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BAD COLUMN MANAGEMENT WITH BIT INFORMATION IN NON-
VOLATILE MEMORY SYSTEMS

FIELD OF THE INVENTION

[0001] This invention relates generally to non-volatile semiconductor memory such
as electrically erasable programmable read-only memory (EEPROM) and flash
EEPROM and, more specifically, to techniques for handling defects in such

memories.
BACKGROUND OF THE INVENTION

[0002] Solid-state memory capable of nonvolatile storage of charge, particularly in
the form of EEPROM and flash EEPROM packaged as a small form factor card, has
recently become the storage of choice in a variety of mobile and handheld devices,
notably information appliances and consumer eclectronics products. Unlike RAM
(random access memory) that is also solid-state memory, flash memory is non-
volatile, retaining its stored data even after power is turned off. In spite of the higher
cost, flash memory is increasingly being used in mass storage applications.
Conventional mass storage, based on rotating magnetic medium such as hard drives
and floppy disks, is unsuitable for the mobile and handheld environment. This is
because disk drives tend to be bulky, are prone to mechanical failure and have high
latency and high power requirements. These undesirable attributes make disk-based
storage impractical in most mobile and portable applications. On the other hand, flash
memory, both embedded and in the form of a removable card is ideally suited in the
mobile and handheld environment because of its small size, low power consumption,

high speed and high reliability features.

[0003] EEPROM and celectrically programmable read-only memory (EPROM) are
non-volatile memory that can be erased and have new data written or “programmed”
into their memory cells. Both utilize a floating (unconnected) conductive gate, in a
field effect transistor structure, positioned over a channel region in a semiconductor
substrate, between source and drain regions. A control gate is then provided over the
floating gate. The threshold voltage characteristic of the transistor is controlled by the

amount of charge that is retained on the floating gate. That is, for a given level of
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charge on the floating gate, there is a corresponding voltage (threshold) that must be
applied to the control gate before the transistor is turned “on” to permit conduction

between its source and drain regions.

[0004] The floating gate can hold a range of charges and therefore can be
programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to the range of the charges
that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0005] The transistor serving as a memory cell is typically programmed to a
"programmed" state by one of two mechanisms. In "hot electron injection,” a high
voltage applied to the drain accelerates electrons across the substrate channel region.
At the same time a high voltage applied to the control gate pulls the hot electrons
through a thin gate dielectric onto the floating gate. In "tunneling injection,” a high
voltage is applied to the control gate relative to the substrate. In this way, electrons

are pulled from the substrate to the intervening floating gate.

[0006] The memory device may be erased by a number of mechanisms. For EPROM,
the memory is bulk erasable by removing the charge from the floating gate by
ultraviolet radiation. For EEPROM, a memory cell is electrically erasable, by
applying a high voltage to the substrate relative to the control gate so as to induce
electrons in the floating gate to tunnel through a thin oxide to the substrate channel
region (i.c., Fowler-Nordheim tunneling.) Typically, the EEPROM is erasable byte
by byte. For flash EEPROM, the memory is electrically erasable either all at once or
one or more blocks at a time, where a block may consist of 512 bytes or more of

memory.

EXAMPLES OF NON-VOLATILE MEMORY CELLS

[0007] The memory devices typically comprise one or more memory chips that may
be mounted on a card. Each memory chip comprises an array of memory cells

supported by peripheral circuits such as decoders and erase, write and read circuits.
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The more sophisticated memory devices also come with a controller that performs
intelligent and higher level memory operations and interfacing. There are many
commercially successful non-volatile solid-state memory devices being used today.
These memory devices may employ different types of memory cells, each type having

one or more charge storage element.

[0008] FIGs. 1A-1E illustrate schematically different examples of non-volatile

memory cells.

[0009] FIG. 1A illustrates schematically a non-volatile memory in the form of an
EEPROM cell with a floating gate for storing charge. An electrically erasable and
programmable read-only memory (EEPROM) has a similar structure to EPROM, but
additionally provides a mechanism for loading and removing charge electrically from
its floating gate upon application of proper voltages without the need for exposure to
UV radiation. Examples of such cells and methods of manufacturing them are given

in United States patent no. 5,595,924.

[0010] FIG. 1B illustrates schematically a flash EEPROM cell having both a select
gate and a control or steering gate. The memory cell 10 has a “split-channel” 12
between source 14 and drain 16 diffusions. A cell is formed effectively with two
transistors T1 and T2 in series. T1 serves as a memory transistor having a floating
gate 20 and a control gate 30. The floating gate is capable of storing a selectable
amount of charge. The amount of current that can flow through the T1’s portion of
the channel depends on the voltage on the control gate 30 and the amount of charge
residing on the intervening floating gate 20. T2 serves as a select transistor having a
select gate 40. When T2 is turned on by a voltage at the select gate 40, it allows the
current in the T1’s portion of the channel to pass between the source and drain. The
select transistor provides a switch along the source-drain channel independent of the
voltage at the control gate. One advantage is that it can be used to turn off those cells
that are still conducting at zero control gate voltage due to their charge depletion
(positive) at their floating gates. The other advantage is that it allows source side

injection programming to be more easily implemented.

[0011] One simple embodiment of the split-channel memory cell is where the select

gate and the control gate are connected to the same word line as indicated
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schematically by a dotted line shown in FIG. 1B. This is accomplished by having a
charge storage element (floating gate) positioned over one portion of the channel and
a control gate structure (which is part of a word line) positioned over the other
channel portion as well as over the charge storage element. This effectively forms a
cell with two transistors in series, one (the memory transistor) with a combination of
the amount of charge on the charge storage element and the voltage on the word line
controlling the amount of current that can flow through its portion of the channel, and
the other (the select transistor) having the word line alone serving as its gate.
Examples of such cells, their uses in memory systems and methods of manufacturing
them are given in United States patents nos. 5,070,032, 5,095,344, 5,315,541,
5,343,063, and 5,661,053.

[0012] A more refined embodiment of the split-channel cell shown in FIG. 1B is
when the select gate and the control gate are independent and not connected by the
dotted line between them. One implementation has the control gates of one column in
an array of cells connected to a control (or steering) line perpendicular to the word
line. The effect is to relieve the word line from having to perform two functions at the
same time when reading or programming a selected cell. Those two functions are (1)
to serve as a gate of a select transistor, thus requiring a proper voltage to turn the
select transistor on and off, and (2) to drive the voltage of the charge storage element
to a desired level through an electric field (capacitive) coupling between the word line
and the charge storage element. It is often difficult to perform both of these functions
in an optimum manner with a single voltage. With the separate control of the control
gate and the select gate, the word line need only perform function (1), while the added
control line performs function (2). This capability allows for design of higher
performance programming where the programming voltage is geared to the targeted
data. The use of independent control (or steering) gates in a flash EEPROM array is
described, for example, in United States patent nos. 5,313,421 and 6,222,762.

[0013] FIG. 1C illustrates schematically another flash EEPROM cell having dual
floating gates and independent select and control gates. The memory cell 10 is
similar to that of FIG. 1B except it effectively has three transistors in series. In this
type of cell, two storage elements (i.e., that of T1 - left and T1 - right) are included

over its channel between source and drain diffusions with a select transistor T1 in
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between them. The memory transistors have floating gates 20 and 20°, and control
gates 30 and 30°, respectively. The select transistor T2 is controlled by a select gate
40. At any one time, only one of the pair of memory transistors is accessed for read
or write. When the storage unit T1 - left is being accessed, both the T2 and T1 - right
are turned on to allow the current in the T1 - left’s portion of the channel to pass
between the source and the drain. Similarly, when the storage unit T1 - right is being
accessed, T2 and T1 - left are turned on. Erase is effected by having a portion of the
select gate polysilicon in close proximity to the floating gate and applying a
substantial positive voltage (e.g. 20V) to the select gate so that the electrons stored

within the floating gate can tunnel to the select gate polysilicon.

[0014] FIG. 1D illustrates schematically a string of memory cells organized into an
NAND cell. An NAND cell 50 consists of a series of memory transistors M1, M2, ...
Mn (n= 4, 8, 16 or higher) daisy-chained by their sources and drains. A pair of select
transistors S1, S2 controls the memory transistors chain’s connection to the external
via the NAND cell’s source terminal 54 and drain terminal 56. In a memory array,
when the source select transistor S1 is turned on, the source terminal is coupled to a
source line. Similarly, when the drain select transistor S2 is turned on, the drain
terminal of the NAND cell is coupled to a bit line of the memory array. Each memory
transistor in the chain has a charge storage element to store a given amount of charge
so as to represent an intended memory state. A control gate of each memory
transistor provides control over read and write operations. A control gate of each of
the select transistors S1, S2 provides control access to the NAND cell via its source

terminal 54 and drain terminal 56 respectively.

[0015] When an addressed memory transistor within an NAND cell is read and
verified during programming, its control gate is supplied with an appropriate voltage.
At the same time, the rest of the non-addressed memory transistors in the NAND cell
50 are fully turned on by application of sufficient voltage on their control gates. In
this way, a conductive path is effective created from the source of the individual
memory transistor to the source terminal 54 of the NAND cell and likewise for the
drain of the individual memory transistor to the drain terminal 56 of the cell. Memory
devices with such NAND cell structures are described in United States patent nos.

5,570,315, 5,903,495, 6,046,935.
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[0016] FIG. 1E illustrates schematically a non-volatile memory with a dielectric
layer for storing charge. Instead of the conductive floating gate elements described
carlier, a dielectric layer is used. Such memory devices utilizing dielectric storage
element have been described by FEitan et al., “NROM: A Novel Localized Trapping,
2-Bit Nonvolatile Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11,
November 2000, pp. 543-545. An ONO diclectric layer extends across the channel
between source and drain diffusions. The charge for one data bit is localized in the
dielectric layer adjacent to the drain, and the charge for the other data bit is localized
in the dielectric layer adjacent to the source. For example, United States patents nos.
5,768,192 and 6,011,725 disclose a nonvolatile memory cell having a trapping
dielectric sandwiched between two silicon dioxide layers. Multi-state data storage is
implemented by separately reading the binary states of the spatially separated charge

storage regions within the dielectric.

MEMORY ARRAY

[0017] A memory device typically comprises of a two-dimensional array of memory
cells arranged in rows and columns and addressable by word lines and bit lines. The

array can be formed according to an NOR type or an NAND type architecture.

NOR Array

[0018] FIG. 2 illustrates an example of an NOR array of memory cells. Memory
devices with an NOR type architecture have been implemented with cells of the type
illustrated in FIGs. 1B or 1C. Each row of memory cells are connected by their
sources and drains in a daisy-chain manner. This design is sometimes referred to as a
virtual ground design. Each memory cell 10 has a source 14, a drain 16, a control
gate 30 and a select gate 40. The cells in a row have their select gates connected to
word line 42. The cells in a column have their sources and drains respectively
connected to selected bit lines 34 and 36. In some embodiments where the memory
cells have their control gate and select gate controlled independently, a steering line

36 also connects the control gates of the cells in a column.

[0019] Many flash EEPROM devices are implemented with memory cells where each
is formed with its control gate and select gate connected together. In this case, there

is no need for steering lines and a word line simply connects all the control gates and
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select gates of cells along each row. Examples of these designs are disclosed in
United States patent nos. 5,172,338 and 5,418,752. In these designs, the word line
essentially performed two functions: row selection and supplying control gate voltage

to all cells in the row for reading or programming.

NAND Array

[0020] FIG. 3 illustrates an example of an NAND array of memory cells, such as that
shown in FIG. 1D. Along each column of NAND cells, a bit line is coupled to the
drain terminal 56 of each NAND cell. Along cach row of NAND cells, a source line
may connect all their source terminals 54. Also the control gates of the NAND cells
along a row are connected to a series of corresponding word lines. An entire row of
NAND cells can be addressed by turning on the pair of select transistors (see FIG.
1D) with appropriate voltages on their control gates via the connected word lines.
When a memory transistor within the chain of a NAND cell is being read, the
remaining memory transistors in the chain are turned on hard via their associated
word lines so that the current flowing through the chain is essentially dependent upon
the level of charge stored in the cell being read. An example of an NAND
architecture array and its operation as part of a memory system is found in United

States patents nos. 5,570,315, 5,774,397 and 6,046,935.
Block Erase

[0021] Programming of charge storage memory devices can only result in adding
more charge to its charge storage elements. Therefore, prior to a program operation,
existing charge in a charge storage element must be removed (or erased). Erase
circuits (not shown) are provided to erase one or more blocks of memory cells. A
non-volatile memory such as EEPROM is referred to as a “Flash” EEPROM when an
entire array of cells, or significant groups of cells of the array, is electrically erased
together (i.e., in a flash). Once erased, the group of cells can then be reprogrammed.
The group of cells erasable together may consist one or more addressable erase unit.
The erase unit or block typically stores one or more pages of data, the page being the
unit of programming and reading, although more than one page may be programmed
or read in a single operation. Each page typically stores one or more sectors of data,

the size of the sector being defined by the host system. An example is a sector of 512
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bytes of user data, following a standard established with magnetic disk drives, plus
some number of bytes of overhead information about the user data and/or the block in

with it is stored.

READ/WRITE CIRCUITS

[0022] In the usual two-state EEPROM cell, at least one current breakpoint level is
established so as to partition the conduction window into two regions. When a cell is
read by applying predetermined, fixed voltages, its source/drain current is resolved
into a memory state by comparing with the breakpoint level (or reference current
Irpgr). If the current read is higher than that of the breakpoint level, the cell is
determined to be in one logical state (e.g., a "zero" state). On the other hand, if the
current is less than that of the breakpoint level, the cell is determined to be in the other
logical state (e.g., a “one” state). Thus, such a two-state cell stores one bit of digital
information. A reference current source, which may be externally programmable, is

often provided as part of a memory system to generate the breakpoint level current.

[0023] In order to increase memory capacity, flash EEPROM devices are being
fabricated with higher and higher density as the state of the semiconductor technology
advances. Another method for increasing storage capacity is to have each memory

cell store more than two states.

[0024] For a multi-state or multi-level EEPROM memory cell, the conduction
window is partitioned into more than two regions by more than one breakpoint such
that each cell is capable of storing more than one bit of data. The information that a
given EEPROM array can store is thus increased with the number of states that each
cell can store. EEPROM or flash EEPROM with multi-state or multi-level memory
cells have been described in U.S. Patent No. 5,172,338.

[0025] In practice, the memory state of a cell is usually read by sensing the
conduction current across the source and drain electrodes of the cell when a reference
voltage is applied to the control gate. Thus, for each given charge on the floating gate
of a cell, a corresponding conduction current with respect to a fixed reference control
gate voltage may be detected. Similarly, the range of charge programmable onto the
floating gate defines a corresponding threshold voltage window or a corresponding

conduction current window.
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[0026] Alternatively, instead of detecting the conduction current among a partitioned
current window, it is possible to set the threshold voltage for a given memory state
under test at the control gate and detect if the conduction current is lower or higher
than a threshold current. In one implementation the detection of the conduction
current relative to a threshold current is accomplished by examining the rate the

conduction current is discharging through the capacitance of the bit line.

[0027] FIG. 4 illustrates the relation between the source-drain current Ip and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may
be selectively storing at any one time. The four solid Ip versus Vg curves represent
four possible charge levels that can be programmed on a floating gate of a memory
cell, respectively corresponding to four possible memory states. As an example, the
threshold voltage window of a population of cells may range from 0.5V to 3.5V. Six
memory states may be demarcated by partitioning the threshold window into five
regions in interval of 0.5V each. For example, if a reference current, Irgr of 2 pA is
used as shown, then the cell programmed with Q1 may be considered to be in a
memory state “1” since its curve intersects with Iggr in the region of the threshold

window demarcated by Veg =0.5V and 1.0V. Similarly, Q4 is in a memory state “5”.

[0028] As can be seen from the description above, the more states a memory cell is
made to store, the more finely divided is its threshold window. This will require
higher precision in programming and reading operations in order to be able to achieve

the required resolution.

[0029] United States Patent No. 4,357,685 discloses a method of programming a 2-
state EPROM in which when a cell is programmed to a given state, it is subject to
successive programming voltage pulses, each time adding incremental charge to the
floating gate. In between pulses, the cell is read back or verified to determine its
source-drain current relative to the breakpoint level. Programming stops when the
current state has been verified to reach the desired state. The programming pulse train

used may have increasing period or amplitude.

[0030] Prior art programming circuits simply apply programming pulses to step
through the threshold window from the erased or ground state until the target state is

reached. Practically, to allow for adequate resolution, each partitioned or demarcated
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region would require at least about five programming steps to transverse. The
performance is acceptable for 2-state memory cells. However, for multi-state cells,
the number of steps required increases with the number of partitions and therefore, the
programming precision or resolution must be increased. For example, a 16-state cell

may require on average at least 40 programming pulses to program to a target state.

[0031] FIG. 5 illustrates schematically a memory device with a typical arrangement
of a memory array 100 accessible by read/write circuits 170 via row decoder 130 and
column decoder 160. As described in connection with FIGs. 2 and 3, a memory
transistor of a memory cell in the memory array 100 is addressable via a set of
selected word line(s) and bit line(s). The row decoder 130 selects one or more word
lines and the column decoder 160 selects one or more bit lines in order to apply
appropriate voltages to the respective gates of the addressed memory transistor.
Read/write circuits 170 are provided to read or write (program) the memory states of
addressed memory transistors. The read/write circuits 170 comprise a number of

read/write modules connectable via bit lines to memory elements in the array.

[0032] FIG. 6A is a schematic block diagram of an individual read/write module 190.
Essentially, during read or verify, a sense amplifier determines the current flowing
through the drain of an addressed memory transistor connected via a selected bit line.
The current depends on the charge stored in the memory transistor and its control gate
voltage. For example, in a multi-state EEPROM cell, its floating gate can be charged
to one of several different levels. For a 4-level cell, it may be used to store two bits of
data. The level detected by the sense amplifier is converted by a level-to-bits

conversion logic to a set of data bits to be stored in a data latch.

FACTORS AFFECTING READ/WRITE PERFORMANCE AND ACCURACY

[0033] In order to improve read and program performance, multiple charge storage
elements or memory transistors in an array are read or programmed in parallel. Thus,
a logical “page” of memory elements are read or programmed together. In existing
memory architectures, a row typically contains several interleaved pages. All
memory clements of a page will be read or programmed together. The column
decoder will selectively connect each one of the interleaved pages to a corresponding

number of read/write modules. For example, in one implementation, the memory

10
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array is designed to have a page size of 532 bytes (512 bytes plus 20 bytes of
overheads.) If each column contains a drain bit line and there are two interleaved
pages per row, this amounts to 8512 columns with each page being associated with
4256 columns. There will be 4256 sense modules connectable to read or write in
parallel either all the even bit lines or the odd bit lines. In this way, a page of 4256
bits (i.e., 532 bytes) of data in parallel are read from or programmed into the page of
memory elements. The read/write modules forming the read/write circuits 170 can be

arranged into various architectures.

[0034] Referring to FIG. §, the read/write circuits 170 is organized into banks of
read/write stacks 180. Each read/write stack 180 is a stack of read/write modules 190.
In a memory array, the column spacing is determined by the size of the one or two
transistors that occupy it. However, as can be seen from FIG. 6A, the circuitry of a
read/write module will likely be implemented with many more transistors and circuit
elements and therefore will occupy a space over many columns. In order to service
more than one column among the occupied columns, multiple modules are stacked up

on top of each other.

[0035] FIG. 6B shows the read/write stack of FIG. § implemented conventionally by
a stack of read/write modules 190. For example, a read/write module may extend
over sixteen columns, then a read/write stack 180 with a stack of eight read/write
modules can be used to service eight columns in parallel. The read/write stack can be
coupled via a column decoder to either the eight odd (1, 3, 5,7, 9, 11, 13, 15) columns
or the eight even (2, 4, 6, 8, 10, 12, 14, 16) columns among the bank.

[0036] As mentioned before, conventional memory devices improve read/write
operations by operating in a massively parallel manner on all even or all odd bit lines
at a time. This architecture of a row consisting of two interleaved pages will help to
alleviate the problem of fitting the block of read/write circuits. It is also dictated by
consideration of controlling bit-line to bit-line capacitive coupling. A block decoder
is used to multiplex the set of read/write modules to either the even page or the odd
page. In this way, whenever one set bit lines are being read or programmed, the

interleaving set can be grounded to minimize immediate neighbor coupling.

[0037] However, the interleaving page architecture is disadvantageous in at least

11
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three respects. First, it requires additional multiplexing circuitry. Secondly, it is slow
in performance. To finish read or program of memory cells connected by a word line
or in a row, two read or two program operations are required. Thirdly, it is also not
optimum in addressing other disturb effects such as field coupling between
neighboring charge storage elements at the floating gate level when the two neighbors

are programmed at different times, such as separately in odd and even pages.

[0038] The problem of neighboring field coupling becomes more pronounced with
ever closer spacing between memory transistors. In a memory transistor, a charge
storage clement is sandwiched between a channel region and a control gate. The
current that flows in the channel region is a function of the resultant electric field
contributed by the field at the control gate and the charge storage element. With ever
increasing density, memory transistors are formed closer and closer together. The
field from neighboring charge elements then becomes significant contributor to the
resultant field of an affected cell. The neighboring field depends on the charge
programmed into the charge storage elements of the neighbors. This perturbing field
is dynamic in nature as it changes with the programmed states of the neighbors. Thus,
an affected cell may read differently at different time depending on the changing

states of the neighbors.

[0039] The conventional architecture of interleaving page exacerbates the error
caused by neighboring floating gate coupling. Since the even page and the odd page
are programmed and read independently of each other, a page may be programmed
under one set of condition but read back under an entirely different set of condition,
depending on what has happened to the intervening page in the meantime. The read
errors will become more severe with increasing density, requiring a more accurate
read operation and coarser partitioning of the threshold window for multi-state
implementation. Performance will suffer and the potential capacity in a multi-state

implementation is limited.

[0040] United States Patent Publication No. US-2004-0060031-A1 discloses a high
performance yet compact non-volatile memory device having a large block of
read/write circuits to read and write a corresponding block of memory cells in
parallel. In particular, the memory device has an architecture that reduces redundancy

in the block of read/write circuits to a minimum. Significant saving in space as well
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as power is accomplished by redistributing the block of read/write modules into a
block read/write module core portions that operate in parallel while interacting with a
substantially smaller sets of common portions in a time-multiplexing manner. In
particular, data processing among read/write circuits between a plurality of sense

amplifiers and data latches is performed by a shared processor.

[0041] Therefore there is a general need for high performance and high capacity non-
volatile memory. In particular, there is a need for a compact non-volatile memory
with enhanced read and program performance having an improved processor that is
compact and efficient, yet highly versatile for processing data among the read/writing

circuits.
SUMMARY OF INVENTION

[0042] A non-volatile memory circuit including an array of non-volatile memory cells
formed along columns of multiple bits, the columns including a plurality of regular
columns and one or more redundancy columns, is described. The memory circuit also
includes a plurality of latches, each corresponding to one of the regular columns and
having a bit whose value indicates if the corresponding column is defective. The
memory circuit storing a column redundancy data table whose contents indicate for
cach redundancy column whether the redundancy column is being used and, for
redundancy columns that are being used, a defective regular column to which it
corresponds and the bits therein which are defective. The memory circuit stores data
corresponding to the defective bits of defective regular columns in the redundancy

column portion.

[0043] According to an additional set of aspects, a method of operating a non-volatile
memory circuit is presented, where the memory circuit includes an array of non-
volatile memory cells formed along columns of multiple bits and having a latch
associated with each of the columns whose value indicates if the corresponding
column has a defect. The method includes: performing a write operation to
concurrently program a plurality of memory cells on a corresponding plurality of
columns, including one or more columns having an associated latch whose value
indicates the corresponding column has a defect; determining the number of the

plurality of concurrently programmed memory cells that were not successfully
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programmed in the write operation, wherein the columns whose latch values indicate
the column has a defect are not counted in the determining; and determing whether
the number of cells that were not successfully been programmed during the write

operation is acceptable.

[0044] According to another set of aspects, methods of operating a non-volatile
memory circuit having an array of non-volatile memory cells formed along columns
of multiple bits, the columns including a plurality of regular columns and one or more
redundancy columns are presented. The method includes performing a plurality of
column test operations to determine which columns are defective and the individual
bits therein which are defective, each of the column tests including: writing and
reading back an externally supplied data pattern to the columns; and comparing the
externally supplied data pattern as read back with an expected data pattern, wherein
said column test operation are performed by circuitry on the memory circuit and each
of the column tests uses a different data pattern. The method also includes recording
addresses of any of the regular columns determined defective and the individual bits
therein which are determined defective in a column redundancy data table stored on
the memory circuit; and, for any of the regular columns determined defective, setting
a latch associated therewith to a value indicating that the associated column is

defective.

[0045] In other aspects, a method of operating a non-volatile memory circuit having
an array of non-volatile memory cells formed along columns of multiple bits, the
columns including a plurality of regular columns and one or more redundancy
columns is described. The method includes: storing on the memory circuit a column
redundancy data table whose contents indicate for each redundancy column whether
the redundancy column is being used and, for redundancy columns that are being
used, a defective regular column to which it corresponds and the bits therein which
are defective; receiving a set of data to program into the memory array; determining
the elements of the set of data assigned to be programmed to defective bits of
defective regular columns based upon the column redundancy circuit data table;
storing the elements of the set of data determined to be assigned to be programmed to
defective bits of defective columns in peripheral latch circuits on the memory circuit;

storing the set of data into programming latches for the memory array; performing a
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programming operation into the regular columns of the memory array from the
programming latches; and programming the clements of the data set stored in the

peripheral latches into the redundancy columns.

[0046] Various aspects, advantages, features and embodiments of the present
invention are included in the following description of exemplary examples thereof,
which description should be taken in conjunction with the accompanying drawings.
All patents, patent applications, articles, other publications, documents and things
referenced herein are hereby incorporated herein by this reference in their entirety for
all purposes. To the extent of any inconsistency or conflict in the definition or use of
terms between any of the incorporated publications, documents or things and the

present application, those of the present application shall prevail.
BRIEF DESCRIPTION OF THE DRAWINGS

[0047] FIGs. 1A-1E illustrate schematically different examples of non-volatile

memory cells.
[0048] FIG. 2 illustrates an example of an NOR array of memory cells.

[0049] FIG. 3 illustrates an example of an NAND array of memory cells, such as that
shown in FIG. 1D.

[0050] FIG. 4 illustrates the relation between the source-drain current and the control
gate voltage for four different charges Q1-Q4 that the floating gate may be storing at

any one time.

[0051] FIG. 5 illustrates schematically a typical arrangement of a memory array

accessible by read/write circuits via row and column decoders.
[0052] FIG. 6A is a schematic block diagram of an individual read/write module.

[0053] FIG. 6B shows the read/write stack of FIG. § implemented conventionally by

a stack of read/write modules.

[0054] FIG. 7A illustrates schematically a compact memory device having a bank of
partitioned read/write stacks, in which the improved processor of the present

invention is implemented.
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[0055] FIG. 7B illustrates a preferred arrangement of the compact memory device

shown in FIG. 7A.

[0056] FIG. 8 illustrates schematically a general arrangement of the basic

components in a read/write stack shown in FIG. 7A.

[0057] FIG. 9 illustrates one preferred arrangement of the read/write stacks among

the read/write circuits shown in FIGs. 7A and 7B.

[0058] FIG. 10 illustrates an improved embodiment of the common processor shown

in FIG 9.

[0059] FIG. 11A illustrates a preferred embodiment of the input logic of the common

processor shown in FIG. 10.
[0060] FIG. 11B illustrates the truth table of the input logic of FIG. 11A.

[0061] FIG. 12A illustrates a preferred embodiment of the output logic of the

common processor shown in FIG. 10.
[0062] FIG. 12B illustrates the truth table of the output logic of FIG. 12A.

[0063] FIG. 13 illustrates an example of a format for column redundancy data

without bit information.

[0064] FIG. 14A illustrates an example of a format for column redundancy data

including bit information.

[0065] FIG. 14B illustrates an alternate embodiment of a format for column

redundancy data including bit information.

[0066] FIGs. 15 and 16 respectively give a schematic representation of bit

substitution in the write and read process.
[0067] FIG. 17 is an exemplary flow for a built in self-test algorithm.

[0068] FIGs. 18-20 show some examples of circuitry that can be used to implement
some of the elements of the flow of FIG. 17.
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[0069] FIG. 21 is a schematic representation of the on-chip management for bad bits.

[0070] FIGs. 22A and 22B are examples of data latches that could be used for data

compactification.

[0071] FIGs. 23 and 25 respectively illustrate a set of bad bits before and after

compacting.

[0072] FIGs. 24 and 26 respectively illustrate an arrangement of latches for packing
and unpacking the data corresponding to the bad bits.

[0073] FIGs. 27 and 28 show some exemplary circuitry to implement elements for

FIG. 26.

[0074] FIG. 29 show how bad bits can be extracted from the column redundancy

information.

[0075] FIG. 30 illustrates an on-chip data folding process.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0076] FIG. 7A illustrates schematically a compact memory device having a bank of
partitioned read/write stacks, in which the improved processor of the present
invention is implemented. The memory device includes a two-dimensional array of
memory cells 300, control circuitry 310, and read/write circuits 370. The memory
array 300 is addressable by word lines via a row decoder 330 and by bit lines via a
column decoder 360. The read/write circuits 370 is implemented as a bank of
partitioned read/write stacks 400 and allows a block (also referred to as a “page”) of
memory cells to be read or programmed in parallel. In a preferred embodiment, a
page is constituted from a contiguous row of memory cells. In another embodiment,
where a row of memory cells are partitioned into multiple blocks or pages, a block
multiplexer 350 is provided to multiplex the read/write circuits 370 to the individual

blocks.

[0077] The control circuitry 310 cooperates with the read/write circuits 370 to

perform memory operations on the memory array 300. The control circuitry 310
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includes a state machine 312, an on-chip address decoder 314 and a power control
module 316. The state machine 312 provides chip level control of memory
operations. The on-chip address decoder 314 provides an address interface between
that used by the host or a memory controller to the hardware address used by the
decoders 330 and 370. The power control module 316 controls the power and

voltages supplied to the word lines and bit lines during memory operations.

[0078] FIG. 7B illustrates a preferred arrangement of the compact memory device
shown in FIG. 7A. Access to the memory array 300 by the various peripheral circuits
is implemented in a symmetric fashion, on opposite sides of the array so that access
lines and circuitry on each side are reduced in half. Thus, the row decoder is split into
row decoders 330A and 330B and the column decoder into column decoders 360A
and 360B. In the embodiment where a row of memory cells are partitioned into
multiple blocks, the block multiplexer 350 is split into block multiplexers 350A and
350B. Similarly, the read/write circuits are split into read/write circuits 370A
connecting to bit lines from the bottom and read/write circuits 370B connecting to bit
lines from the top of the array300. In this way, the density of the read/write modules,
and therefore that of the partitioned read/write stacks 400, is essentially reduced by

one half.

[0079] FIG. 8 illustrates schematically a general arrangement of the basic
components in a read/write stack shown in FIG. 7A. According to a general
architecture of the invention, the read/write stack 400 comprises a stack of sense
amplifiers 212 for sensing k bit lines, an I/O module 440 for input or output of data
via an I/O bus 231, a stack of data latches 430 for storing input or output data, a
common processor 500 to process and store data among the read/write stack 400, and
a stack bus 421 for communication among the stack components. A stack bus
controller among the read/write circuits 370 provides control and timing signals via

lines 411 for controlling the various components among the read/write stacks.

[0080] FIG. 9 illustrates one preferred arrangement of the read/write stacks among
the read/write circuits shown in FIGs. 7A and 7B.  Each read/write stack 400
operates on a group of k bit lines in parallel. If a page has p=r*k bit lines, there will

be r read/write stacks, 400-1, ..., 400-r.
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[0081] The entire bank of partitioned read/write stacks 400 operating in parallel
allows a block (or page) of p cells along a row to be read or programmed in parallel.
Thus, there will be p read/write modules for the entire row of cells. As each stack is
serving k memory cells, the total number of read/write stacks in the bank is therefore
given by r =p/k. For example, if r is the number of stacks in the bank, then p = r*k.
One example memory array may have p = 512 bytes (512x8 bits), k = 8, and therefore
r =512. In the preferred embodiment, the block is a run of the entire row of cells. In
another embodiment, the block is a subset of cells in the row. For example, the subset
of cells could be one half of the entire row or one quarter of the entire row. The
subset of cells could be a run of contiguous cells or one every other cell, or one every

predetermined number of cells.

[0082] Each read/write stack, such as 400-1, essentially contains a stack of sense
amplifiers 212-1 to 212-k servicing a segment of k memory cells in parallel. A
preferred sense amplifier is disclosed in United States Patent Publication No. 2004-
0109357-A1, the entire disclosure of which is hereby incorporated herein by

reference.

[0083] The stack bus controller 410 provides control and timing signals to the
read/write circuit 370 via lines 411. The stack bus controller is itself dependent on the
memory controller 310 via lines 311. Communication among each read/write stack
400 is effected by an interconnecting stack bus 431 and controlled by the stack bus
controller 410. Control lines 411 provide control and clock signals from the stack bus

controller 410 to the components of the read/write stacks 400-1.

[0084] In the preferred arrangement, the stack bus is partitioned into a SABus 422 for
communication between the common processor 500 and the stack of sense amplifiers
212, and a DBus 423 for communication between the processor and the stack of data

latches 430.

[0085] The stack of data latches 430 comprises of data latches 430-1 to 430-k, one for
cach memory cell associated with the stack The I/O module 440 enables the data

latches to exchange data with the external via an I/O bus 231.

[0086] The common processor also includes an output 507 for output of a status

signal indicating a status of the memory operation, such as an error condition. The
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status signal is used to drive the gate of an n-transistor 550 that is tied to a FLAG
BUS 509 in a Wired-Or configuration. The FLAG BUS is preferably precharged by
the controller 310 and will be pulled down when a status signal is asserted by any of
the read/write stacks. (The isolation latch IL 529 is discussed in the following section

on bad column management.)

[0087] FIG. 10 illustrates an improved embodiment of the common processor shown
in FIG 9. The common processor 500 comprises a processor bus, PBUS 505 for
communication with external circuits, an input logic 510, a processor latch PLatch

520 and an output logic 530.

[0088] The input logic 510 receives data from the PBUS and outputs to a BSI node as
a transformed data in one of logical states “17, “0”, or “Z” (float) depending on the
control signals from the stack bus controller 410 via signal lines 411. A Set/Reset
latch, PLatch 520 then latches BSI, resulting in a pair of complementary output
signals as MTCH and MTCH*.

[0089] The output logic 530 receives the MTCH and MTCH?* signals and outputs on
the PBUS 505 a transformed data in one of logical states “17, “0”, or “Z” (float)
depending on the control signals from the stack bus controller 410 via signal lines

411.

[0090] At any one time the common processor 500 processes the data related to a
given memory cell. For example, FIG. 10 illustrates the case for the memory cell
coupled to bit line 1. The corresponding sense amplifier 212-1 comprises a node
where the sense amplifier data appears. In the preferred embodiment, the node
assumes the form of a SA Latch, 214-1 that stores data. Similarly, the corresponding
set of data latches 430-1 stores input or output data associated with the memory cell
coupled to bit line 1. In the preferred embodiment, the set of data latches 430-1

comprises sufficient data latches, 434-1, ..., 434-n for storing n-bits of data.

[0091] The PBUS 505 of the common processor 500 has access to the SA latch 214-1
via the SBUS 422 when a transfer gate 501 is enabled by a pair of complementary
signals SAP and SAN. Similarly, the PBUS 505 has access to the set of data latches
430-1 via the DBUS 423 when a transfer gate 502 is enabled by a pair of
complementary signals DTP and DTN. The signals SAP, SAN, DTP and DTN are
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illustrated explicitly as part of the control signals from the stack bus controller 410.

[0092] FIG. 11A illustrates a preferred embodiment of the input logic of the common
processor shown in FIG. 10. The input logic 520 receives the data on the PBUS 505
and depending on the control signals, either has the output BSI being the same, or
inverted, or floated. The output BSI node is essentially affected by either the output
of a transfer gate 522 or a pull-up circuit comprising p-transistors 524 and 525 in
series to Vdd, or a pull-down circuit comprising n-transistors 526 and 527 in series to
ground. The pull-up circuit has the gates to the p-transistor 524 and 525 respectively
controlled by the signals PBUS and ONE. The pull-down circuit has the gates to the
n-transistors 526 and 527 respectively controlled by the signals ONEB<1> and PBUS.

[0093] FIG. 11B illustrates the truth table of the input logic of FIG. 11A. The logic
is controlled by PBUS and the control signals ONE, ONEB<0>, ONEB<1> which are
part of the control signals from the stack bus controller 410. Essentially, three

transfer modes, PASSTHROUGH, INVERTED, and FLOATED, are supported.

[0094] In the case of the PASSTHROUGH mode where BSI is the same as the input
data, the signals ONE is at a logical “1”, ONEB<0> at “0” and ONEB<1> at “0”.
This will disable the pull-up or pull-down but enable the transfer gate 522 to pass the
data on the PBUS 505 to the output 523. In the case of the INVERTED mode where
BSI is the invert of the input data, the signals ONE is at “0”, ONEB<0> at “1” and
ONE<I> at “1”. This will disable the transfer gate 522. Also, when PBUS is at “0”,
the pull-down circuit will be disabled while the pull-up circuit is enabled, resulting in
BSI being at “1”. Similarly, when PBUS is at “1”, the pull-up circuit is disabled
while the pull-down circuit is enabled, resulting in BSI being at “0”. Finally, in the
case of the FLOATED mode, the output BSI can be floated by having the signals
ONE at “1”, ONEB<0> at “1” and ONEB<1> at “0”. The FLOATED mode is listed

for completeness although in practice, it is not used.

[0095] FIG. 12A illustrates a preferred embodiment of the output logic of the
common processor shown in FIG. 10. The signal at the BSI node from the input
logic 520 is latched in the processor latch, PLatch 520. The output logic 530 receives
the data MTCH and MTCH* from the output of PLatch 520 and depending on the
control signals, outputs on the PBUS as either in a PASSTHROUGH, INVERTED
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OR FLOATED mode. In other words, the four branches act as drivers for the PBUS
505, actively pulling it either to a HIGH, LOW or FLOATED state. This is
accomplished by four branch circuits, namely two pull-up and two pull-down circuits
for the PBUS 505. A first pull-up circuit comprises p-transistors 531 and 532 in
series to Vdd, and is able to pull up the PBUS when MTCH is at “0”. A second pull-
up circuit comprises p-transistors 533 and 534 in series to ground and is able to pull
up the PBUS when MTCH is at “1”. Similarly, a first pull-down circuit comprises n-
transistors 535 and 536 in series to Vdd, and is able to pull down the PBUS when
MTCH is at “0”. A second pull-up circuit comprises n-transistors 537 and 538 in

series to ground and is able to pull up the PBUS when MTCH is at “1”.

[0096] One feature of the invention is to constitute the pull-up circuits with PMOS
transistors and the pull-down circuits with NMOS transistors. Since the pull by the
NMOS is much stronger than that of the PMOS, the pull-down will always overcome
the pull-up in any contentions. In other words, the node or bus can always default to a
pull-up or “1” state, and if desired, can always be flipped to a “0” state by a pull-

down.

[0097] FIG. 12B illustrates the truth table of the output logic of FIG. 12A. The logic
is controlled by MTCH, MTCH* latched from the input logic and the control signals
PDIR, PINV, NDIR, NINV, which are part of the control signals from the stack bus
controller 410. Four operation modes, PASSTHROUGH, INVERTED, FLOATED,
and PRECHARGE are supported.

[0098] In the FLOATED mode, all four branches are disabled. This is accomplished
by having the signals PINV = 1, NINV = 0, PDIR = 1, NDIR = 0, which are also the
default values. In the PASSTHROUGH mode, when MTCH = 0, it will require
PBUS = 0. This is accomplished by only enabling the pull-down branch with n-
transistors 535 and 536, with all control signals at their default values except for
NDIR = 1. When MTCH = 1, it will require PBUS = 1. This is accomplished by only
enabling the pull-up branch with p-transistors 533 and 534, with all control signals at
their default values except for PINV = 0. In the INVERTED mode, when MTCH = 0,
it will require PBUS = 1. This is accomplished by only enabling the pull-up branch
with p-transistors 531 and 532, with all control signals at their default values except

for PDIR = 0. When MTCH = 1, it will require PBUS = 0. This is accomplished by
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only enabling the pull-down branch with n-transistors 537 and 538, with all control
signals at their default values except for NINV = 1. In the PRECHARGE mode, the
control signals settings of PDIR = 0 and PINV = 0 will either enable the pull-up
branch with p-transistors 531 and 531 when MTCH = 1 or the pull-up branch with p-
transistors 533 and 534 when MTCH = 0.

[0099] Common processor operations are developed more fully in U.S. patent
application number 11/026,536, December 29, 2004, which is hereby incorporated in

its entirety by this reference.

Bad Column Management with Bit Information

[0100] A memory will often have defective portions, either from the manufacturing
process or that arise during the operation of the device. A number of techniques exist
for managing these defects including error correction coding or remapping portions of
the memory, such as described in U.S. patents numbers 7,405,985, 5,602,987,
5,315,541, 5,200,959, and 5,428,621. For instance, a device is generally thoroughly
tested before being shipped. The testing may find a defective portion of the memory
that needs to be eliminated. Before shipping the device, the information on these
defects is stored on the device, for example in a ROM area of the memory array or in
a separate ROM, and at power up it is read by a controller and then used so that the
controller can substitute a good portion of the memory for the bad. When reading or
writing, the controller will then need to refer to a pointer structure in the controller’s

memory for this remapping.

[0101] In previous arrangements for managing bad columns, such as in US patent
number 7,405,985, when there is an error in a column, the whole column is typically
mapped out, with the corresponding whole byte or word will be marked to be bad.
According to the aspects presented in this section, the system can detect when only 1
bit in the byte is bad and bytes with single bit failures can be utilized as long as the
single bit is saved elsewhere in the memory. Through the analysis of the any
defective columns, it can be determined whether they are in the category where the
whole will be treated as bad or whether it only has only single bit failures so that the
other bits in the bad columns can be used as good. In an exemplary application,

during the die sort, those single bit failures and their column address as well as bit
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address can be detected and saved in a non-volatile ROM block. When the controller
manages these bad columns by this information, the bit information can be used to
extract the corresponding bits saved in a column redundancy area. The can
consequently enhance the yield so that more defects can be repaired by the column
redundancy, since columns with only single bit errors can still be used, rather than

mapped out.

[0102] More specifically, each column of the memory has an associated isolation
latch or register whose value indicates whether the column is defective, but in
addition to this information, for columns marked as defective, additional information
is used to indicate whether the column as a whole is to be treated as defective, or
whether just individual bits of the column are defective. The defective elements can
then be re-mapped to a redundant element at either the appropriate bit or column
level based on the data. When a column is bad, but only on the bit level, the good bits
can still be used for data, although this may be done at a penalty of under
programming for some bits, as is described further below. In an exemplary
embodiment, the bad column and bad bit information is determined as part of a self
contained Built In Self Test (BIST) flow constructed to collect the bit information
through a set of column tests. Based on this information, the bad bits can be extracted
and re-grouped into bytes by the controller or on the memory, depending on the
embodiment, to more efficiently use the column redundancy arca. These techniques
and structures can be applied to the various memory architectures described above,
including NOR architectures, NAND architectures, and even the sort of 3D memory
structures described in US patent application number 12/414,935. When reference to
a specific memory architecture is useful, NAND flash memory will serve as the

exemplary embodiment.

[0103] Returning briefly to the case of where bad columns are managed without bit
information, non-volatile memories usually have redundancy to repair on-chip
failures. Column redundancy is used to repair the bad columns, where the repair unit
is normally one byte as a unit, or sometimes a word as a unit. Under this
arrangement, even for a 1 bit fail in the 1 byte, the whole byte will be marked to be a
bad column and the data will be moved to the redundancy area. This is a convenient

way to isolate the bad column as a group of bad bitlines, but the penalty is that the
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redundancy repair unit could be exhausted fairly rapidly. The bad column address is
normally saved in the ROM block of the non-volatile memory. In the exemplary
embodiments below, there are 13 column addresses, A<13:1>. The format for
column redundancy data can then use 2 bytes to remember one column address.
There are 2 flag bits to indicate that it is a unused column redundancy, or a used
column redundancy, or a Bad column redundancy, as shown in the table of FIG. 13.
The reason to isolate at the one byte or one word level is that isolation latch takes
some area, it will typically not be practical to have an isolation latch for every bad
bitline. In the exemplary arrangement used here, the purpose of the isolation latch is
to ignore the programming/erase result of that byte or word. In an NAND-type
architecture, operations are done in parallel where good and bad bits are done for each
of the read, program, or erase simultancously. In one particular embodiment, the
isolation latch can be included as part of the common processor 500 (FIG. 9)
circuitry, where it is illustrated schematically as IL 529 in FIG. 9 and on the standard
implementations of a latch circuit. As part of the common processor for the
associated k bitlines, it can function as described in the following. (As noted, the one
latch in this implementation serves for the word or byte (k=8 or 16), rather an
embodiment with a latch for each bit line, in which case there would be such a latch
associated with each bit line/sense amp 212 in FIG. 9.) This isolation latch is used in
the case that the data latches associated with the sense amps are subjected to defects,
since they are drawn according to a tighter layout design rule. In the case that the data
latches could be guaranteed to be 100% perfect, the isolation latch is not necessary.
In the latter case, the data in the bad bit will be filled with a data bit —a don’t care data
pattern; but the general principle described here still applies: 1. e. the bad bitline
caused by the memory array failure can be extracted from the bad bytes and re-
grouped into a new byte with other bad bits and write to a new good location in the

memory.

[0104] FIG. 13 illustrates an example of a format for column redundancy data
without bit information. The first two columns show the values of the two flag bits
for an unused redundant column, a redundant column being used, and a bad
redundancy column. (The flag value of (1,0) is used here and so an illegal case, but
could be reserved for other cases.) For the embodiment shown here, the unit is taken

as the word and the address AA[1] distinguishes between the two bytes of the word,
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here referred to as the high and low byte. How each of the two of the format are used
is then shown to the right. In each of these cases, the two most significant bits of the
high byte hold the flag bits. For both an unused column and a bad column, there is
not address to hold, so the remaining values are set to 1. If the redundant column is
being used, the column it is replacing can have its addressed stored as shown in the
example. (As the example has 13 column address, two bytes are sufficient to hold a
column address and the two flag bits, where the number can be changed according to
the number of column addresses the system uses.) When a redundant column is bad,
it is also isolated and also marked to be bad with the flag. When a (non-redundant)
column is bad, this will be indicated by the value of specific memory locations in the
ROM pages/blocks on the non-volatile memory and/or an associated isolation latch.
The bad column information can be retrieved either at the power on sequence or

before each pages are operated on..

[0105] Bad columns can classified as one of two types: those such as an related to
bitline short or open circuit, where there can be multiple bad bit failure, and the whole
column is taken as defective; and those such as defects in the data latches or sense
amps, which are typically individual bit failures. To keep the physical array structure
simple and save on die size, the latch or register that indicates a column is bad (the
isolation latch) uses one 1-bit latch per byte. (For architectures that have a top and
bottom latch that would be isolated together, then one defect will isolate 2 bytes (1
top, 1 bottom).) If the minimum repair unit is taken as a byte or a word, this could
cause inefficiency in the management of bad columns, since, typically, most of the

bits in the bad columns are good bits which can be used.

[0106] It should be noted that when the isolation latch is set under this arrangement,
this does not mean the column is no longer accessible, just that it is marked as “don’t
care” with respect to program or erase completion. Under this arrangement, columns
that are defective on the bit level will have their isolation set and not counted among
the good columns; however, even though the bad columns are “isolated”, the cells
will get programmed (and erased ) and verified. At the end of a program operation,
however, at the isolation latch is set, any of their bits that have failed to program
(slow bits) will not get counted as part the total failure count. Therefore, these bad

columns do not participate in the pseudo-pass criteria for programming (or erase) and
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there may consequently be some cells that are under-programmed (or under-erased)
but un-detected. As these are slow cells in the normal good columns, the number of
program (erase) pulses will be applied on the wordline to make sure that the data will
be programmed (or erased) successfully. Additionally, as stronger ECC capability is
available to the non-volatile memory system, it allows for the system to take care of

most of the slow bits.

[0107] For example, the system may have an allowance for 40 bits fail during
programming. Taking a programming operation as having, say, 9000 bytes, the ratio
of failed bits is then 40/(9000*8). If 24 columns have been replaced with redundancy
columns, where each byte has 1 bit bad bitline, and with 7 bits per byte programming
without detection, then the number of failed programmed bits will be {24*2*7*
40/(9000*8)} =4 bits failure. The rest of the bits (24x7), besides the bad bitlines, in
the bad column will be programmed correctly and these 4 bits can be managed by the

error correction code.

[0108] FIG. 14A shows a Column Redundancy Data (CRD) table format that
includes bad bit information. As shown there, an extra pair of bytes will be added to
cach bad column information shown as the lower pair of low, high rows. These will
indicate which bits are bad, where the bad bit is indicated by “0”. The good bits will
be indicated with ‘1”. For both the unused columns and the bad redundancy columns,
this information is not relevant and all the entries are set to “1”. For bad column
where the whole column is taken as bad (whole bit failure), all entries are set at “0”
and this corresponds to the situation in FIG. 13. In the case of single bit failure, the
additional entries indicate which bits of the column are bad, and need to be mapped
out, and which bits are good. In this example, two bits (bit 6 of both bytes) are bad as
indicated in by the “0”, with the good bits having a “1”. (It just happens that both
bytes have bit 6 bad in this example and the bad bits need not line up in this way.)

[0109] In another embodiment, the mode of failures can be recorded in the bad
column information. FIG. 14B shows an example where only one flag indicates a
used redundancy column or a bad redundancy column. Mode0O and mode 1 are the
two bits indicating the failure modes: 01—bitline open; 10—bitline short; 11—data
latch failure; 00—others cases. If two kinds of failure exist on the same byte (low

probability case), only the latest failure mode is recorded. The increase of the 2 bytes
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for each bad column will not increase the die size, since the CRD data will be saved in
one ROM block in the memory. ROM space usually is large enough to save all the
require information for bad column. The failure mode information may be used by
the controller for various applications, for example to digitally correct floating gate to

floating gate capacitive coupling effects that can occur in EEPROM based memories.

[0110] According to one aspect presented here, during die sort or the built in self-test
(BIST) test flow discussed in the following, the bad columns can be tested bit by bit
in multiple column tests and failed bit information will be accumulated into a CRD

table such as FIG. 14A or 14B.

[0111] Thus, in the arrangement presented here, the number of failed bits can be
recorded in the one of these formats, which allows the column redundancy data to
record multiple bit failures for a column. The bad column can be managed by the
memory circuits as well as controller. For the simplicity of presentation, the
description here is mainly given for the case when the controller manages the bad
columns. Similar function can also be achieved by the circuits inside the non-volatile
memory. During the program process, the controller will load the user program data
intro the data latches inside the memory. The location corresponding to the bad bits
can be left with user data or filled with “1”, but the copy of the data will also be saved
in a good bit location in the redundancy column area. As isolated bad columns with
bit errors will have some good data they will going through the program (or erase)
process, and so the bad bit can just have their data latched for them as well as in the
remapped location. Regardless of the data in the bad bitline, the operations can be
done collectively on all cells without increasing the power consumption in NAND
flash architecture. In some other architecture, such as, NOR flash or 3D
Read/Writable architecture, the bad bitlines are filled with data of non-operation to

avoid extra power loss.

[0112] The replacement of bad bits with good bits from the redundancy columns can
be illustrated schematically using FIGs. 15-16, which are respectively a program
situation, where the data is loaded to the normal locations and the bad column data is
moved to the redundant column areca, and a read situation, where the sensed data in
redundant area is moved to the right location in the user bytes.. As shown there,

several of the cells (at addresses A2, A6, A8, A13, A15, A28) are defective and there
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intended content is written into the redundancy section at left, where the same
addresses are shown shaded. During the read process, the whole wordline data will be
sensed to the data latches. The data may be transferred out to the controller. The
controller side will fetch the good bits from the redundant area and move them to the
correct location according to the bad column map table shown in FIG. 14A or 14B.
This process is illustrated by FIG. 16, which is a sort of inverse of FIG. 15, where the
good bits in the redundancy section are read out and substituted for the defective cells
they are standing in for. In FIGs. 15 and 16, the Xs to the left, regular column area,
indicated the defects mapped into the redundancy area to the right, where the Xs to the
far right are unused spares and X between the remapped A6 and A8 values indicates

as defective redundancy column.

[0113] The Build In Self Test (BIST) mechanism for bad column addresses with bit
information referred to above will now be described. This uses an algorithm to
determine the bad column with bit information. A state machine on the memory itself
(not the controller) can execute the process for externally supplied test sequences and
corresponding test data. The flow chart of FIG. 17 will illustrate the steps. A major
difference from what would be a corresponding algorithm that did not need to
determine bit level errors, but only column level defects, is that the bad column is
NOT isolated right after each column test. This is because the same column will be
tested again. Another difference is that the error in the 10 values (see FIG. 14) will
be recorded for the each bit.

[0114] FIG. 17 begins at 701 with starting the first of the tests (Column Test 1) in the
externally provided series. At 703, the expected data pattern is compared with the
data as written to and read back from the column, going through the columns and
stopping at bad columns, as indicated by the loop of 703 and 705. A circuit for
executing this on the memory is shown in FIG. 18, where the read out data is
compared with the expected data pattern to check the column error. As shown there,
cach of the expected values (EXP<7:0>) is compared to the respected value for the
column as read out on the 10 bus (Y1IO<7:0>). This yields the corresponding match
values for each bit, which are then combined to yield the BAD value as output. If
BAD=1, at 705 the column address and match<7:0> value are recorded. This is

preferable stored outside the array for now as the array is still undergoing testing. For
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instance, in a multi-plane memory, this could stored in an unused plane. (Although
the other plane data latches may have unknown defects, multiple copies can be used
to guarantee the data integrity. For example, one set of data can be transferred to a set
of data latches in the un-used plane with 4 copies of original data. If the chip has only
one plane, separate data latches into Left/Right or Top and Bottom partitions can be
used. Only one partition of the bitlines is tested at a time, the other partition is used

for temporary storage.)

[0115] To improve robustness, multiple copies of the column redundancy information
(FIGs. 14A, 14B) arc preferably saved along with complementary data (A and Ab
copies). By saving the data in both the A and Ab form, these can readily be compared
to see if the data is corrupted. On retrieving the data, the data and complementary
data will be compared, if they match, then the data will be validated to be good data.
If the compare fails, then this copy of data will be discarded and next copy of data
will be fetched and compared until a good copy is found. Another method of getting
the correct data is that all the copies of data are fetched and voted with the majority

logic to determine the right data.

[0116] At 707, the next test is begun, with the expected data for this test again
compare with the read out data at 709. The stored result from 705 is then fetched at
711 and compared with that from 709 for any address matches between the two.
Address match can be done with XOR logic as well, with an exemplary circuit for this
is shown in FIG. 19, which can compare the address of the new bad column with the
bad column address found in the previous test to see these two address match or not.
This is shown for the exemplary embodiment of 13 columns, where the Addr new
values are from 709 and the Addr old are from 705. The results of the comparisons
(ADD_MATCH<12:0>) will generate logic signal SAME ADDR, corresponding to
713. 1In case of an address match, the bit failure information can be updated and
written back to where it is being held. The bad bit information update can be done
with AND logic as in FIG. 20. The bad bit information is updated when the bad
address matches the previously found bad column address. Some tests may have

same bad bit address, some tests may turn out to have different bit address.

[0117] If there is no match at 713, a new entry is written back at 717. Both 715 and

717 loop back to 709 and the process continues until the current test is done for all
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columns, after which the flow decides if there are more tests at 719. If so, the flow
loops back to 707 and if not, at 721 the stored results from the series of test are
fetched and the isolation latches set for the columns found defective. The bad column
information will also be written into the designated ROM block in the non-volatile
memory. In some cases, the test flow could be broken into tests done at different
times. The test result can be stored in the ROM block for first few tests, and then the
data will be read back from the ROM block and continue with the subsequent tests
following same test algorithm as described above. Although the embodiment
presented above is for an initial sort based upon externally provided tests, alternate
embodiments could be performed to dynamically update the defect information, based

on tests executed, for example, by the controller or sophisticated tester.

[0118] FIG. 21 is a schematic illustration for the on-chip management of the bad bits.
A set of data to be written onto a wordline of array 801 is represented by addresses
A0-A29, corresponding to regular, non-redundancy columns. Without taking any
defects into account, this set of data would be transferred to the appropriate data
latches along the top and bottom of the array (as shown schematically by the arrows,
corresponding to bus structures) and then written into the array. Considering now
some defects, the bits at addresses A2, A6, A8, Al13, Al5, and A28 for this wordline
and these columns are here taken as defective. Based on the addresses for these bits,
the data for these bits are intercepted at a multiplexer MUX 821 and held in latches
815 in the periphery and then programmed into the redundancy area 803, where the
data along with its corresponding address is held. In this example, 13 bits of address
are used to specify the column to which the data corresponds and 3 bits specify the bit
within that column. The data values for these bad addresses can also be loaded into
the data latches along the array or, if desired, they could be replaced with blank data
as the content of these addresses will be replaced with the data from the redundancy
area during a read. In other embodiments, the multiplexing of values can be executed

on the controller.

[0119] Considering the data in process further, this can be taken as the steps of:
1) Data Shift into the Flash Memory and store the bad bytes in the peripheral

latches;
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2) The data will be packed into smaller data bytes by only extract the data from
bad bits;

3) Transfer the data to Column Redundancy columns.
The shifting can be executed by a set of clocked latches, examples of which is shown
in FIGs. 22A and 22B, allowing the data to be compacted for storage in the
redundancy area, as can be illustrated with FIGs. 23-25. The latch structure of FIG.
22A would correspond to that used for the pointer, as at the top of FIG. 24 or FIG.
26, and the latch structure of FIG. 22B would correspond to that used for the data in
and data, as at the bottom of FIG. 24 or FIG. 26

[0120] FIG. 23 shows a stream of incoming data. This shows a series of bytes with
the bad bits shown, the main part of the address (e.g., A2) showing the column and
the subscript indicating the bit in the byte along that column (e.g., the wordline of a
NAND string) that is bad. Some bytes have multiple bad bits, others only a single bad
bit. (Only the bytes with addresses corresponding to bad bits are shown.) Under each
bit is the bad bit information, “1” for good bits and “0” for bad. To save on storage
space, the bad bits can be compacted using data latches such as that shown in FIGs.
22A and 22B: When the bad bit information is “1”, the latch will be selected and the
bit data will flow out at the output. FIG. 24 shows a pointer based arrangement for
column selection that can be used to compact the data. (The use of pointers for
column selection is discussed further in US patent 7,405,985 and references cited
therein.) Across the top is a series of latches (as in FIG. 22A) allowing the pointer to
propagate one clock to toggle through all the latches. The data latches at the bottom
(as in FIG. 22B) receive the unpacked data and provide the packed version at
DATA _OUT. FIG. 24 functions similarly to FIG. 26 discussed below, which
unpacks the data. This compacted data will then transferred to the data latches FIFO
and formed into new bytes, as shown in FIG. 25, where the data from non-defective

bits have been removed, leaving only that corresponding to the defects.

[0121] The data out process will need undo the data in process and can be taken as the
steps of:
1) After the sensing, the data in the column redundancy columns are transferred

out to the peripheral data latches;
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2) The data will be re-shuffled back to byte form corresponding to each bad
columns, where the good bit data can be filled with “17;
3) The multiplexer mixes the data from the peripheral latches back in when the
user toggles out the data and the column address maps to the bad columns.
The data out process (un-packing the data), may use many clock cycles to finish the

task. One arrangement for doing this can be illustrated with FIGs. 26-28.

[0122] FIG. 26 shows a pointer based arrangement for column selection that can be
used to unpack the data. Across the top is a series of latches allowing the pointer to
propagate one clock to toggle through all the latches. The data latches at the bottom
receive the packed data at DATA_IN, which is FIFO register with single bit flow out
at a time. For the data latches at bottom, only half of the clock signal inputs are used.
In the middle is a set of select circuits having as inputs the pointer value and the bad
bit information. An exemplary embodiment for the select circuit is shown in FIG. 27.
When the pointer is toggled to a given latch and the bad bit =0, then this address will
be selected and the data from the array will be latched into the latch. The pointer will
then continue going through all the latches until end of the latches is reached. FIG.
28 shows how the data in the redundant locations can be flowed out of a series of
FIFO registers that have as inputs the CRD data as inputs to compact the data. At the
end of this process, the data from the redundancy area will be unpacked back to the

form.

[0123] The on-chip implementation of the bad bit packing and un-packing may use a
large number of registers, possibly increasing die size. One to implement the process
using a relatively small die area and a limited number of registers is to divide the bad
bytes into several groups. Each time, a group of bad columns will be packed or
unpacked with fixed number registers to handle address and data information. The
algorithm for packing or un-packing can still be the same as described above. For
example, if the memory have 40 bad bytes, it can process 10 bytes at a time and finish
the bad byte processing in 4 groups. After instance of packing, the packed bytes can
be put into the extended column area data latches. After each instance of un-packing,
the un-packed bits (or bytes) can be sorted back to their original data place. More
details of such an implementation, in a slightly different context, are presented in US

patent application number 12/414,935.
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[0124] The techniques described above for the applications of bad column with bad
bit information. The bit information will enhanced device yield since more bad
columns with bad bits can be repaired with the fixed number column redundancies
typically available on a device. Besides the normal operations, it also benefits the bad
column management in the devices incorporating an internal folding algorithm, such

as that described in US patent application 12/478,997.

[0125] The bad bits can be arranged in the column redundancy area as shown in the
example of FIG. 29. Three bytes, corresponding to three columns in the main array,
with address A, B, and C are shown. The individual bits are identified by the 10
values, corresponding to the bit on an 10 bus that would transfer these bits for a
corresponding set of wordlines. The bad bits in the example are taken as A6, B6, B3
and CO will be collected to a column ColRD in the redundancy area. As discussed
above, the good bits in the bad columns can stay there and get programmed, even
though the bad column isolation latch will be set to skip the program completion

detections.

[0126] The reason to sct the bad column isolation latch is that some failures could
cause detection fail if the detection is done collectively and simultaneously, but these
failure bits should not be counted as they are already repaired by the redundancy.
This could lead to overly strict criteria to pass program (or erase) and make the
operations return with failed status. For example, if there are 20 bad column repaired
by the redundancy columns, these 20 bad columns will cause 40 bits failures. If the
program pseudo-pass criteria is set to be 40, then there will be 0 failures allowed for
the whole page program. If the program pseudo-pass criteria is set to be less than 40,
the page program will always fail. When such situations occur, the status will not
reflect the real situation as to whether the write operation has succeeded or not. In
order to make sure that the program status reflect the real program situation, the bad
columns should be masked out or isolated. If the bad bits are counted serially by
toggling the data out one byte (or a word) at a time, then the isolation latch is not

nccessary.

[0127] This sort of bit level management can be particularly advantageous for
incorporating an internal folding, as that described in US patent application

12/478,997. Briefly, data is initially written to a memory in binary form, folded into a
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multi-state format in the memory latches, and then rewritten back into the non-volatile
memory. To take a 3-bit per cell example, three pages would initially be written onto
three physical pages in binary form and then rewritten in 3-bit per cell format onto a
single physical wordline. In the case of a bad column, this defect will need to be
reflected in the columns with which it is folded, leading to a corresponding increase in

number of redundant columns used.

[0128] This process can be illustrated with FIG 30. In FIG. 30, the XDL latch is the
data latch through which an input-output circuit communicates with the data buses
and ADL, BDL, and CDL correspond to the data latches for holding each of the bits
for a multi-bit (here 3-bit) programming operation. In the folding operation, three
separate wordlines with data in a binary format are read in the XDL latches. Here, A,
B, C, refer to the wordlines (or physical page) and the numbers (0-4607) to the
columns as these bits are stored on three separate, or upper (U), middle (M) and lower
(L) wordlines. The bytes are then rearranged from the original 3 pages of data in
XDL to into the data latches ADL, BDL and CDL. The content of the ADL, BDL,
and CDL latches are then all programmed into a single physical page. (This is again
described in more detail in US patent application 12/478,997, although the exemplary
folding there differs some.)

[0129] Because of this, a bad column will need to be reflected in the other columns
with which it is folded. Consequently, in an N-bit per cell folding process, each bad
column may be magnified by a factor of N, which could quickly exhaust the available
number of redundant columns. Because of this, the use of bit information for bad
column can be particularly advantageous in system that use such folding. Even
though the folding process will create more failed bits during the process of folding,
the bad bits management will reduce the impact of wasting too many redundancy

columns because of folding.

[0130] Although the various aspects of the present invention have been described
with respect to certain embodiments, it is understood that the invention is entitled to

protection within the full scope of the appended claims.
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WHAT IS CLAIMED IS:

1. A non-volatile memory circuit, comprising:

an array of non-volatile memory cells formed along columns of multiple bits,
the columns including a plurality of regular columns and one or more redundancy
columns; and

a plurality of latches, each corresponding to one of the regular columns and
having a bit whose value indicates if the corresponding column is defective,

the memory circuit storing a column redundancy data table whose contents
indicate for each redundancy column whether the redundancy column is being used
and, for redundancy columns that are being used, a defective regular column to which
it corresponds and the bits therein which are defective,

wherein the memory circuit stores data corresponding to the defective bits of

defective regular columns in the redundancy column portion.

2.  The non-volatile memory circuit of claim 1, wherein each column

corresponds to a byte of data.

3. The non-volatile memory circuit of claim 1, wherein the content of the
column redundancy data table further indicate for each redundancy column whether

the redundancy column is defective.
4. The non-volatile memory circuit of claim 1, wherein the content of the
column redundancy data table and the value of the plurality of latches are determined

in a test process.

5. The non-volatile memory circuit of claim 1, wherein the memory circuit

stores multiple copies of the column redundancy data table.

6. The non-volatile memory circuit of claim 1, wherein the memory circuit

further stores the column redundancy data table in complementary form.

7. The non-volatile memory circuit of claim 1, wherein regular columns

whose corresponding latch value indicates the regular column is defective and where
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the column redundancy data table indicates that less than all of the bits therein are

defective are used to store valid data in the non-defective bits thereof.

8. The non-volatile memory circuit of claim 1, further comprising;:

data latch circuitry connectable to the redundancy columns and responsive to
the column redundancy data table contents, whereby the data corresponding to the
defective bits of defective regular columns are packed into a compacted form for
storage in the redundancy column portion in a write operation and unpacked in a read

operation.

9.  The non-volatile memory circuit of claim &, wherein the data
corresponding to the defective bits of defective regular columns are packed and

unpacked in multi-bit groups.

10. The non-volatile memory circuit of claim 1, wherein the contents of the
column redundancy data table further includes a failure mode for the defective regular

columns.

11. A method of operating a non-volatile memory circuit, the memory circuit
including an array of non-volatile memory cells formed along columns of multiple
bits and having a latch associated with each of the columns whose value indicates if
the corresponding column has a defect, the method comprising,

performing a write operation to concurrently program a plurality of memory
cells on a corresponding plurality of columns, including one or more columns having
an associated latch whose value indicates the corresponding column has a defect;

determining the number of the plurality of concurrently programmed memory
cells that were not successfully programmed in the write operation, wherein the
columns whose latch values indicate the column has a defect are not counted in the
determining; and

determing whether the number of cells that were not successfully been

programmed during the write operation is acceptable.

12. The method of claim 11, wherein the write operation includes a plurality

of alternating pulse and verify operations for all of the cells on which the write
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operation is being performed, with cells that verify as correctly programmed are
locked out from further pulses.

13. The method of claim 11, wherein the number of cells acceptable as not
successfully programmed is a predetermined value based on the error correction code

capabilities of the memory system of which the memory circuit is a part.

14. The method of claim 11, further comprising;:

prior to said programming operation, determining for each of the one or more
columns having an associated latch whose value indicates the corresponding column
has a defect if the cell to be programmed in the corresponding column is defective;
and

in response to determining that the cell to be programmed in the corresponding
column is defective, saving the data to programmed therein to a redundancy area of

the memory array.

15. The method of claim 14, wherein said determining is based upon a
column redundancy data table stored the non-volatile memory circuit whose contents
indicate which bits are defective for columns whose associated latch whose value

indicates the corresponding column has a defect.

16. A method of operating a non-volatile memory circuit having an array of
non-volatile memory cells formed along columns of multiple bits, the columns
including a plurality of regular columns and one or more redundancy columns, the
method comprising:

performing a plurality of column test operations to determine which columns
are defective and the individual bits therein which are defective, each of the column
tests including;:

writing and reading back an externally supplied data pattern to the
columns; and
comparing the externally supplied data pattern as read back with an
expected data pattern,
wherein said column test operation are performed by circuitry on the memory circuit

and each of the column tests uses a different data pattern;
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recording addresses of any of the regular columns determined defective and
the individual bits therein which are determined defective in a column redundancy
data table stored on the memory circuit; and

for any of the regular columns determined defective, setting a latch associated

therewith to a value indicating that the associated column is defective.

17. The method of claim 16, further comprising:
for any of the redundant columns determined defective, setting corresponding

flag values in the column redundancy data table.

18. The method of claim 16, wherein the column test operations are executed

by a state machine on the memory circuit.

19. The method of claim 16, wherein the recording addresses of any of the
regular columns determined defective and the individual bits therein which are
determined defective, includes temporarily storing the results of said comparing on

another array of the memory circuit.

20. The method of claim 16, wherein the recording addresses of any of the
regular columns determined defective and the individual bits therein which are
determined defective, includes storing multiple copies of the column redundancy data

table on the memory circuit.

21. The method of claim 16, wherein the column test operations further
include:

determing a failure mode for the regular columns determined defective; and

recording the failure mode in the column redundancy data table for the regular

columns determined defective.

22. A method of operating a non-volatile memory circuit having an array of
non-volatile memory cells formed along columns of multiple bits, the columns
including a plurality of regular columns and one or more redundancy columns, the

method comprising:
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storing on the memory circuit a column redundancy data table whose contents
indicate for each redundancy column whether the redundancy column is being used
and, for redundancy columns that are being used, a defective regular column to which
it corresponds and the bits therein which are defective;

receiving a set of data to program into the memory array;

determining the eclements of the set of data assigned to be programmed to
defective bits of defective regular columns based upon the column redundancy circuit
data table;

storing the elements of the set of data determined to be assigned to be
programmed to defective bits of defective columns in peripheral latch circuits on the
memory circuit;

storing the set of data into programming latches for the memory array;

performing a programming operation into the regular columns of the memory
array from the programming latches; and

programming the elements of the data set stored in the peripheral latches into

the redundancy columns.

23. The method of claim 22, further comprising:

prior to programming the clements of the data set stored in the peripheral
latches into the redundancy columns, performing a packing operation on the memory
circuit for the elements of the set of data determined to be assigned to be programmed
to defective bits of defective columns, whereby clements of data assigned to be
programmed to more than one regular column are programmed into a single

redundant column.

24. The method of claim 23, wherein said packing operation includes a
plurality of sub-operations, ecach performing a packing operation on a subset of the set
of data determined to be assigned to be programmed to defective bits of defective

columns.

25. The method of claim 22, wherein the contents of the column redundancy

data table further includes a failure mode for the defective regular columns.
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