
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0228839 A1

US 20080228839A1

Fung et al. (43) Pub. Date: Sep. 18, 2008

(54) APPARATUS FOR HIGHLY AVAILABLE (60) Provisional application No. 60/359,226, filed on Feb.
TRANSACTION RECOVERY FOR 22, 2002.
TRANSACTION PROCESSING SYSTEMS O O

Publication Classification

(75) Inventors: Priscilla C. Fung, Union City, CA (51) Int. Cl.
(US); Alexander J. Somogyi, G06F 7/30 (2006.01)
Basking Ridge, NJ (US) (52) U.S. Cl. 707/202; 707/E17.007

Correspondence Address: (57) ABSTRACT
FLESLER MEYER LLP A highly available transaction recovery service migration
650 CALIFORNLA STREET, 14TH FLOOR system in accordance with one embodiment of the present
SAN FRANCISCO, CA 94108 (US) invention implements a servers Transaction Recovery Ser

vice (TRS) as a migratable service. In one embodiment of the
(73) Assignee: BEA SYSTEMS, INC., San Jose, present invention, the TRS is a server instance or software

CA (US) module implemented in JAVA. The TRS migrates to an avail
able server that resides in the same cluster as the failed server.

(21) Appl. No.: 12/127,082 The migrated TRS obtains the TLOG of the failed server,
reads the transaction log, and performs transaction recovery

(22) Filed: May 27, 2008 on behalf of the failed server. The migration may occur manu
ally or automatically on a migratable services framework.

O O The TRS of the failed server migrates back in a fail back
Related U.S. Application Data operation once the failed primary g is restarted. Failback

(63) Continuation of application No. 1 1/325,028, filed on operation may occur whether recovery is completed or not.
Jan. 4, 2006, now Pat. No. 7,406,618, which is a con
tinuation of application No. 10/341,041, filed on Jan.
13, 2003, now Pat. No. 7,178,050.

50

205

210

220

Administrator
Initiates Migration

230

MF Detects
Server Down

240

MFACtivates
TRS on Server 2

2

Server 1 TLOG Read
and Processed

260

TRS 1 Performs
Recovery

This expedites recovery and improves availability of the
failed server thereby preserving the efficiency of the network
and other servers.

Patent Application Publication Sep. 18, 2008 Sheet 1 of 7 US 2008/0228839 A1

FIG. 1A

Patent Application Publication Sep. 18, 2008 Sheet 2 of 7 US 2008/0228839 A1

FIG. 1B

Patent Application Publication Sep. 18, 2008 Sheet 3 of 7 US 2008/0228839 A1

200- 2O5
Start

210

Server Fails

220

Administrator
Initiates Migration

230

MF Detects
Server Down

240

MF Activates
TRS On Server 2

250

Server 1 TLOG Read
and Processed

260

TRS 1 Performs
Recovery

265

FIG. 2

US 2008/0228839 A1 Sep. 18, 2008 Sheet 4 of 7 Patent Application Publication

Patent Application Publication Sep. 18, 2008 Sheet 5 of 7 US 2008/0228839 A1

510

Server 1 is
Restarted

520

TRS Migration
Initiated

530

TRS Migrates
to Server 1

410

Server 1 Recovery
Completed

420

TRS Migration
to Server 1 Initiated

430

MF Completes
Migration to Server 1

FG. 4 FIG. 5

Patent Application Publication Sep. 18, 2008 Sheet 6 of 7 US 2008/0228839 A1

600 N 605

610

Server 1 Fails

620

TRS Midrates
to Server 2 "Egg

630

MF Activates
TRS On Server 2

640

Server 1 TLOG Read
and Processed

650

TRS 1 Performs
Recovery

655

F.G. 6

Patent Application Publication Sep. 18, 2008 Sheet 7 of 7 US 2008/0228839 A1

710

Server 1 Recovery
Completed

720

TRS Migration
to Server 1 initiated

730

MF Completes
Migration to Server 1

810

Server 1 Restarted

82O

TRS Migration
Initiated

830

TRS Migrates
to Server 1

FIG. 7 FIG. 8

US 2008/0228839 A1

APPARATUS FOR HIGHILY AVAILABLE
TRANSACTION RECOVERY FOR

TRANSACTION PROCESSING SYSTEMS

CLAIM TO PRIORITY

0001. This application is a Continuation of U.S. patent
application Ser. No. 1 1/325,028 entitled “APPARATUSFOR
HIGHLYAVAILABLE TRANSACTION RECOVERY FOR
TRANSACTION PROCESSING SYSTEMS by Priscilla C.
Fung et al., filed Jan. 4, 2006 (Attorney Docket No: BEAS
01 173US4), which is a continuation of a U.S. patent applica
tion Ser. No. 10/341,041, now U.S. Pat. No. 7,178,050,
entitled SYSTEM FOR HIGHLY AVAILABLE TRANS
ACTION RECOVERY FORTRANSACTION PROCESS
ING SYSTEMS, by Priscilla C. Fung et al., filed Feb. 22,
2003 (Attorney Docket No: BEAS-01 173US2), which claims
priority to U.S. Provisional Patent Application No. 60/359,
226 entitled “HIGHLY AVAILABLE TRANSACTION
RECOVERY FORTRANSACTION PROCESSING SYS
TEMS, by Priscilla C. Funget al., filed Feb. 22, 2002 (Attor
ney Docket No. BEAS-01 173US0), which are incorporated
herein by reference.

CROSS REFERENCE TO RELATED
APPLICATIONS

0002 The present application is related to the following
United States patents and patent applications, which patents/
applications are assigned to the owner of the present inven
tion, and which patents/applications are incorporated by ref
erence herein in their entirety: U.S. patent application Ser.
No. 10/366,075, entitled “SYSTEMS AND METHODSFOR
MIGRATABLE SERVICES, by Eric M. Halpern, filed Feb.
13, 2003 (Attorney Docket No. BEAS-01 195US2), which
claims priority to U.S. Provisional Patent Application No.
60/358,418, entitled “HIGHLY AVAILABLE TRANSAC
TION RECOVERY FORTRANSACTION PROCESSING
SYSTEMS, by Eric M. Halpern, filed Feb. 21, 2001 (Attor
ney Docket No. BEAS-01 195US0) and to U.S. patent appli
cation Ser. No. 10/341,207 entitled “METHOD FOR
HIGHLYAVAILABLE TRANSACTION RECOVERY FOR
TRANSACTION PROCESSING SYSTEMS, by Priscilla
C. Fung et al., filed Jan. 13, 2003 (Attorney Docket No.
BEAS-01 173US1, which claims priority to U.S. Provisional
Patent Application No. 60/359,226, entitled “HIGHLY
AVAILABLE TRANSACTION RECOVERY FORTRANS
ACTION PROCESSING SYSTEMS, by Priscilla C. Fung
et al., filed Feb. 22, 2002 (Attorney Docket No. BEAS
01173USO).

COPYRIGHT NOTICE

0003) A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile repro
duction by anyone of the patent document or the patent dis
closure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND

0004 Distributed networks are well known to program
mers and computer system architects. A distributed network
may include multiple nodes, computers, or servers. As used
herein, a server is defined as a Software process. A node or

Sep. 18, 2008

cluster is a group of servers that may exist on a single hard
ware machine or share a physical resource Such as a memory
disk. Each server in a network usually has applications or
objects that perform different functions. An application on a
particular server may be initiated by another server or by the
server it resides on. Distributed networks are advantageous in
that several applications required to accomplish a task or a
process may be distributed among several servers. The dis
tributed applications may then be called upon when needed.
Processes invoked simultaneously may be run on different
servers instead of weighing down a single server and proces
sor. This advantageously distributes processing power and
contributes to a more efficient network.

0005 Distributed transactions can span multiple servers,
and servers often host resource managers (e.g. database con
nection pools or JMS queues) which participate in distributed
transactions. As a result of distributed transaction participa
tion, locks or other internal resources can be held up in the
resource managers (e.g. databases locks are acquired for data
base records that are updated in a distributed transaction) on
behalf of the distributed transaction until the distributed trans
action is completed. For each distributed transaction, a par
ticular server acts as the coordinator, which drives the partici
pating transactional resources to commit atomically and thus
the transaction to completion, via the Two Phase Commit
(2PC) protocol. In the first phase of the 2PC protocol, the
coordinator logs a record of the transaction and its partici
pants persistently in its TLOG files after all participants are
prepared Successfully. Once prepared, all participants hold on
to the acquired locks or other internal resources for the trans
action until it is told to commit or rollback by the coordinator.
In the second phase of the 2PC protocol, the coordinator
commits all the participants, which then make the updates
durable and release the locks and other internal resources.
After all participants are successfully committed, the coordi
nator then releases the log record from its TLOG. Thus, if a
coordinator fails, all the in-flight transactions that are logged
in its TLOG files cannot be driven to completion, and thus all
participants cannot release their locks or other internal
resources, until the coordinator is restarted. Thus, with sys
tems of the prior art, transaction recovery cannot take place
before a failed server restarts. This limits the availability of
transaction recovery of the failed server and thus the avail
ability of other XA resources (e.g. JMS backends).
0006. In addition to unexpected server failure, a server
may be brought down intentionally. Application servers are
often configured to run on specific machines to service client
requests. These machines are brought down for periodic
maintenance, machine servicing, and other reasons. As a
result, the servers located on the downed machine are notable
to service client requests to that machine or perform recovery
of in-doubt transactions until the servers are restarted.

0007. One approach the prior art has taken to address this
problem is to migrate servers and their TLOG files to a back
up or alternate machine. This allows unfinished transactions
in a TLOG to be processed thus improving the availability of
the failed server and preserving the operation and efficiency
of a network. One such server migration system for use in a
distributed network is included in the BEATUXEDO appli
cation. TUXEDO supports migration of multiple servers
residing on a machine. The servers must either consist of a
group of servers or all the servers that reside on a machine. A
group of servers within the TUXEDO application is defined

US 2008/0228839 A1

as a collection of servers or services on a machine often
associated with a resource manager.
0008. An administrator manually migrate servers using
the TUXEDO application. The administrator specifies a pri
mary machine and a secondary or back-up machine for each
group of servers. Once a server group has failed or been
deactivated by a user, a user may manually migrate the servers
from the primary machine to the secondary machine. The
primary then becomes the acting secondary machine, and the
secondary becomes the acting primary machine. When the
group of servers is to be moved back to the original primary
machine, the user shuts-down the back-up machine and then
migrate the server group back to the original primary
machine.
0009 Though a TLOG cannot be migrated by itself in
Tuxedo, an administrator may manually migrate a TLOG file
to a back-up server as a secondary step to of migrating a
server. The TLOG migration is a manual process performed
with timadmin commands. To migrate a TLOG in TUXEDO,
an Atmadmin(a) session is started and all servers that write to
the TLOG are manually shut-down by a user. Next, the user
dumps the TLOG contents into a text file, copies the name of
the TLOG file to the back-up machine, and reads the text file
into the existing TLOG for the specified back-up machine.
The user then forces a warm start of the TLOG. Though a user
may manually migrate a TLOG in this manner, TUXEDO
does not support having multiple TLOGs per server.
0010. There are several disadvantages to the prior art such
as the TUXEDO application. Tuxedo does not support the
migration of anything less than a group of servers. Thus, if a
single server has crashed in a system or requires maintenance;
multiple servers must be shut-down in order to migrate the
server. Tuxedo requires that all servers that write to a particu
lar TLOG file must be shut-down while the TLOG file is
migrated. Tuxedo also does not support multiple TLOGs
residing on a single server. In Tuxedo, there is only one TLOG
for a group of servers. Once servers of a machine or group
have migrated, and the corresponding TLOG is migrated
thereafter, the secondary machine hosts only the migrated
TLOG. Additionally, all migration steps in Tuxedo are done
manually, including a complete shut-down of the secondary
server when failing back to the original primary or master
server. What is needed is a migration system that addresses
the deficiencies of existing migration systems such as the one
in Tuxedo.

SUMMARY

0011. A highly available transaction recovery service
migration system in accordance with one embodiment of the
present invention implements a server S Transaction Recov
ery Service as a migratable service. In one embodiment of the
present invention, the TRS is a server instance or software
module implemented in JAVA. Highly available transaction
recovery of a server within a cluster is achieved by migrating
the TRS to another available server in the same cluster. This
allows the backup server to read the transaction log and per
form recovery on the behalf of the failed server. Each server in
a cluster has a corresponding TRS, which maintains owner
ship of the servers=STLOG. When a primary server fails, the
failed servers—s TRS migrates to an available secondary
server that resides in the same cluster as the failed server. The
primary server and secondary server share access to the same
memory disk. While residing on the secondary server, the
migrated TRS obtains access to the TLOG of the failed pri

Sep. 18, 2008

mary server, reads the transaction log, and performs transac
tion recovery on behalf of the failed server. Multiple TRS
instances may reside on any server, all of which performing
transaction recovery on a single server. The migration may
occur manually or automatically on a migratable services
framework. The TRS of the failed primary server migrates
back to the primary server in a fail back operation once the
failed primary server is restarted. Failback operation may
occur whether recovery is completed or not. No servers need
to be shutdown during TRS failover migration to a secondary
server or during TRS failback migration to the primary server.
This expedites recovery and improves availability of the
failed server thereby preserving the efficiency of the network
and other servers.

BRIEF DESCRIPTION OF THE DRAWINGS

0012 FIG. 1a is a block diagram of a transaction recovery
service migration system in accordance with one embodi
ment of the present invention.
0013 FIG. 1b is a block diagram of a transaction recovery
service migration system after failover in accordance with
one embodiment of the present invention.
0014 FIG. 2 is a diagram of a flow chart showing manual
migration failover operation in accordance with one embodi
ment of the present invention.
0015 FIG. 3 is a diagram of a flow chart showing manual
migration failback operation after recovery is complete in
accordance with one embodiment of the present invention.
0016 FIG. 4 is a diagram of a flow chart showing manual
migration failback operation before recovery is complete in
accordance with one embodiment of the present invention.
0017 FIG. 5 is a diagram of a flow chart showing auto
matic migration failover operation in accordance with one
embodiment of the present invention.
0018 FIG. 6 is a diagram of a flow chart showing auto
matic migration failback operation after recovery is complete
in accordance with one embodiment of the present invention.
0019 FIG. 7 is a diagram of a flow chart showing auto
matic migration failback operation before recovery is done in
accordance with one embodiment of the present invention.
0020 FIG. 8 is a diagram of a flow chart showing opera
tion of automatic migration failback before recovery is com
plete in accordance with one embodiment of the present
invention.

DETAILED DESCRIPTION

0021. A highly available transaction recovery service
migration system in accordance with one embodiment of the
present invention implements a server S Transaction Recov
ery Service (TRS) as a migratable service. In one embodi
ment of the present invention, the TRS is a server instance
implemented in JAVA. The TRS migrates to an available
server that resides in the same cluster as the failed server.
Highly available transaction recovery of a server within a
cluster is achieved by migrating the TRS to another available
server in the same cluster. The migrated TRS obtains the
TLOG of the failed server, reads the transaction log, and
performs transaction recovery on behalf of the failed server. A
server may host multiple TRS instances at any time as well as
coordinate their corresponding TLOG transactions. In one
embodiment of the present invention, though a server may
host multiple TRS instances and TLOGS, each TRS and
TLOG corresponds to only one server. The migration may

US 2008/0228839 A1

occur manually or automatically on a migratable services
framework. The TRS of the failed server migrates back in a
fail back operation once the failed primary server is restarted.
Failback operation may occur whether recovery is completed
or not. No servers need to be shutdown during TRS failover
migration to a secondary server or during TRS failback
migration to the primary server. This expedites recovery of
the failed server and while preserving the efficiency of the
network and other servers.
0022. A transaction recovery service migration system
100 in accordance with one embodiment of the present inven
tion is shown in FIG. 1a. System 100 includes servers 110.
120 and 140. Each server has a corresponding TRS instance
112, 122, and 142, respectively. Servers 110 and 120 share a
common disk 130 while server 140 utilizes a separate disk
150. Each server has a corresponding transaction log (TLOG)
that resides on a disk. Server 110 has TLOG 114 on disk 130,
server 120 has TLOG 124 on disk 130, and server 140 has
TLOG 144 on disk 150. All servers may reside on a single
cluster 160. Servers within a cluster may reside on the same or
different machines (not shown).
0023. In one embodiment of the present invention, each
server is associated with only one TLOG. Each TRS has
exclusive ownership of the TLOG for its particular server.
Thus, TRS 122 has exclusive ownership of the TLOG for
server 120, TLOG 130. When a particular server fails, the
TRS for the failed server may be migrated to an alternate
server. The migrated TRS may then perform recovery on the
failed server STLOG while residing on the alternate server.
In one embodiment of the present invention, a TRS may only
be migrated to a server that has access to the same disk space
as the failed server. In particular, the shared disk space must
contain TLOG files for the failed server. In another embodi
ment, an administrator may transfer the TLOG file for the
failed server to the disk that the alternate server can access.
The shared disk space may be a dual-ported SCSI, a storage
area network (SAN), or some other reliable shared disk archi
tecture.

0024. For example, if server 110 fails, the TRS 112 can
migrate to server 120 as shown in FIG.1b. Once at server 120,
TRS1112 performs recovery on TLOG 114 corresponding to
server 110. In this case, server 110 is the primary server and
server 120 is the back-up, secondary, or alternate server. A
migration of a TRS from a primary server to a secondary
server is called failover. In one embodiment of the present
invention, a TRS may undergo failover migration to a server
that shares access to the memory containing the TLOG of the
failed server. In FIG.1b, TRS 112 could not perform recovery
on server 110 if migrated to server 140 because server 140 and
server 110 do not share access to memory 130. If TRS 112
migrates to server 140, recovery by TRS 112 would require
that server 140 obtain access to memory disk 130 or experi
ence another migration to a server with access to disk 130.
0025. Each TRS is also associated with a migratable target
as an alternate server. In one embodiment, administrators can
configure a JTAMigratableTarget element for a clustered
server. One example of a JTAMigratableTarget configuration
is as follows:

0026 <Server Name="server 1
ListenAddress="campton-1”
ListenPort="7001'><JTAMigratableTarget
Name="Server 1’

Constrainted CandidateServers="server1.server2/></
Server

Cluster—“mycluster”

Sep. 18, 2008

0027. The runtime information is available from a JTA
runtime MBean:
(0028 JTARecoveryRuntimeMBean, which can be
obtained from a JTARuntimeMBean MBean. In one embodi
ment, at least two methods of the JTARuntimeMBean MBean
may provide access to the JTARecoveryRuntimeMBean. One
method is:
(0029 JTARecoveryRuntimeMBean getRecoveryRunt
imeMBeans().
0030 This method returns an array of JTARecoveryRun
timeMBean MBeans that corresponds to the TRS instances
that are deployed on the current server. Another method is:
0031 JTARecoveryRuntimeMBean getRecoveryRunt
imeMBean(String serverName).
0032. This method returns the JTARecoveryRuntimeM
Bean MBean that is associated with the specified server. If the
corresponding JTARecovery RuntimeMBean MBean is not
deployed on this server, null is returned. The JTARecovery
RuntimeMBean MBean has several methods as well. One
method is:

Boolean is Active()
0033. This method returns whether the Transaction
Recovery Service is currently activated on the server. Another
method is:
0034 int.getInitialRecoveredTransactionTotalCount().
0035. This method returns the total number of transactions
that are read from the transaction log by the TRS. The admin
istrator may use this information to increase the value of the
MaxTransactions attribute of the JTAMBean MBean as
appropriate. Another method is:
0036 int getRecoveredTransactionCompletionPercent().
0037. This method returns the percentage of the recovered
transactions that are completed by the Transaction Recovery
Service. In one embodiment, the name of the JTARecovery
RuntimeMBean MBean is the name of the original server of
the Transaction Recovery Service.
0038. Though failover and failback migration usually
involve moving a single TRS instance at any time, a server
may facilitate multiple TRS instances residing on the server
and coordinate multiple transactions for TLOGs correspond
ing to the multiple TRS instances. In this case, the server
performs recovery for multiple TRS instances in parallel.
Server 120 in FIG.1b facilitates recovery for failed server 110
as well as its own recovery and normal processing. In one
embodiment, only the primary server may service new trans
actions. In this embodiment, a back-up server can not service
new transactions for a failed primary server. To regain its TRS
and service new transactions, the failed primary server must
restart and the TRS must migrate back to the primary server.
Migration of a TRS from a secondary serverback to a primary
server is called failback. Failback operation may vary accord
ing to whether recovery for the failed server is completed or
not before failback occurs. After failback, TRS 112 would
again reside in server 110 as shown in FIG. 1a.
0039. In one embodiment of the present invention, manual
migration failover is the only migration scenario that requires
interaction by a user. An administrator may manually migrate
the TRS of a failed server to another available server in the
same cluster. The operation of a manual migration failover
system in accordance with one embodiment of the present
invention is shown in block diagram 200 of FIG. 2. Manual
migration failover operation begins at start step 205. A first
server instance (S1) fails in step 210. This may occur by an act

US 2008/0228839 A1

of an administrator or by server malfunction. In step 220, a
user issues a migrate command to trigger the migration of the
transaction recovery service for the first server instance
(TRS1) from S1 to a second server instance (S2). This is
usually done after the user has discovered a failed server or
has shut-down a server. In one embodiment, a user my trigger
the migration of TRS1 from S1 to S2 using a console imple
mented as a GUI system. The GUI console may be imple
mented so as to graphically display different clusters and
servers. The user may choose a server having the correspond
ing TRS to migrate and the back-up server to receive the TRS.
In one embodiment, the migration would be performed using
a Java Transaction API (JTA). AJTA Recovery tab is provided
for each server that allows administrators to specify various
attributes of a Migratable Target and perform manual migra
tion of the Transaction Recovery Service associated with the
server. The appearance as viewed on a computer screen of a
GUI allowing a user to issue a migrate command in accor
dance with one embodiment of the present invention is shown
in FIG. 3. In another embodiment of the present invention, a
user or system administrator may trigger a manual migration
of a TRS using a command line. A command line adminis
tration tool, implemented as a Java program, may allow a user
to specify the TRS to be migrated and what server to migrate
the TRS to. The command line tool may also require a user to
entera username and password in order to perform the migra
tion. The general format of such a command line command in
accordance with one embodiment of the present invention is
shown below.
0040 java weblogic. Admin -url <urld -username
<username> -password <passwordd MIGRATE-jta-mi
gratabletarget <server name>-destination <destination serve
al

0041 -sourcedown-destinationdown
In another embodiment of the present invention, manual
migration may be triggered by a user programmatically using
a JMXMBean. In particular, a JMX MigratableTarget MBean
of the TRS may be used to trigger the migration of a TRS from
one server to another. An example of the code comprising a
MigratableTarget MBean in accordance with one embodi
ment of the present invention is below.

import weblogic.management. Admin:
import weblogic.management.configuration.MigratableTargetMBean:
import weblogic.management.configuration. ServerMBean;

Sep. 18, 2008

0042. Though specific code is listed above, an MBean can
be configured and implemented in various ways to achieve the
result of triggering the migration of a TRS from one server to
another. These variations of code are all considered within the
Scope of the present invention. The present invention is not
intended to be limited to the JMX MigratableTarget MBean
code example listed above.
0043. Next, the migratable framework detects that the S1

is down in step 230. In one embodiment, the user issued
command in step 220 informs the migratable framework that
the server is down. When the migratable framework detects
the server is down in step 220, the migratable framework
moves the TRS to a back-up server. The back-up server may
be specified by a user or be pre-determined by the migratable
framework system. After step 230, the migratable framework
thenactivates TRS1 on S2 in step 240. In one embodiment, all
migratable services including instance TRS1 must implement
a particular interface. The interface must be registered with
the migratable framework and includes migration activate
and deactivate methods. In this embodiment, migration is
activated when the migratable framework calls the migration
activate method of TRS1 currently residing on S2. Then,
TRS1 reads and processes the TLOG for S1 in step 250. TRS1
reads S1’s TLOG files; instantiates the transactions of the
TLOG files, puts them into the transaction map of S2, and
schedules resource recovery for S1. As a result, S2 services
will read and coordinate the transactions from S1’s TLOG.
The S2 server becomes the coordinator of previously in doubt
transactions and talks to different coordinators and resource
managers to resolve transactions. Next, TRS1 performs
recovery on behalf of S1 in step 260 while still residing on S2.
TRS1 performs recovery on behalf of S1 asynchronously.
Meanwhile, the backup server S own transaction manager
functions to accept new transactions and perform its own
transaction recovery as usual. Thus, there may be more than
one instance ofTRS activated on a back-up server at any time,
the multiple TRS instances originating from different servers.
The recovery may include driving prepared transactions to
completion and performing resource recovery. Manual
migration failover is then complete and operation ends at Step
265. Similar manual migration can be performed to migrate

import weblogic.management.runtime. MigratableServiceCoordinatorRuntimeMBean;
// Obtain the MigratableServiceCoordinatorRuntimeMBean
MigratableServiceCoordinatorRuntimeMBean msc =
Admin.getAdminServer()...getMigratableServiceCoordinatorRuntime();
// Obtain the MigratableTargetMBean of the server whose Transaction
Recovery Service needs to be migrated
ServerMBean server1 = (ServerMBean)
Admin.getMBeanHome().getConfigurationMBean("server1.
“MigratableTargetConfig);
MigratableTargetMBean mt = server1.getITAMigratableTarget();
// Obtain the configuration ServerMBean of the server to which the
Transaction Recovery Service will be migrated
ServerMBean server2 = (ServerMBean)
Admin.getMBeanHome().getConfigurationMBean("server2.
“MigratableTargetConfig);
// Perform the migration of Transaction Recovery Service of server1' to
Server2

msc.migrateJTA(mt, server2, false f*source up?, false f* destination up?);

US 2008/0228839 A1

the TRS to another available backup server if a backup server
fails before completing the transaction recovery actions for
the original server.
0044. In one embodiment, failback occurs when a failed
primary server restarts and is ready to receive its TRS instance
back from a back-up server. The operation of a manual migra
tion failback performed after recovery is completed in accor
dance with one embodiment of the present invention is shown
in diagram 400 of FIG. 4. System operation begins with start
step 405. In step 410, an alternate or back-up server S2 com
pletes recovery for a primary server S1. In one embodiment,
recovery completion occurs when TRS1 of S1 finishes recov
ery for S1 while residing on S2. Once TRS1 completes recov
ery, TRS1 relinquishes control of S1’s TLOG files. Next,
TRS1 migration back to S1 is initiated in step 420. In one
embodiment, an administrator may manually initiate migra
tion of the TRS back to the original server. In another embodi
ment, migration is initiated when TRS1 contacts the migrat
able framework and makes a request to migrate TRS1 back to
S1. In step 430, the migratable framework completes the
migration of TRS1 from S2 back to S1. In one embodiment,
the migratable framework first deactivates TRS1 on S2 by
calling a deactivation method of TRS1. During the deactiva
tion of TRS1, S2 performs cleanup and removes any remain
ing transactions of S1 from its internal transaction map. After
this deactivation of TRS1, the migratable framework moves
TRS1 to S1. Then, the migratable framework activates TRS1
on S1 using a call to an activation method of TRS1. Operation
then ends in step 435. When S1 later restarts, S1 will regain
ownership of the TLOG corresponding to S1 and will not
need to perform further recovery work.
0045. Manual migration failback may also be performed
before recovery is complete. Operation of manual migration
failback performed before recovery is completed in accor
dance with one embodiment of the present invention is shown
in diagram 500 of FIG. 5. Operation begins at start step 505.
In step 510, S1 is restarted. Up until just before S1 restart, S2
is still performing recovery work for S1. During S1 startup,
S1 notifies S2 that S1 is now operational. In one embodiment,
the notification is in the form of an administrative MBean
event sent from S1 to S2. Next, TRS1 migration back to S1 is
initiated in step 520. In one embodiment, TRS1 residing on
S2 sends a request to the migratable framework to migrate
TRS1 back to S1. Then, TRS1 migrates from S2 to S1 in step
530. In one embodiment, an administrator may manually
migrate TRS1 back to S1 from S2. This may be performed
when the back-up server fails to implicitly migrate TRS1
back to the original server S1. During this manual migration,
the migratable service framework deactivates the TRS1 on
S2. The deactivation of TRS1 suspends recovery for S1 and
allows S2 to perform cleanup and remove any remaining
transactions of S1 from its internal transaction map. In
another embodiment, the migratable framework first deacti
vates TRS1 on S2 by calling a deactivation method of TRS1.
The deactivation of TRS1 on S2 suspends recovery process
ing for S1. Thus, S2 may checkpoint the TLOG for S1, purge
transactions in its transaction map originating from S1’s
TLOG, and stop resource recovery performed for S1. During
the deactivation of TRS1, S2 performs cleanup and removes
any remaining transactions of S1 from its internal transaction
map. S2 then relinquishes control of S1’s TLOG. After this
deactivation of TRS1, the migratable framework moves
TRS1 to S1. Then, the migratable framework activates TRS1
on S1. TRS1 is activated by issuing a call to an activation

Sep. 18, 2008

method of TRS1. Operation then ends in step 545. Though
falling under the category of manual migration, no adminis
trator intervention is required for manual migration failback
before recovery is done. Once S1 regains ownership of TRS1,
it restarts and completes the remaining transaction recovery
work.

0046 Automatic migration occurs without any adminis
trative intervention required. Automatic failover and failback
migration occur without any input from a user. In one
embodiment, migration occurs seamlessly and without noti
fication to the user. Operation of automatic migration failover
in accordance with one embodiment of the present invention
is shown in diagram 600 of FIG. 6. Operation begins at start
step 605. Server failure of S1 occurs at step 610. Next, TRS1
is migrated to S2 in step 620. In one embodiment, TRS1
migration to S2 is triggered when the migratable framework
detects the failure of S1. The migratable framework then
migrates TRS1 from S1 to S2. In one embodiment, a user may
specify a preferred order of back-up servers. A preferred
server list as indicated by a user may be stored in the migrat
able target MBean. The migratable framework will then
attempt to migrate TRS1 to the preferred back-up servers in
the order specified by the user. Then, the migratable frame
work activates TRS1 on S2 in step 630. In one embodiment,
TRS1 is activated when the migratable framework calls a
migration activation method of TRS1. Next, S1’s TLOG is
read and processed in step 640. In one embodiment, during
activation on S2, TRS1 reads S1’s TLOG files regarding S1
transactions and configures S2 accordingly. In one embodi
ment, TRS1 instantiates the S1 TLOG files, places the files in
S2's transaction map, and schedules resource recovery for S1.
Thus, S2 is configured to be the coordinator of the transac
tions read from S1’s TLOG. Next, TRS1 performs recovery
on behalf of S1 in step 650. In one embodiment, recovery
includes driving prepared transactions to completion and per
forming resource recovery. Automatic migration failover
operation then ends in step 655. S2's own transaction man
ager and TRS2 function as usual during automatic migration
failover. Similar manual migration can also be performed to
migrate TRS1 to another available backup server if a backup
server S2 fails before completing the transaction recovery
actions for the original server S1.
0047 Automatic migration failback is similar to auto
matic migration failover in that no administrative interven
tion is required. Operation of automatic migration failback
after recovery is complete in accordance with one embodi
ment of the present invention is shown in diagram 700 of FIG.
7. Operation begins at start step 705. Next, S1 recovery is
completed in step 710. In one embodiment of the present
invention, recovery is completed when TRS1 finishes recov
ery for S1 while located on S2. The TRS1 checkpoints S1’s
TLOG files and relinquishes control of S1’s TLOG files.
Then, TRS1 migration back to S1 is initiated in step 720. In
one embodiment of the present invention, the migration is
initiated when TRS1 requests the migratable framework to
migrate TRS1 back to S1. Next, the migratable framework
completes migration of the TRS to S1 in step 730. The migrat
able framework first deactivates TRS1 on S2 by calling a
deactivation method of TRS1. TRS1 deactivation results in
S2 relinquishing control of S1’s TLOG. During the deactiva
tion of TRS1, S2 performs cleanup and removes any remain
ing transactions of S1 from its internal transaction map. After
this deactivation of TRS1, the migratable framework moves
TRS1 to S1. Then, the migratable framework activates TRS1

US 2008/0228839 A1

on S1. TRS1 is activated by issuing a call to an activation
method of TRS1. Once migration is complete, operation ends
in step 735. When S1 is restarted, S1 regains ownership of its
TLOG as a result of TRS1 resides on S1. S1 does not need to
perform additional recovery work.
0048 Automatic migration failback may also occur before
recovery of the failed server is complete. Operation of auto
matic migration failback before recovery is complete in
accordance with one embodiment of the present invention is
shown in diagram 800 of FIG.8. Operation begins with start
step 805. Next, S1 is restarted in step 810. At the time of S1
restart, TRS1 residing on S2 has not completed performing
recovery on behalf of S1. TRS1 migration is then initiated in
step 820. In one embodiment, the migratable framework ini
tiates migration upon detecting that S1 has performed startup.
The migratable framework may detect the failure of the server
itself or be notified of the server startup by an outside source.
In one embodiment, S1 informs S2 that S1 has restarted. After
migration has been initiated in step 820, the TRS1 migrates to
S1 in step 830. In one embodiment, the migratable framework
first deactivates TRS1 on S2 by calling a deactivation method
of TRS1. The deactivation of TRS1 on S2 suspends recovery
processing for S1 by TRS1 on S2. The deactivation includes
checkpointing the TLOG for S1, purging transactions in its
transaction map originating from S1’s TLOG, and stopping
resource recovery performed for S1. During the deactivation
of TRS1, S2 performs cleanup and removes any remaining
transactions of S1 from its internal transaction map. S2 then
relinquishes control of S1’s TLOG files as TRS1 migrates
back to S1. After this deactivation of TRS1, the migratable
framework moves TRS1 to S1. Then, the migratable frame
work activates TRS1 on S1. TRS1 is activated by issuing a
call to an activation method of TRS1. Once migration is
complete, operation ends in step 835. Once S1 regains own
ership of TRS1 and restarts, S1 performs the remaining recov
ery work.
0049. A highly available transaction recovery service
migration system in accordance with one embodiment of the
present invention implements a server S Transaction Recov
ery Service as a migratable service. In one embodiment of the
present invention, the TRS is a server instance or software
module implemented in JAVA. Each server in a cluster has a
corresponding TRS, which maintains ownership of the
servers=S TLOG. When a primary server fails, the failed
servers=S TRS migrates to an available back-up server that
resides in the same cluster as the failed server. The primary
server and back-up server share access to the same memory
disk. While residing on the back-up server, the migrated TRS
obtains access to the TLOG of the failed server, reads the
transaction log, and performs transaction recovery on behalf
of the failed server. The migration may occur manually or
automatically on a migratable services network. Automatic
migration requires the TRS be deployed on the migratable
service framework. The TRS of the failed server migrates
back to the primary server in a fail back operation once the
failed primary server is restarted. Failback operation may
occur whether recovery is completed or not. This expedites
recovery and improves the availability of the failed server
thereby preserving the efficiency of the network and other
SWCS.

0050. With systems of the prior art, transaction recovery
cannot take place before a failed server restarts. This limits
the availability of transaction recovery of the failed server and
thus the availability of other XA resources (e.g. JMS back

Sep. 18, 2008

ends). In the present invention, we achieve highly available
transaction recovery of a server within a cluster by migrating
the Transaction Recovery Service to another available server
in the same cluster. This allows the backup server to read the
transaction log and perform recovery on the behalf of the
failed server.
0051 Transaction Recovery Service depends on the
migratable service framework for manual and automatic
migration Support. JMS backends, which are XA resources,
in turn depend on Transaction Recovery Service migration to
recover their resources when they are migrated.
0.052 Administrators can manually migrate the Transac
tion Recovery Service of a failed server (i.e. the original
server) to another available server in the same cluster. Before
the original server restarts, the administrator may also need to
manually migrate the Transaction Recovery Service back to
the original server. Manual migration is recommended if the
server has failed and is not expected to be restarted soon. In
the absence of migration, a server will perform its own trans
action recovery when it is restarted after a failure.
0053. There are two aspects of manual migration: fail-over
and fail-back When a clustered server (Transaction Coordi
nator) fails, the Transaction Recovery Service associated with
the failed server (i.e. the original server) can be manually
migrated to another available server (the backup server) in the
same cluster, via either the Administration Console or the
JMX API. During the migration, the migratable service
framework activates the Transaction Recovery Service on the
backup server. During activation, the Transaction Recovery
Service reads the transaction log of the failed server and
initializes the transaction recovery asynchronously. Mean
while, the backup server S own transaction manager func
tions (accepting new transactions and performing its own
transaction recovery) as usual. Note that there may be more
than one instances of Transaction Recovery Service (that
originates from different servers) activated on a backup server
at the same time.
0054 Similarly, manual migration can also be performed
to migrate the Transaction Recovery Service to another avail
able backup server if a backup server fails before completing
the transaction recovery actions for the original server.
0055 Fail-back happens when migrating the Transaction
Recovery Service from a backup server to the original failed
server. Note that fail-back is implicit and does not require
administrator intervention unless a migration error occurs, as
described below.
0056. When a backup server finishes transaction recovery
before the original server restarts, it gives up ownership of the
Transaction Recovery Service and migrates it back implicitly
to the original server. No administrative action is needed in
this case. Subsequently, when the original server restarts, it
regains ownership of its Transaction Recovery Service. How
ever, it does not need to do further recovery work.
0057. When the resources to be recovered are not avail
able, transaction recovery for the original server may not be
finished when the original server is to be restarted. In this
case, the backup server, on detecting that the original server is
coming up, Suspends the ongoing transaction recovery, per
forms some internal cleanup, and implicitly migrates the
Transaction Recovery Service back to the original server. No
administrative action is needed in this case. The original
server, once it regains the ownership of its Transaction Recov
ery Service, restarts successfully and finishes the remaining
transaction recovery work.

US 2008/0228839 A1

0058 If the backup server fails to implicitly migrate back
to the original server, the original server will fail to boot. In
this case, the administrator needs to manually migrate the
Transaction Recovery Service from the backup server to the
original server before rebooting the original server. During
the manual migration, the migratable service framework
deactivates the Transaction Recovery Service on the backup
server. The deactivation Suspends the transaction recovery,
performs some internal cleanup and gives up ownership of the
Transaction Recovery Service. Subsequently, when the origi
nal is restarted, it regains ownership of its Transaction Recov
ery Service and finishes the remaining transaction recovery
work.

0059 Under automatic migration, no administrator inter
vention is needed, and the migration of Transaction Recovery
Service happens transparently under the control of migratable
service framework.

0060. There are two aspects of automatic migration: fail
over and fail-back. When the migratable service framework
detects that a clustered server (Transaction Coordinator) has
failed, it automatically migrates the Transaction Recovery
Service associated with the failed server to the next available
server (the backup server) in the preferred server list of the
migratable target MBean. During the migration, the migrat
able service framework activates the Transaction Recovery
Service on the backup server. During activation, the Transac
tion Recovery Service reads the transaction log of the failed

Sep. 18, 2008

tion Recovery Service back to the original server. The original
server, once it regains the ownership of the Transaction
Recovery Service, restarts successfully and finishes the
remaining transaction recovery work.
0065 Embodiments may provide Administrative means to
configure, migrate and monitor Transaction Recovery Ser
vices.

0.066 Embodiments can provide configuring Transaction
Recovery Service. Each server in a cluster is associated with
a Transaction Recovery Service, and each Transaction
Recovery Service is associated with a Migratable Target. If
the Transaction Recovery Service is not configured for a
particular server, no migration will be enabled. In this case, if
the server fails, transaction recovery will only be performed
after it restarts.

0067 Embodiments can provide configuring Transaction
Recovery Service via the Console. A new JTA Recovery tab
for the server will be provided, from which administrators can
specify various attributes of the Migratable Target and per
form manual migration of the Transaction Recovery Service
associated with the server.

0068 Embodiments can provide configuring Transaction
Recovery Service via config.xml. Administrators can config
urea JTAMigratableTarget element for a clustered server. The
following is an example of the JTAMigratableTarget configu
ration:

<Server Name="server1' Cluster="mycluster ListenAddress="campton-1 ListenPort="7001's
<JTAMigratableTarget
f></Servers

server and initializes the transaction recovery asynchro
nously. Meanwhile, the backup server's own transaction man
ager (including its own transaction recovery) functions as
usual.
0061 Similar automatic migration sequences can also
happen to migrate the Transaction Recovery Service to
another backup server if a backup server fails before com
pleting the transaction recovery actions.
0062 Failback happens when migrating the Transaction
Recovery Service from a backup server to the original failed
server. There are also two cases: Fail back without automatic
migration and Failback with automatic migration.
0063 Fail-back without automatic migration is similar to
fail-back when recovery is done for manual migration as
described above. When a backup server finishes transaction
recovery before the failed server restarts, it gives up owner
ship of the Transaction Recovery Service and migrates it back
implicitly to the failed server. Subsequently, when the failed
server restarts, it regains ownership of its Transaction Recov
ery Service. However, it does not need to do further recovery
work.
0064. Fail-back with automatic migration happens if the
backup server has not finished transaction recovery when the
original server restarts. In this case, the backup server, on
detecting that the original server is coming up, Suspends the
ongoing transaction recovery, performs some internal
cleanup, and gives up the ownership of the Transaction
Recovery Service of the original server. The migratable ser
Vice framework will then transparently migrate the Transac

Name="Server1 ConstraintedCandidateServers="server1.server2

0069 Embodiments can provide Monitoring JTA recov
ery service. Each server maintains runtime information of all
Transaction Recovery Service instances that it hosts. The
runtime information is available from a new JTA runtime
MBean: JTARecovery RuntimeMBean, which can be
obtained from the existing JTARuntimeMBean MBean. Two
new methods are added to the existing JTARuntimeMBean
MBean to provide access to the JTARecovery RuntimeM
Bean.
(0070. The first, JTARecoveryRuntimeMBean getRe
covery RuntimeMBeans()method returns an array of JTARe
covery RuntimeMBean MBeans that corresponds to the
Transaction Recovery Service instances that are deployed on
the current server.
(0071. The second, JTARecoveryRuntimeMBean getRe
covery RuntimeMBean (String serverName)method returns
the JTARecovery RuntimeMBean MBean that is associated
with the specified server. If the corresponding JTARecovery
RuntimeMBean MBean is not deployed on this server, null is
returned.
(0072. The JTARecoveryRuntimeMBean MBean has the
following methods:
Aboolean is Active()method returns whether the Transaction
Recovery Service is currently activated on the server. An int
getInitialRecoveredTransactionTotalCount()method returns
the total number of transactions that are read from the trans
action log by the Transaction Recovery Service. The admin
istrator may use this information to increase the value of the
MaxTransactions attribute of the JTAMBean MBean as

US 2008/0228839 A1

appropriate. An int getRecoveredTransaction
CompletionPercent() method returns the percentage of the
recovered transactions that are completed by the Transaction
Recovery Service. Note that the name of the JTARecovery
RuntimeMBean MBean is the name of the original server of
the Transaction Recovery Service.
0073. In addition to an embodiment consisting of specifi
cally designed integrated circuits or other electronics, the
present invention may be conveniently implemented using a
conventional general purpose or a specialized digital com
puter or microprocessor programmed according to the teach
ings of the present disclosure, as will be apparent to those
skilled in the computer art.
0074 Appropriate software coding can readily be pre
pared by skilled programmers based on the teachings of the
present disclosure, as will be apparent to those skilled in the
software art. The invention may also be implemented by the
preparation of application specific integrated circuits or by
interconnecting an appropriate network of conventional com
ponent circuits, as will be readily apparent to those skilled in
the art.
0075. The present invention includes a computer program
product which is a storage medium (media) having instruc
tions stored thereon/in which can be used to program a com
puter to performany of the processes of the present invention.
The storage medium can include, but is not limited to, any
type of disk including floppy disks, optical discs, DVD, CD
ROMs, microdrive, and magneto-optical disks, ROMs,
RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash
memory devices, magnetic or optical cards, nanosystems (in
cluding molecular memory ICs), or any type of media or
device Suitable for storing instructions and/or data.
0076 Stored on any one of the computer readable medium
(media), the present invention includes Software for control
ling both the hardware of the general purposef specialized
computer or microprocessor, and for enabling the computer
or microprocessor to interact with a human user or other
mechanism utilizing the results of the present invention. Such
software may include, but is not limited to, device drivers,
operating systems, and user applications. Ultimately, Such
computer readable media further includes software for imple
menting Node Managers.
0077. Included in the programming (software) of the gen
eral/specialized computer or microprocessor are software
modules for implementing the teachings of the present inven
tion, including, but not limited to, separating planes of a
Source image, averaging at least one of foreground and back
ground colors, replacing colors, and compensating for error
introduced by color replacement in one plane by feeding error
into a second plane, storage, communication of results, and
reconstructing an image according to the processes of the
present invention.
0078. Other features, aspects and objects of the invention
can be obtained from a review of the figures and the claims. It
is to be understood that other embodiments of the invention
can be developed and fall within the spirit and scope of the
invention and claims.
007.9 The foregoing description of preferred embodi
ments of the present invention has been provided for the
purposes of illustration and description. It is not intended to
be exhaustive or to limit the invention to the precise forms
disclosed. Obviously, many modifications and variations will
be apparent to the practitioner skilled in the art. The embodi
ments were chosen and described in order to best explain the

Sep. 18, 2008

principles of the invention and its practical application,
thereby enabling others skilled in the art to understand the
invention for various embodiments and with various modifi
cations that are Suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the
following claims and their equivalence.

1. A transaction recovery apparatus, comprising:
a shared storage to store a first transaction log correspond

ing to a first server and a second transaction log corre
sponding to a second server,

an interface to the first server, the first server having a first
transaction recovery service to failover migrate from the
first server to the second server when the first server
fails; and

an interface to the second server; the second server having
a second transaction recovery service to coordinate
transactions from the first transaction log upon the
failover migration of the first transaction recovery ser
W1C.

2. The transaction recovery apparatus of claim 1 wherein
the second server instance is configured to receive more than
one transaction recovery service.

3. The transaction recovery apparatus of claim 1 further
including an input apparatus, the input apparatus enabling
receiving a migrate command to initiate the failover migra
tion.

4. The transaction recovery apparatus of claim 1 wherein
the first server instance, the second server instance, and the
shared storage reside on a single cluster.

5. The transaction recovery apparatus of claim 1 wherein
the first transaction recovery service is configured to be
moved from the first server instance to the second server
instance and activated on the second server instance.

6. The transaction recovery apparatus of claim 1 wherein
the first transaction recovery service is configured to failback
migrate from the second server instance to the first server
instance upon detecting the startup of the server instance
startup.

7. The transaction recovery apparatus of claim 7 wherein
the first transaction recovery service is configured to be deac
tivated, moved from the second server instance to the first
server instance, and activated on the first server instance.

8. The transaction recovery apparatus as claimed in claim3
wherein the input apparatus includes an input configured to
be used with a Graphical User Interface (GUI), the GUI
configured to accept manual input of a migration command.

9. The transaction recovery apparatus as claimed in claim3
wherein the input apparatus includes a keyboard, the key
board configured to accept manual input of a migration com
mand entered on a command line.

10. The transaction recovery apparatus as claimed in claim
9 wherein the input apparatus includes a keyboard, the key
board configured to accept manual input of a migration com
mand by using a JMX MBean.

11. The transaction recovery apparatus as claimed in claim
1 further comprising a migratable framework, the migratable
framework configured to automatically failover migrate the
first transaction recovery service from the first server to the
second server.

12. The transaction recovery apparatus as claimed in claim
11 wherein the migratable framework is configured to auto
matically failback migrate the first transaction recovery Ser

US 2008/0228839 A1

vice from the second server to the first server when the second
server has completed coordinating transactions from the first
transaction log.

13. The transaction recovery apparatus as claimed in claim
11 wherein the migratable framework is configured to auto

Sep. 18, 2008

matically failback migrate the first transaction recovery Ser
vice from the second server to the first server when the first
server has restarted.

