一种同步提取菜籽油和蛋白的方法

一种同步提取菜籽油和蛋白的方法属于植物油脂提取加工技术，该方法包括以下步骤：(1) 将脱皮菜籽粉碎后与水混合得到混合液，将混合液煮沸，冷却后调节混合液 pH，加入复合多糖酶解酶，酶解后调节 pH 加入碱性蛋白酶继续酶解得到酶解液、将酶解液离心分离得到水解液、乳状液、游离油 1 和残渣；(2) 将步骤(1) 获得的乳状液冷冻后加热，然后离心得到游离油 2；(3) 收集步骤(1) 获得的水解液，加入乙醇进行超声萃取，萃取后离心分离得到上清液和沉淀，将上清液旋转蒸发后离心得到游离油 3，将沉淀喷雾干燥后得菜籽蛋白，收集游离油 1、游离油 2、游离油 3 既得菜籽油，本方法可同步得到高品质的绿色菜籽油脂、高纯度菜籽蛋白，同时去除对人体有害的抗营养因子，所需要的设备简单，操作安全，所得菜籽油无溶剂残留，油脂回收率高。
1. 一种同步提取菜籽油和蛋白的方法，其特征在于该方法包括以下步骤：(1) 将脱皮菜籽粉碎后与水混合得到混合液，将混合液煮沸 5min，冷却后调节混合液 pH 到 5.0，加入复合多糖醇在 45℃下水解 2h 得到酶解液 1，调节酶解液 1 的 pH 到 9.0，加入碱性蛋白酶在 55℃酶解 1h 得到酶解液 2，将酶解液 2 离心分离得到水解液、乳状液、游离油 1 和残渣；(2) 将步骤(1)得到的乳状液冷冻 2h 后 90℃加热 10min，然后离心分离得到游离油 2；(3) 收集步骤 (1) 所得的水解液，加入乙醇进行超声萃取，所述的乙醇添加量与水解液体积比为 0.4-2:1、乙醇浓度为 50%-100%，超声时间为 5-30min，萃取后离心分离得到上清液和沉淀，将上清液旋转蒸发后在 10000r/min 下离心 15min 得到游离油 3。所述的旋转蒸发温度为 40-80℃，旋转蒸发时间为 5-20min，旋转蒸发转速为 30-100r/s，将沉淀喷雾干燥得菜籽蛋白，收集游离油 1、游离油 2、游离油 3 既得菜籽油。

2. 根据权利要求 1 所述的一种同步提取菜籽油和蛋白的方法，其特征在于所选的复合多糖醇为果胶醇、纤维素醇和 β- 葡聚糖醇以 4:1:1 进行复配。
一种同步提取菜籽油和蛋白的方法

技术领域

本发明属于植物油脂的提取加工技术，主要涉及一种同步提取菜籽油和蛋白的方法。

背景技术

传统的制油工艺有压榨法和直接浸提法。压榨法制油效率高、劳动强度大、生产成本高、动力消耗大，直接浸出法制油溶剂回收系统负荷大。使用有机溶剂增加了工艺的繁琐性，降低了生产的安全性，造成了环境的污染，成品油中残留的微量有机溶剂对人体健康不利，因此探寻新的“无毒、环保”的油脂提取技术已成为全世界关注的热点问题。

菜籽油是一种营养丰富的油脂，不饱和脂肪酸含量占80%以上，可降低人体内血脂胆固醇含量，因此采用酶法，从菜籽中提取油脂，是一种绿色、环保且有价值的方法。水酶法是采用生物酶法水解菜籽原料，提油条件温和，油料蛋白的性能几乎不发生变化，无论是水相中直接加工利用，还是回收分离蛋白再利用，效果都十分理想。但是，水酶法工艺中也存在一些问题，比如提油率低、乳化严重等。

菜籽蛋白是优质的植物蛋白，具有强平衡性必需氨基酸组成模式，蛋白质生物价均高于其他植物蛋白，菜籽蛋白可用于蛋白饮料、肉制品添加剂、面食添加剂、天然保鲜剂和其它食品添加剂，其酶解产物还可获得功能性多肽，目前提取菜籽蛋白的方法主要有水溶剂萃取法、有机溶剂萃取法、双相液萃取法和超滤、渗滤法等，但是，这些方法不仅提取率低，工艺复杂，而且制备的菜籽蛋白含有一些抗营养因子，如植酸、芥子碱、单宁、硫苷等，它们对蛋白质的消化、吸收和利用产生不良的影响。

目前为止，没有一种可以将菜籽油和菜籽蛋白同步提取出来的工艺方法。

发明内容

本发明所要解决的技术问题是克服现有技术的不足，提供一种同步提取菜籽油和蛋白的方法，达到可以将菜籽油和蛋白同步提出，去除抗营养因子的目的。

本发明所要解决的技术问题是通过以下技术方案来实现的：

一种同步提取菜籽油和蛋白的方法，该方法包括以下步骤：(1)将脱皮菜籽粉碎后与水混合得到混合液，将混合液煮沸5min，冷却后调节混合液pH值至5.0，加入复合多糖酶在45℃水解2h得到酶解液1，调节酶解液1的pH值至9.0，加入碱性蛋白酶在55℃酶解1h得到酶解液2，将酶解液2离心分离得到水解液、乳状液、游离油1和残渣；(2)将步骤(1)得到的乳状液冷冻2h后90℃加热10min，然后离心得到游离油2；(3)收集步骤(1)所得的水解液，加入乙醇进行超声萃取，所述的乙醇添加量与水解液体积比为0.4-2:1，乙醇浓度为50%-100%，超声时间为5-30min，萃取后离心分离得到上清液和沉淀，将上清液旋转蒸发后在10000r/min下离心15min得到游离油3，所述的旋转蒸发温度为40-80℃，旋转蒸发时间为5-20min，旋转蒸发转速为30-100r/s，将沉淀喷雾干燥后得菜籽蛋白，收集游离油1、游离油2、游离油3即得菜籽油。
所选的复合多糖酶为果胶酶、纤维素酶和β-葡聚糖酶以4:1:1进行复配。

本发明方法是向水解法提取菜籽油过程中产生的水解液中加入乙醇的方法来菜籽蛋白，同时在本发明方法中，利用旋转蒸发器将乙醇回收，而且乙醇回收率高，可以重复使用，所得菜籽油无溶剂残留，所需要的设备简单，操作安全，可以获得高质量的绿色油脂；在本发明菜籽油酯和蛋白得率高，并且乙醇可将植酸、芥子碱、单宁、硫苷等抗营养因子去除。

附图说明

附图1 本发明总工艺路线图。

具体实施方式

下面结合具体实施例来进一步描述本发明。

一种同步提取菜籽油和蛋白的方法，该方法包括以下步骤：(1)将脱皮菜籽粉碎后与水混合得到混合液，将混合液煮沸5min，冷却后调节混合液pH到5.0，加入复合多糖酶在55℃下水解2h得到酶解液1，调节酶解液的pH到9.0，加入碱性蛋白酶在55℃酶解1h得到酶解液2，将酶解液2离心分离得到水解液、乳状液、游离油1和残渣；(2)将步骤(1)得到的乳状液冷冻2h后90℃加热10min，然后离心得到游离油2；(3)收集步骤(1)所得的水解液，加入乙醇进行超声萃取，所述的乙醇添加量与水解液体积比为0.4—2:1，乙醇浓度为50％—100％，超声时间为5—30min，萃取后离心分离得到上清液和沉淀，将上清液旋转蒸发后在10000r/min下离心15min得到游离油3，所得的旋转蒸发温度为40—80℃，旋转蒸发时间为5—20min，旋转蒸发转速为30—100r/s，将沉淀喷雾干燥，既得菜籽蛋白，收集游离油1、游离油2、游离油3，既得菜籽油。

所选的复合多糖酶为果胶酶、纤维素酶和β-葡聚糖酶以4:1:1进行复配。

实施例1

称取脱皮粉碎后的菜籽100g加入500ml蒸馏水混合得到混合液，将混合液煮沸5min，冷却后调节混合液pH到5.0，加入复合多糖酶（果胶酶、纤维素酶和β-葡聚糖酶以4:1:1进行复配）在55℃下水解2h得到酶解液1，调节酶解液的pH到9.0，加入protex-6L碱性蛋白酶在55℃酶解1h得到酶解液2，将酶解液2离心分离得到水解液、乳状液、游离油1和残渣；(2)将步骤(1)得到的乳状液冷冻2h后90℃加热10min，然后离心得到游离油2；(3)收集步骤(1)所得的水解液，加入乙醇进行超声萃取，所述的乙醇添加量与水解液体积比为1:1，乙醇浓度为80％，超声时间为20min，萃取后离心分离得到上清液和沉淀，将上清液旋转蒸发后在10000r/min下离心15min得到游离油3，所得的旋转蒸发温度为70℃，旋转蒸发时间为10min，旋转蒸发转速为80r/s，将沉淀喷雾干燥，既得菜籽蛋白，收集游离油1、游离油2、游离油3，既得菜籽油。菜籽油得率为94.23％，菜籽蛋白得率为97.16％。

实施例2

称取脱皮粉碎后的菜籽100g加入500ml蒸馏水混合得到混合液，将混合液煮沸5min，冷却后调节混合液pH到5.0，加入复合多糖酶（果胶酶、纤维素酶和β-葡聚糖酶以4:1:1进行复配）在55℃下水解2h得到酶解液1，调节酶解液的pH到9.0，加入protex-6L碱
性蛋白酶在55℃酶解1h得到酶解液2，将酶解液2离心分离得到水解液、乳状液、游离油1和残渣；(2)将步骤(1)得到的乳状液冷冻2h后90℃加热10min，然后离心得到游离油2；(3)收集步骤(1)所得的水解液，加入乙醇进行超声萃取，所述的乙醇添加量与水解液体积比为0.5:1，乙醇浓度为60%，超声时间为30min，萃取后离心分离得到上清液和沉淀，将上清液旋转蒸发后在10000r/min下离心15min得到游离油3，所述的旋转蒸发温度为70℃、旋转蒸发时间为10min、旋转蒸发转速为80r/s，将沉淀喷雾干燥既得菜籽蛋白，收集游离油1、游离油2、游离油3既得菜籽油。菜籽油得率为93.55%，菜籽蛋白得率为96.03%

实施例3

称取脱皮粉碎后的菜籽100g加入500ml蒸馏水混合得到混合液，将混合液煮沸5min，冷却后调节混合液pH到5.0，加入复合多糖酶(果胶酶、纤维素酶和β-葡聚糖酶以4:1:1进行复配)在45℃下水解2h得到酶解液1，调节酶解液1的pH到9.0，加入protease-6L碱性蛋白酶在55℃酶解1h得到酶解液2，将酶解液2离心分离得到水解液、乳状液、游离油1和残渣；(2)将步骤(1)得到的乳状液冷冻2h后90°C加热10min，然后离心得到游离油2；(3)收集步骤(1)所得的水解液，加入乙醇进行超声萃取，所述的乙醇添加量与水解液体积比为0.5:1，乙醇浓度为60%，超声时间为30min，萃取后离心分离得到上清液和沉淀，将上清液旋转蒸发后在10000r/min下离心15min得到游离油3，所述的旋转蒸发温度为80℃、旋转蒸发时间为20min、旋转蒸发转速为60r/s，将沉淀喷雾干燥既得菜籽蛋白，收集游离油1、游离油2、游离油3既得菜籽油。菜籽油得率为95.22%，菜籽蛋白得率为97.01%。
图 1