e\

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :
GO6F 15/16 Al

(11) International Publication Number:

(43) International Publication Date:

WO 95/16967

22 June 1995 (22.06.95)

(21) International Application Number: PCT/US94/14349

(22) International Filing Date: 13 December 1994 (13.12.94)

(30) Priority Data:

08/166,443 13 December 1993 (13.1293) US

(71) Applicant: CRAY RESEARCH, INC. [US/US]; 655A Lone
Oak Drive, Eagan, MN 55121 (US).

(72) Inventors: PASSINT, Randal, S.; Route 5, Box 430BB,
Chippewa Falls, WI 54729 (US). OBERLIN, Steven, M.; 20
Peterson Lane, Chippewa Falls, WI 54729 (US). FROMM,
Eric, C.; 221 Lake Street, Eau Claire, WI 54703 (US).

(74) Agent: RAASCH, Kevin, W.; Schwegman, Lundberg &
Woessner, 3500 IDS Center, 80 South Eighth Street, Min-
neapolis, MN 55402 (US).

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE,
DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments. ‘

(57) Abstract

with the error cases caused by queue overflows, etc.

(54) Title: MESSAGE FACILITY FOR MASSIVELY PARALLEL PROCESSING SYSTEMS

A messaging facility is described that enables the passing of packets of data from one processing element to another in a globally
addressable, distributed memory multiprocessor without having an explicit destination address in the target processing el«ments memory.
A message is a special cache-line-size write that has as its destination a pre-defined queue area in the memory of the recciving processing
element. Armriving messages are placed in the queue in the order that they appear at the node by hardware queue management mechanisms.
Flow control between processors is usunally accomplished by the queue management hardware, with software intervention necessary to deal

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso

BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic

CcG Congo

CH Switzerland

CI Cbte d’Ivoire

™M Cameroon
"CN China

cs Czechoslovakia

CZ Czech Republic

DE Germany

DK Denmark

ES Spain

FI Finland

FR France

GA Gabon

QaQQ
xZmwW

SESE5SERFEE SEAYANE

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Raly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SI
SK
SN
TD
TG
he)
T
UA
us
vz
VN

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

>4

WO 95/16967 PCT/US94/14349

10

15

20

25

30

35

MESSAGE FACILITY FOR MASSIVELY
PARALLEL PROCESSING SYSTEMS

Field of the Invention
The invention relates generally to high performance massively parallel
processing systems, and more specifically to a messaging facility which
allows efficient emulation of a multicomputing system on a multiprocessing

system.

Background of the Invention

Massively parallel processing (MPP) systems are computing systems
comprised of hundreds or thousands of processing elements (PEs) individually
interconnected by a common high-speed communication network. Many
MPPs today are multicomputers, wherein each PE is considered a stand-alone
computer with its own central processor, local memory, and associated control
logic. In a multicomputer, each PE can only address its own local memory
and cannot directly read or write the local memory associated with another
PE. Each PE reads data from another PE's memory by sending a message and
I/O-like packet, to the target PE requesting that some data from its memory be
formatted and sent back to the requesting PE, or vice versa for writes. Thus
in a multicomputing system, each remote reference is essentially an I/O
operation. This style of interprocessor communications is called "message
passing." Message passing is a well-known and prevalent MPP programming
model because multicomputers are relatively easy to build. The ease of
construction of a multicomputer MPP arises from the use of commodity
microprocessors in an environment that closely resembles their "natural
habitat" (i.e., that hardware and software implementation envisioned by the
microprocessor designers), that is, a network of small autonomous computers.

For many applications, however, a multiprocessor MPP is more.
desirable than a multicomputing MPP. In a multiprocessor MPP, every PE
can directly add‘ress all of memory, including thé memory of another (remote)
PE, without involving the processor at that PE. 1Instead of treating PE-to- |

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

2

remote-memory communications as an I/O operation, reads or writes to
another PE's memory are accomplished in the same manner as reads or writes
to the local memory.

Multiprocessors have an ease-of-programming advantage over
multicomputers. In a multicomputer, each communication between PE's must
be explicitly coordinated and initiated by the programmer. Ina .
multiprocessor, however, communications arise naturally and implicitly by the
specification of variables and constants in program statements. If the data
represented by the variable or constant name happens to reside in the memory
of a remote PE, an access of the data there is automatically initiated the same
manner as if the data were in local memory.

Software techniques are known which allow the emulation of a
multiprocessor and its associated ease-of-programming on a multicomputer.
Such software emulators translate the application program remote reads and
writes into explicit I/O-like message-passing operations in a way that is
hidden from the application programmer. Software of a global address space

using message passing is very inefficient, however, because I/O-like

“operations have a large software start-up overhead associated with each

message. Successful message passing programming models on
multicomputers rely on relatively large granularity programming, passing large
amounts of data with each communication, to amortize the startup overhead
over many elements of data.

There is therefore a need in the art for a massively parallel processing
system which has the desirable attributes of both a multiprocessing and
multicomputing MPP's, and which further does not have the high-overhead
and large granularity restrictions of present software manage of message

passing techniques.

Summary of the Invention
This can conceivably be a very efficient operation, potentially

exceeding the performance of a true multicomputer when the granularity of

communications is smaller. To support efficient message-passing in a

" SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

3

multiprocessor, it is necessary to provide certain hardware primitives to allow
one PE to send data to another PE's message queue and interrupt the target PE
upon message arrival. The present invention addresses a need in the art for
efficient message-passing emulation in a multiprocessor MPP system.

The present invention provides hardware support for a messaging
facility in a muitiprocessing MPP system to allow emulation of a
multicomputing system on a multiprocessing MPP system. The messaging
facility of the present invention enables the passing of packets of data from
one PE to another without having an explicit destination address in the target
PE's memory. A message is a special cache-line-size remote write that has as
its destination a hardware-managed message queue in the memory of the
receiving PE. Arriving messages are placed in the message queue in the order
that they arrive by hardware mechanisms that also provide the lowest-level
communication handshaking protocol service. Flow control between
processors is accomplished by the queue management hardware, with software
intervention used as necessary to deal with the error cases caused by queue
overflows, etc.

Messages can be transmitted by user-level code. To alert the receiving
PE when a message has arrived, all messages set an interrupt to the processor
at the target node. Because the receiving of messages involves responding to
the message-arrival interrupt, some system-level code must be executed to
receive messages.

The messaging facility can be used to accomplish a remote action or
initiate a remote procedure by defining an opcode convention that permits one
processor to send a message containing opcode, address and arguments to
another. The destination processor, upon receiving the message after the
arrival interrupt, can decode the opcode and perform the indicated action
using the argument address and data.

At the start of a ﬁrogram, a head and a tail pointer are initialized to
point to the base of the queue, and a limit counter is initialized to a value
representing the amount of available message space in the queue. When a

message arrives at a node, it is copied in its entirety into sequential addresses

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

4

starting at the address indicated by the tail pointer. The tail pointer is
incremented after each message to point to the next message location in the
queue. The limit counter, used by the flow control circuits to monitor queue
space, is decremented as each message arrives to indicate that the queue is
filling. An interrupt to the processor is set each time the tail pointer is
incremented by a new arriving message. The receiving processor reads
messages in the order they arrived by using the head pointer and must
interpret any encoded commands and addresses in software to decipher the
action requested by the message. The tail pointer can be read by the
processor when servicing an interrupt to determine when the head was caught
up (no more messages to service). .

The messaging facility provides the primitives for the construction of a
message-passing interprocessor communication protocol. The messaging
facility allows use of operating system communication and message-passing
programming models, such as the defacto-standard Parallel Virtual Machine
(PVM) communication protocol.

Brief Description of the Drawings
The foregoing and other objects, features and advantages of the

invention, as well as the presently preferred embodiments thereof, will
become apparent upon reading and understanding the following detailed
description and accompanying drawings in which:

FIGURE 1 shows a simplified block diagram of a representative MPP
system with which the present address centrifuge can be used;

FIGURE 2 shows a block diagram of a PE, including a processor and
its associated shell circuitry;

FIGURE 3 shows the messaging facility packet format;

FIGURE 4 shows the NACK packet format; |

FIGURE 5 shows the format of a message in the message queue;

FIGURE 6 shows a sample message queue before and after writing a
message;

FIGURE 7 shows a sample message queue before and after receiving a

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

message;

FIGURE 8 shows a sample message queue before and after the tail
pointer wraps to the first entry of the message queue;

FIGURE 9 shows a sample message queue before and after receiving
an ACK packet;

FIGURE 10 shows a sample message queue before and after receiving
a NACK packet;

FIGURE 11 shows a sample message packet before and after the
microprocessor reads a message or NACK packet from the queue;

FIGURES 12, 13 and 14 show the format of error messages as they

are stored in the message queue.

Detailed Description of the Preferred Fmbodiment
In the following detailed description of the preferred embodiment,

reference is made to the accompanying drawings which form a part hereof,
and in which is shown by way of illustration a specific embodiment in which |
the invention may be practiced. It is to be understood that other embodiments
may be utilized and structural changes made without departing from the scope
of the present invention.

The preferred MPP system, for which the present invention provides
an address centrifuge, is a MIMD massively parallel multiprocessor with a
physically distributed, globally addressable memory. A representative MPP
system is shown in FIGURE 1.

FIGURE 2 shows a simplified block diagram of a PE 200. An
individual PE includes a high-performance RISC (reduced instruction set
computer) microprocessor 202. In the preferred MPP system, microprocessor
202 is the DECChip 21064-AA RISC microprocessor, available from Digital
Equipment Corporation. Each PE is coupled to a local memory 204 that is a
distributed portion of the globally-addressable system memory, and includes a
shell of circuitry that implements synchronization and communication
functions facilitating interactions between processors.

The shell circuitry includes an interconnection network router 206,

‘SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

6

used to connect multiple PEs in the three-dimensional toroidal "fabric". The
interconnection network carries all data communicated between PEs and
memories that are not local. A block transfer engine 208 in the PE shell
circuitry permits asynchronous (i.e., independent of the local processor)
movement of data between the local memory 204 and remote memories
associated with other PEs, such as block transfers, with flexible addressing
modes that permit a high degree of control over the distribution of data
between the distributed portions of the system memory. The flexible
addressing scheme and address centrifuge are described in the copending and
commonly assigned U.S. patent application entitled "ADDRESS
CENTRIFUGE FOR DISTRIBUTED MEMORY MASSIVELY PARALLEL
PROCESSING SYSTEMS" filed on even date herewith to Oberlin et al. The
shell circuitry also includes a data prefetch queue 210 which allows the
processor 202 to directly initiate data movement between remote memories
and the local processor in a way that can hide the access latency and permit
multiple remote memory references to be outstanding.

Synchronization circuits in the shell permit synchronization at various
different levels of program or data granularity in order to best match the
synchronization method that is "natural” for a given parallelization technique.
At the finest granularity, data-level synchronization is facilitated by an atomic
swap mechanism that permits the locking of data on an element-by-element
basis. A more coarse grain data-level synchronization primitive is provided
by the present messaging facility, which permits a PE to send a packet of data
to another PE and cause an interrupt upon message arrival, providing for the
management of message queues and low-level messaging protocol in
hardware. Control-level synchronization at the program loop level is provided
by a large set of globally accessible fetch-and-increment registers that can be
used to dynamically distribute work (in the form of iterations of a loop, for
instance) among processors at run time. Yet another form of control-level
synchronization, barrier synchronization, is useful to control transitions
between major program blocks (i.e., between loops performing actions on the

same data sets). The barrier mechanism is described in detail in the

‘SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

7

copending and commonly assigned U.S. patent application entitled "BARRIER
SYNCHRONIZATION FOR DISTRIBUTED MEMORY MASSIVELY
PARALLEL PROCESSING SYSTEMS," filed on even date herewith to
Oberlin et al.

Messaging Facility Rationale

The present invention supports a message passing programming

*

paradigm on the preferred MPP multiprocessor system. The messaging
facility provides a means to write to another PE without indicating a specific
address in the destination PE's memory. The message information is stored in
a message queue in the destination PE's Jocal memory. Upon message arrival
the PE is interrupted to inform it that a message has arrived. Hardware at the
receiving PE decodes a command field in the messagé, which informs the
destination PE of the action which it is to take with respect to the message
data payload.

The messaging facility has several advantages over conventional
multicomputing message-passing mechanisms. First, the message send is
extremely lightweight. In a multicomputer, as discussed above, a message
send is very similar to an I/O operation. As is well known to those of skill in
the art, I/O type requests require a significant amount of message formatting.
In addition, substantial overhead is incurred from the call to the operating
system required by an /O type request to establish communications between
the transmitting computer and the receiver. However, because the preferred
MPP system is a multiprocessor, as opposed to a multicomputer, the target PE
can instead be addressed directly and no I/O-type formatting is required. At
the same time, normal shared global memory security hardware mechanisms
assure that proper permission to communicate, etc., exists between the
transmitting and the receiving processors.

The present messaging facility also incorporates hardware message
queue management. Ordinarily, the message queue in}memory must be
managed and manipulated by software means, adding to the overhead

associated with a message and increasing the granularity of the data

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

8

transmission required to amortize the overhead.

The present messaging facility incorporates hardware flow control
(handshaking) at the lowest level. This permits the application to efficiently
«Send messages without consideration for flow control issues in the usual case.

Only when message queues fill and an overflow or rejected packet occurs is
the flow control responsibility turned over to software. The hardware flow
control mechanism is designed so that all such error conditions are
recoverable by software. The hardware flow control also reduces the
overhead associated with message-passing, allowing still finer communication
granularity to be profitably parallelized using message passing programming
techniques.

The present messaging facility provides for the efficient passing of
short messages by direct transmission. Long messages are passed between
processors by direct transmission only of control information. The control
information describes the size and location of the long message in the
transmitting processor's memory. The receiving processor, upon decoding the
control information, can efficiently access the long message where it resides
due to the multiprocessor ability to directly address and reference remote
memory. This has several advantages over traditional message-passing in a
multi-computer: The latency of message transmission (the time for message
send until the receiver begins acting on the first elements of the message) is
significantly reduced. Only the control information need actually be sent
before the receiver is alerted to the "arrival" of the message. The actual
moving of the long message data to the receiver can be accomplished under
the control of the receiver as part of a computation loop acting upon the data,
thus hiding the latency of the message move. Data buffering requirements are
also reduced, because the message may not actually ever have to be copied

into the memory of the receiving processor.
Network Packets

FIGURE 3 shows the format of a message packet, which is the unit of
information conveyed by the network between processors in the

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

9

multiprocessing system. Message packets consist of two parts: A header
containing control and address information, and the body, consisting of 4
words of data payload.

The header consists of 4 parts:

1. Command

2. Destination PE number

3. Source PE number

4. Address

The command field is a twelve-bit field containing the packet type
(e.g. load, store, message, NACK, etc.). Certain packet types, including the
message packet, have an 8 bit subfield in the command that contains a half-
word (32-bit) mask indicating valid data in the data field following the header.
A message packet will typically carry a command with a mask of all ones
(unless the message transmission is interrupted, causing message
fragmentation, discussed later). Table 1 shows the encoding of the command
field.

“Table 1
21 210 29 28 27T 26 25 ¢ 23 2 ot QO Packet Type
1 I 1 1 m m m m m m m m Message
0O 0 0 0 1 0 0 x x x x X ACK

1 1 1 0 m m m m m m m m NACK

In Table 1, bits 2" through 2° of the command field indicate the type
of packet the command is in. When set to 1, bit 2° of the command field
indicates the packet is a-request. When set to 0, bit 2® of the command field
indicates the packet is a response. _

Bits 27 through 2° of the command field contain an opcode that signals
the support circuitry in the destination PE what type of operation to perform.

In some cases, the opcode contains mask bits (m) that indicate which 32-bit

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

10

halfwords in the data body of the packet contain valid data.

The twelve-bit destination PE number is part of the header, but is not
used by the message handling software except as part of an error handling
routine. The destination PE number is used by hardware to validate that
network packets have been routed to the correct PE. The destination PE
number represents a logical PE number in the preferred embodiment.

The source PE number is typically used to route replies back to the
requesting PE. The hardware uses the source PE number to construct a new
routing tag for the message ACK or NACK (discussed below) to the
transmitting processor upon message arrival. The source PE number is twelve
bits and preferably represents a logical PE number.

The 24-bit address is the partial physical address the transmitting
processor used to send the message. The software opcodes are embedded in
the address field. The address is split into two halves for transmission
through the network, each 12 bits in size.

Message Payload

A message may in the preferred embodiment contain up to 32 bytes of
information. Messages smaller than 32 bytes must be padded out to 32 bytes
so that receiving software can distinguish between small messages and
message fragments. Message fragmentation can be caused by an interrupt if it
occurs during the performance of the 4 stores necessary to fill a write buffer
during message transmission.

Messages larger than 32 bytes may be sent as a string of independent
32-byte messages. Above a certain threshold of message size, it will be faster
and more efficient to only exchange protocol information using the messaging
facility and move the data using other means. For instance, prior to moving a
large block of data, a source processor might send a message requesting an
allocation of storage at the destination. After allocating space for the large
message, the destination PE can retum a pointer to the allocated storage,
either in a message, or by writing directly to a reply "pigeon hole" in the

source PE's memory using a pointer passed as part of the request message.

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

11

The sender may then directly copy the large message to the remote node at
the allocated location, sending a final short message to indicate when the copy
is done. Alternately, large messages can be moved by the receiver using
address and size information passed in the protocol and control message sent
by the transmitter detailing where the data resides in the transmitter's memory
and how large the data block is. .
Message Transmission

Messages are transmitted simply by writing a cache line to a special
remote address. Messages are distinguished from ordinary remote cache-line
writes by the mapping of the destination address. Special addresses are
reserved in the physical memory address range to be interpreted as message
transmission triggers. If a store is performed to the special address, hardware
decodes the destination address to indicate that the store is actually a message
send. PE support circuitry then creates a message packet and sends the packet
into the interconnection network for routing to the destination PE.

'In the preferred MPP system, messages are assembled in circuits on
the microprocessor chip called "write buffers." The cache line write to the
special address must be performed as sequential stores to addresses within the
same cache line. The write buffers on the microprocessor attempt to assemble
full cache lines before requesting a bus cycle and will succeed in most cases
if no intervening memory references are made while sending a message. If
the processor is interrupted while constructing the cache line message, the
message will be sent as two incomplete cache lines in two separate messages
(called message fragments). The half-word mask field in the message header
must be examined by software upon receipt of a message to see if the entire
message is present. If not, the receiving processor must defer processing of
the message fragment until the remaining portions arrive.

In the preferred embodiment, it is important to have an understanding
of the functioning of the microprocessor write buffers in order to ensure
proper message transmission. There are 4 buffers, each a cache-line in size.

At every store, the microprocessor checks all 4 buffers for a possible match

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

12

between the address of the current store and one that may be pending in the
write buffers. If a match is found, the write data is merged into its proper
place in the cache line as indicated by the word-within-cache-line bits in the
address. If there was data at that spot in the write buffer from a previous
store with the same cache line address and word-within-cache-line pointer, the
previous data is lost. .

The DECChip microprocessor used in the preferred MPP system keeps
the data in the write buffers for an indeterminate amount of time, unless
specific steps are taken to flush them to the memory subsystem. One or more
write buffers will flush if: A store is made to an address that matches none
of the cache-line addresses currently in the write buffers, a memory barrier
instruction is issued, or an exception or interrupt occurs. Barring any of these
occurrences, the write buffers will still drain eventually, but the timing of the
actual write is difficult to predict.

It can be seen that if multiple messages are sequentially sent to a
particular processor, different special cache line addresses must be used for
any five message in a row, or unintentional merging of messages in the write
buffers can occur.

Those skilled in the art can see that the message assembly functions of
the write buffers could also easily be accomplished by buffers implemented
external to the microprocessor if the microprocessor did not have write buffers
or it was not desirable for some reason to use the on-board write buffers for

message assembly.

Message Amnival

After receiving the message packet from the network router, the
support circuitry in the destination PE attempts to store the message in the
message queue. If the message queue can accept the message, the support
circuitry stores the message in the queue and sets the message hardware
interrupt for the receiving microprocessor. ‘

The support circuitry in the destination PE then creates a message
acknowledge (ACK) packet and sends the packet to the source PE. FIGURE

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

13

3 also shows the format of an ACK packet and Table 1 above shows the
format of the command field in an ACK packet.

If the message queue in the destination PE cannot accept the message,
the support circuitry refurns the message to the requesting PE by creating a
no-acknowledge (NACK) packet. A NACK packet contains the same
information as the message packet; however, the NACK packet has the
destination node and source phits exchanged, and bit 28 of the command field
set to 0, as shown in FIGURE 4. A phit is a minimal size packet. After
receiving a NACK packet, the support circuitry in the PE that created the
message stores the NACK in its own message queue. The message queue
always contains room for NACK packets, as discussed below, and never
rejects a NACK packet.

The processor that sent the message can then read the NACK from the
message queue. Because the NACK contains all of the information that the
original message did, the transmitting microprocessor can reconstruct and
resend the original message, if desired. This process may repeat until the
message is accepted and the transmitting support circuitry receives an ACK
packet (instead of a NACK) which completes the message write.

Message Queue

After receiving a message packet, the support circuitry in a PE places
the message in a designated location in local memory called the message
queue, where arriving messages are stored prior to processing. The preferred
message queue stores up to 4080 message, NACK, or error packets plus 16
reserved locations for a small amount of overflow (total of 256K bytes of
information), although any desired size message queue could be selected in
other implementations. The support circuitry places message packets in the
message queue in the order that they are received. The message queue in the
preferred embodiment is a first-in, first-out (FIFO) circular buffer.

When a message is transmitted, the support circuitry at the transmitting
node reserves a location in its own local message queue. By reserving a

message location in the local queue, the support circuitry guarantees that there

SUBSTITUTE SHEET (RULE 26) |

WO 95/16967 PCT/US94/14349

10

15

20

25

30

14

will be room in the message queue in the event of receiving a NACK.

When a message is received from a remote node, the support circuitry
stores the message in the next sequential location in the message queue.
Likewise, when a NACK is received, the support circuitry stores the NACK in
the message queue, consuming the space that was reserved when the original
message was sent. .

When an ACK is received, the support circuitry releases the space in
the message queue reserved for a NACK. The reserved space is no longer
needed after receiving an ACK.

In the preferred MPP system, the support circuitry contains a hardware
counter and two memory-mapped registers used to control the message queue.
The hardware counter called the limit counter (MQ_LC), is a 13-bit up/down
counter that indicates how many message slots in the message queue do not
contain information or are not reserved for possible NACK packets. The limit
counter cannot be read or written directly, but can be reset to 4079 when
software writes any value to the message queue tail pointer (MQ TP)
memory-mapped register. The MQ_LC is the indicator of how much space is
available in the message queue. The MQ LC is initialized with the maximum
message count for the selected queue size (minus some slack to allow for
pipeline run-on after interrupt and error messages). Incrementing or
decrementing the MQ_LC by one advances or retards the count of available
space by one message. The MQ LC is decremented by hardware each time a
message is transmitted and incremented each time a message
acknowledgement arrives. The MQ_LC is incremented by software for each
message dequeued. If there is a simultaneous software-triggered increment
and hardware triggered increment, the counter does nothing, If there is a
simultaneous software-triggered increment and hardware triggered increment,
the MQ_LC increments by two.

The MQ_TP register is a 12-bit, readable and writable hardware
counter that contains the tail pointer. The tail pointer is a value that
represents the slot in the message queue where the next message that arrives

will be stored. The actual memory offset represented by the tail pointer is

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

15

calculated by multiplying the tail pomter by 64 and adding the result to the
message queue base address. The value of the MQ TP may be read and may
be reset to 0. To reset the MQ_TP register to 0, software must write any
value to the MQ TP register.

When the MQ TP is read, the MQ TP returns the current value of the
MQ_TP. When any value is written to the MQ_TP, the support circuitry
resets the value of the MQ TP to 0 and resets the message queue limit
counter to 4079.

Table 2 shows the bit format of the MQ_TP register and describes the
bits in the register.

The message queue limit increment register (MQ_LIR) is a memory-
mapped register that software uses to manipulate the limit counter. The
MQ LIR is a write-only pseudoregister that has no content. The MQ LIR is
used by software to advance the MQ_LC. Any store to the MQ LIR causes
the MQ_LC to increment by one message. The value stored to the MQ LIR
is irrelevant: The act of writing to that location triggers an atomic increment
of the limit counter. When software writes any value to the MQ LIR, the
value of the limit counter increments by one. When software reads the value
of the MQ_LIR, bit 212 of the MQ_LIR register contains the sign bit of the
limit counter and the remaining bits are not defined.

Table 3 shows the bit format of the MQ_LIR register when it is read
from and describes the bits in the register.

In addition to these hardware registers and counters, the messaging
facility software must maintain a 12 bit head pointer. The head pointer
indicates the location of the next message in the message queue that will be
read by the microprocessor.

The support circuitry also controls the message and error hardware
interrupts. The message interrupt indicates to the microprocessor that one or
more message, NACK, or error packets have been stored in the message
queue. The error interrupt indicates to the microprocessor that one or more

errors have occurred.

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

16

The following sections describe how the registers, counters, and signals

are used to control the messaging facility.

Message Queue Transmission Protocol

When the microprocessor signals the support circuitry that the
microprocessor is writing a message, the support circuitry checks the value of
the message queue limit counter. If the limit counter is greater than or equal
to zero, the support circuitry decrements the limit counter by one. A
transmitting PE must maintain room for returned messages in the message
queue in the event that the destination message queue is full. The support
circuitry in the source PE decrements the value of the limit counter to reserve
a location in the message queue for each message transmitted. Figure 6
shows a sample source message queue before and after sending a message.
After decrementing the limit counter, the support circuitry sends a message
packet to the destination PE. If the processor should attempt to transmit a
message when the limit counter equals zero (no room for NACKs), the
processor is interrupted with an error. This is referred to as a message queue
full error.

Although the message queue full error exists, the support circuitry still
decrements the limit counter by one and sends a message packet to the
destination PE. If a message queue full error occurs, the operating system
should immediately dispose of unread messages stored in the message queue

to provide more space in the message queue.

Message Queue Amival Protocol

When the support circuitry in a destination PE receives a message
packet from the network router, the support circuitry first checks the value of
the limit counter in the message queue. If the value of the limit counter is
greater than zero, the support circuitry accepts the message. If the value of
the limit counter is less than or equal to zero, the message queue is full and
the support circuitry rejects the message.

Figure 7 shows a sample destination message queue before and after

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

17

receiving a message. When the support circuitry accepts a message, it stores
the message in the message queue at the location pointed to by the tail
pointer. After storing the message in the queue, the support circuitry
increments the tail pointer, decrements the limit counter, and sets the Message
hardware interrupt to the microprocessor.

Every message arrival interrupts the target processor for service. An
arriving message sets a latch that asserts the Message Interrupt input to the
EV-4. The latch remains set until it is cleared by a write to the MQ LIR
register.

In the normal course of operation, the processor would remain in the
message handler routine until the head index pointer equaled the MQ TP,
meaning that the queue had been emptied, before returning to the user.

To avoid inadvertently missing a message arrival, the MQ LIR write
should be performed before the read of the MQ TP and the comparison with
the software head index pointer.

The tail pointer only increments. Because of this characteristic, if the
tail pointer reaches the last entry in the message queue, the tail pointer
automatically wraps to the first entry of the message queue when the support
circuitry accepts another message. Figure 8 shows a sample destination
message queue before and after the tail pointer wraps to the first entry of the
message queue. When the head pointer reaches the last entry in the message
queue, software must reset the value of the head pointer to the beginning of
the message queue.

After accepting the message, the support circuitry creates a message
acknowledge (ACK) packet. The support circuitry sends a message ACK
packet to the PE that sent the original message.

After receiving the ACK packet, the support circuitry in the PE that
sent the message increments the value of the limit counter to deallocate the
slot on the message queue reserved for a possible NACK. Essentially
decrementing the limit counter reserves space in the message queue for
possible rejections, ACKs or NACKs release the reserved space. For

example, Figure 9 shows a sample source message queue before and after

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

18

receiving an ACK packet.

By incrementing the value of the limit counter, the support circuitry
frees up space in the message queue for sending or receiving another message.
This action completes a successful message transfer from one PE to another.

As previously stated, when the support circuitry receives a message
packet, the support circuitry first checks the value of the limit counter in the
message queue. If the value of the limit counter is less than or equal to zero,
the support circuitry rejects the message.

When the support circuitry in the destination PE rejects a message, it
converts the message into a NACK packet. After converting the packet, the
support circuitry sends the NACK packet to the PE that sent the original
message.

Figure 10 shows a sample source message queue before and after
receiving a NACK packet. After receiving the NACK packet, the support
circuitry in the PE that sent the message stores the NACK packet in the
message queue at the location pointed to by the tail pointer. After storing the
NACK packet in the queue, the support circuitry increments the tail pointer
and sets the Message hardware interrupt to the microprocessor.

When the microprocessor sent the original message, the support
circuitry decremented the value of the limit counter. Because the limit
counter was decremented at that time, the support circuitry does not
decrement the limit counter when the support circuitry receives a NACK
packet.

After the support circuitry sets the Message interrupt to the
microprocessor, the microprocessor reads the NACK information from the
message queue. The microprocessor then sends the message again to the

destination PE.

Destination Message Processing
After the support circuitry stores a message packet, NACK packet, or
error message in the message queue, the support circuitry sets the Message

hardware interrupt to the microprocessor. This signals the microprocessor that

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

19

one or more message facility packets have arrived and are stored in the
message queue.

The microprocessor may then read the message, NACK, or error
message packet from the message queue and interpret the software code,

5 encoded commands, or addresses to decipher the action requested by the
message. Figure 11 shows a sample message queue before and after the
microprocessor reads a message or NACK packet from the queue. After
reading a packet from the message queue, the microprocessor increments the
software-controlled head pointer and increments the limit counter by writing

10 any value to the MQ LIR register. When the microprocessor increments the
limit counter, the support circuitry clears the Message hardware interrupt.

Normally, after the microprocessor receives the Message hardware
interrupt, the microprocessor continues to read messages from the message
queue until the value of the head pointer equals the value of the tail pointer.

15 This indicates to the microprocessor that there are no more messages or
NACK packets in the message queue.

To avoid missing a message arrival, the microprocessor should
increment the limit counter before comparing the value of the tail pointer and
the head pointer. The limit counter is incremented by writing any value to the

20 MQ LIR register.

A break-down of the actions involved in messaging, and the effect on
the Head, Tail, and Limit counters follows (T = Tail, H = Head, L = Limit, -+
1 or -1 means increment by message size):

WRITE (send message):

25 If (L <= 0) FAULT - interrupt local processor

L=L-1

MESSAGE ARRIVAL:

If (L <= 0) NACK -- return message to sender

Else T=T + 1 -- set message interrupt

30 L=L-1
RECEIVE MESSAGE (process message interrupt):
Read data (H)

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

20

H=H + 1 (wrap if necessary)
L=L+1

ACK ARRIVAL:

L=L+1

NACK ARRIVAL (rejected message):
L=L+1

T=T+ 1 -- set message interrupt

Enor Handling

Three types of error conditions can be checked for in the preferred
embodiment. First, message packet information could be corrupted during
transit of the message from the source to the destination PE. Second, a PE
could attempt to write a message into its message queue when the message
queue is already full. Finally, a message could be misrouted through the torus

network and arrive at the wrong destination PE.

Message Memory Enor Checking

Figure 5 illustrates the placement of the 12-bit command, source,
destination, or address fields in the 16 bit parcels as stored in the message
queue. The body of the packet is stored in memory locations n through n+3.
Several copies of the header phits of the packet are stored in memory
locations n-+4 through n+7. The message payload data is preferably stored
into the local memory in the message queue locations with valid Single Error
Correction, Double Error Detection (SECDED) check bits as generated by the
transmitting processor. If a memory error occurs in the message queue
DRAM that holds the data, it will be detectable when the processor loads the
data.

The message header is not accompanied by SECDED check bits.
Instead, each 16-bit parcel of the header has two bits of parity in bit positions
22 and 2. Bit 2" is normally a zero. Bit 2 is always zero. Bit 2" is set
to a one in the command parcels to indicate when a network error has

occurred, to distinguish between messages and network error messages.

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

21
Although the parity bits in the header phits of the message packet

enable the network interface to check if an error occurred during a transfer,
the microprocessor does not use the parity bits to check if an error occurred
while reading the header phits from the message queue. To allow the
microprocessor to detect errors when reading header phits from the message
queue, the support circuitry places several copies of the header phits in the
message queue.

To check for errors in the header phits, message handling software
compares the word of header phit information stored at location n+4 with the
word of header phit information stored at location N+6 using a bit-wise
exclusive - OR. Likewise, message handling software compares the word of
header phit information stored at location N+5 with the word of header phit
information stored at location N+7 (refer again to Figure 5).

If the word in location N+4 matches the word in location N+6 and the
word in location N+5 matches the word in location N+7, the header phits of
the packet were not corrupted when transferring from the message queue to
the microprocessor. If the words do not match, one or more of the header
phit bits changed value while being transferred from the message queue to the
MICroprocessor.

If the message handling software detects an error, the software must
determine which header phits contain an error. To do this, the software
examines each header phit in the word read from the message queue and
generates a new set of parity bits for the header phit. If the new parity bits
match the parity bits read from the message queue, the header phit is not
corrupted. If the new parity bits do not match the parity bits read from the
message queue, the header phit is corrupted.

When the microprocessor reads the body of the message from the
message queue, the microprocessor signals the support circuitry that it wants
to perform SECDED on the words. The support circuitry then sends the body
of the message to the microprocessor with a data acknowledge code that
causes the SECDED hardware in the microprocessor to be enabled to detect

and/or correct errors in the message data.

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

22
Queue-Full Enor

It is possible for the microprocessor to be notified of a message queue
full error when there are still up to four messages in the write buffer. When
the microprocessor receives an interrupt that indicates the queue full error, the
microprocessor empties the write buffer.

As the support circuitry receives each of the four message writes from
the microprocessor, the support circuitry decrements the message queue limit
counter in preparation for possible NACK packets and sends the messages to
the destination PE's. In this case, the value of the limit counter continues to
go negative with each message sent. The negative value indicates that the
message queue is fully subscribed and any NACK packet received will be
stored in one of the 16 reserved locations for overflow packets.

In addition to possible NACK packets from messages that were stored
in the write buffer, the support circuitry may receive an error message at any
time. When the support circuitry receives an error message and the message
queue is full, the support circuitry still stores the error message in the message
queue and decrements the limit counter by one. Because the limit counter is
all ready negative, this also uses one of the reserved 16 slots in the message
queue for overflow packets.

Another condition that could possibly occur is when a PE issues 4080
message writes and has not yet received any ACK packets. In this case the
message queue is full but empty. If this occurs, software must periodically
read the value of the MQ LIR register and examine bit 212 of the register. If
this bit is set to 1, the value of the limit counter is negative and no more
message writes should be issued. If this bit is set to 0, the value of the limit
counter is positive and message writes may be issued.

If a queue full condition exists (MQ_LC <= 0) and a processor
attempts to send a message, the Error Interrupt.

Because the processor could have message waiting to be sent at the
time the queue-full condition is detect, surplus room in the local queue
("slack™) is maintained to allow the allocation of space for possible NACKs

from the waiting messages.

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

23
Slack is established by initializing the MQ_LC with a value slightly

smaller than the maximum available queue space. MQ LC is allowed to go
negative when a queue full transmission is detected, but only to allow for the
transmission of the backed-up messages. Messages arriving from external
nodes are rejected when the MQ LC is less than or equal to zero. NACKs
and ACKs may arrive at any time regardless of the value of the MQ) LC.

The amount of slack required to account for queuefull pipeline run-on
can be computed by adding up the processor write buffers, which hold
outgoing message data before they are transmitted through the torus network
(4 in the preferred microprocessor), plus the erroring message at the external
bus interface (1), plus additional writes that may be in the load/store pipeline
behind the write-buffers (3 stores, equal to one more message fragment) for a
total of 6 in the preferred embodiment. _

Additional slack needs to be included to provide room for network
error messages (see the next section).

Network Enor Messages

There are two types of network packet errors: a misrouted packet
error and a packet parity error. If the network interface receives a packet and
the value of the destination phit does not match the value for the destination
PE, a misrouted packet error occurs. If the network interface detects a parity
error in the header phit of a packet, a packet parity error occurs. The header
parcel parity bits are checked by the network interface hardware upon the
arrival of any packet type. If any parity does not agree with the transmitted
parity bits, the packet is converted by hardware into a network error message
and stored in the rhessage queue.

The message handling sofiware can determine if a message is an error
message by testing bit 2" of the command parcel.

In the case of a misroute packet error, the receiving PE can attempt to
retransmit the message to the appropriate destination PE. Thus in this case,
the error need not necessarily result in a system failure.

Virtually all network failures that are detected ‘using the header parity

'SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

24

are fatal. The information captured in the message queue is intended to be an
aid to troubleshooting rather than provide a means for overall system
recovery.

If either network packet error occurs, the network interface turns the
packet it received into an error message by setting bit 2 of the command
phit to 1. The network interface then sends the error message to the
appropriate PE in the node.

The error message is treated as if it were an arriving message,
regardless of the packet type. It is stored into the message queue by the
network interface hardware and the error interrupt to the processor asserted.
No ACK is sent.

Only the first error packet is captured. Further error messages are
simply discarded until the error condition is cleared by software.

Because a network error message may occur at any time, including
when a queue full condition already exists, room for an additional message
must be provided for in the slack computation to allow the error message to,
be absorbed. This brings the slack total to 7 messages.

The network interface may create an error message out of any of the
seven packet types, the message packet, ACK packet, or the NACK packet.
Figure 12, Figure 13, and Figure 14 show the format of error messages as

they are stored in the message queue.

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

25
WHAT IS CLAIMED IS:

1. A messaging facility in a multiprocessor computer system having a
plurality of processing elements interconnected by a n-dimensional
interconnect network, each processing element including a processor and a
local memory, wherein globally addressable portions of local memory of each
processing element form a distributed memory, the messaging facility
comprising:

buffer means in a source processing element for assembling a message
to be sent from the source processing element to a destination processing
element based on information provided from the source processing element's
processor;

a network router for transmitting the assembled message from the
source processing element to the destination processing element via the
interconnect network;

a message queue in a designated area of the local memory of the
destination processing element for storing the transmitted message;

tail pointer means for indexing into the message queue to indicate a
location where the transmitted message is to be stored in the message queue;

interrupt means for providing an interrupt to the destination processing
element's processor in response to the message being stored in the message
queue; and

head pointer means for indexing into the message queue to indicate a
location where the message is stored in the message queue for reading by the

destination processing element's processor in response to the interrupt.
p g p p p

2. The messaging facility of claim 1 further comprising:
a queue limit counter to provide a limit count representative of the

remaining available locations in the message queue.
3. The messaging facility of claim 2 further comprising:

means for generating an acknowledged message based on the limit

count indicating that there is an available location for storing the transmitted

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

26

message and for generating a not acknowledged message based on the limit
count indicating that there are no available locations for storing the

transmitted message.

4. The messaging facility of claim 2 further comprising:

means for causing the queue limit counter to increment the limit count
as messages are read from the message queue; and

means for causing queue limit counter to decrement the queue limit

count as messages are stored in the message queue.

5. The messaging facility of claim 3 wherein the source processing
element includes a message queue and a queue limit counter and wherein the
messaging facility further comprises:

means for causing the queue limit counter of the source processing
element to decrement the limit count after the message is assembled in the
buffer means to thereby reserve a location in the message queue of the source
processing element for a not acknowledged message generated by the

destination processing element in response to the transmitted message.

6. The messaging facility of claim 5 further comprising:

means for causing the queue limit counter of the source processing
element to increment the limit count in response to receiving an
acknowledged message from the destination processing element indicating

that the destination processing element accepted the transmitted message.

7. The messaging facility of claim 1 wherein the tail pointer means

circularly indexes the message queue.

8. The messaging fe{cility of claim 7 wherein the message queue is a

first-in, first-out circular buffer.

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

27

9. The messaging facility of claim 1 wherein the tail pointer means is

implemented in hardware.

10. The messaging facility of claim 1 wherein the head pointer means is

implemented in software.

11. The messaging facility of claim 1 further comprising:
means for detecting possible error conditions and for providing an
error interrupt to the destination processing element's processor in response to

detecting an error condition.

12. The messaging facility of claim 11 wherein one type of possible error
condition results from a message being corrupted during the transmission from
the source processing element to the destination processing element and
wherein the messaging facility further comprises:

means for responding to an error condition indicating that the
transmitted message is corrupted to transform the corrupted message into an
error message to be stored in the message queue for retrieval during software

€rror recovery.

13. A method of passing messages in a multiprocessor computer system
having a plurality of processing elements interconnected by a n-dimensional
interconnect network, each processing element including a processor and a
local memory, wherein globally addressable portions of local memory of each
processing element form a distributed memory, the method comprising:

assembling a message to be sent from the source processing element to
a destination processing element based on information provided from the
source processing element's processor;

transmitting the assembled message from the source processing

element to the destination processing element via the interconnect network;

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

10

15

20

25

30

28

indexing into a designated area of the local memory of the destination
processing element's local memory to indicate a location where the transmitted
message is to be stored;

storing the transmitted message in the indexed location in the
designated area of the local memory of the destination processing element;

providing an interrupt to the destination processing element's processor
in response to the message being stored in the indexed location; and

indexing into the designated area of the local memory of the
destination processing element's local memory to indicate a location where the
message is stored for reading by the destination processing element's

processor in response to the interrupt.

14. A multiprocessor computer system comprising:

a plurality of processing elements, each processing element including a
processor, a local memory having a designated message queue area, and shell
circuitry, each shell circuitry including:

buffer means for assembling a message to be sent from a
source processing element to a destination processing element based on
information provided from the source processing element's processor,

a network router for transmitting the assembled messages from
the source processing element to the destination processing element via
the interconnect network to be stored in the designated message queue
area of the local memory of the destination processing element,

tail pointer circuitry to index into the designated message queue
area of the local memory of the destination processing element to
indicate a location where the transmitted message is to be stored, and

interrupt circuitry providing an interrupt to the destination
processing element's processor in response to the message being stored
in the designated message queue area;

messaging facility software providing head pointers to indicate
locations where messages are stored in the designated message queue areas of

the local memories of the destination processing elements for reading by the

 SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

29

destination processing elements' processors in response to the interrupts from
the destination processing elements' interrupt circuitry; and

a n-dimensional interconnect network interconnecting the plurality of

processing elements.

SUBSTITUTE SHEET (RULE 26)

PCT/US94/14349

WO 95/16967

[/ 1

o o
wow
MHOMLIN LOINNOOHILNI
r————
N N 4 . * ’
AHOWIN eeco AHOWIN AHOWaN
oo ¥0SS300Yd oo H0SS300Yd “ oo

L—\ T

/

(0102

I ‘81

SUBSTITUTE SHEET (RULE 26)

PCT/US94/14349

WO 95/16967

2/11

31avl

vn_i

dNX00T - H A
002 —~__ XV | -
\ e
. Y 3SNOJSIY
802—_ [_onm aNv is3noId xﬂm%%wmmz
v NERS | ez
M001d ANV =
VIV FovayaLN | F3d TVRLAIA i
AHOMUIN - [=7=77 5 7+ H A+
JONVHOXI
snd v1vd A
W01 sng
135440 vivd
Vivda SS34aav _._oﬁmmw@oﬁé ——0lc
TYNYILX3 |
e Y
JOMLNOD ANV
Ss3¥Aav #3d WNIWIA| 3iavL |
- ASOWIW . dNXMOOT aaav
N VOO 195440 IVOISAHd
ss3vaav VILEVd
\« TVOISAHd
2 St

NONR

SUBSTITUTE SHEET (RULE 26)

WO 95/16967

3711

PCT/US94/14349

Fig. 3
/\
/ AN
MESSAGE PACKET ACK PACKET
;5 50 ;5 50
(‘
PHITO | ROUTING TAG PHITO| ROUTING TAG
PHIT1 | DESTINATION PE PHIT 1| DESTINATION PE
PHIT 2 COMMAND PHIT2| COMMAND
HEADER <

PHIT 3 | SOFTWARE CODE 1
PHIT 4 | SOFTWARE CODE 0
PHIT 5 SOURCE PE
-

r

PHITS 6-10 WORD 0

PHITS 11-15 WORD 1

BODY <
PHITS 16-20 WORD 2
PHITS 21-25 WORD 3

SUBSTITUTE SHEET (RLLE 26)

WO 95/16967 PCT/US94/14349

4/ 11
Fig. 4
N\
/7 N\
MESSAGE PACKET NACK PACKET
.21 5 2O 21 5 20
PHIT O ROUTING TAG ROUTING TAG PHITO
PHIT 1{ DESTINATION PE DESTINATION PE |PHIT 1
PHIT 2 COMMAND COMMAND PHIT 2
PHIT 3 SOFTWARE CODE 1 SOFTWARE CODE 1 |PHIT 3
PHIT 4] SOFTWARE CODE 0 SOFTWARE CODE 0 |PHIT 4
PHIT 5 SOURCE PE SOURCE PE PHIT 5
PHITS 6-10 WORD 0 WORD 0 PHITS 6-10
PHITS 11-15 WORD 1 . WORD 1 PHITS 11-15
PHITS 16-20 WORD 2 WORD 2 PHITS 16-20
PHITS 21-25 WORD 3 WORD 3 PHITS 21-25

SUBSTITUTE SHEET (RULE 26)

PCT/US94/14349

WO 95/16967

5/1!

d31NIOd VL

d31INIOd Av3H

Z VA A Ay A4 yd Zz /L Z Z Z
_ 9/0% § § 1.0 Q
\mm;z:oo Lwn /] \mmhz:oo Y4
INETEN 14 INETER 4
ALdW3 [8.0¢”] ALAWNT |820¥7]
ALdW3 € x ¥3INIOd VL % ALdW3 € “
J9VSSIN |2 \ 39VSSIN |2 \
J9VSSIN |t \ Y3LNIOd QvaH £ _3ovssaW_ |} \
ALJW3 0 \ JNEE] 0 \

L L 77 yd 7 7 7 7 7 7/

JOVSSIN V ONILIIM
d314V 3N3N0 FOVSSIN

JOVSSIAN V ONILIEM
340439 3IN3INO IDVSSIAN /

0 QHOM
L QHOM
Z QHOM
€ QHOM
ANVINWOD | 300D TUVYMLAOS | 0 300D FUVMLIOS 3d 304NOS
3d NOILYNILS3A aNVINWOD | 300D IHUVMLAOS | 0 300D FUYMLAOS
ANVINWOD | 300D TUYMLAOS | 0 300D FUVMLAOS 3d 30MNOS
3d NOILYNILS3A ANVINWOO | 3000 TUVYMLIOS | 0 300D TUYMLAOS
¢ si° o 1z e ef

13IXMOVd 3OVSSIN

0+N

I +N

¢+N

€+N

v+N

S+N

9+N

L+N

> 9 S

SS3HAAv
AHONW3N

S 81

SUBSTITUTE SHEET (RULE 26)

WO 95/16967 PCT/US94/14349

6/11
Fig. 7
/ N— \
MESSAGE QUEUE BEFORE MESSAGE QUEUE AFTER
RECEIVING A MESSAGE RECEIVING A MESSAGE
7 2 7 7 7 /272 7 7 7 7
/ o[EMPTY / o[EMPTY
"/, 1 WMESSAGE P onER '/, 1 [MESSAGE [} HEAD
POINTER
/ 2 EMPTY TAIL / 2| MESSAGE |~/ TAL
/ 3 EMPTY - / 3 EMPTY —
y POINTER 7 POINTER
,4078] EMPTY 4078 EMPTY
/4079 EMPTY 4079 EMPTY
// LIMIT COUNTERI% 7 LIMIT COUNTERI?
4078 4077
Z 7.7 7 7 // ' 72 77 77 //
Fig. 8
/\L
/ AN
MESSAGE QUEUE BEFORE MESSAGE QUEUE BEFORE
RECEIVING MESSAGE RECEIVING MESSAGE

L L L L 7 VAR A A A A4 TAIL

gs = ge e o
/ HEAD %/\/
078

/
078] MESSAGE —POINTER MESSAGE —'F','gf‘NDTER
4079 EMPTY —TAIL 4079 MESSAGE
/' // LIMIT COUNTE POINTER |/ / LIMIT COUNTE
%{ 4078 |? //{ w71/
Fig. 9
/ 7\
MESSAGE QUEUE BEFORE MESSAGE QUEUE AFTER
RECEIVING ACK PACKET RECEIVING ACK PACKET
VAR A A A A4 S L L L L
/ o[EMPTY / o[EMPTY
/ 1[___EMPTY HEAD / 1| EMPTY HEAD
/ 2| MESSAGE —POINTER / 2| MESSAGE ' < A—POINTER
/ 3| _EMPTY —TAIL / 3| __EMPTY TAIL
/ - POINTER 7 POINTER
/ Vv
4078 EMPTY 4079 EMPTY
4079 EMPTY 4080 EMPTY
/' / LIMIT COUNTER/ L/ LIMIT'COUNTER/
4077 l/ / 4078 W
L L L 2L L 7 L L L L L 2

SUBSTITUTE SHEET (RULE 26)

WO 95/16967

PCT/US94/14349

7/

Fig. 10
7/ \ ﬁ
MESSAGE QUEUE BEFORE MESSAGE QUEUE AFTER
RECEIVING NACK PACKET RECEIVING NACK PACKET
VAR A A A A 4 /S L L L L L
o[EMPTY HEAD / o[EMPTY HEAD
%1 MESSAGE —POINTER / 1{ MESSAGE —POINTER
2 EMPTY —TAIL / 2| NACK
?3 EMPTY / POINTER %3 EMPTY TAIL
POINTER
,4078] EMPTY 4078 EMPTY
4079 EMPTY 4079 _EMPTY
// LIMIT COUNTERl? 7 LIMIT COUNTE??
4077 4077
////// >/ ////// 7/
Fig. 11
/ 4 N
MESSAGE QUEUE BEFORE MESSAGE QUEUE AFTER
MICROPROCESSOR READ MICROPROCESSOR READ
S EMPTY = a
HEAD
g; S 7 ponrer gs e
73 IY/ | POINTER 73 IY/ T POINTER
4078 EMPTY_ ,4078] __EMPTY
4079 EMPTY 4079 __EMPTY
~ // LIMITCOUNTEI}? /' / LIMIT COUNTEFF?
4078
///‘/1037/// ////// //

SUBSTITUTE SHEET (RULE 26)

PCT/US94/14349

WO 95/16967

S1iHd ONVIWWOO 3S3HL NI 13S 1LON SI (mrN 119) 119 ¥o¥y3 3HL !

(V.Lva dITvA NIVINOD 1ON S304d) 0 a¥OM

(v.1va dITvA NIVINOD LON S304) | a¥OM

(v.Lva aiTvA NIVLNOD LON S30d) 2 aHOM

(v.1va aivA NIVINOD LON S30d) € GHOM

vz[‘81

AaNVINNOD L 8S34¥aay 1S3N03Y L SS34AAv 1S3Nd3IY 3d 304N0S
3d NOILYNILS3A ANVINWOD + 1 SS34AAvV 1S3NO3IH 0 SS3¥AAv 1S3NO3IH
ANVYIWINOD L SS3HAAY LSIANDIY I SS34AAV 1S3NDIY 3d 304N0S
3d NOILVYNILS3A ANVWINOD L SS34AAV 1S3NdD3Y 0 SS34AAV 1S3NO3IY
0¢ gi° 9i° &z IWoef ef
I 3dAL 13NMOVd
qQzI ‘Sid
N
D
S1IHd ANVIWWOD 3S3HL NI 13S 10N SI (mm 119) 118 Joy¥yd3 3HL
(v.Lva AITvA NIVINOD 1ON S303d) 0 GHOM
(V.Lva alImvA NIVINOD 1ON S30ad) 1| G4OM
(V.LVQa aITvA NIVINOD LON S304Q) Z GHOM
(v.Lva aiTvA NIVINOD LON S304) € G4OM
ANVYIWWOOD V.1va diivA LON v.iva aiivA LON v.1va alivA 1ON
3d NOILVYNILS3A ANVYWWOD + v.1va alivA LON v.1va GIIvVA LON
ANVWWOOD v.iva arivA LON v.1va alivA LON v.1va alivA LON
3d NOILVYNILS3A ANVINWOD + v.iva allvA LON v.iva alivA LON
¢ gi° ai° 1z I e ef
0 3dAL 13)M0Vd

O0+N
L+ N
¢+N

€+ N SS3yaav
¥+ N AHOW3INW

S+N
9+N
L+N

O+N
I +N
¢+N
€+N
P+N
S+N
9+N
L+N

SUBSTITUTE SHEET (RULE 26)

SiSE - ee) 4
AHOW3N

PCT/US94/14349

WO 95/16967

9/11

S1lIHd ONVIWWOD 3S3HL NI 13S 10N sI (mm 118) 118 ¥o¥y3 aHL}

71 81

0 QUOM
0 QHOM
0 GHOM
0 QHOM
aNVWNOD V1va GrvA LON V1va GrvA LON VIVQ Q1A LON
3d NOILYNILS3a aNVWINOO+ V1vd arvA LON V1va aIrvA LON
ONVIWWOD V1va aIrvA LON V.1vd GIvA LON V1vQ QYA LON
3d NOILYNILSId ONVWINOO 4 V1va aivA LON VLva QIVA 1ON
Z0 si¢ of° 1€ 2 W oe g9 ©
€ IdAL 13)OVd
vET S
SLIHd ONVWWOO 3STHL NI 13S LON S (, Z L16) 118 HO¥¥3 IHL
| SS3YAAV ISNOJSIY | 0 Ss39aav 3SNOJSTY V1vd OIYA 1ON VLVd GIVA 10N
| SS3UAAV ISNOJS3Y | 0 SS39aAY ISNOJSIY V1va aIvA LON V1va GRVA LON
| SS3¥AAY 3SNOJS3Y | 0 SS39aaY ISNOJSIY V.1va aIvA LON V1vQ GIIVA LON
| SS3HAAV ISNOJSIY_|_0 SS39AAY ISNOISTY V.1va QITVA LON V1va GIvA LON
aNVIWWNOD | SS3¥AAV LSINDIY |0 SS39aaV 1S3n03y 3d 308N0S
3d NOILVYNILS3d aNYWIWOD+ | SS34aqY 1s3n03Y | 0 Ssaxaay 1S3N03Y
ONVIWNOD | SS3uAaav 1S3N03Y | 0 SS3daay 1Sano3y 3d 304N0S
3d NOLLYNILS3d GNYWINOD | SS3¥AQY 1SIND3Y_|_0 SS3daaV LSanoy
¢ gi° 9i° 1€ 2f W e e
Z 3dAL 13XOVd

O0+N
L +N
¢+N
€+ N Ss3yaav
P+ N AHYOW3W
S+N
9+N
L+N

SUBSTITUTE SHEET (RULE 26)

€+N
y+N
S+N
9+N
L+N

AHOW3N

PCT/US94/14349

WO 95/16967

10/ 11

SL1IHd ONVINWOOD 3S3HL NI 13S 10N si (m_w 118) 119 ¥oyy3 IHL

0 HOM
L HOM
Z HOM
: € HOM
ONVINNOD V1vd arvA LON V1va GIVA LON V1va VA LON
3d NOILVNILS3d aNYWNOD V1va GIVA LON V1Va QYA LON
aNVWIWOD V1va VA LON V1va arvA LON V1va VA LON
3d NOILLVNILS3d GNVIWNOD V1va GAVA LON V1va VA LON
0o¢ gi° o &z ST e
G 3dAL 13MOVd
IET 1
SLIHd GNYWINOO 3S3HL NI L3S LON SI (Z 118) 118 HOMM3 3HL
0 GHOM
0 QHOM
0 QHOM
0 aHOM
GNVININOD | SSIuaavY Sau/oaY | 0 SS3uaav S3u/oay 3d 309N0S
3d NOILYNILS3a aNYWINOD | SS3uAAY S3/03Y_| 0 ss349dav S3u/03Y
aNVWINOD } SS3uaay S3W03Y | 0 SS34aay S3/03Y 3d 308N0S
3d NOILYNILS3A aNYIWNOD | SSIuAaV S3xo03Y | 0 Ss3uaav S3x/o3y
0o¢ si° ol €z W e ef
b 3dAL 13M0Vd
qQsr ‘31

0O+N
I +N
C+N
€+ N SS3yaav
¥+ N AHOW3W
S+N
9+N
L+N

SUBSTITUTE SHEET (RULE 26)

I +N

€+ N SS3yaAav
7 +N AJOWIN
S+N
9+N
L+N

PCT/US94/14349

WO 95/16967

1111

S1lIHd ANVIWWOD 3S3HL NI 13S LON Si (mm 118) 119 ¥YOo4y3 3HL+

0 QHOM
L QHOM
Z QHOM
€ QHOM
GNVINNOD | SSIYAAY ST/OIY | 0.SSINAAY STHOIY 3d 308NOS
3d NOILYNILS3Q aNVWOD) | SSIHAAY STH/OIY | 0 SSINAAY STHOIY
QNVINWOD | SSIYAAV STU/OIY | 0SSINAAY SIW/OIY 3d 30HNOS
3d NOILYNILS3Q aNVIWNOD) | SS3¥AAY STU/OTY | 0SSIHAAY ST/OIY
g1 o 1 2 e ef

13X0Vd MOVN HO ‘13X%0Vd FOVSSIN ‘9 3dAL 1IN0V

pI 81

0+N

l+N

¢+N

€+N

¥+N

S+N

9+N

L+N

SS3AAQV
AHONW3N

SUBSTITUYE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Internat’ { Application No

PCT/US 94/14349

A. CLASSIFICATION OF SUBJECT MATTER

GO6F15/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classificaion symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

¢

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

see
see
see
see
see

page
page
page
page
page

A COMPCON SPRING '93,
FRANCISCO, CA, US
pages 312 - 320

12, line 8 -
14, line 8 -
16, line 6 -
20, line 8 -

memory system'
see the whole document

A EP,A,0 460 599 (THINKING MACHINE
CORPORATION) 11 December 1991

see column 5, line 48 - column 7, line 55
see column 11, line 3 - column 16, line 22

A WO0,A,88 08652 (D. HILLIS) 3 November 1988
7, line 12 - line 34
page
line
page
line

13, Tine 10

34

17, line 33

23

22 February 1993, SAN

BRADLEY R. CARLILE 'The CRAY APP shared

1-14

1,13,14

1-14

D Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

earlier document but published on or after the international
filing date

document which may throw doubts on priority claim(s) or
which is cited to establish the publicaton date of another
citation or other special reason (as specified)

document referring to an oral disclosure, use, exhibition or
other means

document published prior to the international filing date but
later than the priority date claimed

g

L

0

-p

1

X

"y

&

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular reievance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

documnent of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

document member of the same patent family

Date of the actual completion of the international search

31 March 1995

Date of mailing of the international scarch report

18 04 95

Name and mailing address of the ISA

Euro; Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk

Tel. (+ 31-70) 340-2040, Tx. 31 651 epo ni,
Fax (+31-70) 340-3016

Authorized officer

Soler, J

Form PCT/ISA/210 (second sheet) (July 1992)

UNIEKNATIONAL SEARCH REPORT

Interna’ 1l Application No
L. rmation on patent family members

PCT/US 94/14349

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0460599 11-12-91 CA-A- 2043505 07-12-91

JP-A- 4232561 20-08-92

W0-A-8808652 03-11-88 US-A- 4984235 08-01-91
EP-A- 0381671 16-08-90
JP=T- 2503244 04-10-90
US-A- 5117420 26-05-92

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

