(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

‘ﬂm A 00 OO

(10) International Publication Number

WO 2006/082994 A2

(51) International Patent Classification: Not classified (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(43) International Publication Date
10 August 2006 (10.08.2006)

(21) International Application Number: AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
PCT/JP2006/302107 CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(22) International Filing Date: 1 February 2006 (01.02.2006) KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,

(26) Publication Language: English UZ, VC, VN, YU, ZA, 7M, ZW.

(84) Designated States (unless otherwise indicated, for every

(30) Priority Data: kind of regional protection available): ARTPO (BW, GH,

60/650,755 7 February 2005 (07022005) UsS G‘M, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
.) 7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

(71) Applicant (for all designated States except US): SONY European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
COMPUTER ' ENTERTAINMENT INC. [JPAP], FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
2-6-21, Minami-Aoyama, Minato-ku, Tokyo, 1070062 RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
(Ip). GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventor: HATAKEYAMA, Akiyuki; c/o SONy Yublished: , ‘
COMPUTER ENTERTAINMENT INC.. 2-6.21. Mi. — Without international search report and to be republished
nami-Aoyama, Minato-ku, Tokyo, 1070062 (JP). upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agent: MORISHITA, Sakaki; 2-11-12, Ebisu-Nishi, ance Notes on Codes and Abbreviations” appearing at the begin-
Shibuya-ku, Tokyo, 1500021 (JP). ning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND APPARATUS FOR FACILITATING A SECURE SESSION BETWEEN A PROCESSOR AND AN
EXTERNAL DEVICE

100
g“"104 : 102 S
ey | PROCESSOR
| “108 l
106 _ _ 3 110
o Lo

06/082994 A 2 I 1K 0 O O OO O

& (57) Abstract: Methods and apparatus provide for verifying operating system software integrity prior to being executed by a pro-
cessor, the processor including an associated local memory and capable of operative connection to a main memory such that data may
be read from the main memory for use in the local memory; storing a status flag indicating whether the operating system software
integrity is or is not satisfactory; and ensuring that the status flag indicates that the operating system software integrity is satisfactory
before permitting the processor to continue in a course of action.

10

15

20

. 25

WO 2006/082994 1 PCT/JP2006/302107

DESCRIPTION

METHODS AND APPARATUS FOR FACILITATING A SECURE SESSION

BETWEEN A PROCESSOR AND AN EXTERNAL DEVICE

CROSS REFERENCE TO RELATED APPLICATIONS

This application ié :elated to U.S. Patent
Application No.: 60/650,491, (Attorney Docket No.: 545/13,
Additional Ref. No. SC04031US00), filed February 7, 2005,
entitled METHODS AND APPARATUS FOR FACILITATING A SECURE
PROCESSOR FUNCTIONAL TRANSITION, the entire disclosure of

which is hereby incorporated by reference.

TECHNICAL FIELD

The present invention relates to methods and
apparatus for facilitating a secure session in which to
;erify the integrity of software running on a processor,
such as operating system software, application software,

etc.

RELATED ART

In recent years, there has been an insatiable desire
for fa;ter computer processing data throughputs because
cutting-edge computer applications are becoming more and

more complex, and are placing ever increasing demands on

processing systems. Graphics applications are among those

10

15

20

25

WO 2006/082994 2 PCT/JP2006/302107

that place the highest demands on a processing system

because they require such vast numbers of data accesses,
data computations, and data manipulations in relatively
short periods of time to achieve desirable visual results.
Real-time, multimedia applications also place a high
demand on processing systems; indeed, they require
extremely fast processing speeds, such as many thousands
of megabits of data per second.

While some processing systems employ a single
processor to achieve fast processing speeds, others are
implemented utilizing multi-processor architectures. In
multi-processor systems, a plurality of sub-processors can
operate in parallel (or at least in concert) to achieve
desired processing results. It has also been contemplated
to employ a modular structure in a multi-processing
system, where the computing modules are accessible over a
broadband network (such as the Internet) and the computing
modules may be shared among many users. Details regarding
this modular structure may be found in U.S. Patent No.
6,526,491, the entire disclosure of which is hereby
incorporated by reference.

A problem arises, however, when a processing system
is used over a network or is part of a shared resource.

In particular, the processor and its associated hardware,
software, data and the like are subject to outside

influences such as intentional hacking, viruses and the

10

15

20

<25

WO 2006/082994 3 PCT/JP2006/302107

like. Another problem involves the unauthorized or
outright malicious effects that may be introduced by boot
software, operating system softWare, application software,
and content (data) that is not authenticated in some way
prior to execution. Unfortunately, the conventional
process of executing software applications (or other types
of digital content) prescribes reading the software from a
memory and executing same using a processor. Even if the
processing system in which the software is executed
employs some type of security feature, the software might
be tampered with or may not be authorized for execution in
the first place. Thus, any later invoked security
measures cannot be fully trusted and may be usurped.

As the execution of application software on a
processing system usually includes the use of processing
resources, e.g., a disc controller (CD, DVD, etc.),
graphics chips, hard disc (HD) components, tuner
circuitry, network interface circuitry, etc., any problems
associated with an unauthorized alteration of the
operating system, application program, and/or content
(e.g., via hacking or via a virus) may propagate into the
processing resources of the system.

Accordingly, there are needs in the art for new
methods and apparatus for providing security features in a
processing system to ensure that any unauthorized

alteration of the operating system, application software,

WO 2006/082994 4 PCT/JP2006/302107

and/or content may be detected and that a secure
processing environment may be established to achieve a

secure session with any processing resources.

DISCLOSURE OF THE INVENTION

Aspects of the invention provide for authenticating
operating system software,vsoffware applications and/or
content within a secure processor, preferably in
connection with establishing a secure session with an
external device. By establishing a secure processing
environment (not subject to hacking and/or viruses) and
then authenticating the operating system software,
software applications and/or content within the secure
processor, one can assume a trusted environment in which
data manipulations may take place, including secure
sessions with external devices.

In accordance with one or more aspects of the present
invention, it is desirable to establish a secure
processing environment. This may involve triggering a
state in which no externally—initiated data access request
into thé processor will be responded to. 1In otﬁer words,
the secure processor will not respond to any outside
request for data (e.g., a request to read contents on a
local memory or registers). Thus, when the processor
enters a. secure mode, it creates a trusted environment in

which to launch further security measures, such as

10

15

20

. 25

WO 2006/082994 5 PCT/JP2006/302107

authentication of software applications and content.
Preferably, trusted decryption code (and a trusted
decryption key) is stored in a Se;ure memory (e.g., a
flash ROM) that is associated with a particular processor.
The trusted decryption code and decryption key are
preferably only available from the flash ROM when the
processor has entered alsgcure mode. This decryption
capability is preferably hardware-implemented (e.g.,
software that is burned into the flash ROM or any other
suitable hardware device). Once the trusted decryption
code is invoked, it may be used to decrypt a public key
authentication program (which was encrypted using the
trusted key) and stored in a system.memory (outside the
secure processing environment). The public key
authentication program may be used to decrypt and
authenticate other application programs and content.
| By way of example, the public key authentication
program may be operable to decrypt an operating system
that has been encrypted using a trusted key (e.g., a
private key of a private/public key pair). The public key
authentication program running on the secure processor may
use a public key (e.g., the public key of the
private/public key pair) to decrypt and verify the
operating system. The operating system may also be signed
by an electronic signature (e.g., a hash result), which

may also be verified by the public key authentication

10

15

20

© 25

WO 2006/082994 6 PCT/JP2006/302107

program running the hash algorithm and cross-checking the
result.

When verification of the oﬁerating system is made, a
verification result is stored in a secure storage area of
the processor (which may be the same area used to store
the pre-stored, internal public key). Thereafter, any
software applications and/or content may be verified
(e.g., using similar steps as to verify the 0S) in the
same processor or in a different processor of a multi-
processor system. (If a different processor is used to
verify the software applications and/or content, then it,
too, is preferably in a secure mode). During this
verification process, however, the processor may check the
verification result stored in the secure storage area to
ensure that the OS is valid and that no tampering has
taken place.

It is noted that as used herein, the term "content"
and "data" are broadly construed to include any type of
program code, application software, system level software,
any type of data, a data stream, etc.

Once the operating system and the software
applications and/or content have been verified, the
processor may also establish a secure session with an
external device, such as.a disc controller (CD, DVD,

etc.), graphics chip, hard disc (HD) component, tuner

circuitry, network interface circuitry, etc. This secure

10

15

20

25

WO 2006/082994 7 PCT/JP2006/302107

session may be established using another (or the same)
private/public key pair to encrypt/decrypt information
being passed between the processor and the external
device. (Other keysvmay be used, such as one-time use
keys, random number keys etc.) Since the 0OS and the
software applications and/or content have been verified,
the secure session is trusﬁed.

In accordance with one or more embodiments of the
present invention, methods and apparatus provide for
verifying operating system software integrity prior to
being executed by a processor, the processor including an
associated local memory and capable of operative
connection to a main memory such that data may be read
from the main memory for use in the local memory; storing
a status flag indicating whether the operating system
software integrity is or is not satisfactory; and ensuring
£hat the status flag indicates that the operating system
software integrity is satisfactory before permitting the
processor to use the data.

In accordance with one or more further embodiments of
the present invention, methods and apparatus pfovide for:
verifying operating system software integrity prior to
being gxecuted by a processor, the processor including an
associated local memory and capable of operative
connection to a main memory such that data may be read

from the main memory for use in the local memory; storing

10

15

20

25

WO 2006/082994 8 PCT/JP2006/302107

a status flag indicating whether the operating system
software integrity is or is not satisfactory; and ensuring
that the status flag indicates that the operating system
software integrity is satisfactory before permittihg the
processor to using the data or certain processing
resources.

In accordance with one or more further embodiments of
the present invention, methods and apparatus provide for:
verifying operating system software integrity from time to
time prior to and/or after being executed by a processor,
the processor including an associated local memory and
capable of operative connection to a main memory such that
data may be read from the main memory for use in the local
memory; storing a status flag indicating whether the
operating system software integrity is or is not
satisfactory; and ensuring from time to time that the
statﬁs flag indicates that the operating system software
integrity is satisfactory befére permitting the processor
to continue in a course of action.

Other aspects, features, advantages, etc. wiil become
apparent to one skilled in the art when the description of
the inventioﬁ herein is taken in conjunction with the

accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

For the purposes of illustrating the various aspects

10

15

20.

.25

WO 2006/082994 9 PCT/JP2006/302107

of the invention, there are shown in the drawings forms
that are presently preferred, it being understood,
however, that the invention is ﬁot limited to the precise
arrangements and instrumentalities shown.

FIG. 1 is a diagram illustrating a processing system
in accordance with one or more aépects of the present
invention;

FIG. 2 is a flow diagram illustrating processing
steps that may be carried out by the processing system of
FIG. 1 in accordance with one or more aspects of the
‘present invention;

FIG. 3 is a flow diagram illustrating further process
steps that may be carried out by the processing system of
FIG. 1 in accordance with one or more further aspects of
the present invention;

FIG. 4 is a flow diagram illustrating still further
process steps.that may be carried out by the procéssing

system of FIG. 1 in accordance with one or more further

aspects of the present invention;

FIG. 5 is a flow diagram illustrating still further
process steps that may be carried out by the processing
system ofAFIG. 1 in accordance with one or more further
aspects of the present invention;.

FIG. 6 is a flow diagram illustrating still furthef
process steps that may be carried out by the processing

system of FIG. 1 in accordance with one or more further

10

15

20

25

WO 2006/082994 ‘ 10 PCT/JP2006/302107

aspects of the present invention; and

FIG. 7 is a diagram illustrating the structure of a
multi-processing system having twg or more sub-processors,
one or more of which may include a processor having the
capabilities of the processor of FIG. 1 in accordance with

one or more further aspects of the present invention.

DETAILED DESCRIPTION OF THE PRESENT INVENTION

With reference to the drawings, wherein like numerals
indicate like elements, there is shown in FIG. 1 a
processing system 100 suitable for employing one or more
aspects of the present invention. For the purposes of
brevity and clarity, the block diagram of FIG. 1 will be
referred to and described herein as illustrating an
apparatus 100, it being understood, however, that the
description may readily be applied to various aspects of a
ﬁethod with equal force. The apparatus 100 preferably
includes a processor 102, a local memory 104, a system
memory 106 (e.g., a DRAM), and a bus 108.

The processor 102 may be implemented utilizing any of
the known technologies that are capable of requésting data
from the system memory 106, and ménipulating the data to
achievg a desirable result. For example, the processor
102 may be implemented using any of the known
microprocessors that are capable of executing software

and/or firmware, including standard microprocessors,

10

15

20

.25

WO 2006/082994 11 PCT/JP2006/302107

distributed microprocessors, etc. By way of example, the
processor 102 may be a graphics processor that is capable
of requesting and mahipulating data, such as pixel data,
including gray scale information, color information,
texture data, polygonal information, video frame
information, etc.

Notabkly, the local memory 104 is preferably located
in the same chip as the processor 102; however, the ‘local
memory 104 is preferably not a hardware cache memory in
that there are preferablylno on chip or off chip hardware
cache circuits, cache registers, cache memory controllers,
etc. to implement a hardware cache memory function. In
élternative embodiments, the local memory 104 may be a
cache memory aﬁd/ér an additional cache memory may be
employed. As on chip space ié often limited, the size of
the local memory 104 may be much smaller than the system
mémory 106. The processor 102 preferably provides data
access requests to copy data (which may include program
data) from the system memory 106 over the bus 108 into the
local memory 104 for program execution and data
mahipul;tion. The mechanism for facilitating déta access
may be implemented utilizing any of the known techniques,
such as direct memory access (bMA) techniques.

The apparatus 100 also preferably includes a storage
medium 110, such as a read only memory (ROM) that is

operatively coupled to the processor 102, e.g., through

10

15

20

25

WO 2006/082994 12 PCT/JP2006/302107

the bus 108. The storage medium 110 preferably contains a
trusted decryption program that is readable into the local
memory 104 of the processor 102'aqd operable to decrypt
information using a secure decryption key. Preferably,
the storage medium 110 is a permanently programmable
device (e.g., a flash ROM) a level of security is achieved
in which.the decryption program yields a trusted function
and cannot be tampered with by external software
manipulation. The security of the storage medium 110 is
preferably such that the decryption program and/or other
information (such as a trusted decryption key) may not be
accessed by unauthorized entities. For example, the
decryption program is preferably established and stored in
tﬁe storage medium 110 during the manufacture of the
apparatus 100.

It is preferred that the processor 102 and the local
mémory 104, are disposed on a common integrated circuit.
Thus, these elements may be referred to herein as "the
processor 102." 1In an alternative embodiment, the storage
medium 110 may also be disposed on the common integrated
circuit with one or more of the other elements..

Reference is now made to the apparatus 100 of FIG. 1
and to ﬁhe flow diagrams of FIGS. 2-6, which illustrate
process steps that may be carried out by the apparatus 100
in accordancé with one or more aspects of the present

invention. At action 200, the processor 102 is preferably

10

15

20

.25

WO 2006/082994 13 PCT/JP2006/302107

operable to enter a secure mode of operation. In this
secure mode of operation, no requests for data stored in
the local memory 104 (or any othe; memory devices,
registers, etc.) of £he processof 102 will be serviced,
thereby insuring a trusted environment in which to carry
out sensitive operations. Despite being in a secure mode,
the processor 102 may request the transfer of data from
the system memory 106 into the local memory 104, or may
request the transfer of data from the local memory 104 to
the system memory 106. Still further, the processor 102
may initiate the transfer of data into and out of the
trustgd environment irrespective of the source or
destination while in the secure mode of operation.

In accordance with one or more alternative
embodiments of the invention, the processor 102 may boot
up in a secure fashion} whereby the boot code is first
authenticated prior to permitting boot up. This ensures
an even greater level of security when the processor 102
enters the secure mode of operation 200. Further details
coﬁcerning the secure boot process may be found in co-
pending U.S. Patent Application No.: 60/650,506‘(Attorney
Docket No. 545/10, Additionai Ref. No.: SC04028US00),
entitled METHODS AND APPARATUS FOR PROVIDING A SECURE
BOOTING SEQUENCE IN A PROCESSOR, the entire disclosure of
which is hereby incorporated by reference.

Once the trust environment provided by the secure

10

15

20

.25

WO 2006/082994 14 PCT/JP2006/302107

mode of operation is achieved, the processor 102 is
preferably operable to read the decryption program from
the storage medium 110 into the'lqcal memory 104 (action
202) . Preferably, a trusted decryption key is also stored
within the storage medium 110 and is read into the local
memory 104 for later use. At action 204, an encrypted
authentication program is preferably read into the local
memory 104 of the processor 102. As the authentication
program is preferably encrypted, it may'be stored in a
less secure storage medium, such as the system memory 106.
Thus, the action of reading the encrypted authentication
program into the local memory 104 preferably entails
obtaining the encrypted authentication program from the
system memory 106.

At action 206, the encrypted authentication program
is preferably decrypted using the decryption program and
tne trusted denryption key. This action assumes that the
authentication program was ancrypted utilizing a key that
is associated with the trusted decryption key. As the
decryption of the authentication program takes place
within the trusted environment of the secure prncessor
102, it may be assumed that the authentication program
cannot be tampered with after decryption.

In an alternative embodiment of the invention, the
authenticity of the authentication program may be

verified. 1In this regard, the step of verifying the

10

15

20

25

WO 2006/082994 15 PCT/JP2006/302107

authenticity of the authentication program may include
executing a hash function on the decrypted authentication
program to produce a hash result. _Thereafter, the hash
result may be compared with a predetermined hash value,
which may be a digital signature or the like. By way of
example, the hash function may be executed on the
authentication program by a trusted entity to produce the
predetermined hash value. The predetermined hash value
may be encrypted with the authentication program itself
and provided by the trusted entity to the system memory
106. Those skilled in the art will appreciate that one or
more intervening entities may be employed to complete the
transmission of the encrypted authentication program from
the trusted entity to the system memory 106.

As discussed above, the decryption program is
preferably established and stored in the storage medium
1i0 during manufacture of the apparatus 100. Thus, the
decryption program may include fhe ability to execute the
same hash function that was used by the trusted entity to
produce the prédetermined hash value. The decryption
program may be operable to executé_the hash function on
the authentication program to produce‘thé hash resﬁlt and
to compare the hash result with the predetermined hash
value. If the hash result and the predetermined hash
value match, then it may be assumed that the

authentication program has not been tampered with and is

10

15

20

25

WO 2006/082994 16 PCT/JP2006/302107

authentic.

At action 208, once the authentication program has
been invoked and/or verified, ehc;ypted operating system
software is preferably read into the local memory 104 of
the processor 102. As the operating system software is
encrypted, it may be stored in a relatively un-secure
location, such as the system memory 106. It is preferred
that the operating system software has been encrypted
using a private key of a private/public key pair. Thus,
no unauthorized entity can decrypt the operating system
software withogt having the public key of the pair. At
action 210, the authentication program is preferably privy
to the public key of the private/public key pair and is
operable to decrypt the encrypted operating system
software using such key.

At action 212, an authentication routine is
éreferably executed on the decrypted operating system
software. The authentication .routine preferably verifies
the authenticitonf the operating system software, such as
to détermine whetherAit has been tampered with by way oﬁ
hacking, whether it has been compromiéed by a Qirus, etc.
This verification may be conducted prior to, or
periodically during, its execution by the processor 102.
In this regard, the step of verifying the authenticity of
the operating system software may include executing a hash

function on the decrypted operating system software to

10

15

20

.25

WO 2006/082994 17 PCT/JP2006/302107

produce a hash result. Thereafter, the hash result may be
compared with a predetermined hash value, which may be a
digital signature or the like. 'By way of example, the
hash function may be executed on the operating system
software by a trusted entity to produce the predetermined
hash value. The pfedetermined hash value may be encrypted
with the operating system software itself and provided by
the trusted entity to the system memory 106. Again, those
skilled in the art will appreciate that one or more
intervening entities may be employed to complete the
transmission of the encrypted operating system software
from the trusted entity to the system memory 106.

The authentication program may include the ability to
execute the same hash funcfion that was used by the
trusted entity to produce the predetermined hash value for
the operating system software. The authentication program
mey be operable to execute the hash function on the
operating system software to produce the hash result and
to compare the hash result with the predetermined hash
value. If the hash result end the predetermined hash
value match, then it may be assumed that the operating

éystem software has not been tampered with and is

~authentic.

At action 214, the process flow may branch in
response to the determination of whether the operating

system software is authentic. If the result of the.

10

15

20

25

WO 2006/082994 18 PCT/JP2006/302107

determination is negative, then the process flow
preferably advances to a failed state where appropriate
actions are taken. For example,‘ﬁhe authentication
process may be retried, a message may be delivered to an
operator of the apparatus 100 indicating the failure to
authenticate the operating system software, or other such
actions may be taken. If the result of the determination
at action 214 is in the affirmative, then the process flow
preferably advances to action 216, where an indication
(such as a status flag, etc.) that the operating system
software was verified is stored in the storage medium 110.
(Usage of this indication will be discussed later in this
description.) At action 218, the processor 102 is
preferably operable to invoke the operating system
software. |

ane the operating system software is running on the
processor 102, encrypted content is preferably read into
the local memory 104 of the processor 102 (action 220).
As the content is encrypted, it may be stored in a
relatively un-secure location, such as the system memory
106. As with the operating system software, it‘is
preferred that the content has been encrypted using a
privatg key of a private/public key pair. Thus, no
unauthorized entity can decrypt the content without having
the public key of the pair. At action 222, the

authentication program is preferably privy to the public

10

15

20

.25

WO 2006/082994 19 PCT/JP2006/302107

key of the private/public key pair and is operable to
decrypt the encrypted content using such key.

At action 224, an authentication routine is
preferably executed on the decrypted content. The
authentication routine preferably verifies the
authenticity of the content prior to its execution by the
processor 102. In this regard, the step of verifying the
authenticity of the content may include executing a hash
function on the decrypted content to produce a hash
result. Thereafter, the hash result may be compared with
a predetermined hash value, which may be a digital
signature or the like. By way of example, ‘the hash
function may be executed on the content by a trusted
entity to. produce the predetermined hash value. The
predetermined hash value may be encrypted with the content
itself and provided by the trusted entity to the system
mémory 106. Again, those skilled in the art will
appreciate that one or more intervening entities may be
employed to completeathe transmission of the encrypted
cohtent f;om the trusted entity to the system memofy 106.

The authentication program may include the‘ability to
execute the same hash function that was used by the
trusteq entity to produce the predetermined hash value for
the content. The authentication.program may be operable
to execute the hash function on the content to produce the

hash result and to compare the hash result with the

10

15

20

.25

WO 2006/082994 20 4 PCT/JP2006/302107

predetermined hash value. If the hash result and the
predetermined hash value match, then it may be assumed
that the content has not been tampered with and is
authentic.

At action 226, the process flow may branch in
response to the determination as to whether the content is
authentic. If the result Qf the determination is
negative, then the process flow preferably advances to a
failed state where appropriate actions are taken. For
example, the authentication process may be retried, a
message may be delivered to an operator of the apparatus
100 indicating the failure to authenticate the content, or
other such actions may be taken. If the result of the
determination at action 226 is in the affirmative, then
the process flow preferably advances to action 228, where
the processor 102 preferably reads the operating system
s;ftware authentication result from the storage medium
110. (Recall that this result was written into the
storage medium 110 at action 216, FIG. 3 and indicates
whether the operating.system software was verified as
being authentic, substantially secure and/or préblem
freg.)

At action 230, a determination is preferably made as
to whether the OS authentication result indicates that the
0S is verified. If the result of the determination is

negative, then the process flow preferably advances to a

10

15

20

25

WO 2006/082994 21 PCT/JP2006/302107

failed state where appropriate actions are taken. If the
result of the determination at action 230 is in the
affirmative, then the process flow preferably advances to
action 232, where the processor 102 is preferably operable
to execute the content (e.g., if it is executable) or use
the content (e.g., if it is non-executable data).

In accordance with one or more further aspects of the
present invention, the process flow may advance to e€ither
action 234 or 236 following the use/execution of the
content at action 232. At action 234, the processor 102
is preferably operable to establish a secure session with
one or more processing resources. It is noted that this
session 1s preferably established after the processor 102
ensures that the OS authentication result (or status flag)
indicates that the operating system software integrity is
satisfactory. As the execution of the content, such as an
application program, may invoke the use of an external
device, such as a disc conﬁroller (Ch, DVD, etc.),
graphics chip, hard disc (HD) component, tuner circuitry,
network interface circuitry, etc., the secure session,
which is built upon fhe verification of the 0S integrity,
may be trusted. The secure session may be established
using another (or the same) private/public key pair to
encrypt/decrypt information being passed between the
processor 102 and the external device. It is noted,

however,. that other kéys may be used, such as one-time use

10

15

20

.25

WO 2006/082994 22 PCT/JP2006/302107

keys, random number keys etc. Further, other secure
session techniques may be employed as between the
processor 102 and the external deyice without departing
from the spirit and scope of the present invention.

From time to time it may be desirable to check the
integrity of the operating system software to ensure that
any tampering or virus doe; not compromise the system
and/or any secure sessions with the external devices. At
action 236, the processor 102 is preferably operable to
verify the integrity of the operating system software,
e.g., during any idle time or by interrupting program
execution. This may entail executing a substantially
similar authentication routing as was carried out at
action 212. _Fér example, the verification may include
executing a hash function on the operating system software
to produce a hash result, which may be compared with the
p;edetermined hash wvalue.

At action 238, a determination is preferably made as
to whether the integrity of the operating system softwaré
is satisfactory. If the result of fhe determination is
negative, then the process flow preferably édvaﬁces to a
failed state where'appropriate actions are taken. If the
result of the4determination at action 238 is in the.
affirmative, then the érOCess flow preferably advances to
action 240, where an updated status flag indicating that

the integrity of the operating system software is

10

15

20

<25

WO 2006/082994 23 PCT/JP2006/302107

satisfactory is stored in the storage medium 110.

At action 242 the course of action of the processor
102 continues, e.g., the applicétion program execution
progresses, etc. At action 244, however, the processor
102 checks the status flag to ensure that the status flag
indicates that the operating system software integrity is
satisfactory before continuing in the course of action.
In this regard, at action 246, a determination is
preferably made as to whether the status flag ve;ifies the
integrity of the 0S. If the result of the determination
is negative, then the process flow preferably advances to
a failed state where appropriate actions are taken. If .
the result of the determination at action 246 is in the
affirmative, then the process flow preferably advances to
action 248, where the précessor 102 is preferably operable
tp continue the course of action. It(is noted that this
check of the status flag is preferably required of one or
more other processors (best seen in FIG. 7) that may be or
become involved in the course of action. Further, the
process of actions 236-248 preferably repeats from time to
time to increase the effibacy of the security measures of
the system.

FIG; 7 is a diagram illustrating the structure of a
multi-processing system 100A having two or more sub-
processors 102. The concepts discussed hereinabove with

respect to FIGS. 1-6 may be applied to the multi-

10

15

20

. 25

WO 2006/082994 24 PCT/JP2006/302107

processing system 100A, which includes a plurality of
processors 102A-D, associated local memories 104A-D, and a
main memory 106 interconnected by way of a bus 108.
Although four processors 102 are illustrated by way of
example, any number may be utilized without departing from
the spirit and scope of the present invention. The
processors 102 may be implemented with any of the known
technologies, and each processor may be of similar
construction or of differing construction.

One or more of the processors 102 preferably includes
the capabilities and elements of the processor 102 of FIG.
1. Others of the processors 102 need not include such
capabilities, although it is preferred that all the
processors 102 have such capabilities. 1In accordance with
one or more further aspects of the present invention, the
OS verification, authentication, integrity checks, etc. as
discussed above may be performed by any numﬁer of the
brocessors 102.

Each of the processors 102 may be of similar
construction or of differing~construction; The processors
may be implemented utilizing any of the known fechnologies
that are capable of requeéting data from the shared (or
system) memory 106, and manipulating the data to achieve a
desirable result. For example, the processors 102 may be
implemented using any of the known microprocessors that

are capable of executing software and/or firmware,

10

15

20

.25

WO 2006/082994 25 PCT/JP2006/302107

including standard microprocessors, distributed
microprocessors, etc. By way of example, one or more of
the processors 102 may be a graphics processor that is
capable of requesting and manipulating data, such as pixel
data, including gray scale information, color information,
texture data, polygonal information, video frame
information, etc.

One or more of the processors 102 of the system 100A -
may take on the role as a main (or managing) processor.
The main processor may schedule and orchestrate the
processing of data by the other processors.

The system memory 106 is preferably a dynamic random
access memory (DRAM) coupled to the processors 102 through
a memory interface circuit (not shown). Although the
systém‘membry 106 iélpreferabli a DRAM, the memory 106 may
be. implemented using other means, e.g., a static random
access memory (SRAM), a magnetic random access memory
(MRAM), an optical memory, a holographic memory, etc.

Each processo£ 102 preferably includes a processor
core and an associated one Qf the local memories 104 in
which to execute programs. These components may be
integrally disposed on-a common semi-conductor substrate
or may be separately disposed as may be desired by a
designer. The processor core is preferably implemented
usiﬁg a processing pipeline, in which logic instructions

are processed in a pipelined fashion. Although the

10

15

20

- 25

WO 2006/082994 26 PCT/JP2006/302107

pipeline may be divided into any number of stages at which
instructions are processed, the pipeline generally
comprises fetching one or moré instructions, decoding the
instructions, checking for dependencies among ghe
instructions, issuing the instructions, and executing the
instructions. In this regard, the processor core may
include an instruction buffer, instruction decode
circuitry, dependency check circuitry, instruction issue
circuitry, and execution stages.

Each local memory'104 is coupled to its associated
processor core 102 via a bus and is preferably located on
the same chip (same semiconductor.substraté) as the
processor core. The local memory 104 is preferably not a
traditighél hardware cache memory in that there are no on-
chip or off-chip hardware cache circuits, cache registers,
cache memory controllers, etc. to implement a hardware
cache memory function. As on chip space is often limited,
the size of the local memory may be much smaller than the
shared memory 106.

The processors 102 preferably provide dat;'access
requests to copy data (which may include program data)
from the system memory 106 over the bus system 108‘into
their respective local memories 104 for program execution
and data manipulation. The mechanism for facilitating

data access may be implemented utilizing any of the known

_techpiques, for example” the direct memory access (DMA)

10

15

20

25

WO 2006/082994 27 PCT/JP2006/302107

technique. This function is preferably carried out by the
memory interface circuit.

In accordance with at leasﬁ one further aspect of the
present invention, the methods and apparatus described
above may be achieved utilizing suitable hardware, such as
that illustrated in the figures. Such hardware may be
implemented utilizing any of the known technologies, such
as standard digital circuitry, any of the known processors
that are operable to execute software and/or firmware
programs, one or more programmable digital devices or
systems, such as programmable read only memories (PROMs),
programmable array logic devices (PALs), etc.

Furthermore, although the apparatus illustrated in the
figures are shown as being partitioned into certain
functional blocks, such blocks may be implemented by way
of separate circuitry and/or combined into éne or more
functional units. Still further, the various aspects of
the invention may be implemented by way of software'and/or
firmware program(s) that may be stored on suitable storage
medium-of media (such as floppy disk(s), memory chip(s),
etc.) for transportability and/or distribution.

Although the invention herein hés been described with
reference to particular embodiments, it is to be
understood tHat these embodiments are merely illustrative

of the principles and applications of the present .

_invention.A It is therefore to be understood that numerous

WO 2006/082994 28) PCT/JP2006/302107

modifications may be made to the illustrative embodiments
and that other arrangements may be devised without
departing from the spirit and scope of the present

invention as defined by the appended claims..

INDUSTRIAL APPLICABILITY

The present invention is applicable to a technology

for secure data processing.

WO 2006/082994 29 PCT/JP2006/302107

CLAIMS

1. A method; comprising:

verifying operating system software integrity prior
to being executed by a processor, the processor including
an associated local memory and capable of being coupled to
a main memory such that data may be read from the main
memory for use in the local memory;

storing a status flag indicating whether the
operating system software integrity is or is not
satisfactory; and

ensuring that the status flag indicates that the
operating system software integrity is satisfactory before

permitting the processor to use the data.

2. The method of claim 1, further comprising verifying

data integrity prior to checking the status flag.

3. The method of claim i or.claim 2, wherein tﬁe step of
verifying operating system software integrity includes:
entering'a secure mode of operation where extérnally
initiated requests to read data from or write data into
the processor are not serviced but internélly initiated
data transfers are serviced;
reading a decryption program from a storage medium

into the local memory of the processor;

WO 2006/082994 30 PCT/JP2006/302107

reading an encrypted authentication program into the
local memory of the processor;

decrypting the encrypted aﬁthentication program using
the decryption program;

reading encrypted operating system software into the
local memory, the operating system software having been
encrypted using a private key of a private/public key
pair; and

using the authentication program to authenticate the

operating system software.

4. Thé method of claim 3, further comprising:

decrypting the encrypted operating system software
using the authentication program and the public key of the
private/public key pair;

verifying the integrity of the operating system
software by executing a hash funcfion thereon to produce a
hash result and comparing the hash result with a
predetermined hash value; and
permitting the processér to run the opérating system
software if the hash result matches the predetermined hash

value.

5. The method of claim 4, further comprising verifying

data integrity prior to checking the status flag.

WO 2006/082994 31 PCT/JP2006/302107

6. The method of claim 5, wherein the step of verifying
the data integrity includes:

reading an encrypted versioh of the data into the
local memory, the data having been encrypted ﬁsing a
private key of a private/public key pair; and

using the authentication program to authenticate the

data.

7. The method of claim 6, further comprising:

decrypting the encrypted data using the
authentication program and the public key of the
private/public key pair;

Averifying the integrity of the data by executing a
hash function thereon to produce a hash result and
comparing the hash result with-a predetermined hash wvalue;
and

permitting the pfocessor to use the data if the hash

result matches the predetermined hash value.

8. The method of claim 1, further comprising:
checking the status flag as part of a course of
~action in another processor, the processors being part of
a multi-processor system; and
| permitting the other processor to continue in the
course of action only after ensuring that the status flag

_indicates that the operating system software integrity is

WO 2006/082994 32 PCT/JP2006/302107

satisfactory.

9. The method of any one of cléims 1-8, further
comprising:

verifying the integrity of the operating system
software from time to time and updating the status flag;
and

checking the status flag from time to time to ensure
that the status flag indicates that the operating system
software integrity is satisfactory before permitting the

processor to continue in a course of action.

10. A method, comprising:

verifying operating system software integrity prior
to being executed by a processor, the processor including
an associated local memory and capable of operative
connection to a main memory such that data may be read
from the main memory for use in the local memory;

storing a status flag indicating whether the
operating system software integrity is or is not
satisfactory; and

enéuring that the status flag indicates that the
operating system software integrity is satisfactory before
permitting the processor to using the data or certain

processing resources.

WO 2006/082994 33 PCT/JP2006/302107

11. The method of claim 10, wherein at least one of:

the processing resources include a non-volatile
memory sub-system, and one or mofe functional circuits;

the non-volatile memory sub-system includes at least
portions of software and/or hardware components of an
electromagnetic memory medium, an electronic memory
medium, a silicon memory medium, an optical memory medium,
a hard disc memory medium, an a CD-ROM memory medium, a
DVD-ROM memory medium, and an external memory medium; and

the one or more functional circuits of the apparatus
includes at least one graphics processing circuit, a
network interface circuit, a display interface circuit, a
printer interface circuit, and a local data input and/or

output interface.

12. The method of claim 10, further comprising

establishing a secure session between the processor and
one or more processing resources after ensuring that the
status flag indicates that the operating system software

integrity is satisfactory. .

13. The method of claim 12, wherein the secure session
between the processor and the one or more processing
resources includes encrypting data shared therebetween

us;ng a 'pair of keys.

WO 2006/082994 34 PCT/JP2006/302107

14. The method of any one of claims 10-13, further
comprising verifying integrity of the data prior to
checking the status flag and pefmitting the processor to
continue in a course of action only after the integrity of
the data are ensured and the status flag indicates that

the operating system software integrity is satisfactory.

15. A method, comprising:

verifying operating system software integrity from
time to time prior to and/or after being executed by a
processor, the processor including an associated local
memory and capable of operative connection to a main
memory such that data may be r;ad from the main memory for
use in the local memory;

storing a status flag indicating whether the
operating system software integrity is or is not
satisfactory; and

ensuring from time to time that the status flag
indicates that the operating system software integrity is

satisfactory before permitting the processor to continue

in a course of action.

16. An apparatus, comprising:
at least one processor and associated local memory
that are capable of being coupled to a main memory and

“being operable to request at least some data from the main

WO 2006/082994 35 PCT/JP2006/302107

memory for use in the local memory; and

a storage medium containing a decryption program,

wherein the processor is o?erable to:

verify operating system software integrity prior to
being executed by the processor;

store a status flag indicating whether the operating
system software integrity .is or is not satisfactory; and

ensure that the status flag indicates that the"
operating system software integrity is satisfactory before

using the data.

17. The apparatus of claim 16, wherein the processor is
further operable to verify data integrity prior to

checking'the status flag.

18. The apparatus of claim 16 or claim 17, wherein the
processor is further operable to verify the'operating
system software infegrity by:

entering a secure mode of operation where externally
initiated requests to read data from or write data into
the processor are not serviced but internally initiated
data transfersAare serviced;

reading a decrypﬁion program from a storage medium
into the local memory of the processor;

reading an encrypted authentication program into the

local memory of the processor;

WO 2006/082994 36 PCT/JP2006/302107

decrypting the encrypted authentication program using
the decryption program;

reading encrypted operating system software into the
local memory, the operating system software having been
encrypted using a private key of a private/public key
pair; and

using the authentication program to authenticate the

operating system software.

19. The apparatus of claim 18, wherein the processor is
further operable to:

decrypt the encrypted operating system software using
the authentication program and the public key of the
private/public key pair;

verify the integrity of the operating system software
by executing a hash function thereon to produce a hash
result and comparing the hash result with a predetermined
hash value; and

run the operating system software if the hash result

matches the predetermined hash value.

20. The apparatus of claim 19, wherein the processor is

further operable to verify déta integrity prior to

checking the status flag.

. 21. The apparatus of claim 20, wherein the processor is

WO 2006/082994 37 PCT/JP2006/302107

further operable to verify the data integrity by:

reading an encrypted version of the data into the
local memory, the data having béen encrypted using a
private key of a private/public key pair; and

using the authentication program to authenticate the

data.

22. The apparatus of claim 21, wherein the processor is
further operable to:
decrypt the encrypted data using the authentication
program and the public key of the private/public key pair;
verify the integrity of the data by executing a hash
function thereon to produce a hash result and comparing
the hash result with a predetermined hash value; and
permit the processor to use the data if the hash

result matches the predetermined hash value.

23. The apparatus of any one of claims 16-22, wherein the
processor is further operable to:

verify the integrity of the operating system software
from time to time and update the status flag; éﬁd

check the .status flag from time to time to ensure
that the status flag indicates that the opefating system
software integrity is satisfactoryAbefore continuing in a

course of action.

WO 2006/082994 38 PCT/JP2006/302107

24. The apparatus of claim 16, wherein:

any of a plurality of such processors in a multi-
processor system are operable tb{

check the status flag as part of a course of action;
and

continue in the course of action only after ensuring
that the status flag indiqates that the operating system

software integrity is satisfactory.

25. An apparatus, comprising:

at least one processor and associated local memory
capable of being operatively coupled to a main memory and
being operable to request at least some data from the main
memory for use in the local memory; and

a storage medium containing a decryption program,

wherein the processor is operable to:

verify operating system software integrity prior to

being executed;

RN

store a status flag indicating whether the operating
system software integrity ;s or is not satisfactory; and

ensure that the status flag indicates thaf the
operating system software integrity is.satisfactory before

using the data or certain processing resources.

26. The apparatus of claim 25, wherein at least one of:

the processing resources include a non-volatile

WO 2006/082994 39 PCT/JP2006/302107

memory sub-system, and one or more functional circuits;
the non-volatile memory sub-system includes af least
portions of software and/or hardware components of an
electromagnetic memory medium, an electronic memory
medium, a silicon memory medium, an optical memory medium,
a hard disc memory medium, an a CD-ROM memory medium, a
DVD-ROM memory medium, énd.an external memory medium; and
the one or more functional circuits of the apparatus
includes at least one graphics processing circuit, a
network interface circuit, a display interface circuit, a
printer interface circuit, and a local data input and/or

output interface.

27. The apparatus of claiﬁ 25, wherein the processor is
further operable to establish a secure session with one or
more processing resources after ensuring that the statﬁs
fiag indicates that the opérating system software

integrity is satisfactory.

28. The apparatus of claim 27, wherein the. secure session
between the processor and the one or more processing
resources includes encrypting data shared therebetween
using a pair of keys.

29. The apparatus of any one of claims 25-28, wherein the

processor is further operable to verify integrity of the

WO 2006/082994 40 PCT/JP2006/302107

data prior to checking the status flag and continuing in a
course of action only after the integrity of the data are
ensured and the status flag indicates that the operating

system software integrity is satisfactory.

30. A storage medium containing a software program that
is capable of causing a processor to execute actions,
comprising:

verifying operating system software integrity prior
to being executed by the processor, the processor
including an associated local memory and being capable of
operative connection to a main memory such that data may
be read from the main memory for use in the local memory;

storing a status flag indicating whether the
operating system software integrity is or is not
satisfactory; and

ensuring that the status flag indicates that the
operating system software integrity is satisfactory before

permitting the processor to use the data.

31. A storage medium containing a software proéram that
is capébie of causing é_processor to execute actions,
comprising:

verifying operating system software integrity prior
to being. executed by the processor, the processor

including an associated local memory and capable of

WO 2006/082994 41 PCT/JP2006/302107

operative connection to a main memory such that data may
be read from the main memory for use in the local memory;

storing a status flag indiéating whether the
operating system software integrity is or is not
satisfactory; and

ensuring that the status flag indicates that the
operating system softwafe integrity is satisfactory before
permitting the processor to using the data or certain

processing resources.

32. A storage medium containing a software program that
is capable of causing a processor to execute actions,
comprising:
verifying operating system sbftware integrity from
time to time prior to and/or after being executed by the
brocessor, the processor including an associated local
memory and capable of operative connection to a main
memory such that data may be read from the main memory for
use in the local memory;
storing a status flag indicating whether the
operating system software’ integrity is or is not
'safisfactory; and
ensuring from time to time that the status flag
indicates that the operating system software integrity is
satisfactory before permitting the processor to continue

in a course of action.

WO 2006/082994 PCT/JP2006/302107

117

100
L 104 102 :
: | LoCAL '
| MEMORY PROCESSOR | |

108
e 110
ORAM i | |sTorace

" MEDIUM

WO 2006/082994 PCT/JP2006/302107

217

FIG. 2
200 '

SECURE BOOT/ENTER
SECURE MODE OF
OPERATION

202 l

READ TRUSTED DECRYPTION
PROGRAM (INCLUDING
DECRYPTION KEY) FROM
SECURE ROM INTO LOCAL

- MEMORY

204 l

READ ENCRYPTED
AUTHENTICATION PROGRAM
INTO LOCAL MEMORY

206 l

DECRYPT THE
AUTHENTICATION PROGRAM
USING THE TRUSTED
DECRYPTION PROGRAM

208 l

READ ENCRYPTED
OPERATING SYSTEM
SOFTWARE INTO LOCAL
MEMORY

®

WO 2006/082994 PCT/JP2006/302107

3/7

FIG. 3

o ®

USE THE AUTHENTICATION
PROGRAM TO DECRYPT THE
OPERATING SYSTEM
SOFTWARE USING A
DECRYPTION KEY

212 l

- EXECUTE AN
AUTHENTICATION ROUTINE
ON THE OPERATING SYSTEM

214

AUTHENTICATION
VERIFIED ?

A
(FAIL)

STORE OPERATING SYSTEM
AUTHENTICATION RESULT IN
SECURE STORAGE MEDIUM

218 v

EXECUTE OPERATING
SYSTEM SOFTWARE

WO 2006/082994 PCT/JP2006/302107
a/7

FIG. 4

220

READ ENCRYPTED CONTENT
FROM THE SYSTEM MEMORY
INTO THE LOCAL MEMORY

222 | l

USE THE AUTHENTICATION
PROGRAM TO DECRYPT THE
CONTENT USING
DECRYPTION KEY

224 l

EXECUTE AN
AUTHENTICATION ROUTINE
ON THE CONTENT

226

AUTHENTICATION
VERIFIED ?

WO 2006/082994 PCT/JP2006/302107

S/7

FIG. 5

228

READ OPERATING SYSTEM
AUTHENTICATION RESULT
FROM SECURE MEDIUM

RESULT
ACCEPTABLE ?

232

EXECUTE OR USE CONTENT }-------;

234 l

ESTABLISH A SECURE
SESSION WITH AN EXTERNAL !
DEVICE OR RESOURCE :

WO 2006/082994

6/7

236

On e

EXECUTE OS VERIFICATION
AND/OR VIRUS CHECK

238

240 Y

STORE OS VERIFICATION AND/
OR VIRUS CHECK RESULT IN
SECURE STORAGE MEDIUM

242 l

CONTINUE

244 l

READ VERIFICATION/CHECK
RESULT FROM SECURE
MEDIUM

RESULT
ACCEPTABLE ?

248

CONTINUE

PCT/JP2006/302107

FIG. 6

Y

(FAL)

WO 2006/082994 PCT/JP2006/302107

717
FIG.7
| 104A 102A 100A
|| LocAL |
| MEMORY | PROCESSOR |
a1
| 1048 102B |
|| LOCAL
| | MEMORy | PROCESSOR
| 104C_ 102C
| | LOCAL
| MEMORY | PROCESSOR
| 104D 102D
|| LOCAL |
| MEMORY | PROCESSOR |
106 ' 110
| STORAGE
DRAM . 1 maDIUM

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

