wo 2014/047269 A2 || IO OO0 O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/047269 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

27 March 2014 (27.03.2014) WIPO I PCT
International Patent Classification: (74)
GO6F 9/00 (2006.01)
International Application Number: (81)
PCT/US2013/060591

International Filing Date:

19 September 2013 (19.09.2013)
Filing Language: English
Publication Language: English
Priority Data:
13/622,546 19 September 2012 (19.09.2012) US

Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, M/S Sop7, Redwood
Shores, California 94065 (US).

Inventors: KAEMMERER, Jens; 254 Tyrella Avenue,
Mountain View, California 94043 (US). SRIVASTAVA,
Ashish; 3500 Granada Avenue, Apt. 349, Santa Clara,
California 95051 (US).

(84)

Agents: MEYER, Sheldon, R. et al.; Fliesler Meyer LLP,
410 Pacitic Avenue, San Francisco, California 94133 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR SMALL BATCHING PROCESSING OF USAGE REQUESTS

(57) Abstract: In accordance with various embodiments, systems

Figure 1

and methods that provide unified charging across ditferent network

interfaces are provided. A system for small batch processing of usage

Server B 116

Service Broker
108

126

122

Server A 114

requests, can include a service broker, a plurality of servers wherein
each server includes customer data, and a plurality of queues, each
associated with a different server. When a usage request is received
from a network entity, the service broker is configured to determine
an internal ID associated with data requested by the usage request,
determine on which particular server of the plurality of servers the
data requested by the usage request is stored, enqueue the usage re-
quest in a particular queue associated with the particular server, and
upon a trigger event, send all requests in the particular queue to the
particular server in a batch.

WO 2014/047269 A2 |00V 000NN AR A

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Published:

KM, ML, MR, NE, SN, TD, TG). — without international search report and to be republished

upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
SYSTEM AND METHOD FOR SMALL BATCHING PROCESSING OF USAGE REQUESTS

COPYRIGHT NOTICE:

[0001] A portion of the disclosure of this patent document contains material which is subject

to copyright protection. The copyright owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it appears in the Patent and

Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION:

[0002] The current invention relates to online charging systems in telecommunications

networks and in particular to a system and method for batch processing of requests in a

telecommunications system.

BACKGROUND:

[0003] Typically, high volumes of usage requests are sent in a continuous network stream

to an Online Charging System (OCS) entry point from an Intelligent Network node (IN). A usage
request is any form of usage processing which requires customer data for charging purposes
including, for example: a kilowatt of electricity used by a commercial customer during peak hour;
a call from one subscriber to another; or a download request. Each usage request is processed
separately and a response is returned to the originating IN.

[0004] Processing of usage requests is typically accomplished asynchronously: while one
usage request is being processed, the next usage request can already be read from the network
connection. The chronological order of incoming usage requests and outgoing usage responses
can be different as a result of this asynchronous processing. Inside the OCS, processing of an
individual usage request is typically accomplished synchronously: the usage request is sent
from the OCS entry point to the OCS business logic nodes for processing. One OCS entry point
typically serves many OCS business logic nodes.

[0005] Sending a small usage request (typically 100-200 bytes in size) results in costly
network |O operations, context switches and transmission latency. If the time spent to process
the individual usage request is very short (e.g., below 1 ms) — this cost can become a limiting
factor for the OCS throughput and increase the Total Cost of Ownership (TCO) of the OCS. The
OCS latency requirements for usage request processing is: 99.9% of all usage requests should

be processed in less than 50 ms.

SUMMARY:
[0006] In accordance with various embodiments, systems and methods that provide small
batch processing of usage requests are provided. A system for small batch processing of usage

requests, can include a service broker, a plurality of servers wherein each server includes

-1-

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
customer data, and a plurality of queues, each associated with a different server. When a usage
request is received from a network entity, the service broker is configured to determine an
internal ID (Identification) associated with data required for processing the usage request,
determine on which particular server of the plurality of servers the data requested by the usage
request is stored, enqueue the usage request in a particular queue associated with the
particular server, and upon a trigger event, send all requests in the particular queue to the
particular server in a batch. In accordance with other various embodiments, a program is
provided for causing one or more computers to execute a method for small batch processing of
usage requests, comprising: providing a service broker executing on one or more
microprocessors; providing a plurality of servers, wherein each server can include customer
data; providing a plurality of queues, wherein each server is associated with a different queue;
receiving a usage request from a network entity; determining an internal ID (ldentification)
associated with data requested by the usage request; determining on which particular server of
the plurality of servers the data requested by the usage request is stored; enqueuing the usage
request in a particular queue associated with the particular server; and upon a trigger event,

sending all requests in the particular queue to the particular server in a batch.

BRIEF DESCRIPTION OF THE DRAWINGS:

[0007] Figure 1 shows a system for small batch processing of usage requests, in

accordance with an embodiment of the invention.

[0008] Figure 2A shows an individual request system.

[0009] Figure 2B shows a small batch system in accordance with an embodiment of the
invention.

[0010] Figure 3 shows a sequence diagram of small batch creation, in accordance with an
embodiment of the invention.

[0011] Figure 4 shows a sequence diagram of small batch request processing, in
accordance with an embodiment of the invention.

[0012] Figure 5 shows a method for small batch processing of usage requests, in
accordance with an embodiment of the invention.

[0013] Figure 6 shows in detail an illustrative service broker in accordance with an

embodiment of the invention.

DETAILED DESCRIPTION:

[0014] In the following description, the invention will be illustrated by way of example and

not by way of limitation in the figures of the accompanying drawings. References to various
embodiments in this disclosure are not necessarily to the same embodiment, and such
references mean at least one. While specific implementations are discussed, it is understood

that this is provided for illustrative purposes only. A person skilled in the relevant art will

-

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
recognize that other components and configurations may be used without departing from the

scope and spirit of the invention.

[0015] Furthermore, in certain instances, numerous specific details will be set forth to
provide a thorough description of the invention. However, it will be apparent to those skilled in
the art that the invention may be practiced without these specific details. In other instances,
well-known features have not been described in as much detail so as not to obscure the
invention.

[0016] Typically, high volumes of usage requests are sent in a continuous network stream
to an Online Charging System (OCS). A usage request is any form of usage processing which
requires customer data for charging purposes including, for example: a kilowatt of electricity
used by a commercial customer during peak hour; a call from one subscriber to another; or a
download request. In accordance with various embodiments, systems and methods that provide
small batch processing of usage requests are provided. A system for small batch processing of
usage requests, can include a service broker, and a plurality of servers forming the OCS. Each
server includes customer data, and a plurality of queues, each associated with a different
server. When a usage request is received from a network entity, the service broker is configured
to determine an internal ID associated with data required for processing the usage request,
determine on which particular server of the plurality of servers the data requested by the usage
request is stored, enqueue the usage request in a particular queue associated with the
particular server, and upon a trigger event, send all requests in the particular queue to the
particular server in a batch.

[0017] In accordance with various embodiments of the invention, instead of sending each
individual usage request directly from the OCS entry point to the OCS business logic layer,
usage requests can first be sorted based on their OCS business logic node destination. Each
node of the OCS business logic layer carries out the same business logic. However, customer
data is partitioned across all OCS business logic. The OCS business logic node destination is
determined based on the location of the customer data.

[0018] All usage requests with the same destination are then placed in the same 'small
batch' container (i.e., queue). The maximum size of each 'small batch' container can be set to
an arbitrary number depending on the particular needs and features of a system. Although
examples shown herein use a maximum size of 20, this is not intended to be limiting in any way.
The 'small batch' container is sent once the maximum size has been reached. The cost of
sending the 'small batch' container in terms of network 10 operations, context switches and
transmission latency is significantly less on a per usage request basis than the cost of sending
each usage request individually.

[0019] Overall OCS throughput can be increased in exchange for increasing individual
usage request latency. Latency of the individual usage request is now a function of the size of

the 'small batch' and increases to 30 ms (assuming 1 ms processing time for an individual

-3-

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
usage request). The OCS latency requirement of less than 50 ms is still fulfilled. Additional

triggers can also be provided which cause the small batch to be sent. For example, during times
of low usage request traffic volumes, a 'small batch' timeout mechanism can trigger sending of
an incomplete 'small batch' to guarantee less than 50 ms latencies. Additional trigger can be
provided for prioritization of requests. Upon arrival of a specific type of request, the small batch
is sent immediately. For example, upon arrival of a long running request (ie. If executing the
logic takes >25ms of processing time) the request can be sent immediately in a small batch all
by itself.

[0020] Figure 1 shows a system for small batch processing of usage requests, in
accordance with an embodiment of the invention. At 100, Subscriber A 102 makes a call to
subscriber B 104. Although a call is shown in Figure 1, this can be anything that the system
views as an event, e.g., an SMS from A to B, a request by A to download media for which there
is a charge, or any other action that results in a usage request. The request 106 is sent to a
service broker 108 which can translate the request from a network-centric protocol into an
internal native protocol, for example, an internal native protocol of the OCS. The service broker
108 can then analyze the request 106 to determine where the requested data is located. In
accordance with an embodiment, the service broker can determine the data location using a
cache 110 which stores internal (customer) IDs 112 of data corresponding to external IDs used
in the requests.

[0021] Data is located on one or more servers, such as server A 114 and server B 116.
Customer data is distributed across multiple server machines (first dimension) and across
multiple processes (here called ‘server’) within a single server machine (second dimension). A
typical process ‘hosts’ multiple partitions. Thus, each server can include a plurality of partitions,
which each include a plurality of customer objects. Once the process including the data required
to process the request is located (including identifying on which partition of which server the
data is stored), then the request can be put into a queue associated with that process. Each
queue is a per-server queue, so in this case there would be two queues, queue A 120 and
queue B 122. Traffic that is received for a particular server accumulates in the particular server’s
associated queue. For example, after the request 106 has been translated, the translated
request 124 is placed in queue B 122. Once a trigger event occurs, a batch of requests 126
from queue B are sent to server B 116 for processing.

[0022] In accordance with an embodiment of the invention, the server can process the
batch of requests 126 sequentially, taking each request in turn and generating a response.
When all requests in the batch have been processed by the server the entire batch of responses
is sent back 128 to the service broker 108. The service broker 108 then translates the
responses from their internal native representations to the network-centric protocol of the
requester, and then the translated responses are sent back to the requestor. For example, the

service broker 108 can identify the response to translated request 124 and translate the

-4-

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
response back from the internal native protocol to the network-centric protocol of the request.
The translated response 130 is then returned.

[0023] Additionally, as shown in Figure 1, data from the servers can be synchronously
serialized and backed up on another node. In this way the data can be replicated 134 on
another node to provide high availability. The data can also be asynchronously persisted 132 in
a database. The data which is replicated and/or persisted can include, for example, one or more
of the data required to process the request, customer data, and/or event-related data. In the
case of node failure, where a server crashes midway through processing a batch, requests
included in that batch are quarantined while the backup server comes online. Once the
guarantine ends, requests are processed again.

[0024] Figures 2A and 2B show a comparison of individual request processing and small
batch processing, in accordance with an embodiment of the invention. Figures 2A and 2B
compare a typical individual request system 200 with a small batch request system 202 in
accordance with an embodiment of the invention.

[0025] As shown in Figure 2A, the client side 204, for example a service broker (such as a
service broker 108), of the individual request system 200 can include a charging processor
client 208. When a usage request 212 is received from a network entity 214 (e.g., when a first
subscriber calls a second subscriber, or when a subscriber requests to download media), that
request 212 is handed off (or request 212 is requested to be handed off) to a separate thread
running the charging processor client 208. (Note that there would typically be hundreds of such
threads running concurrently in the client 204) The charging processor can translate the request
as necessary before forwarding the request to the server side 216 of the individual request
system 200.

[0026] On the server side 216, an entry processor 218 receives the request 212 and
forwards it on to the appropriate charging service 220. A response is then returned in a similar
fashion. The response is returned synchronously. Thus, in the individual request system 200
described above with respect to Figure 2A, each request is received, processed and sent to the
server as it comes in. Prior systems found this arrangement workable because typical transit
time is 1 ms, while server processing time is closer to 50 ms. However, improvements in
architecture have reduced server processing time to much less than 1 ms, making transit time a
substantial factor. By submitting requests in batches, this transit time can be spread over many
requests, greatly reducing the amount of time per message spent on transit.

[0027] Figure 2B shows the small batch request system 202. On the client side 222 of the
small batch request system 202, requests are similarly received from network entities. However,
rather than immediately processing and forwarding these requests to the server side 224, a
request batch service 226 aggregates the requests into per-server queues (e.g., queues 120
and 122 as shown in Figure 1). When a triggering event occurs, such as a timeout or the batch

is full, a batch of requests is created from the contents of the queue, and charging invocable

-5-

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
client 228 is used to submit the batch of requests to the server side 224. A server side charging

invocable module 230 can then process the batch of requests sequentially, forwarding each
individual request to an entry processor 232 which can then forward the request to the
appropriate charging service 234. When each request in the batch has been processed, the
server side charging invocable module 230 can send the batch of requests, now populated with
response data, back to the charging invocable client 228 and on to the request batch service
226. The request batch service 226 can then return each response to its requestor.

[0028] Figure 3 shows a sequence diagram of small batch creation, in accordance with an
embodiment of the invention. As described above, in accordance with an embodiment of the
invention, a plurality of different triggers can be used to send a batch of requests from a queue
to its associated server. These triggers can include, but are not limited to, a timeperiod, a
maximum queue size, or priority information associated with a request. Once the trigger has
been satisfied, then a batch request is created out of the contents of the queue which is sent to
the associated server.

[0029] As shown in Figure 3, a client 300 (for example a service broker, such as service
broker 108) can submit 302 a translated request to a batch request service 304. The batch
request service can determine 306 the node on which the data required for processing the
usage request is stored and return 308 the name of the node on which the requested data is
stored. If the node information returned is invalid e.g. null, for example because the node has
crashed, then the system can enter a suspend 310 mode and the requests in its associated
gueue are quarantined (i.e., taken out of circulation) during the recovery process. Otherwise, as
shown at 312, the individual request is inserted into the request queue for the identified node.
When a trigger event occurs 314, a batch request 316 is made from the contents of the request
qgueue 318. Once the batch request has been created 320, the batch request is handed off to a
‘dedicated thread’ which subsequently sends 322 the batch request to the queue’s associated
server. The ‘dedicated thread’ is pre-allocated as part of a large thread pool. The dedicated
thread handles the entire lifecycle of the batch request from this point on. A batch response is
then returned 324.

[0030] Figure 4 shows a sequence diagram of small batch request processing, in
accordance with an embodiment of the invention. Figure 4 shows batch request service 404,
request queue insert thread 400 and request queue dequeuing thread 412. There are typically
many Request Queue insert threads but only one Request Queue dequeuing thread per node.
A request queue insert thread 400 can be used to add 402 requests from a batch request
service 404 to a request queue. When a request is added, the request queue insert thread 400
can determine if the requested node still exists, if not 406 (e.g., because the server has
crashed) suspense management can begin.

[0031] The request queue insert thread 400 includes a loop 408 which waits for a trigger to

occur. The Request Queue insert thread and Request Queue Dequeue thread can use the

-6-

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
monitor pattern to ensure mutually exclusive access to the request queue. The Request Queue

insert thread will wait only if one of several condition variables (triggers) is true. Examples of
triggers can include if the batch is full, if a timeout condition is reached, or if an error occurs. If
the batch full trigger occurs, then the request queue insert thread sets a condition to batch full
410 and processing continues to the request queue dequeuing thread 412. The request queue
dequeuing thread 412 can include a plurality of nested loops, including a first loop 414
monitoring for any error conditions and a second loop 416 waiting for a timeout condition. If an
elapsed time is greater than or equal to a timeout time, then the timeout trigger 418 has
occurred. Once either the timeout trigger or the batch full trigger have occurred 420, then the
requests in the queue are dequeued 422 and a batch request 424 is created. The batch request
424 is then sent 426 to a dedicated batch request thread which sends the batch to the server,
waits for a response batch, and then returns the response batch to the service broker.

[0032] Figure 5 shows a method for small batch processing of usage requests, in
accordance with an embodiment of the invention. At step 500, a service broker executing on
one or more microprocessors is provided. At step 502, a plurality of servers are provided in
which each server contains customer data (each of the plurality of servers contains a subset of
the data of the customer base). At step 504, a plurality of queues is provided. Each server is
associated with a different queue. At step 506, a usage request is received from a network
entity. At step 508, an internal ID associated with data requested by the usage request is
determined. At step 510, a particular server of the plurality of servers, on which the data
requested by the usage request is stored, is determined. At step 512, the usage request is
enqueued in a particular queue associated with the particular server. At step 514, upon a trigger
event, all requests in the particular queue are sent to the particular server in a batch.

[0033] Figure 6 shows in detail an illustrative service broker 600, in accordance with an
embodiment of the invention. The service broker 600 may be one specific embodiment of the
service broker 108 as shown in Figure 1. However, as understood by those skilled in the art,
implementations of a service broker according to the invention are not such limited. For
example, the service broker 600 is communicating with a plurality of servers (such as N servers,
and in the case of Figure 1, two servers, i.e., server A 114 and server 116 B). Each server may
include customer data. For example, the service broker 600 is configured to perform small
batch processing of usage requests in corporation with the plurality of servers.

[0034] As illustrated in Figure 6, the service broker 600 comprises a plurality of queue
containers (6001-1, 6001-2...6001-N), which are configured to include a corresponding plurality
of queues, wherein each server is associated with a different queue. For example, if there are
two servers such as server A 114 and server 116 B shown in Figure 1, then there may be two
gueue containers 6001-1 and 6001-2 (i.e., N=2), wherein the queue containers 6001-1 includes
a queue that is associated with server A 114 and the queue containers 6001-2 includes a queue

that is associated with server 116 B.

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
[0035] The service broker 600 may further comprise a first receiving interface 6003,

configured to receive a usage request from a network entity. The receiving interface 6003 can
be any interface that well known in the art or will be known in near future. In one embodiment,
the usage request can include a call from one subscriber to another or a download request.
[0036] As described with respect to Figure 1, a service broker can determine the data
location e.g., using a cache which stores internal (customer) IDs of data corresponding to
eternal IDs used in the request. As shown in Figure 6, the service broker 600 further comprises
a first determining unit 6004, which is configured to determine an internal ID associated with
data requested by the usage request; and a second determining unit 6005, which is configured
to determine on which particular server of the plurality of servers the data requested by the
usage request is stored. For example, the usage request may request date located on e.g.,
server A 114, thus the first determining unit 6004 determines an internal ID associated with data
requested by the usage request and the second determining unit 6005 determines the data
requested by the usage request is stored on server A 114. The first determining unit 6004 and
the second determining unit 6005 can be separate units or integrated into one unit. As known to
those skilled in the art, the internal (customer) IDs can be stored in other storages other than
cache.

[0037] Additionally, as shown in Figure 6, the service broker 600 further comprises a queue
processing unit 6007, which is configured to enqueue the usage request in a particular queue
associated with the particular server. In the above example wherein it is determined the data
requested by the usage request is stored on server A 114, the queue processing unit 6007 may
engueue the usage request in the queue 6001-1 associated with the server A 114.

[0038] The service broker 600 may further comprise a first sending interface 6009, which is
configured to, upon a trigger event, send all requests in the particular queue to the particular
server in a batch. As described above, the trigger event may be reaching a predetermined
number of requests in a queue, arrival of a specific type of request, arrival of a long running
request, and the like. For example, upon the number of usage requests in the queue container
6001-1 reaches a predetermined number, all the requests in the queue container 6001-1 are
sent in a batch.

[0039] As described above, the service broker can translate the request from a network-
centric protocol into an internal native protocol, for example, an internal native protocol of the
OCS. As shown in Figure 6, the service broker (600) may further comprise a translator (6011)
configured to translate the usage request from a network-centric protocol to an internal protocol.
[0040] In the embodiment, each server may process each request in the batch and return to
the service broker the batch which has been populated with response data for each request. In
such a case, the service broker 600 may further comprise a second receiving interface 6013
configured to, when the particular server has processed each request in the batch and returns

the batch, which has been populated with response data for each request, to the service broker,

-8-

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
receive the batch from the particular server. In one embodiment, the translator 6011 may be

further configured to translate the response data for each request from the internal protocol to
the network-centric protocol, to create translated response data. Correspondingly, the service
broker 600 may further comprise a second sending interface 6015 configured to return the
translated response data to each requestor.

[0041] Those skilled in the art can understand that any of the units in the broker server 600
can be implemented by software, hardware or the combination thereof. The units in the broker
server 600 can be separately implemented or integrated in any combination.

[0042] Appropriate software coding can readily be prepared by skilled programmers based
on the teachings of the present disclosure, as will be apparent to those skilled in the software
art. The invention may also be implemented by the preparation of application specific integrated
circuits or by interconnecting an appropriate network of conventional component circuits, as will
be readily apparent to those skilled in the art.

[0043] The various embodiments include a computer program product which is a storage
medium (media) having instructions stored thereon/in which can be used to program a general
purpose or specialized computing processor(s)/device(s) to perform any of the features
presented herein. The storage medium can include, but is not limited to, one or more of the
following: any type of physical media including floppy disks, optical discs, DVDs, CD-ROMs,
microdrives, magneto-optical disks, holographic storage, ROMs, RAMs, PRAMS, EPROMs,
EEPROMs, DRAMs, VRAMSs, flash memory devices, magnetic or optical cards, nanosystems
(including molecular memory ICs); paper or paper-based media; and any type of media or
device suitable for storing instructions and/or information. The computer program product can
be transmitted in whole or in parts and over one or more public and/or private networks wherein
the transmission includes instructions which can be used by one or more processors to perform
any of the features presented herein. The transmission may include a plurality of separate
transmissions. In accordance with certain embodiments, however, the computer storage
medium containing the instructions is non-transitory (i.e. not in the process of being transmitted)
but rather is persisted on a physical device.

[0044] The foregoing description of the preferred embodiments of the present invention has
been provided for purposes of illustration and description. It is not intended to be exhaustive or
to limit the invention to the precise forms disclosed. Many modifications and variations can be
apparent to the practitioner skilled in the art. The modifications and variations include any
relevant combinations of the disclosed features. Embodiments were chosen and described in
order to best explain the principles of the invention and its practical application, thereby enabling
others skilled in the relevant art to understand the invention. It is intended that the scope of the

invention be defined by the following claims and their equivalents.

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
CLAIMS

What is claimed is:

1. A system for small batch processing of usage requests, comprising:
a service broker executing on one or more microprocessors;
a plurality of servers, wherein each server can include customer data;
a plurality of queues, wherein each server is associated with a different queue;
wherein when a usage request is received from a network entity, the service broker is
configured to:
determine an internal ID (ldentification) associated with data requested by the
usage request,
determine on which particular server of the plurality of servers the data requested
by the usage request is stored,
engueue the usage request in a particular queue associated with the particular
server, and
upon a trigger event, send all requests in the particular queue to the particular

server in a batch.

2. The system of Claim 1 or 2, wherein the usage request can include a call from one

subscriber to another or a download request.

3. The system of Claim 1 or 2, wherein the service broker can further translate the usage

request from a network-centric protocol to an internal protocol.

4. The system of any preceding Claims:
wherein the particular server is configured to return the batch to the service broker when
the particular server has processed each request in the batch, wherein the batch has been

populated with response data for each request.

5. The system of Claim 4, further comprising:
wherein when the service broker receives the batch from the particular server, the
service broker is configured to:
translate the response data for each request from an internal protocol to a
network-centric protocol, to create translated response data, and

return the translated response data to each requestor.

6. The system of any preceding Claims, wherein data on each server is persisted.

-10-

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
7. The system of any preceding Claims wherein data stored on a first server is made highly

available by storing it on a second server.

8. A method for small batch processing of usage requests, comprising:

providing a service broker executing on one or more microprocessors;

providing a plurality of servers, wherein each server includes customer data;

providing a plurality of queues, wherein each server is associated with a different queue;

receiving a usage request from a network entity;

determining an internal ID (ldentification) associated with data requested by the usage
request;

determining on which particular server of the plurality of servers the data requested by
the usage request is stored,;

engueuing the usage request in a particular queue associated with the particular server;

and

upon a trigger event, sending all requests in the particular queue to the particular server
in a batch.
9. The method of Claim 8, wherein the usage request includes a call from one subscriber to

another or a download request.

10. The method of Claim 8 or 9, wherein the service broker further translates the usage

request from a network-centric protocol to an internal protocol.

11. The method of any of Claims 8 to 10, further comprising:
when the particular server has processed each request in the batch,
populating the batch with response data for each request, and

returning the batch to the service broker.

12. The method of Claim 11, further comprising:
when the service broker receives the batch from the particular server,
translating the response data for each request from an internal protocol to a
network-centric protocol, to create translated response data, and

returning the translated response data to each requestor.

13. The method of any of Claims 8 to 12, wherein data on each server is persisted.

14. The method of any of Claims 8 to 13 wherein data stored on a first server is made highly

available by storing it on a second server.

-11-

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591

15. A computer program comprising instructions that when executed on a computer system

cause the computer system to perform all the steps of the method of any of Claims 8 to 14.

16. A computer program product comprising a non-transitory computer readable storage

medium having the computer program of Claim 15 stored thereon.

17. A non-transitory computer readable storage medium including instructions stored
thereon which, when executed by a computer, cause the computer to perform the steps of:

providing a service broker executing on one or more microprocessors;

providing a plurality of servers, wherein each server can include customer data;

providing a plurality of queues, wherein each server is associated with a different queue;

receiving a usage request a network entity;

determining an internal ID (ldentification) associated with data requested by the usage
request;

determining on which particular server of the plurality of servers the data requested by
the usage request is stored,;

engueuing the usage request in a particular queue associated with the particular server;
and

upon a trigger event, sending all requests in the particular queue to the particular server

in a batch.

18. The non-transitory computer readable storage medium of Claim 17, wherein the usage

request can include a call from one subscriber to another or a download request.

19. The non-transitory computer readable storage medium of Claim 17 or 18, wherein the
service broker can further translate the usage request from a network-centric protocol to an

internal protocol.

20. The non-transitory computer readable storage medium of any one of Claims 17 to 19
wherein when the particular server has processed each request in the batch, the particular
server is configured to return the batch to the service broker, wherein the batch has been

populated with response data for each request.

21. The non-transitory computer readable storage medium of Claim 20, further comprising:
when the service broker receives the batch from the particular server,
translating the response data for each request from the internal protocol to the

network-centric protocol, to create translated response data, and

-12-

10

15

20

25

30

35

WO 2014/047269 PCT/US2013/060591
returning the translated response data to each requestor.

22. The non-transitory computer readable storage medium of any one of Claims 17 to 21,
wherein data on each server is persisted, and wherein data stored on a first server is made

highly available by storing it on a second server.

23. A service broker (600) for communicating with a plurality of servers each including
customer data to perform small batch processing of usage requests, comprising:

a plurality of queue containers (6001-1, 6001-2 and 6001-N), configured to include a
corresponding plurality of queues, wherein each server is associated with a different queue;

a first receiving interface (6003), configured to receive a usage request from a network
entity,

a first determining unit (6004), configured to determine an internal ID associated with
data requested by the usage request,

a second determining unit (6005), configured to determine on which particular server of
the plurality of servers the data requested by the usage request is stored,

a queue processing unit (6007), configured to enqueue the usage request in a particular
gueue associated with the particular server, and

a first sending interface (6009), configured to, upon a trigger event, send all requests in

the particular queue to the particular server in a batch.

24, The service broker (600) of Claim 23, wherein the usage request can include a call from

one subscriber to another or a download request.

25. The service broker (600) of Claim 23, wherein the service broker further comprises a
translator (6011) configured to translate the usage request from a network-centric protocol to an

internal protocol.

26. The service broker (600) of Claim 23, further comprising a second received interface
(6013) configured to, when the particular server has processed each request in the batch and
returns the batch, which has been populated with response data for each request, to the service

broker, receive the batch from the particular server.

27. The service broker (600) of Claim 23, wherein the translator (6011) is further configured
to translate the response data for each request from the internal protocol to the network-centric
protocol, to create translated response data, and

the service broker (600) further comprises a second sending interface (6015) configured

to return the translated response data to each requestor.

-13-

WO 2014/047269 PCT/US2013/060591

16
Figure 1
102 r"IOO
/\{W\(‘m@
[EM(B)
®
e
106
130
Server B 116
@
132
Front> ' N ={((® ;51/ -
End N 112

ol ¢
Service @er /
108 134

Queue A G, >,
124 120

®
SN
ALY

Queue B
122 Server A 114

WO 2014/047269 PCT/US2013/060591

2/6
Figure 2A
Individual Request System 200
Single Request Single Request
| L %
oo [T ey, [e
Entity =9 212 gl 08 mgf‘gw 90
214 B o
Cliant 204 Server 216
Smali Batch System 202
Single Requests Batch Reguest Single Requests
| T i i
Network o —i' it -
Entity | 212 bwie! Request || Charging ; i
e Charging Entry Charging
214 Si?’\t/{;ge Imé?; :;;lzie Invocable || Processor || Service
596 208 230 232 234
Neatwork
Entity i 212 L] | - - -
214)
Client 222 Server 224

Figure 2B

WO 2014/047269

PCT/US2013/060591
Figure 3
300} 3@41
Batch Batch Charging
Client || Request Reguest SuspenseQuels } Node
Servica Factory Setvice

i !

P 302 L5 308 Lookup chargingNode

Subrmit iU
"""""""""""""""""""""""""""" 308 Return chargingNode
310 Suspend N
: ,[
3187
T ————————— 4 RequestQueue [
R e T
317 -] nsert N
e e o o o e o o o o .4
Suspend .
- m’akeBatchRequeat 318 Trigger
i e | 314 3207 Bateh
,,,,,,,,,,, L)} BatchRequest | | Request
Ml 7T T Invocable

b

SUBSTITUTE SHEET (RULE 26)

PCT/US2013/060591

WO 2014/047269
Figure 4
404 ‘
o 400, 412
Renuest Requeut()ueug i RequestQueue
Service . insert thread Dequeting thread
402 insert
' naert * loop 414
“alse 0 loop 416

loop 408

| wait

”‘:} wait

timeout 418

;:{ trigger

e —

:| inser

batch full 420

4 410
batch fudl

426 exacute

| notify

I

R |

SUBSTITUTE SHEET (RULE 26)

424~
—4 BatchReguest
!
|

WO 2014/047269 PCT/US2013/060591

5/6

Figure 5

Providing a service broker executing on one or More microprocessars.

Y

Providing a plurality of servers, wherein each server includes customer
data.

'

Providing a plurality of queues, wherein each server is associated with a
different queue,

'

Receiving a usage request a network entity.

'

Determining an internal 1D associated with data requested by the usage
requast,

l

Determining on which particular server of the plurality of servers the data
requested by the usage request is stored,

l

Enqueuing the usage request in a particular queue associated with the
particular server.

/512

l

Upon a trigger event, sending all requests in the particular queue o the
particuiar server in a baich,

/514

WO 2014/047269 B/6 PCT/US2013/060591

Figure.6

service broker 600

queue container 6001-1 HTSt recetving
interface
e 6003
quene container 6001-2
queue container 6001-N first

determining
unit 6004

r E second

3 translator 6011 E determining
] ! unit 6005
P !

i second receiving ; quene

| interface 6013 E

o o o o e e s e e o s o oo o processing
unit 6007

t
o |
6015 t —
e e 2 o e o e e e . o e 2 2 ! first sending
interface
6009

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - claims
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings

