.
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TCP provides both reliability control and rate control, i.e., it ensures that all of
the original data is delivered to receivers and it automatically adjusts the packet transmission
rate based on network conditions such as congestion and packet loss. With TCP, the
reliability control protocol and the rate control protocol are intertwined and not separable.
Moreover, TCP’s throughput performance as a function of increasing RTT and packet loss is
far from optimal.

Studies by many researchers have shown that, when using TCP, the
throughput of the data transfer is inversely proportional to the product of the RTT, and the
square root of the inverse of the loss rate on the end-to-end connection. For example, a
typical end-to-end terrestrial connection between the U.S. and Europe has an RTT of 200
milliseconds and an average packet loss of 2%. Under these conditions, the throughput of a
TCP connection is at most around 300-400 Kilobits per second (kbps), no matter how much
bandwidth is available end-to-end. The situation is more severe on a satellite link, where in
addition to high RTTs, information is lost due to various atmospheric effects. A primary
reason for TCP’s poor performance in these types of conditions is that the rate control
protocol used by TCP does not work well in these conditions, and since the reliability control
protocol and rate control protocol used by TCP are inseparable, this implies that the overall
TCP protocol does not work well in these conditions. Furthermore, the requirements of
different applications for transport vary, yet TCP is used fairly universally for a variety of
applications in all network conditions, thus leading to poor performance in many situations.

What would be desirable is if the reliability control and rate control protocols
used by the overall transport protocol were independent, and then the same reliability control
protocol could be used with a variety of different rate control protocols so the actual rate
control protocol chosen can be based on application requirements and the network conditions

in which the application is run. The paper “A Modular Analysis of Network Transmission

| Protocols”, Micah Adler, Yair Bartal, John Byers, Michael Luby, Danny Raz, Proceedings of

the Fifth Israeli Symposium on Theory of Computing and Systems, June 1997 (hereinafter
referred to as “Adler” and incorporated by reference herein), introduces a modular approach
to building transport protocols that advocates partitioning a reliable transport protocol into
independent reliability control and rate control protocols.

For any reliability control protocol, two primary measures of its performance
are how much buffering is required and what is its “goodput.” Buffering is introduced in a
reliability control protocol at both the sender and receiver. Buffering at the sender occurs, for

example, when data is buffered after it is initially sent until the sender has an
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acknowledgement that it has been received at the receiver. Buffering at the receiver occurs
for similar reasons. Buffering is of interest for two reasons: (1) it directly impacts how much
memory the sender and receiver reliability control protocol uses; (2) it directly impacts how
much latency the sender and receiver reliability control protocol introduces. Goodput is
defined as the size of the data to be transferred divided by the amount of sent data that is
received at the recetver end system during the transfer. For example, goodput = 1.0 if the
amount of data sent in packets to transfer the original data is the size of the original data, and
goodput = 1.0 can be achieved if no redundant data is ever transmitted.

Adler outlines a reliability control protocol that is largely independent of the
rate control protocol used, which is hereafter referred to as the “No-code reliability control
protocol”. The No-code reliability control protocol is in some ways similar to the reliability
control protocol embedded in TCP, in the sense that the original data is partitioned into
blocks and each block is sent in the payload of a packet, and then an exact copy of each block
needs to be received to ensure a reliable transfer. An issue with the No-code reliability
control protocol is that, although the goodput is optimal (essentially equal to one), the
buffering that the No-code reliability control protocol introduces can be substantial when
there is packet loss. Adler proves that the No-code reliability control protocol is within a
constant factor of optimal among reliability control protocols that do not use coding to
transport the data, in the sense that the protocol has optimal goodput and provably is within a
constant factor of optimal in terms of minimizing the amount of buffering needed at the
sender and receiver.

One solution that has been used in reliability control protocols is Forward
Error-Correction (FEC) codes, such as Reed-Solomon codes or Tornado codes, or chain
reaction codes (which are information additive codes.) Using FEC codes, the original data is
partitioned into blocks larger than the payload of a packet and then encoding units are
generated from these blocks and send the encoding units in packets. One basic advantage of
this approach versus reliability control protocols that do not use coding is that the feedback
can be much simpler and less frequent, i.e., for each block the receiver need only indicate to
the sender the quantity of encoding units received instead of a list of exactly which encoding
units are received. Furthermore, the ability to generate and send more encoding units in
aggregate than the length of the original data block is a powerful tool in the design of
reliability control protocols.

Erasure correcting codes, such as Reed-Solomon or Tornado codes, generate a

fixed number of encoding units for a fixed length block. For example, for a block comprising
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B input units, N encoding units might be generated. These N encoding units may comprise
the B original input units and N-B redundant units. If storage permits, then the sender can
compute the set of encoding units for each block only once and transmit the encoding units
using a carousel protocol.

One problem with some FEC codes is that they require excessive computing
power or memory to operate. Another problem is that the number of encoding units needed
must be determined in advance of the coding process. This can lead to inefficiencies if the
loss rate of packets is overestimated, and can lead to failure if the loss rate of packets is
underestimated.

For traditional FEC codes, the number of possible encoding units that can be
generated is of the same order of magnitude as the number of input units a block is
partitioned into. Typically, but not exclusively, most or all of these encoding units are
generated in a preprocessing step before the sending step. These encoding units have the
property that all the input units can be regenerated from any subset of the encoding units
equal in length to the original block or slightly longer in length than the original block.

Chain reaction decoding described in U.S. Patent No. 6,307,487 (hereinafter
“Luby I and incorporated by reference herein) can provide a form of forward error-
correction that addresses the above issues. For chain reaction codes, the pool of possible
encoding units that can be generated is orders of magnitude larger than the number of the
input units, and a randomly or pseudo randomly selected encoding unit from the pool of
possibilities can be generated very quickly. For chain reaction codes, the encoding units can
be generated on the fly on an “as needed” basis concurrent with the sending step. Chain
reaction codes allow that all input units of the content can be regenerated from a subset of a
set of randomly or pseudo randomly generated encoding units slightly longer in length than
the original content.

Other documents such as U.S. Patent Nos. 6,320,520, 6,373,406, 6,614,366,
6,411,223, 6,486,803, and U.S. Patent Publication No. 20030058958 (hereafter referred to as
“Shokrollahi I"’), describe various chain reaction coding schemes and are incorporated herein
by reference.

A sender using chain reaction codes can continuously generate encoding units
for each block being sent. The encoding units may be transmitted via the User Datagram
Protocol (UDP) Unicast, or if applicable UDP Multicast, to the recipients. Each recipient is
assumed to be equipped with a decoding unit, which decodes an appropriate number of

encoding units received in packets to obtain the original blocks.
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One of the several transports available in the Transporter Fountain™ network
device available from Digital Fountain is a reliable transport protocol that uses a simple FEC-
based reliability control protocol that can be combined with a variety of rate control
protocols. This simple FEC-based reliability control protocol is hereinafter referred to as the
“TF reliability control protocol”. The TF reliability control protocol transmits encoding units
for a given block of data until receiving an acknowledgement from the receiver that enough
encoding units have been received to recover the block, and then the sender moves on to the
next block.

Let RTT be the number of seconds it would take from when the sender sends a
packet until the sender has received an acknowledgement from the receiver that the packet
has arrived, and let R be the current sending rate of the sender in units of packets/second, and
let B be the size of a block in units of packets. Using the TF reliability control protocol, the
number of useless packets containing encoding units for a block sent subsequent to the last
packet needed to recover the block is N =R*RTT. Thus, a fraction f= N/(B+N) of the
packets sent are wasted, and thus the goodput is at most 1-f. For example, if R = 1,000
packets/second, RTT = 1 second, and B = 3,000 packets, then f=0.25, i.e., 25% of the
received packets are wasted. Thus, the goodput in this example is a meager 0.75 (compared
to a maximum possible goodput of 1.0).

Note also in this example that the size of a block B together with the rate R
implies that the latency introduced by the simple FEC-based reliability control protocol is at
least 4 seconds (each block is transmitted for 4 seconds total), and requires buffering at least
one block, i.e., 3,000 packets of data. Furthermore, to increase the goodput requires
increasing the buffering, or conversely to decrease the buffering requires decreasing the
goodput.

In view of the above, improvements in reliability control are desirable.

SUMMARY OF THE INVENTION

In a transport system according to embodiments of the present invention, data is reliably

transported from a sender to a receiver by organizing the data to be transported into data
blocks, wherein each data block comprises a plurality of encoding units, transmitting
encoding units of a first data block from the sender to the receiver, and detecting, at the
sender, acknowledgments of receipt of encoding units by the receiver. At the sender, a
probability that the receiver received sufficient encoding units of the first data block to

recover the first data block at the receiver is detected and the probability is tested against a
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threshold probability to determine whether a predetermined test is met. Following the step of
testing and prior to the sender receiving confirmation of recovery of the first data block at the
receiver, when the predetermined test is met, transmitting encoding units of a second data
block from the sender. If an indication of failure to recover the first data block is received at
the sender, sending further encoding units for the first data block from the sender to the
receiver. In some embodiments, the predetermined test is a comparison of the probability
against the threshold probability and the predetermined test is met when the probability is
greater than the threshold probability.

DESCRIPTION OF THE FIGURES

Fig. 1 is a block diagram of an embodiment of a network, sender end systems

and receiver end systems that might use the teachings of the present invention.

Fig. 2 is an illustration of a modular reliable transport protocol architecture
and related system for operating using such protocol.

Fig. 3 is an illustrative of a sender FEC-based reliability control protocol
architecture and related system for operating using such protocol.

Fig. 4 is an illustrative of a receiver FEC-based reliability control protocol
architecture and related system for operating using such protocol.

Fig. 5 shows one possible set of formats that could be used by a system
implementing a TF reliability control protocol.

Fig. 6 is a block diagram of logic of a system implementing a sender TF
reliability control protocol.

Fig. 7 is a block diagram of logic of a system implementing a receiver TF
reliability control protocol.

Fig. 8 is an illustration of active blocks.

Fig. 9 is illustration of a possible set of formats that could be used by an
interleaved reliability control protocol.

Fig. 10 is an illustrative embodiment of the logic of a system implementing a
basic sender interleaved reliability control protocol.

Fig. 11 is an illustrative embodiment of the logic of a system implementing a

basic receiver interleaved reliability control protocol.
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DETAILED DESCRIPTION OF THE INVENTION

In embodiments of the present invention, interleaved reliability control
protocols are used to provide improvements over TCP, the TF reliability control protocol and
the No-code reliability control protocol. With a reliability control protocol, blocks of data are
sent as a series of encoding units from a sender to a receiver and the receiver acknowledges
recovery of the encoding units or the blocks, thereby allowing the sender to determine
whether the receiver received the data and if not received, retransmit the data, or transmit
other data usable to recover the received data. One property of some interleaved reliability
control protocols is that encoding units for different blocks are sent in an interleaved fashion.
Interleaved reliability control protocols have a property that, when combined with virtually
any rate control protocol, they provide an efficient reliable data transport that minimizes
buffering (and the consequent latency) at the end systems and maximizes the goodput of the
transport.

Interleaved reliability control protocols can be used with an appropriate rate
control protocol to ensure reliable transfer of data while maintaining high throughput, even
when there is high loss and/or when there is a large RTT. For example, the rate control
protocol can be as simple as sending at a fixed rate, and the interleaved reliability control
protocol will guarantee that data is transferred at a rate equal to the fixed rate times the
fraction of packets that arrive successfully, while minimizing buffering and latency during
the transfer.

As an example of the quantitative improvements offered by the interleaved
reliability control protocols introduced here, suppose that the rate control protocol is to send
packets at a fixed rate of R packets per second, the round-trip time between a sender and
receiver is RTT seconds, and thus N = R*RTT is the number of unacknowledged packets in

flight. For the No-code reliability control protocol, the total buffer size at the sender is at

. least N*In(N) and the goodput is approximately 1.0, and there is no possible other trade-off

points between the needed amount of buffering and goodput. Here, In(x) is defined as the
natural logarithm of x. With the TF reliability control protocol, the total buffer size at the
sender is at least B and the goodput is approximately B/(B+N), where B is the chosen block
size in units of packets and can be chosen to trade-off required buffering against goodput. In
contrast, for interleaved reliability control protocols, the total buffer size at the sender is at
most B and the goodput is approximately N/(N+X), where X is a positive integer parameter
chosen to trade-off the required buffering against goodput, and B = N*(1+In((N/X)+1)) is the

buffer size in units of packets.
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As an example, if the rate R is 1,000 packets/second and RTT is one second,
then N = 1,000 packets. For the No-code reliability control protocol, the buffer size at the
sender is at least 7,000 packets. For the TF reliability control protocol, if B is chosen to be
4,000 packets, then the goodput is approximately 0.80. For the interleaved reliability control
protocols where X is chosen to be 50, B = 4,000 packets (the same value as for the TF
reliability control protocol) and the goodput exceeds 0.95, i.e., at most 5% of the received
packets are wasted. Thus, in this example the interleaved reliability control protocols require
far less buffering than the No-code reliability control protocol with almost the same optimal
goodput, and far exceed the goodput of the TF reliability control protocol for the same
amount of buffering, i.., at most 5% wasted transmission for the interleaved reliability
control protocols versus 25% for the TF reliability control protocol.

Virtually any rate control protocol can be used with an interleaved reliability
control protocol to provide a reliable transport protocol, e.g., send at fixed rate, use a
window-based congestion control similar to TCP, use an equation based congestion control
protocol such as TCP Friendly Rate Control (TFRC), or use virtually any other rate control
protocol.

3. Reliable Transport Protocols

In this description, a reliable transport protocol is a protocol that reliably
transfers data from a sender end system to a receiver end system over a packet based network
in such a way that all the data is transferred even when there is the possibility that some of
the sent packets are not received. Fig. 1 is an illustrative embodiment of a network 130 and
set of sender end systems 100(1), ..., 100(J) and receiver end systems 160(1), ..., 160(K) on
which a reliable transport protocol might operate. Typically, such a protocol also includes
some mechanisms for adjusting the packet sending rate, where this sending rate may depend
on a variety of factors including the application into which the protocol is built, user input
parameters, and network conditions between the sender and receiver end systems.

A reliable transport protocol, such as TCP, typically involves several steps.
These steps include ways for end systems to advertise availability of data, to initiate transfer
of data to other end systems, to communicate which data is to be transferred, and to perform
the reliable transfer of the data. There are a variety of standard ways for end systems to
advertise availability, to initiate transfer and to communicate what is to be transferred, e.g.,
session announcement protocols, session initiation protocols, etc. As these steps are well-

known, they need not be described here in great detail.
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Reliable transfer of packet data comprises deciding at each point in the
transfer what data to send in the packets and at what rate to send the packets. The decisions
made at each point in time can depend on feedback sent from the receiver end system and on
other factors. Typically, the data is presented at a sender end system as a stream of data, and
the reliable transport protocol is meant to reliably deliver this stream to the receiver end
system in the same order in which it was sent. Often it is the case that the total length of the

stream is not known before the transfer is initiated.

4. Modular Architecture of Reliable Transport Protocols

Adler describes how any reliable transport protocol can be thought of as the
combination of a reliability control protocol and a rate control protocol. The reliability
control protocol is the portion of the overall transport protocol that decides what data to place
in each packet during the transfer. The rate control protocol decides when to send each data
packet. In many transport protocols, the reliability control and rate control protocols are
inseparably intertwined in operation, i.e., this is the case for TCP. However, it is still the case
that even such an intertwined protocol can conceptually be partitioned into a reliability
control protocol and a rate control protocol.

Adler advocates the design of reliable transport protocols by designing the
reliability control protocol and the rate control protocol independently. The advantage of
such an approach is that the same reliability control protocol can be used with a variety of
rate control protocols, and thus the same reliability control protocol can be used with the rate
control protocol that is appropriate for the application and the network conditions in which
the overall reliable transport protocol is used. This modular approach to the design can be
quite advantageous, because the same reliability control protocol can be used with a diverse
set of rate control protocols in different applications and network environments, thus
avoiding a complete redesign of the entire reliable transport protocol for each application and
network environment. For example, TCP is used for a variety of applications in different
network environments, and it performs poorly for some of these applications and network
environments due to the poor throughput it achieves as determined by its rate control
protocol. Unfortunately, because the reliability control protocol and the rate control protocol
are so intertwined in the TCP architecture, it is not possible to simply use a different rate
control protocol within TCP to improve its throughput performance in those situations where

it works poorly.
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Fig. 2 is an illustration of the modular reliable transport protocol architecture
advocated in Adler. The sender transport protocol 210 is partitioned into the sender
reliability control protocol 220 and the sender rate control protocol 230. The sender
reliability control protocol 220 determines what is sent in each data packet, and the sender
rate control protocol 230 determines when each data packet is sent. The sender reliability
control protocol 220 may place additional reliability control information into each data packet
that can be used by the receiver reliability control protocol 280 within the receiver transport
protocol 290. The sender reliability control protocol 220 may also receive reliability control
information 250 from the corresponding receiver reliability control protocol 280 within the
receiver transport protocol 290 that is uses to help determine what is sent in each data packet.
Similarly, the sender rate control protocol 230 may place additional rate control infoﬁnation
into each data packet that can be used by the receiver rate control protocol 270 within the
receiver transport protocol 290. The sender rate control protocol 230 may also receive rate
control information 250 from the corresponding receiver rate protocol 270 within the receiver
transport protocol 290 that is uses to help determine when each data packet is sent.

The reliability control information that is communicated between the sender
reliability protocol 220 and the receiver reliability protocol 280 can depend on a variety of
factors such as packet loss, and can contain a variety of information as explained later in
some detail. Similarly, the rate control information that is communicated between the sender
rate control protocol 230 and the receiver rate control protocol 270 can depend on a variety of
factors such as packet loss and the measured round-trip time (RTT). Furthermore, the
reliability control information and the rate control information may overlap, in the sense that
information sent in data packets 240 or in the feedback packets 250 may be used for both
reliability control and rate control. Generally, the reliability control and rate control
information sent from the sender transport protocol 210 to the receiver transport protocol 290
can be sent with data in data packets 240 or sent in separate control packets 240, or both.
These protocols should be designed to minimize the amount of control information that needs
to be sent from sender to receiver and from receiver to sender.

For many applications, the data is to be transferred as a stream, i.e., as the data
arrives at the sender end system, it is to be reliably transferred as quickly as possible to the
receiver end system in the same order as it arrives at the sender end system. For some
applications, the latency introduced by the overall transport protocol should be minimized,

e.g., for a streaming application, or for an interactive application where small bursts of data

10
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are to be transmitted back and forth as quickly as possible between two end systems. Thus,
the overall latency introduced by the transport protocol should be minimized.

The sender reliability control protocol 220 and the receiver reliability control
protocol 280 typically both require buffers to temporarily store data. Generally, the data that
is buffered at the sender reliability control protocol 220 includes at least the earliest data in
the stream for which the sender reliability control protocol 220 has not yet received an
acknowledgement of recovery from the receiver reliability control protocol 280 up to the
latest data in the stream that the sender reliability control protocol 220 has started to send in
data packets. The size of the buffer at the receiver reliability control protocol 280 is
generally at least the amount of data in the stream from the earliest data not yet recovered up
to the latest data for which data packets have been received.

The buffering requirements of the sender reliability control protocol 220 has a
direct impact on how much temporary storage space is required by the sender reliability
control protocol 220, and how much latency the sender reliability control protocol 220
introduces into the overall reliable data transfer. The buffering requirements of the receiver
reliability control protocol 280 have a similar impact. Thus, it is important to minimize the
buffering requirements of both the sender reliability control protocol 220 and the receiver
reliability control protocol 280.

The reliability control protocol determines what is sent in each data packet. In
order to utilize the connection between the end systems efficiently, it is important that the
sender reliability control protocol 220 send as little redundant data in packets as possible, in
order to ensure that whatever data packets are received at the receiver reliability control
protocol 280 are useful in recovering portions of the original data stream. The goodput of the
reliability control protocol is defined to be the length of the original stream of data divided by
the total length of data packets received by the receiver reliability control protocol 280 during
the fecovery of the original stream of data. A goodput goal is for the reliability control
protocol to result in a goodput of 1.0 or nearly so, in which case the minimum amount of data
is received in order to recover the original stream of data. In some reliability control
protocols, the goodput may be less than 1.0, in which case some of the transmitted data
packets are wasted. Thus, it is important to design reliability control protocols so that the
goodput is as close to 1.0 as possible in order to efficiently use the bandwidth consumed by

the data packets that travel from the sender end system to the receiver end system.

11



10

15

20

25

30

WO 2005/036361 PCT/US2004/033307

5. FEC-based Reliability Control Protocols

One solution that has been used in reliability control protocols is that of

Forward Error-Correction (FEC) codes, such as Reed-Solomon codes or Tornado codes, or
chain reaction codes (which are information additive codes). Original data is partitioned into
blocks larger than the payload of a packet and then encoding units are generated from these
blocks and send the encoding units in packets. Erasure correcting codes, such as Reed-
Solomon or Tornado codes, generate a fixed number of encoding units for a fixed length
block. For example, for a block comprising input units, N encoding units might be generated.
These N encoding units may comprise the B original input units and N-B redundant units.

A FEC-based reliability control protocol is a reliability control protocol that
uses FEC codes. Fig. 3 is an illustrative embodiment of a sender FEC-based reliability
control protocol 220, and Fig. 4 is an illustrative embodiment of a receiver FEC-based
reliability control protocol 280. The sender reliability control logic 310 partitions the original
stream of data into data blocks 330, and then instructs the FEC encoder 320 to generate
encoding units for each block. The sender reliability control logic 310 determines how
encoding units and reliability control information 340 are passed on to a device handling the
sender rate control protocol 230, and it also handles the reliability control information 350
that is sent by the receiver FEC-based reliability control logic 410 shown in Fig. 4.

The sender reliability control logic 310 should ensure that enough encoding
units are received by the receiver FEC-based reliability control protocol 280 shown in Fig. 4
to ensure that each block is recovered. All blocks may be of essentially the same length, or
the block length may vary dynamically during the transfer as a function of a variety of
parameters, including the rate at which the stream of data is made available to the sender, the
sending rate of the data packets, network conditions, application requirements and user
requirements.

Suppose a given block of data is B encoding units in length. For some FEC
codes the number of encoding units required to recover the original block of data is exactly
B, whereas for other FEC codes the number of encoding units required to recover the original
block of data is slightly larger than B. To simplify the description of the FEC-based
reliability control protocols, it is assumed that B encoding units are sufficient for the recovery
of the data block, where it is to be understood that a FEC code that requires more than B
encoding units in order to decode a block can be used with a slightly decreased goodput and a

slightly increased buffering requirement.
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The receiver reliability control logic 410 in Fig. 4 is responsible for ensuring
that B encoding units are received in order to decode the data block, and then the FEC
decoder 420 is used to recover the data block 430. The receiver reliability control logic 410
is responsible for receiving the encoding units and reliability control information 340 sent
from the sender FEC-based reliability control protocol 220, and for generating and sending
reliability control information 350 that is eventually sent to and processed by the sender
reliability control logic 310.

6. TF Reliability Control Protocol

The TF reliability control protocol partitions the stream of data into generally
equal size blocks. The overall architecture is that there is one active data block at any point
in time, and the sender generates and sends encoding units for that data block until it receives
a message from the receiver indicating that enough encoding units have arrived to reconstruct
the block, at which point the sender moves on to the next block. Thus, all encoding units for
a given block are generated and sent and the block is recovered before any encoding units for
the subsequent block are generated and sent.

Fig. 5 shows one possible set of formats that could be used by a TF reliability
control protocol. The sender data format describes the format in which the sender TF
reliability control protocol sends encoding units and the corresponding reliability control
information to the receiver TF reliability control protocol. This includes the Block number
510 which indicates which block the encoding unit is generated from, the encoding unit ID
520 which indicates how the encoding unit is generated from the block, and the encoding unit
530 which can be used by the FEC decoder within the receiver TF reliability control protocol
to recover the block. The receiver feedback format describes the format in which the receiver
TF reliability control protocol sends reliability control information to the sender TF reliability
control protocol. This includes the Block number 540, which is the block number of the
current block the receiver TF reliability control protocol is receiving encoding units for to
recover the block, and Needed encoding units 550 which is the number of additional
encoding units the receiver TF reliability control protocol needs to recover the block.

Fig. 6 is an illustrative embodiment of a process for implementing a sender TF
reliability control protocol. The process continually checks to see if it is time to send sender
data (step 610), which is determined by the corresponding sender rate control protocol. Ifit
is time to send sender data, then an encoding unit is generated from the active block and the
sender data is sent (620). An example of a form for the sender data is the format shown in

Fig. 5. The process also continually checks to see if receiver feedback has been received 630.
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An example of a form for the receiver feedback data is the format shown in Fig. 5. If there is
receiver feedback, then it is processed to update the information on how many additional
encoding units the receiver needs to recover the active block. It then checks to see if the
number of encoding units needed is zero 640, and if it is, then it sees if the next block in the
stream of data is available 650. If it is not available, it prepares the next block 660 until it is
ready, and then goes on to deactivate the current active block and activate the next block 670.
In general, the next block may be being prepared while the current active block is being
transmitted.

It should be understood that each of the protocols described herein could be
implemented by a device or software or firmware executed by a suitable processor. For
example, implementations could be made using network devices such as routers and host
computers, as well as being implemented on wireless transmitters, retransmitters, and other
wireless devices. The protocols described herein can be implemented in software, has
methods, and/or has apparatus configured to implement such protocols.

Fig. 7 is an illustrative embodiment of a process for implementing a receiver
TF reliability control protocol. The receiver TF reliability control protocol continually
checks to see if sender data has been received 710, which is in the sender data format shown
in Fig. 5. If so, then it is checked if the encoding unit within the sender data is from the
active block 720. If the encoding unit is not from the active block then it is discarded 760,
and thus this is wasted sender data sinee it is not useful in recovering any block. If the
encoding unit is from the active block then it is added to the set of encoding units already
received for the active block and the needed number of encoding units for the block is
decremented by one 730. It then checks to see if the needed number of encoding units is zero
740, and if it is then it recovers the active block using the FEC decoder and prepares for
reception of encoding units for the next active block 750. The receiver TF reliability control
protocol also continually checks to see if it is time to send receiver feedback 770, which is
determined by the corresponding receiver rate control protocol. If it is time then receiver
feedback is prepared and sent 780, which is in the format of the receiver feedback format
shown in Fig. 5.

Note that this is a partial description of the overall TF reliability control
protocol. For example, it does not specify the conditions under which receiver feedback is
sent by the receiver TF reliability control protocol. This can be triggered by reception of
received sender data, by a timer that goes off every so often, or by any combination of these

events or any other events as determined by the receiver rate control protocol. Generally,
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receiver feedback is sent often enough to keep the sender TF reliability control protocol
informed on a regular basis about the progress of reception of encoding units at the receiver
TF reliability control protocol, and yet not so often as to consume nearly as much bandwidth
as the sender data containing the encoding units sent from the sender TF reliability control
protocol to the receiver TF reliability control protocol.

Note that the TF reliability control protocol can be considered “wasteful” in
the following sense. Let B be the size of each data block in units of encoding units, let R be
the rate at which packets are sent by the rate control protocol, and let RTT be the round-trip
time between the sender and receiver end systems and let N = R*RTT. Suppose there is no
packet loss between the sender and receiver. Then, after the sender TF reliability control
protocol has sent B encoding units for an active block (which is enough to recover the block),
it continues to send N additional encoding units until it receives receiver feedback from the
receiver TF reliability control protocol indicating that enough encoding units have arrived to
recover the block, and all of these N encoding units are wasted. To recover a block of length
B requires sending B+N encoding units, and thus the goodput is B/(B+N). If B is relatively
small in comparison to N, then the goodput is far from optimal, and a lot of the used
bandwidth between the sender and receiver is wasted. On the other hand, if B is large in
comparison to N, then the size of the buffers in the sender and receiver TF reliability control
protocols can be large, and this also implies that the latency in the delivery of the data stream
at the receiver is large. As an example, suppose the size of an encoding unit is 1 kilobyte, the
rate R is 1,000 encoding units per second = 1 megabyte per second = 8 megabits per second,
and RTT is one second. Then N =R*RTT = 1 megabyte. If the size of a block is set to B = 3
megabytes, then the goodput is only approximately (B/(B+N)) = 0.75, i.e., around 25% of the
sent encoding units are wasted. To increase the goodput to, for example, 0.98 so that only
around 2% of the sent encoding units are wasted requires a very large buffer size of B = 49
megabytes. This size buffer then leads to a latency added by the reliability control protocol
of at least 50 seconds.

There are many variants on the TF reliability control protocol described above.
For example, the sender TF reliability control protocol could stop sending encoding units
after B encoding units have been sent from a block and wait to receive receiver feedback to
indicate whether or not enough encoding units have been received to recover the block. If
there is no loss then this variant will not send any encoding units that will be wasted, but even
in this case there is a gap of RTT time between each block, and if the bandwidth is not being

used for any other purpose, this protocol still leads to a wasted amount of bandwidth of
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R*RTT. Furthermore, the total delivery time will be slower by a factor of B/(B+N) than is
ideal. If there is loss, then this variant will add even further latencies and slow downs in
delivery, because eventually additional encoding units will have to be sent to recover the
block in place of the lost encoding units.

7. Interleaved Reliability Control Protocols

The TF reliability control protocol has an advantage over the No-Code
reliability control protocol because any lost encoding unit can be compensated for by any
subsequently received encoding unit generated from the same block without need for receiver
feedback. The primary reason that the TF reliability control protocol is wasteful is because of
the sequential nature of the protocol, in the sense that the transfer of each block is completed
before the transfer for the next block begins. The improved reliability control protocols
described herein can be used to interleave the processing of the blocks in an intelligent
fashion.

An illustrative example of interleaving is shown in Fig. 8. In this example,
there are two active blocks, the first active block AB 1 (810) and the second active block AB
2 (820). The lower part of Fig. 8 shows an example of a pattern of data packet sending over
time, where each packet is labeled by either AB 1 or AB 2 depending on whether the
corresponding packet contains an encoding unit for AB 1 or AB 2. In this example, four
packets containing encoding units for AB 1 (830(1), 830(2), 830(3) and 830(4)) are sent first,
then two packets containing encoding units for AB 2 (830(5) and 830(6)), followed by one
packet contain an encoding unit for AB 1 (830(7)), one packet containing an encoding unit
for AB 2 (830(8)) and one packet containing an encoding unit for AB 1 (830(9)). In general,
the interleaving between encoding units for different blocks should be designed to maximize
goodput and to minimize the total buffering requirements (and the consequent introduced
latency).

Fig. 9 shows one possible set of formats that could be used by an interleaved
reliability control protocol. The sender data format describes a format in which the sender
interleaved reliability control protocol could send encoding units and the corresponding
reliability control information to a receiver interleaved reliability control protocol. This
example includes a Block number 910 which indicates which block the encoding unit is
generated from, a Sequence number 920 which indicates how many encoding units have been
sent from this block, an encoding unit ID 930 which indicates how the encoding unit is
generated from the block, and an encoding unit 940 which can be used by the FEC decoder

within the receiver interleaved reliability control protocol to recover the block. The receiver
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feedback format describes a format in which the receiver interleaved reliability control
protocol could send reliability control information to the sender interleaved reliability control
protocol. For each of the active blocks, this includes a Block number (950(1), 950(2)), how
many additional encoding units are needed to recover the block (960(1), 960(2)) and the
highest sequence number received so far from that block (970(1), 970(2)).

Fig. 10 is an illustrative embodiment of the iogic of a Basic sender interleaved
reliability control protocol. In this version of the protocol, the Basic sender interleaved
reliability control protocol continually checks to see if it is time to send sender data 1005,
which is determined by the corresponding sender rate control protocol. If it is time to send
sender data then the Basic sender interleaved reliability control protocol uses the following
set of rules to determine from which active block to generate and send an encoding unit.

The Basic sender interleaved reliability control protocol keeps track of the
following variables for each active block i (1010): B_i is the number of encoding units
needed to recover that block; R_i be the number of encoding units that the Basic sender
interleaved reliability control protocol knows that the Basic receiver interleaved reliability
control protocol has received from that block based on received receiver feedback; L i=B_i
—R_1is the remaining number of unconfirmed encoding units that the Basic sender
interleaved reliability control protocol knows that the Basic receiver interleaved reliability
control protocol needs to receive to recover the block; U_i is the number of encoding units
sent for the block but for which an acknowledgement has not yet been received by the Basic
sender interleaved reliability control protocol; X i is a parameter that determines how
aggressively the Basic sender interleaved reliability control protdcol will send encoding units
for the block.

These variables can be determined as follows: The value of B_i is determined
by the size of the block and the size of each encoding unit. Generally, each encoding unit is
of the same size and the size is chosen to be suitable for the payload of a data packet, e.g., the
length of an encoding unit could be 1024 bytes. The size of each block may be generally the
same or it may vary, or it may depend on the arrival rate of the data stream at the sender, or it
may depend on the sending rate of data packets, or it may depend on a combination of these
and other factors. The value of R i is determined based on receiver feedback received in step
1030. The value of U_i is the difference between the Sequence number in the last sender data
sent containing an encoding unit for the block and the Highest Sequence number received in

a receiver feedback for the block.
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The value of X i is a function of the overall reliability control protocol, and as
is explained later there are tradeoffs in the choice of X_i. The value of X_i could remain
constant during the sending of all encoding units for the block, or it could change value in a
variety of different ways, some of which are explained later. Essentially, X i at each point in
time is a measure of how many additional encoding units the Basic sender interleaved
reliability control protocol is willing to send beyond the minimal needed to recover the block
without any additional receiver feedback from the Basic receiver interleaved reliability
protocol. Since L_1i is the number of encoding units needed to recover block i beyond the
already acknowledged received encoding units, and since U i is the number of encoding units
for block i that are in flight and not yet acknowledged, then L i+ X i~ U i is the number of
additional encoding units for block i that the Basic sender interleaved reliability control
protocol is willing to send at this point in time. The tradeoff on the value of X i is the
following. As X_i increases the goodput decreases, since possibly up to X _i encoding units
beyond the minimal needed to recover active block i could be received by the Basic receiver
interleaved reliability control protocol. On the other hand the total size of active blocks
decreases as X_i increases, because the number of packet time slots to complete the reliable
reception of active block 1 decreases as X_i increases. This is because X _i encoding units for
block i can be lost and still the Basic receiver is able to recover the block without waiting for
receiver feedback to trigger transmission of additional encoding units. It turns out that the
tradeoffs between total buffer size and goodput as a function of X i are much more favorable
than the corresponding tradeoffs for other reliability control protocols such as the TF
reliability control protocol or the No-code reliability control protocol.

In step 1015, a test is made to determine if there is an active block i that
satisfies the inequality I, 1+ X 1-U_1>0. The value of L_i is how many encoding units the
receiver would need to recover the block based on encoding units already acknowledged by
receiver feedback. U_i is the number of unacknowledged encoding units in flight for this
block and thus L_i-U_i is the number of additional encoding units that will have to be sent if
all encoding units in flight are not lost, and thus if this number is zero or smaller than the
receiver will be able to recover the block if all the encoding units in flight for the block
arrive. On the other hand, some of the encoding units might be lost, and X _i is the number of
additional encoding units that the sender is willing to send proactively to protect against
losses to avoid having to transmit additional encoding units for the block triggered by
subsequent receiver feedback. Thus, if L i+ X _i—U_i > 0 then the sender is willing to send

more encoding units for block i, and if it is zero or negative then the sender is not willing to
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send more encoding units for block i. Thus, if in step 1015 there is an active block i that
satisfies L_1+ X_1~U_i> 0, an encoding unit is generated and corresponding sender data is
sent for the earliest such active block in step 1020. If there is no such active block then an
encoding unit is generated and corresponding sender data is sent from the earliest active
block among all active blocks in step 1025. Preferably, the parameters are set in such a way
as to avoid as much as possible having no block satisfy the condition in step 1015 which
forces the execution of step 1025, because essentially step 1025 should be done as a last
resort to clear out the buffers within the Basic sender interleaved reliability control protocol.

One variant of the protocol is the following. The number of Activated blocks
starts at one, 1.e., the first block of the data stream is activated. Only when there is no active
block that satisfies the condition in step 1015 is a new block in the stream of data is activated.
Using this simple strategy, blocks only become active blocks when needed, and thus the
number of active blocks, and consequently the buffer size, self-adjusts to the number needed
to guarantee a goodput B_1/(B_1+ X 1) for block i.

Another variant of the protocol is the following. In this variant the total buffer
size always remains the same size (if all blocks are the same size this means there is always
fixed number of active blocks), whereas the goodput may vary. Whenever there is no active
block that satisfies the condition in step 1015 then the values of the X_i for the active blocks
is increased until there is an active block that satisfies the condition in step 1015. Whenever
it is appropriate the values of X_i for active block i is reduced, with the constraint that there
is always an active block that satisfies the condition in step 1015. There are many possible
ways to increase and decrease the values of the X i, e.g., increase all values equally, increase
all values proportionally equally, increase the values for the first active blocks more than the
values for the last active blocks, increase the values for the last active blocks more than the
values for the first active blocks. Similar strategies can be used to decrease the values of the
X_1. One skilled in the art can think of many other variations as well.

There are many other combinations and extensions of these variants of the
protocol that are too numerous to describe, but should be obvious to one skilled in the art.

In step 1030 it is checked to see if any receiver feedback has been received,
and if so all of the parameters are updated based on this in step 1035, i.e., the parameters R_i,
U_i and X _i for all active blocks i. In step 1040 it is checked to see if the earliest active
block has been acknowledged as fully recovered, and if so then the next block is prepared in
steps 1045 and 1050 and the earliest active block is deactivated and the next block is

activated in step 1055. In general, the next block or several next blocks may be in
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preparation while the current active block is being transmitted, and ready to be activated at or
before the time the earliest active block is to be deactivated.

Fig. 11 is an illustrative embodiment of the logic of the Basic receiver
interleaved reliability control protocol. In this version of the protocol, the Basic receiver
interleaved reliability control protocol continually checks to see if sender data has been
received 1105, which for example could be in the sender data format shown in Fig. 9. If so, it
updates its information on all active blocks in step 1110 and checks to see if the received
encoding unit within the sender data is from an active block 1115. If the encoding unit is
from a block that is already recovered or from a block that is too far forward in the data
stream to be a current active block then it is discarded in step 1135, and thus this is wasted
sender data since it is not useful in recovering any block. Otherwise the encoding unit is
added to the pool of encoding units for the active block from which it was generated and how
many encoding units are needed to recover the active block is updated in step 1120.

The number of needed encoding units for block i is calculated as B_i minus
the number of received encoding units. There are a variety of ways of communicating the
value of B_i to the Basic receiver interleaved reliability control protocol, e.g., the value of
B i could be included within each sender data, the value of B_i could be sent in separate
control messages, the value of B_i could be the same for all blocks and communicated during
session initiation, etc.

It is then checked to see if the needed number of encoding units for the earliest
active block 1s zero in step 1125, and if it is then it recovers the active block using the FEC
decoder and prepares for reception of encoding units for a new next active block in step 1130.
The Basic receiver interleaved reliability control protocol also continually checks to see if it
is time to send receiver feedback 1140, which is determined by the corresponding receiver
rate control protocol. If it is time then receiver feedback is prepared and sent in step 1145,
which for example could be in the sender data format shown in Fig. 9.

Note that the above is a partial description of an overall Basic interleaved
reliability control protocol. For example, it does not specify the conditions under which
receiver feedback is sent by the Basic receiver interleaved reliability control protocol. This
can be triggered by reception of received sender data, by a timer that goes off every so often,
or by any combination of these events or any other events as determined by the receiver rate
control protocol. Generally, receiver feedback is sent often enough to keep the Basic sender
interleaved reliability control protocol informed on a regular basis about the progress of

reception of encoding units at the Basic receiver interleaved reliability control protocol, and
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yet not so often as to consume nearly as much bandwidth as the sender data containing the
encoding units sent from the Basic sender interleaved reliability control protocol to the Basic
receiver interleaved reliability control protocol.

The Basic interleaved reliability control protocol can have a much better
tradeoff between goodput and the size of the buffers than the TF reliability control protocol
or the No-code reliability control protocol. For example, suppose that there are at most two
active blocks for the Basic interleaved reliability control protocol. Let B be the size of each
data block in units of encoding units, let R be the rate at which packets are sent by the rate
control protocol, and let RTT be the round-trip time between the sender and receiver end
systems and let N = R*RTT, and suppose X is a fixed constant for all active blocks. In this
example, assume that all of these parameters have fixed values, although in general they may
vary dynamically during the data transfer, and assume that B >= N.

Suppose there is no packet loss between the sender and receiver. Then, the
Basic sender interleaved reliability control protocol sends B+X encoding units for the earliest
active block and then sends encoding units from the next active block until it receives
receiver feedback that indicates the earliest active block has been recovered successfully by
the Basic receiver interleaved reliability control protocol. At this point the Basic sender
interleaved reliability control protocol deactivates the earliest active block, the next active
block for which some encoding units have already been sent becomes the earliest active
block, and the next block is activated to become an active block. Thus, B+X encoding units
are used to recover a block of length B, and thus X of the sent encoding units are wasted. On
the other hand, if B >= N then there will always be an active block that satisfied the
inequality shown in step 1015 of Fig. 9. Thus, the goodput is B/(B+X), whereas the total size
of the buffer is 2*B if there are two active blocks. As an example, suppose the size of an
encoding unit is 1 kilobyte, the rate R is 1,000 encoding units per second = 1 megabyte per
second = 8 megabits per second, and RTT is one second. Then N = R*RTT = 1 megabyte. If
the size of a block is set to B = 1 megabyte and X is set to 10 then the goodput is
approximately (B/(B+X)) = 0.99, i.e., at most 1% of the sent encoding units are wasted,
whereas the total buffer size is only 2 MB, which means that the Basic sender interleaved
reliability control protocol adds around 2 seconds of latency in this example. Note that this
buffer size is smaller by a factor of 25 than that of the sender TF reliability control protocol in
the same situation.

In the example described above where there is no packet loss, the value of X

could be set to zero, increasing the goodput up to 1.0. However, when there is any packet
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loss it turns out that setting X > 0 can have significant advantages. For example, if at most 10
encoding units are lost out of each 1,000 sent in the above example, then an analysis shows
that the same goodput and buffer sizes is achieved with X = 10, whereas this would not be
necessarily true with X = 0. When packet loss is more variable and unknown, and in
particular when the number of packets lost per B packets can be more than X, it still turns out
that goodput and buffer sizes that can be achieved by the Basic interleaved reliability control
protocol are quite good and quantifiably better than what can be achieved using the TF
reliability control protocol or the No-code reliability protocol.

As another example, suppose the sending rate R in packets per second and the
round-trip time RTT remains constant, and N = R*RTT. Suppose packet loss is random such
that each packet is lost with probability p. Further suppose that each block i is of size B i is
the same size C in units of packets, and that each X_i is the same value Y. Further suppose
that the variant of the protocol described above that only activates a new block when needed
is used. Consider a block from the time it is first activated till the time it is deactivated
because an acknowledgement that it has been recovered is received from the receiver. At
some time t when C-N packets of the block have been acknowledged there are F=N+Y
packets in flight that are unacknowledged and the sender knows that the receiver needs N =
F-Y of these packets to complete the block. Attime t + RTT, of the F packets that were in
flight for the block at time t, (1-p)*F of the packets have been received by the receiver and
the sender has received an acknowledgement. Thus, at time t+RTT the sender knows that the
number of remaining packets that the receiver needs is now N ~ (1-p)*F = p*F-Y and thus the
number of packets in flight is now p*F. Continuing the logic, at time t + i*RTT the sender
knows that the number of remaining packet that the receiver needs is pi*F - Y and thus the
number of packets in flight is p*i*F. When the number of packets that the sender knows the
receiver needs goes below zero then the block is completed, and this is true at time t + i*RTT
when i satisfies p"i*F — Y <= 0. The smallest value of i when this inequality is true is when i
is approximately In((N/Y) + 1)/In(1/p). Since in each RTT approximately (1-p)*N packets
are received by the receiver, this means that the farthest the sender protocol could have
proceeded in the data stream beyond the block in consideration by the time the block is
acknowledged as received is at most (In(N/Y) + 1)/In(1/p))*(1-p)*N packets. Noting that (1-
p)/In(1/p) <=1 for all values of p, this means that the size of the buffer is at most C +
In((N/Y) + 1)*N packets in length. Of course, this is all assuming that the random process
behaves exactly as its expected behavior, but this does give a rough idea of how the protocol

behaves, at least as Y is not too small. In this case, the goodput is C/(C+Y). Thus, for
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example, if RTT =1, R = 1,000, C = 1,000, Y = 50, the buffer size is around at most 4,000
and the goodput is 0.95.

There are many variants on the Basic interleaved reliability control protocol
described above that should be apparent after reading this description. For example, as
described above, the sender reliability control protocol could use more than two active blocks
at a time, and this has the potential advantage of being able to reduce the overall size of the
buffers used at the sender and receiver reliability control protocols at the expense of more
complexity in managing more active blocks.

As another example of a variant, it can be beneficial to use a random process
to determine from which active block an encoding unit is to be sent. This is because packet
loss pattéms can be systemic and are not necessarily random, and thus for any deterministic
procedure used to select which encoding unit to send next there is packet loss pattern such
that some blocks are never recovered but still packets are delivered to the receiver. For
example, consider the loss pattern where whenever the deterministic procedure sends an
encoding unit from a particular active block then that encoding unit is lost, but whenever it
sends an encoding unit for any other active block then that encoding unit arrives at the
receiver. Then, in this example the receiver never recovers the active block even though the
receiver still receives encoding units. To overcome this type of systematic loss, it is
advantageous for the sender reliability control protocol to randomize from which active block
to send the next encoding unit. One simple way to achieve this is for the sender reliability
control protocol to buffer together batches of Q encoding units to be sent, and then send each
batch of Q encoding units in a random order. More sophisticated methods may also be used,
e.g., for each encoding unit to be sent, assign a dynamically changing probability that it is
sent the next time an encoding unit is to be sent, where the probability increases the more
times it is not selected. Another variant is to modify step 1020 as shown in Fig. 10 of the
Basic sender interleaved reliability control protocol so that the encoding unit sent is randomly
generated (using an appropriately chosen probability distribution that may favor earlier active
blocks and that may vary dynamically over time) from among the active blocks that satisfy
the condition in step 1015.

If the parameter X_i is used to determine when to send an encoding unit for
active block 1, there are many variants on how to adjust X_i during the transmission. One
example is to fix X_i to a value and maintain that value throughout the transmission. For
example, X_i could be set to zero, or to some other fixed value like 10. Another example is

to fix X_i to a value at the beginning of the transmission of encoding units from active block
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i, and then X _1i is incremented every time an encoding unit is to be sent and the condition for
sending an encoding unit from active block i is not met. There are many variants on how X i
can be incremented. As an example, X_i could be incremented by zero the first N such times,
and incremented by N/B each subsequent time. It is also possible that at some steps the
increment of X_i could be negative.

As other variants, instead of only using the parameter X i for each active
block i as described in the Basic interleaved reliability control protocol, one could use other
ways of determining whether or not an encoding unit should be sent from a particular active
block. For example, an average of the packet loss probability could be maintained, and then
the number of encoding units allowed to be sent from an active block could be determined
based on the assumption that the recent packet loss probability is a good predictor for the
current packet loss probability. For example, if the average loss probability is currently p,
then one strategy is to modify step 1015 as shown in Fig. 10 of the Basic sender interleaved
reliability control protocol so that the condition is L i+ X_i/(1-p) - U_i*(1-p) > 0. The
rationale behind this particular choice is that if U_i encoding units are in flight for active
block 1, only a fraction 1-p of them will arrive at the Basic receiver interleaved reliability
control protocol, and if X _i/(1-p) additional packets are sent then X i will arrive at the Basic
receiver interleaved reliability control protocol. Thus, overall on average the Basic receiver
interleaved reliability control protocol will receive B_i+ X i encoding units for active block
i, and the value of X i additional encoding units can be set to be enough to take into account
variability in the packet loss rate to avoid depending on receiver feedback for the
transmission of a sufficient number of encoding units to recover the block.

Other variants of the interleaved reliability control protocol take into account
the possibility that packets may not arrive in the same order at the receiver as the sending
order. Thus, subsequent receiver feedback from the receiver may for example report back a
larger number of received encoding units for a given active block than previous receiver
feedback, even though the highest sequence number received from the block is the same.
Thus, the logic in the Basic interleaved reliability control protocol can be modified in both
the sender and receiver to accommodate accounting for reordered packets.

As described earlier, step 1025 of the Basic sender interleaved reliability
control protocol as shown in Fig. 10 is generally to be avoided by setting the parameters
appropriately so that at least one active block satisfies condition 1015 at each point in time.

A variant on step 1025 is to vary which active block is chosen from which to generate and
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send an encoding unit. For example, an active block can be chosen randomly in step 1025, or
the choice could cycle through the set of active blocks.

Step 1045 of Fig. 10 indicates that the next block is immediately activated as
soon as the earliest active block is deactivated. A variant that can save on the total buffer size
and the consequent latency is to only activate a next block when it is time to send an
encoding unit from a block that is beyond the latest current active block.

The Basic interleaved reliability control protocol as described above implicitly
assumes that the number of active blocks at any point in time is fixed. A variant is to allow
the number of active blocks to vary depending on a variety of factors, including at what rate
data is made available for transmission, how much packet loss is occurring, variability in the
sending rate of packets, etc. For example, under low packet loss conditions and low sending
rate conditions the number of active blocks may be kept small, but as the loss conditions
become worse or the sending rate increases the number of active blocks may be allowed to
temporarily grow. Thus, buffering and latency vary dynamically depending on the conditions
in which the protocol is operating.

The aggregate size of active blocks may also be allowed to vary even if the
number of active blocks remains fixed. In this case, the size of each subsequent active block
may Be different than the previous block. For example, as the data availability rate grows the
size of subsequent active blocks may also grow, and as the sending rate grows the size of
subsequent active blocks may grow. The length of each active block may be a function of
time, e.g., at most so much time may pass before a new block is formed, it may be a function
of length, i.e., each block may be at most so long, or it may be a combination of these and
other factors.

The end of one block and the start of the next block may be decided
automatically by the interleaved reliability control protocol, it may be determined by an
application, or some combination of these and other factors. For example, a block of the data
stream may have logical meaning to an application, e.g., a Group of Pictures block or an I-
frame for an MPEG stream, and thus the way that the interleaved reliability control protocol
partitions the stream of data into blocks may respect the boundaries of the logical application
blocks. Alternatively, the application may indicate to the interleaved reliability control
protocol preferred boundaries between blocks, and the interleaved reliability control protocol
tries to respect these boundaries as well as possible but may still be allowed to make

boundaries between blocks at points besides those supplied by the application.
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Another variant of the interleaved reliability control protocol is to allow the
protocol to not deliver all blocks reliably in sequence to the receiver, but instead to try as well
as possible to achieve this goal subject to other constraints. For example, in a streaming
application it may be important to deliver the stream of data as reliably as possible, but there
are also other constraints such as timing constraints on the data stream. For example, it could
be the case that after a certain time a certain portion of the data is no longer relevant, or that
there are strong limits on how much latency the interleaved reliability control protocol can
introduce, e.g., in an interactive Video conferencing application. In these cases, the sender
interleaved reliability control protocol and receiver interleaved reliability control protocol
may be modified to allow some of the blocks to be skipped before they are completely
recovered. For example, the sender interleaved reliability protocol may be constrained to
only allow an active block to be active for a given amount of time, or it may have hard time
constraints for each block supplied by an application after which it is no longer allowed to
send encoding units for the block, or it may be allowed to only send a provided maximum
number of encoding units for each block, or any combination of these constraints. Similar
constraints may be applicable to the receiver interleaved reliability control protocol. For
these applications, the interleaved reliability control protocol can be modified to respect these
constraints.

In some variants of interleaved reliability control protocols, there is one sender
and one receiver. Other variants include but are not limited to: one sender and multiple
receivers; one receiver and multiple senders; multiple senders and multiple receivers. For
example, in the one sender/multiple receiver variant when the sending channel is a broadcast
or multicast channel, the sender reliability control protocol could be modified so that the
sender computes for each active block i the value of R_i as the minimum number of received
acknowledged encoding units from any receiver in step 1010 of Fig. 10. As another example
for the one sender/multiple receiver variant when the sender sends a separate stream of
packets to each receiver, the sender reliability control protocol could be modified so that the
sender computes for each active block i and for each receiver j the value of R_ij as the
number of received acknowledged encoding units from receiver j for active block i and
computes L_ij =B_i—R_ij in step 1010 of Fig. 10, and U _ij could be computed as the
number of sent but still unacknowledged encoding units for active block i sent to receiver j,
and then the condition in step 1015 could be changed to determine if there is an active block i
such that, for some receiver j, L_ij + X_i-U_ij > 0. As another example, for the many

sender/one receiver variant, the receiver reliability control protocol could be modified so that
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the receiver receives encoding units concurrently from multiple senders, for the same or
different active blocks, and sends receiver feedback either by a broadcast or multicast channel
to all senders, or using a separate packet stream with potentially separate receiver feedback to
each sender. As another example, for the multiple sender/multiple receiver variant, the
modified steps described above for the one sender/multiple receiver case and the multiple
sender/one receiver case can be combined.

Another variant is that a sender may concurrently be sending multiple data
streams, each using a separate instance of a sender interleaved reliability control protocol, or
a version of a sender interleaved reliability control protocol that takes into account the
different data streams, e.g., the aggregate sending rate for all packets for all streams may be
limited, and thus the sender may decide to prioritize sending packets for some data streams
over others. Similarly, a receiver may concurrently be receiving multiple data streams, each
using a separate instance of a receiver interleaved reliability control protocol, or a version of
a receiver interleaved reliability control protocol that takes into account the different data
streams, e.g., the aggregate receiving rate for all packets for all streams may be limited, and
thus the sender may decide to prioritize receiving packets and processing and sending
receiver feedback for some data streams over others.

Any of the above variants can be combined with one aﬁother. For example,
the protocol where some blocks may not be reliably delivered to receivers due to for example
to timing and/or bandwidth limitations can be combined with the multiple sender/multiple

receiver variant.
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WHATIS CLAIMED IS:

1. A method of reliably transporting data from a sender to a receiver, the
method comprising:
organizing the data to be transported into data blocks, wherein each data block comprises
5 a plurality of encoding units;
transmitting encoding units of a first data block from the sender to the receiver;
detecting, at the sender, acknowledgments of receipt of encoding units by the receiver;
determining, at the sender, a probability that the receiver received sufficient encoding
units of the first data block to recover the first data block at the receiver;
10 testing the probability against a threshold probability to determine whether a
predetermined test is met;
following the step of testing and prior to the sender receiving confirmation of recovery of
the first data block at the receiver, when the predetermined test is met, transmitting
encoding units of a second data block from the sender; and
15 if an indication of failure to recover the first data block is received at the sender, sending

further encoding units for the first data block from the sender to the receiver.
2. The method of claim 1, wherein each encoding unit is an IP packet.

3. The method of claim 1, wherein the indication of failure is an explicit

failure notice sent from the receiver and received by the sender.

20 4. The method of claim 1, wherein the indication of failure is generated for
the sender in response to a failure to receive an acknowledgment from the receiver of

successful recovery of the first data block within a time period determined at the sender.

5. The method of claim 1, wherein the further encoding units for the first data
block are additional encoding units other than the encoding units sent prior to the step of

25 testing.

6. The method of claim 1, wherein the further encoding units for the first data

block are resent copies of encoding units sent prior to the step of testing.

7. The method of claim 1, wherein encoding units are encoded using a chain

reaction coding process.
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8. The method of claim 1, wherein encoding units are encoded using a

Tornado coding process.

9. The method of claim 1, wherein encoding units are encoded using a

5  forward error correcting coding process having a predetermined code rate.
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