US010708240B2

a2 United States Patent

Menachem et al.

US 10,708,240 B2
Jul. 7,2020

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

OFFLOADING COMMUNICATION
SECURITY OPERATIONS TO A NETWORK

INTERFACE CONTROLLER

Applicant: Mellanox Technologies, Ltd., Yokneam

U

Inventors:

Adi Menachem, Hod Hasharon (IL);

Liran Liss, Atzmon (IL); Boris

Pismenny, Haifa (IL)

Assignee:
LTD., Yokneam (IL)

MELLANOX TECHNOLOGIES,

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 320 days.

Appl. No.: 15/841,339

Filed: Dec. 14, 2017

Prior Publication Data

US 2019/0190892 Al Jun. 20, 2019
Int. CL.
HO4L 29/06 (2006.01)
GO6F 21/60 (2013.01)
(Continued)
U.S. CL
CPC HO4L 63/0428 (2013.01); GOGF 9/45558

(2013.01); GOGF 21/53 (2013.01); GOGF
21/602 (2013.01); HO4L 9/0897 (2013.01):
HO4L 9/14 (2013.01); HO4L 9/3226 (2013.01):
HO4L 63/0485 (2013.01); HO4L 63/164
(2013.01); GO6F 9/45533 (2013.01);

(Continued)
Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,901,496 Bl
7,657,659 Bl

5/2005 Mukund et al.
2/2010 Lambeth et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP
EP
WO

1657878 Al
2463782 A2
2010062679

5/2006
6/2012
6/2010

OTHER PUBLICATIONS

U.S. Appl. No. 16/012,826 office action dated Oct. 1, 2019.
(Continued)

Primary Examiner — Jeffery 1. Williams
(74) Attorney, Agent, or Firm — Kligler & Associates
Patent Attorneys Ltd

(57) ABSTRACT

Computing apparatus includes a host processor, which runs
a virtual machine monitor (VMM), which supports a plu-
rality of virtual machines and includes a cryptographic
security software module. A network interface controller
(NIC) links the host processor to a network so as to transmit
and receive data packets from and to the virtual machines
and includes a cryptographic security hardware logic mod-
ule, which when invoked by the VMM, applies the crypto-
graphic security protocol to the data packets while main-
taining a state context of the protocol with respect to each of
the virtual machines. Upon encountering an exception in
applying the cryptographic security protocol, the NIC trans-
fers the data packet, together with the state context of the
cryptographic security protocol with respect to the given
virtual machine, to the cryptographic security software mod-
ule for processing.

14 Claims, 4 Drawing Sheets

.30 40 38 38 3 .30
cPU MEM MEM |CPU
30
m e e[7| 7 | [o) [
i i i 22 1 1 I—y 24
[wic] [wic] [wich [} o T[] [wic] [ic] [wic
NIC ¢ |l\ ’\l ’>| E | 44 NIC € I 1 |
3y \
332 2 42 42 % 332
@34 w6 L3 NETWORK
e (... e [T
2 SWITCH }\/\34 46
MEM |CPU
4 s 2 |VMMHVM1HVM2HVM31
23 i + ¥ 1 26
[wic | fvwic | funic | [unic |
32~ 1 1 1
NIC C . b}

US 10,708,240 B2

Page 2
(51) Imt. ClL 2017/0180273 Al* 6/2017 Dalycccoccovvvevnenen HO4L 69/22
GO6F 21/53 (2013.01) 2017/0237672 Al* 82017 Dalal
H04L 9/08 (200601) 2017/0264622 Al 9/2017 COOPGI‘ GO6F 21/606
GO6F 9/455 (2018.01) 2017/0286157 Al 10/2017 Hasting et al.
) 2018/0004954 Al 1/2018 Liguori et al.
. ang et al.
HO4L 9/14 (2006.01) 2018/0109471 Al 4/2018 Ch 1
HO4L 9/32 (2006.01) 2018/0114013 Al 4/2018 Sood et al.
(52) U.S.CL 2018/0210751 Al* 7/2018 Pepusc..... HO4L 63/0209
CPC oo GOGF 2009/45587 (2013.01): GOGF 20180210770 AL S8 Wuetal
2009/45595 (2013.01); HO4L 2209/12 2018/0262468 Al* 9/2018 Kumar HO4L 63/0281
(2013.01) 2018/0285288 Al* 10/2018 Bernat GO6F 12/0831
2018/0329828 Al 11/2018 Apfelbaum et al.
(56 References Cited 2019/0173846 AL* G2019 Patctson v, GOGE 9445545
atterson
U.S. PATENT DOCUMENTS 2019/0190892 Al* 6/2019 Menachem ... GOGF 21/53
2019/0250938 Al* 8/2019 Claes ..o GOG6F 9/45533
8,006,297 B2 8/2011 Johnson et al.
8,103,785 B2 1/2012 Crowley et al. OTHER PUBLICATIONS
8,824,492 B2 9/2014 Wang et al.
9,462,047 B2 10/2016 Bloch et al. U.S. Appl. No. 15/145,983 office action dated Mar. 7, 2018.
9,904,568 B2 2/2018 Vincent et al. US. Appl. No. 15/154.945 offi ion dated Apr. 5. 2018
10,078,613 Bl 9/2018 Ramey . Appl. No. 245 oflice action dated Apr. 5, :
10,353,722 B2* 7/2019 Kafino GO6F 9/5044 U.S. Appl. No. 15/701,459 office action dated Dec. 27, 2018.
10,382,350 B2 8/2019 Bohrer et al. Dierks et al., “The Transport Layer Security (TLS) Protocol Version
10,423,774 Bl* 9/2019 Zelenov GOGF 21/445 1.2”, Request for Comments: 5246 , pp. 1-104, Aug. 2008.
2003/0023846 Al 1/2003 Krishna et al. Turner et al., “Prohibiting Secure Sockets Layer (SSL) Version 2.0”,
2004/0039940 Al 2/2004 Cox et al. Request for Comments: 6176, pp. 1-4, Mar. 2011.
2004/0057434 Al 3/2004 Poon et al. Rescorla et al., “The Transport Layer Security (TLS) Protocol
%882;8}853‘;2 ﬁ} 55;;%88‘5‘ guer ot al. Version 1.3”, Request for Comments: 8446, pp. 1-160, Aug. 2018.
uer Comer., “Packet Classification: A Faster, More General Alternative
2005/0198412 A1™ 972005 Pedersen HOAL 6% %‘gg to Demultiplexing”, The Internet Protocol Journal, vol. 15, No. 4,
" pp. 12-22, Dec. 2012.
2006/0095754 AL* 5/2006 Hyderooc... GOGF 9/751032/1 U.S. Appl. No. 15/146,013 Office Action dated Dec. 19, 2018.
2006/0104308 Al* 5/2006 Pinkerton HOAL 63/0485 ?ﬁ"T"fS}f,etRi’u eg%ﬁiﬂm&a’g@ggg"gg (fgl\/’?ug‘g}(‘)‘ggs“‘tes
370/469 N . . e ')
2008/0271134 AL* 10/2008 Johnsom ... HO4L 63/02 International Application # PCT/IB2018/058705 search report dated
726/13 Feb. 18, 2019.
2009/0086736 Al 4/2009 Foong et al. International Application # PCT/IB2018/059824 search report dated
2009/0319775 AL* 12/2009 Buer ... HOAL 63/0428 Mar. 22, 12019~) . tated
713/153 U.S. Appl. No. 15/146,013 office action dated May 18, 2018.
2009/0328170 Al* 12/2009 Williams GOG6F 21/41 Shirey., “Internet Security Glossary, Version 27, Request for Com-
726/7 ments 4949, 365 pages, Aug. 2007.
2010/0228962 Al 9/2010 Simon et al. Information Sciences Institute, “Transmission Control Protocol;
2012/0314709 Al 12/2012 Post et al. DARPA Internet Program Protocol Specification”, Request for
2013/0080651 Al 3/2013 Pope et al. Comments 793, 90 pages, Sep 1981.
ggg//&lé‘s‘?gg ﬁ} ggg}g ﬁrad et il'al InfiniBand TM Architecture Specification vol. 1, Release 1.3, 1842
arino et al.
pages, Mar. 3, 2015.
2013/0142205 Al 6/2013 Munoz Stevens., “TCP Slow Start, Congestion Avoidance, Fast Retransmit,
2013/0263247 Al 10/2013 Jungck et al. and Fast Recovery Algorithms”, Request for Comments 2001, 6
2013/0276133 Al* 10/2013 Hodgescco......... GO6F 21/60 pages, Jan, 1 997ry & » ~ed '
2013/0329557 Al 12/2013 Petry 726127 Nfetronom.e Systems, Inc., “O}ien VSWitch Offload and Acceleration
2013/0347110 Al 12/2013 Dalal with Agilio® CX SmartII\HCs., Whlte. I_’aper, 7 pages, Mar. 2017.
2014/0185616 Al 7/2014 Bloch et al. PCI Express® Base Specification ,Revision 3.0, 860 pages, Nov. 10,
2014/0254593 Al 9/2014 Mital et al. 2010.
2014/0282050 Al* 9/2014 Quinncccoeue. GO6F 3/0481 Bohrer et al., U.S. Appl. No. 15/701,459, filed Sep. 12, 2017.
715/744 Pismenny et al., U.S. Appl. No. 62/572,578, filed Oct. 16, 2017.
2015/0100962 Al 4/2015 Morita et al. Kent et al., “Security Architecture for the Internet Protocol”, Request
2015/0347185 Al 12/2015 Holt et al. for Comments 4301 , 101 pages, Dec. 2005.
%812; 8?;;233 ﬁ} 1%; 58}2 Jé)kl?ente;laL Kent., “IP Encapsulating Security Payload (ESP)”, Request for
upte et al. Comments 4303, 36 pages, Dec. 2005.
2016/0226822 Al 8/2016 Zhang et al. Viega et al.,, “The Use of Galois/Counter Mode (GCM) in IPsec
2016/0330112 A1 11/2016 Raindel et al. E latine S ity Payload (ESP)”, R ¢ for C ¢
2016/0330301 Al 11/2016 Raindel et al. 4?821’31‘1 atng ‘;cur‘tzyoo Say oa » Request for Lomments
2016/0342547 Al 11/2016 Liss et al. » 11 pages, Jun. :)
2016/0350151 Al 12/2016 Zou et al. U.S. Appl. No. 16/202,132 office action dated Apr. 2, 2020.
2016/0359768 Al 12/2016 Narkis et al.))
2016/0378529 Al 12/2016 Wen * cited by examiner

US 10,708,240 B2

Sheet 1 of 4

Jul. 7,2020

U.S. Patent

) _ :
C : > DIN b o4
]] | %4
IINA | | DINA | | DINA | | DINA
7) 7) 7) X £e
% ! Y ! ! LE 0z
SWA | | 2NA | | LA | [WA | 5= p) J/
NdoFH Waw
\ oF vm/* HOLIMS - /\/\mm
"‘-."-..-.-.m.mu—ly.o.m.'-"..- .--..'-.'m.m.l_l'g.o.m..'--.--'..-'.
[} N N [}
_.m HOLIMS e 9€ 9¢ pe~| HOLIMSY)
/ MYOMLAN €1 \K
[}
[]
(]
m 2 A
¢ y OIN pp~¢ —4 7——— 9IN
s |]]]] e 1\ 1\ \
0 VA 4]
_"o_z> SINA | | DINA | | DINA OINA | [sOINA | | DINA | | OINA
—) X K £¢ £¢ K LA X K
¢ rv—~)) ¥ Lo 44 Lo L A—— -) ¥
SINA | | ZNA | [LINA | | WA > > eA | | 2wA |] L | | mina
NdoFH wan NELN) / /) ndo
; 0c™ ; g€ 8¢ 8¢ or 0™

US 10,708,240 B2

Sheet 2 of 4

Jul. 7,2020

U.S. Patent

8¢

NN\

¢ 9Old

S1HOd MYHOMLAN ™29 0/
¥ 1 W
89\ 99\ SH3LNNOD [Ti~-24
PO < -_— > IX3d1NOOD
J . ~ ~~CC

XY X1 29Gd| T T

1 ¢ _

* 5b _

09 JOV4H3LNI 1SOH |

X 3 X OINi)

ezzzzIzonnen DN EE “

I

I

or ~gp | |

— P _ y SO "

(WA (« —~o0s | |

- ~ |

9s, g <o < |

y 99Gd| +pF———+—
ddv ddVv / » ddV H\log B 22 R]

ENA CNA LINA NIVINOQ IANILYN
¢ ¢ ¢
8¢ 8¢ 8¢ Nndod

US 10,708,240 B2

Sheet 3 of 4

Jul. 7,2020

U.S. Patent

S|
™

149)

0

06

&€ oOl4

Juswbel 4 OBSdl—————ipg

19498d 39S dl—uan_pg

Bleq 19yoed

| 1eyoed vmgm>oomm_\wllv
9YeyUSpPUBH |« 6,
uswbelaq -89

98

“—uondeox3 29gd| % .
Bleq 19yoed)
eleq 1o3oed)

07 NINA Z€ JIN

}9¥0ed 988 dl— K (g

8Z YYOMLAN

U.S. Patent Jul. 7, 2020 Sheet 4 of 4 US 10,708,240 B2

90\

VMM QUERIES NIC FOR IPSec ESN MSB DATA |~100

A 4

NIC RETURNS IPSec ESN MSB DATATOVMM | ~102

A 4

VMM PERFORMS ATOMIC READ/UPDATE TO IPSec
REPLAY PROTECTION DATA

104

A 4

VMM TAKES OVER PROCESSING FOR IPSec SA | ~106

FIG. 4
110
HOST
o 130 2 31~ MEMORY
| N
» HOST INTERFACE |~60 634
EMBEDDED AW
CONTROLLER PROCESSING
1164 IPSec IPSec W -1—~44
1127 62~ NETWORK PORTS
SMART NIC

28

FIG. 5

US 10,708,240 B2

1
OFFLOADING COMMUNICATION
SECURITY OPERATIONS TO A NETWORK
INTERFACE CONTROLLER

FIELD OF THE INVENTION

The present invention relates generally to computer net-
work communications, and particularly to apparatus and
methods for performing security-related operations on data
packets transmitted and received over a network.

BACKGROUND

Internet Protocol Security (IPsec) is a network protocol
suite that authenticates and encrypts data packets sent over
a network. IPsec operates the Internet Layer (referred to
generically as the network layer, or Layer 3) of the Internet
Protocol (IP) suite, and can automatically secure applica-
tions and data transmitted in IP packets. IPsec uses crypto-
graphic security services to support network-level peer
authentication, data-origin authentication, data integrity,
data confidentiality (encryption), and replay protection.
IPsec also includes protocols for establishing mutual authen-
tication between agents at the beginning of the session and
negotiation of cryptographic keys for use during the session.
The IPsec architecture and operational features are specified
in a series of Requests for Comments (RFCs) published on
line by the Internet Engineering Task Force (IETF), include
RFC 4301, RFC 4303, and RFC 4106.

Specific features of IPsec that are used in popular imple-
mentations include the following:

Authentication Headers (AH) are added to IPsec packets
to provide connectionless data integrity and data origin
authentication for IP datagrams, along with protection
against replay attacks. The AH contains a 32-bit
sequence number and an integrity check value. To
protect against replay attacks, the sequence number is
never reused in a given Security Association, and when
it reaches its maximum value, a new Security Associa-
tion is negotiated.

Encapsulating Security Payload (ESP) is an encrypted
payload format that provides confidentiality, data-ori-
gin authentication, connectionless integrity, an anti-
replay service, and limited traffic-flow confidentiality.
In Tunnel Mode, the entire original IP packet is encap-
sulated with a new packet header added, and ESP
protection is applied to the whole inner IP packet
(including the header), while an outer header for net-
work routing remains unprotected.

Security Associations (SA) provide the algorithms and
data that are used in deriving and negotiating the
parameters necessary for AH and/or ESP operations
between a pair of IPsec endpoints. A security associa-
tion database (SAD) defines the parameters associated
with each SA.

Because IPsec is computation-intensive, some authors
have suggested offloading IPsec processing from the host
processor to a network interface controller (NIC). For
example, U.S. Pat. No. 8,006,297 describes a method and
system for combined security protocol and packet filter
offload and onload. This patent describes a NIC that includes
a security association database (SADB) comprising a plu-
rality of security associations (SAs), a cryptographic offload
engine configured to decrypt a packet using one of the
plurality of SAs, a security policy database (SPD) compris-
ing a plurality of security policies (SPs) and a plurality of
filter policies, and a policy engine configured to determine

10

15

20

25

30

35

40

45

50

55

60

65

2

an admittance of the packet using one of the plurality of SPs
from the SPD and apply one of the plurality of filter policies
to the packet.

As another example, U.S. Patent Application Publication
2010/0228962 describes offloading cryptographic protection
processing of packet data sent according to a security
protocol between a first computer and a second computer via
a forwarding device. The forwarding device performs a
portion of the processing, and forwards the packet data to a
third computer, connected to the forwarding device, for
other processing. The third computer may support non-
standard extensions to the security protocol, such as exten-
sions used in authorizing and establishing a connection over
the secure protocol. The third computer sends the results of
its processing, such as a cryptographic key, or a detected
access control policy, to the forwarding device.

SUMMARY

Embodiments of the present invention that are described
hereinbelow provide improved apparatus and methods for
offload of security-related functions to hardware logic.

There is therefore provided, in accordance with an
embodiment of the invention, computing apparatus, includ-
ing a host processor, which is configured to run a virtual
machine monitor (VMM), which supports a plurality of
virtual machines running on the host processor, and which
includes a cryptographic security software module config-
ured to apply a cryptographic security protocol to data
packets transmitted and received by one or more of the
virtual machines. A network interface controller (NIC) is
configured to link the host processor to a network so as to
transmit and receive the data packets from and to the virtual
machines over the network, and includes a cryptographic
security hardware logic module, which is configured, when
invoked by the VMM, to apply the cryptographic security
protocol to the data packets transmitted and received by the
one or more of the virtual machines while maintaining a
state context of the cryptographic security protocol with
respect to each of the one or more of the virtual machines.
The NIC is configured, upon encountering an exception in
applying the cryptographic security protocol to a data packet
directed to a given virtual machine, to transfer the data
packet, together with the state context of the cryptographic
security protocol with respect to the given virtual machine,
to the cryptographic security software module of the VMM,
which processes the data packet using the state context and
passes the data packet, after processing, to the given virtual
machine.

In the disclosed embodiments, the VMM is configured to
apply the cryptographic security protocol and to invoke the
cryptographic security hardware logic module without
involvement by the virtual machines in invocation or imple-
mentation of the cryptographic security protocol.

In some embodiments, the VMM is configured, when the
NIC has encountered the exception, to acquire the state
context of the cryptographic security protocol with respect
to the given virtual machine by performing a predefined
handshake with the NIC. The predefined handshake
includes, for example, querying and receiving packet
sequence number information from the NIC and updating
replay protection information used in the cryptographic
security protocol.

In one embodiment, the exception includes a fragmenta-
tion of the data packet following application of the crypto-

US 10,708,240 B2

3

graphic security protocol by a sender of the data packet, and
wherein the VMM is configured to defragment the data
packet.

In a disclosed embodiment, the VMM is configured, after
processing the data packet, to pass the processed data packet
to the given virtual machine by looping the processed data
packet through the NIC to the given virtual machine.

In some embodiments, the NIC is configured to apply an
encapsulation, using the state context of the cryptographic
security protocol, to the data packets transmitted from the
given virtual machine to a specified destination, while
maintaining a count of the data transmitted using the state
context, and when the count reaches a predefined limit, to
stop transmitting the data packets to the specified destination
and transfer the state context to the cryptographic security
software module of the VMM for update of the state context.
Additionally or alternatively, the NIC is configured to apply
a decapsulation, using the state context of the cryptographic
security protocol, to encapsulated data packets received
from the network, and upon receiving instructions from the
VMM to terminate the decapsulation, to loop the received
data packets back to the network.

In an example embodiment, the cryptographic security
protocol includes an IPsec protocol.

There is also provided, in accordance with an embodi-
ment of the invention, computing apparatus, including a
network interface, configured to be connected to a network,
and a host interface, configured to be connected to a periph-
eral component bus of a host computer. An embedded
controller is configured to run a cryptographic security
software module, which applies a cryptographic security
protocol to data packets transmitted and received by appli-
cations running on the host computer. Packet processing
hardware logic is coupled between the host interface and the
network interface so as to transmit and receive data packets
over the network from and to the applications running on the
host computer, and includes a cryptographic security hard-
ware logic module, which is configured, when invoked by
the embedded controller, to apply the cryptographic security
protocol to the data packets transmitted and received by one
or more of the applications while maintaining a state context
of'the cryptographic security protocol with respect to each of
the one or more of the applications. The packet processing
hardware logic is configured, upon encountering an excep-
tion in applying the cryptographic security protocol to a data
packet directed to a given application, to transfer the data
packet, together with the state context of the cryptographic
security protocol with respect to the given application, to the
cryptographic security software module of the embedded
controller, which processes the data packet using the state
context and passes the data packet, after processing, to the
given application.

In the disclosed embodiments, the embedded controller is
configured to apply the cryptographic security protocol and
to invoke the cryptographic security hardware logic module
without involvement by the applications in invocation or
implementation of the cryptographic security protocol.

There is additionally provided, in accordance with an
embodiment of the invention, a method for computing,
which includes running on a programmable processor a
cryptographic security software module configured to apply
a cryptographic security protocol to data packets transmitted
and received by applications running on a host computer. A
network interface controller (NIC) is coupled between the
host processor and a network so as to transmit and receive
the data packets from and to the applications over the
network. The cryptographic security software module

10

15

20

25

30

35

40

45

50

55

60

65

4

invokes a cryptographic security hardware logic module in
the NIC, thereby causing to the cryptographic security
hardware logic module to apply the cryptographic security
protocol to the data packets transmitted and received by one
or more of the applications while maintaining a state context
of'the cryptographic security protocol with respect to each of
the one or more of the applications. Upon encountering in
the cryptographic security hardware logic module an excep-
tion in applying the cryptographic security protocol to a data
packet directed to a given application, the data packet is
transferred, together with the state context of the crypto-
graphic security protocol with respect to the given applica-
tion, to the cryptographic security software module running
on the programmable processor. The data packet is pro-
cessed on the programmable processor using the state con-
text and the cryptographic security software module, which
passes the data packet, after the processing, to the given
application.

The present invention will be more fully understood from
the following detailed description of the embodiments
thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that schematically illustrates a
networked computer system, in accordance with an embodi-
ment of the present invention;

FIG. 2 is a block diagram that schematically shows details
of'a network interface controller (NIC) and software running
on a host processor, in accordance with an embodiment of
the present invention;

FIG. 3 is a ladder diagram showing communications
exchanged between a NIC and software running on a host
processor, in accordance with an embodiment of the inven-
tion;

FIG. 4 is a flow chart that schematically illustrates a
method for performing a security-related handshake
between a NIC and a virtual machine monitor (VMM), in
accordance with an embodiment of the invention; and

FIG. 5 is a block diagram that schematically illustrates a
host computer with a NIC having an embedded controller, in
accordance with an embodiment of the invention.

DETAILED DESCRIPTION OF EMBODIMENTS
Overview

In view of the heavy computational burden involved in
cryptographic security protocols, such as IPsec, offloading
the processing tasks to a NIC is a desirable solution. The
core computational functions of protocols such as IPsec can
be implemented efficiently in a cryptographic security hard-
ware logic module, which can be designed in such a way that
the necessary packet processing is performed without reduc-
ing the data throughput of the NIC.

Almost every protocol, however, has its exceptions,
which fall outside the core logical functions. In IP networks,
for example, packets to which an AH or ESP was applied at
the sending node may be fragmented into smaller packets on
the way to their destination. The receiving node must first
defragment these packets before AH authentication and
decapsulation. Implementing this sort of defragmentation in
the NIC requires substantial amounts of memory and re-
ordering logic, which increase chip size and processing
latency.

As another example, for reasons of replay protection,
IPsec requires that a given SA context be used for no more

US 10,708,240 B2

5

than a certain number of packets or volume of data. The
IPsec endpoints are supposed to maintain a count of data
transmitted using the current SA, and then negotiate a new
SA when the count reaches a predefined limit. In this case,
too, implementing this sort of functionality in hardware
logic in the NIC is impractical.

One solution to the sorts of problems described above is
for the NIC simply to drop packets when exceptions occur
and rely on higher-level software to recover and invoke
retransmission when needed. These sorts of solutions gen-
erally require that the software applications that transmit and
receive the packets be aware of and involved in the cryp-
tographic security protocol. This software involvement adds
to the processing burden that is imposed on the CPU, as well
as increasing packet latency and reducing throughput.

Embodiments of the present invention that are described
herein address these problems by means of a novel collabo-
ration between a cryptographic security hardware logic
module in the NIC and a cryptographic security software
module running on a processor in a privileged domain. The
domain is “privileged” in that it has access to and is able to
make changes in the state context of the cryptographic
security protocol, wherein this context includes parameters
that are used in encryption and authentication, such as
packet sequence numbers, counters, and cryptographic keys.
Examples of such privileged domains, as illustrated in the
embodiments described below, include a virtual machine
monitor (VMM, also referred to as the hypervisor) in a host
computer running virtual machines, or an embedded pro-
grammable controller in a smart NIC. The privileged soft-
ware module is able to apply the cryptographic security
protocol and to invoke the cryptographic security hardware
logic module without involvement by the (non-privileged)
user-domain applications that transmit and receive the pack-
ets via the NIC. In fact, the user-domain applications need
not even be aware that packet encryption or authentication
is being applied to the packets that they transmit and receive.

In the disclosed embodiments, when cryptographic secu-
rity is to be applied to data packets transmitted and received
by one or more applications (including applications running
on a given virtual machine), the cryptographic security
software module invokes the cryptographic security hard-
ware logic module in the NIC. The hardware logic module
will then apply the appropriate security operations to the
data packets transmitted and received by these applications,
while maintaining the state context of the cryptographic
security protocol with respect to each of the applications in
question. When the security hardware logic module encoun-
ters an exception in applying the cryptographic security
protocol to a data packet directed to a given application,
such as a fragmented packet, it transfers the data packet,
together with the applicable state context, to the crypto-
graphic security software module. This software module
processes the data packet, using the state context, and passes
the processed data packet to the appropriate application.

The embodiments that are described below relate specifi-
cally, for the sake of clarity and concreteness, to IPsec
encryption, authentication and encapsulation. The principles
of the present invention, however, are by no means limited
to [Psec and may alternatively be applied in implementing
other cryptographic security protocols that are known in the
art, particularly datagram-based packet encryption, authen-
tication and encapsulation protocols. Examples of such
protocols include Media Access Control Security (MAC-

10

15

20

25

30

35

40

45

50

55

60

65

6
sec), as defined by IEEE standard 802.1AE, and Datagram
Transport Layer Security (DTLS), specified in RFC 4347.

System Description

FIG. 1 is a block diagram that schematically illustrates a
networked computer system 20, in accordance with an
embodiment of the present invention. System 20 comprises
multiple host computers 22, 24, 26, . . . (also referred to
simply as “hosts”), which communicate over a packet data
network 28. Typically, although not necessarily, data net-
work 28 is a Layer-3 network, such as an IP network, and
thus comprises Layer-3 routers 36, as well as switches 34,
through which hosts 22, 24, 26, . . . , may connect to the
network. The principles of the present invention, however,
are similarly applicable over other sorts of data networks,
such as InfiniBand networks; and the methods and circuits
described herein can be used to support various sorts of
packet-level cryptographic security protocols, including
both Layer-2 and Layer-3 protocols.

Each host 22, 24, 26 in this example comprises a central
processing unit (CPU) 30, which typically comprises one or
more processing cores (not shown), with a system memory
31 and a network interface controller (NIC) 32. NIC 32 is
connected by a bus 33 to CPU 30 and memory 31, and is
connected via one of switches 34 to network 28. Bus 33 may
comprise, for example, a peripheral component bus, such as
PCI Express® (PCle®) bus, or a dedicated system bus of the
CPU. A cryptographic security hardware logic module in
NIC 32 can be invoked to apply a cryptographic security
protocol, such as IPsec, to outgoing and incoming data
packets to and from network 28, as described further here-
inbelow.

Hosts 22, 24, 26 support a virtual machine environment,
in which multiple virtual machines 38 (labeled VM1, VM2,
VM3 in FIG. 1) may run on any given CPU 30. A virtual
machine monitor (VMM) 40 in the CPU native domain
interacts with the kernels of the guest operating systems of
virtual machines 38 in a manner that emulates the host
processor and allows the virtual machines to share the
resources of the CPU.

NIC 32 comprises packet processing circuitry, which is
configured to appear to the programs running on CPU 30 as
multiple virtual NICs (vNICs) 42. In a model that is known
as single-root /O virtualization (SR-IOV), each virtual
machine 38 interacts with NIC 32 as though the NIC was
dedicated to that virtual machine, linking the virtual
machine to other machines (virtual and/or physical) on
network 28. In this regard, NIC 32 acts as a virtual switch,
connecting each of the virtual machines to a particular tenant
network while allowing vNICs 42 to share the same physical
port to underlying data network 28.

This virtualization of NIC functions is also supported by
offloading of IPsec functions from VMM 40 to NIC 32, as
explained below in greater detail. In the example shown in
FIG. 1, VM2 in host 22 and VM3 in host 24 reside on the
same tenant network. In network virtualization systems that
are known in the art, to send an IPsec packet to VM3, VM2
submits the packet to VMM 40 in host 22; and the VMM
adds an AH, encapsulates the packet and transmits it to the
VMM in host 24, which then authenticates, decapsulates,
and passes the packet to VM3. By contrast, in the present
embodiment, VM2 in host 22 communicates with VM3 in
host 24 via an [Psec tunnel 46 between the respective NICs
32, without necessarily even being aware that [Psec authen-
tication or encapsulation is taking place.

US 10,708,240 B2

7

FIG. 2 is a block diagram that schematically shows details
of NIC 32 and software running on CPU 30, in accordance
with an embodiment of the present invention. The software
running on CPU 30, including both operating system and
application programs, may be downloaded to the CPU in
electronic form, over a network for example. Additionally or
alternatively, the software may be stored on tangible, non-
transitory computer-readable media, such as optical, mag-
netic or electronic memory media, which may be embodied
in memory 31.

CPU 30 operates a native domain 48, with a host oper-
ating system 50 and other privileged functions, including an
IPsec software module 54. In addition, the CPU concur-
rently runs one or more virtual machines 38, as noted above,
each with its own guest operating system 52 and guest user
applications 56. (Only one guest OS is shown in FIG. 2 for
the sake of simplicity.) VMM 40 in native domain 48
interacts with the kernels of guest operating systems 52 in a
manner that emulates the host processor and allows the
virtual machines to share the resources of CPU 30. A wide
range of virtual machine software of this sort is available
commercially, and further description is beyond the scope of
the present disclosure.

Client processes, such as user applications 56, commu-
nicate with the transport layer of network 28 by manipulat-
ing a transport service instance, known as a “queue pair”
(QP). To send and receive messages over the network using
NIC 32, a client submits work items, called work queue
elements (WQESs), to the appropriate queues for execution
by the NIC. As illustrated in FIG. 1, NIC 32 appears to each
virtual machine 38 to be a dedicated 1/0 device, or vNIC, for
use by that virtual machine in communicating directly over
its assigned virtualized tenant network. This configuration
minimizes the burden of communication on VMM 40 and on
host operating system 50.

NIC 32 comprises a host interface, such as a PCle
interface, which connects to bus 33 of host computer 22, and
a network interface, comprising one or more ports 62
connected to network 28. Packet processing hardware logic
in NIC 32 is coupled between host interface 60 and network
ports 62 and comprises a transmit (Tx) pipe 66 and a receive
(Rx) pipe 68, which transmit and receive data packets to and
from network 28 in response to the WQEs posted by
applications 56. Tx pipe 66 executes WQEs by composing
packet headers, reading specified data from memory 31 into
the packet payloads, and then transmitting the packets to
network 28. Rx pipe 68 receives incoming packets, writes
the packet data to memory 31, and notifies the destination
application (for example by posting a completion queue item
in an appropriate queue in memory 31), as well as returning
acknowledgments over network 28 to the senders of the
packets. These basic packet transmission and reception
operations are well known in the art. Further details of the
virtualization functions associated with NIC 32 are
described, for example, in U.S. Pat. No. 9,462,047, whose
disclosure is incorporated herein by reference.

Packet processing hardware logic 64 also comprises cryp-
tographic security hardware logic module 44, which is
configured, when invoked by IPsec software module 54, to
apply IPsec security functions to the data packets transmit-
ted and received by Tx pipe 66 and Rx pipe 68. These
security functions typically include adding IPsec authenti-
cation headers to transmitted packets and using these head-
ers to authenticate received packets and protect against
replay attacks, as well as ESP encryption, decryption, encap-
sulation, decapsulation, and tunneling, as described in the
above-mentioned RFCs.

10

15

20

25

30

35

40

45

50

55

60

65

8

Hardware logic module 44 can be introduced, for
example, as a stage in flow steering within pipes 66 and 68.
Such flow steering typically uses a packet steering table,
containing steering instructions keyed by header field val-
ues, as described, for example, in U.S. Patent Application
Publications 2013/0114599 and 2016/0359768, whose dis-
closures are incorporated by reference. The flow steering
entries can indicate which flows are subject to IPsec han-
dling and which IPsec operations should be applied to each
flow.

The flow steering mechanism in pipes 66 and 68 is
governed by flow steering entries that are configurable by
software. Flow steering processing begins from a single flow
steering root entry for Tx pipe 66 and another for Rx pipe 68.
Flow steering entries are added to the root entry to form a
flow steering tree, which is an acyclic graph. IPsec flow
steering entries can specify one or more actions to be
performed by hardware logic module 44, for example:

1. Encrypt/decrypt and authenticate.

2. Check replay protection against a replay-window.

3. Add/remove IPsec headers.

These functions can be combined to provide full IPsec

offload, and can be interleaved with flow steering entries

unrelated to IPsec, such as various header matching func-
tions.

For example, in Rx pipe 68, the flow steering tree for a
received packet could include the following sequence of
entries and corresponding actions:

1. Check destination medium access control (MAC)

address.

. Check IP address.

. Check Security Parameters Index (SPI) of IPsec ESP.

. IPsec decryption and authentication.

. Check and update IPsec replay protection.

. Remove ESP header (decapsulate packet).

. Parse packet following decapsulation.

. Check IP address and drop if no match to existing list.
9. Check transport protocol port and drop if no match.
10. Apply high-level offload functions.

After all steering stages have been successfully completed,
NIC 32 passes the packet to its destination process. In case
of an exception in one of the IPsec processing stages,
however, NIC 32 will pass the packet to VMM 40 for
handling in software. On the other hand, if a packet does not
satisfy the IPsec protection requirements dictated by the
applicable security policy, NIC 32 will block the packet
altogether.

In Tx pipe 66, security policy rules are included in the
steering tree to select the entry in the SAD that is to be used
for each outgoing packet flow, which in turn will determine
whether the packet is to be referred to hardware logic
module 44 for IPsec processing and, if so, which IPsec
functions to apply. The SAD entry is selected for each packet
depending on certain header fields, such as the IP header, a
transport header, and/or an encapsulation header. Thus, the
flow steering tree for an outgoing packet could include the
following sequence of entries and corresponding actions:

1. Check destination MAC address.

2. Check IP address.

3. Check transport header.

4. Select SAD entry for this flow.

5. Add ESP header.

6. Encrypt and authenticate packet.

Alternatively, depending on the SAD entry that is selected at

step 4, the steering logic in Tx pipe 66 may decide to bypass

further IPsec processing or possibly to drop the packet.

O~ OV BN

US 10,708,240 B2

9

More complex use cases can arise when other actions are
combined with IPsec. For example, Rx pipe 68 can be
directed by the flow steering entries to decapsulate and
handle an IPsec packet that is encapsulated in a Virtual
Extensible LAN (VXLAN) packet, or a VXL AN packet that
is encapsulated inside an IPsec packet. Tx pipe 66 can
similarly be directed to perform this sort of multi-level
encapsulation.

Hardware logic module 44 maintains an [Psec state con-
text 70 with respect to each of applications 56 or virtual
machines 38 for which IPsec software module 54, under the
control of VMM 40, has invoked IPsec services. If module
44 is required to handle a large number of packet flows, state
context data can be stored in memory 31 and cached in NIC
32 as needed. Context 70 contains an SA database, which
holds keys and encryption parameters for use in authenti-
cating and encapsulating packets. Typically, context 70 also
includes counters 72, which keep track of packet serial
numbers, replay protection windows, and numbers of trans-
mitted bytes and/or packets, as required by the IPsec pro-
tocol. Further details of the information maintained in con-
text 70 can be found in the above-mentioned RFC 4301.

Upon encountering an exception in applying the man-
dated IPsec processing to a given packet (or flow of packets)
to or from a given virtual machine 38 or application 56,
hardware logic module 44 transfers the packet or flow to
IPsec software module 54 for further handling. Hardware
logic module 44 also transfers the corresponding state
context 70 for the given virtual machine or application to
software module 54. VMM 40 uses this state context in
software module 54 to continue processing the packet or
flow, in a manner that is transparent to the virtual machine
or application.

In some embodiments, after VMM 40 has resolved the
exception, hardware logic module 44 continues handling
subsequent packets in the flow. Alternatively, after the VMM
has handled the exception, all further offload of this flow (or
specifically, handling of this IPsec SA) is terminated, and all
subsequent packets in this flow are processed completely by
the VMM. In some cases, such as exceptions encountered in
non-initial IP fragments, such termination is only possible
after fully handling the exception to allow correct identifi-
cation of the flow.

Handling of Exceptions

As explained above, when hardware logic module 44
encounters an exception in applying the required IPsec
operations to a data packet that is directed to a given virtual
machine 38, the hardware logic module transfers the data
packet, together with IPsec state context 70 with respect to
the given virtual machine, to [Psec software module 54. This
software module processes the data packet using the state
context and passes the data packet, after processing, to the
given virtual machine while updating the state context
(including replay protection data and sequence numbers, for
example). One example of this sort of process with respect
to a fragmented packet will be described below with refer-
ence to FIG. 3.

Similar sorts of handovers from hardware to software take
place in other cases of states and rules that are too complex
for hardware logic module 44 to maintain and identify, such
as complex firewall rules. For example, an exception may
occur when a certain VM 38 asks NIC 32 to transmit a
packet that is too large to be transmitted after encapsulation,
and IP fragmentation is needed. Hardware logic module 44

10

15

20

25

30

35

40

45

50

55

60

65

10

identifies this exception after encryption, authentication and
encapsulation and passes the packet to VMM 40 for retrans-
mission after fragmentation.

As another example, hardware logic module 44 may
encounter an exception when a packet that should be
encrypted is transmitted before any cryptographic informa-
tion has been configured for handling this packet. VMM 40
will take over and perform a handshake to configure the
cryptographic information after receiving this packet.

FIG. 3 is a ladder diagram showing communications
exchanged between NIC 32 and software running on CPU
30, in accordance with an embodiment of the invention.
Actions taken by VMM 40 in this description include
functions carried out by IPsec software module 54. In
normal operation, NIC 32 receives [Psec packets 80 from
network that are destined for a given VM 38, and processes
packets 80 in hardware logic module 44 to authenticate and
decapsulate the packets as appropriate. NIC 32 then writes
corresponding packet data 82 to memory 31 and notifies the
appropriate VM 38. As noted earlier, the VM is uninvolved
in IPsec functions and may be unaware that such functions
are even being applied to packets that the VM transmits and
receives.

When NIC 32 receives an [Psec fragment 84, however,
hardware logic module 44 recognizes that the packet has
been fragmented and notifies VMM 40 that an exception 86
has occurred. (This sort of fragmentation can occur, for
example, when the sender of the packet, such as host 24,
applied IPsec authentication and/or encapsulation to a large
packet, and one of routers 36 broke the original large packet
into smaller IP packets for transmission on to host 22.)
Specifically, NIC 32 typically writes packet fragments to
memory 31 for handling by software and places an event
report in a queue for handling by VMM 40. Upon receiving
and parsing the event report, VMM 40 reads and reas-
sembles the pieces of the original packet from the fragments
in memory 31, at a defragmentation step 88.

In addition, IPsec software module 54 carries out a
handshake 90 with hardware logic module 44 in order to
retrieve and update the parameters in state context 70 that
are needed in order to process the defragmented packet.
Details of handshake 90 are shown in FIG. 4. Handshake 90
can take place concurrently with or before defragmentation
step 88, rather than after defragmentation as shown in FIG.
3.

Once [Psec software module 54 has completed defrag-
mentation step 88 and handshake 90, it is able to carry out
the required IPsec processing operations on the received
packets. As part of the handshake, NIC 32 passes the current
IPsec extended sequence number (ESN) to VMM 40, for use
in decrypting the defragmented packet data. (Assuming the
decryption is successful, VMM 40 updates context infor-
mation used by hardware logic module 44 in replay protec-
tion, and module 44 is thus able to continue processing
subsequent packets in this flow.) After completion of the
IPsec processing, VMM 40 then passes the processed data
packet to the destination VM 38 by looping the processed
data packet through NIC 32. In other words, VMM 40 writes
a recovered packet 92 to NIC 32 as though it were trans-
mitting the packet over network 28 to any destination VM.
NIC 32 applies its usual SR-IOV virtual switching function-
ality to recovered packet 92 in order to write corresponding
packet data 94 to VM 38. Thus, VM 38 remains unaware of
the chain of IPsec processing and exception handling that
was applied.

FIG. 4 is a flow chart that schematically shows details of
handshake 90, in accordance with an embodiment of the

US 10,708,240 B2

11

invention. As explained above, when NIC 32 encounters an
exception in [Psec handling of a given packet or flow, VMM
40 uses this handshake to acquire IPsec state context 70 with
respect to the VM 38 to which the packet or flow is destined.
The steps in the handshake are carried out by reading and
writing instructions and data between VMM 40 and NIC 32
over bus 33. FIG. 4 shows one example of such a handshake,
but alternative implementations can also be used, depending
on the protocol and the context information that is
exchanged.

VMM 40 (or IPsec software module 54) queries NIC 32
for packet sequence number information that is used in IPsec
processing, at a query step 100. For example, VMM 40 may
request the most significant bits (MSB) of the IPsec
extended sequence number (ESN), which are needed for
authentication and decryption of received packets. NIC 32
returns this information from IPsec state context 70 to VMM
40, at a query response step 102.

VMM 40 also performs atomic read and update opera-
tions on replay protection information used in IPsec, at an
atomic update step 104. This step fixes the value of the
sliding window that is used in IPsec to prevent replay
attacks, and thus ensures that VMM 40 will pass no replayed
packets to VM 38. Once the handshake is complete, VMM
40 takes over processing the exception that has occurred (for
example, packet fragmentation) in this IPsec SA, at a
handover step 106. VMM 40 updates [Psec state context 70,
thus enabling hardware logic module 44 in NIC 32 to
continue processing subsequent packets in the flow.

As another example (not shown explicitly in the figures),
hardware logic module 44 in NIC 32 can apply [Psec ESP
encapsulation, decapsulation and tunneling to outgoing and
incoming packets, using the appropriate state context 70 for
each virtual machine 38. In accordance with IPsec require-
ments, module uses counters 72 to maintain counts of data
transferred using a given SA, for example, data transmitted
or received through a particular IPsec tunnel. When the
count reaches a predefined limit, NIC 32 will stop transmit-
ting or receiving the data packets and will transfer the
corresponding state context 70 to VMM 40 for update of the
state context. At this stage, VMM 40 may negotiate a new
SA over network 28 with a remote host, whereupon the ESP
operations can resume.

As another example, hardware logic module 44 in NIC 32
may decapsulate incoming packets from network 28 using
state context 70. Upon receiving instructions from VMM 40
to terminate the decapsulation, NIC 32 can loop the received
data packets back to network 28, and may also perform
additional IPsec functions on the outgoing packets.

Alternative Embodiment—Smart NIC

FIG. 5 is a block diagram that schematically illustrates a
host computer 110 with a “smart NIC” 112 comprising an
embedded controller 114, in accordance with an embodi-
ment of the invention. This embodiment handles IPsec
offload in similar fashion to the embodiments described
above, except that [Psec hardware logic module 44 in NIC
112 interacts with an IPsec software module 116 running on
embedded controller 114, rather than on CPU 30. The
features of IPsec offload with transfer of state context to an
IPsec software module that were described above with
reference to NIC 32 and VMM 40 can likewise be applied,
mutatis mutandis, in smart NIC 112. Applications and virtual
machines running on CPU 30 in computer host 110 can
similarly be unaware of the IPsec functions applied by NIC
112.

5

10

20

25

30

35

40

45

50

55

60

65

12

As in the preceding embodiments, NIC 112 comprises
network ports 62, connected to network 28, and host inter-
face 60, connected to bus 33 of computer 110. Packet
processing hardware logic 64 is coupled between host
interface 60 and network ports 62 so as to transmit and
receive data packets over the network from and to the
applications running on CPU 30. IPsec hardware logic
module 44, when invoked by embedded controller 114,
applies IPsec processing to the data packets transmitted and
received by one or more of the applications running on the
CPU, while maintaining an IPsec state context (as shown in
FIG. 2) with respect to each of these applications.

In the present embodiment, IPsec software module 116
running on embedded controller 114 is configured to apply
IPsec processing and to invoke hardware logic module 44 as
appropriate. When hardware logic module 44 encounters an
exception in applying IPsec to a data packet directed to a
given application, module 44 transfers the data packet,
together with the corresponding IPsec state context, to [Psec
software module 116. Embedded controller 114 then pro-
cesses the data packet using the state context and passes the
data packet, after processing, to the given application on
CPU 30.

Although the features of computers 22 and 110 were
described above specifically with reference to IPsec, the
hardware and software architectures and methods of opera-
tion of these computers can similarly be applied, mutatis
mutandis, in offload of other cryptographic security proto-
cols. It will thus be appreciated that the embodiments
described above are cited by way of example, and that the
present invention is not limited to what has been particularly
shown and described hereinabove. Rather, the scope of the
present invention includes both combinations and subcom-
binations of the various features described hereinabove, as
well as variations and modifications thereof which would
occur to persons skilled in the art upon reading the foregoing
description and which are not disclosed in the prior art.

The invention claimed is:

1. Computing apparatus, comprising:

a network interface, configured to be connected to a

network;

a host interface, configured to be connected to a peripheral

component bus of a host computer;

an embedded controller, which is configured to run a

cryptographic security software module, which applies
a cryptographic security protocol to data packets trans-
mitted and received by applications running on the host
computer; and

packet processing hardware logic, which is coupled

between the host interface and the network interface so
as to transmit and receive data packets over the network
from and to the applications running on the host
computer, and which comprises a cryptographic secu-
rity hardware logic module, which is configured, when
invoked by the embedded controller, to apply the
cryptographic security protocol to the data packets
transmitted and received by one or more of the appli-
cations while maintaining a state context of the cryp-
tographic security protocol with respect to each of the
one or more of the applications,

wherein the packet processing hardware logic is config-

ured, upon encountering an exception in applying the
cryptographic security protocol to a data packet
directed to a given application, to transfer the data
packet, together with the state context of the crypto-
graphic security protocol with respect to the given
application, to the cryptographic security software

US 10,708,240 B2

13

module of the embedded controller, which processes
the data packet using the state context and passes the
data packet, after processing, to the given application.

2. The apparatus according to claim 1, wherein the
embedded controller is configured to apply the crypto-
graphic security protocol and to invoke the cryptographic
security hardware logic module without involvement by the
applications in invocation or implementation of the crypto-
graphic security protocol.

3. The apparatus according to claim 1, wherein the
cryptographic security protocol comprises an [Psec protocol.

4. A method for computing, comprising:

running on a programmable processor a cryptographic

security software module configured to apply a cryp-
tographic security protocol to data packets transmitted
and received by applications running on a host com-
puter;

coupling a network interface controller (NIC) between the

host processor and a network so as to transmit and
receive the data packets from and to the applications
over the network;

invoking, by the cryptographic security software module,

a cryptographic security hardware logic module in the
NIC, thereby causing to the cryptographic security
hardware logic module to apply the cryptographic
security protocol to the data packets transmitted and
received by one or more of the applications while
maintaining a state context of the cryptographic secu-
rity protocol with respect to each of the one or more of
the applications;

upon encountering in the cryptographic security hardware

logic module an exception in applying the crypto-
graphic security protocol to a data packet directed to a
given application, transferring the data packet, together
with the state context of the cryptographic security
protocol with respect to the given application, to the
cryptographic security software module running on the
programmable processor; and

processing the data packet on the programmable proces-

sor using the state context and the cryptographic secu-
rity software module, and passing the data packet, after
the processing, to the given application.

5. The method according to claim 4, wherein the pro-
grammable processor comprises a controller embedded in
the NIC.

6. The method according to claim 4, wherein the pro-
grammable processor is comprised in a central processing
unit (CPU) of the host computer and runs a virtual machine
monitor (VMM), which supports a plurality of virtual

10

15

20

25

30

35

40

45

14

machines running on the host computer and comprises the
cryptographic security software module, and wherein the
one or more of the applications run on one or more of the
virtual machines.

7. The method according to claim 4, wherein the crypto-
graphic security protocol is applied and the cryptographic
security hardware logic module is invoked without involve-
ment by the applications in invocation or implementation of
the cryptographic security protocol.

8. The method according to claim 4, wherein transferring
the state context comprises performing a predefined hand-
shake with between the cryptographic security software
module and the NIC.

9. The method according to claim 8, wherein the pre-
defined handshake comprises querying and receiving packet
sequence number information from the NIC and updating
replay protection information used in the cryptographic
security protocol.

10. The method according to claim 4, wherein the excep-
tion comprises a fragmentation of the data packet following
application of the cryptographic security protocol by a
sender of the data packet, and wherein processing the data
packet comprises defragmenting the data packet.

11. The method according to claim 4, wherein passing the
data packet to the given application comprises looping the
processed data packet through the NIC to the given appli-
cation.

12. The method according to claim 4, wherein invoking
the cryptographic security hardware logic module causes the
NIC to apply an encapsulation, using the state context of the
cryptographic security protocol, to the data packets trans-
mitted from the given application to a specified destination,
while maintaining a count of the data transmitted using the
state context, and when the count reaches a predefined limit,
to stop transmitting the data packets to the specified desti-
nation and transfer the state context to the cryptographic
security software module for update of the state context.

13. The method according to claim 4, wherein invoking
the cryptographic security hardware logic module causes the
NIC to apply a decapsulation, using the state context of the
cryptographic security protocol, to encapsulated data pack-
ets received from the network, and upon receiving instruc-
tions from the cryptographic security software module to
terminate the decapsulation, to loop the received data pack-
ets back to the network.

14. The method according to claim 4, wherein the cryp-
tographic security protocol comprises an [Psec protocol.

#* #* #* #* #*

