

(19) AUSTRALIAN PATENT OFFICE

(54) Title
Full wave DC/DC converter

(51) 6 International Patent Classification(s)
H02M 3/157 060101BHAU
(2006.01) PCT/FI02/0076
H02M 3/157 7
20060101AFI20

(21) Application No: 2002327865 (22) Application Date: 2002.09.24

(87) WIPO No: WO03/044935

(30) Priority Data

(31) Number (32) Date (33) Country
20012244 2001.11.19 FI

(43) Publication Date: 2003.06.10

(43) Publication Journal Date: 2003.08.21

(71) Applicant(s)
Kone Corporation

(72) Inventor(s)
Jahkonen, Pekka; Putkinen, Esa

(74) Agent/Attorney
Collison & Co, 117 King William Street, Adelaide, SA, 5000

(56) Related Art
US 5 107 190
ABDELHAMID T H: "Single-phase DC drive system controlled by sinusiodal PWM full-bridge DC-DC converter with improved input current waveform"

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 May 2003 (30.05.2003)

PCT

(10) International Publication Number
WO 03/044935 A1

(51) International Patent Classification?: **H02M 3/157** (74) Agent: **KONE CORPORATION**; Patent Department, P.O. Box 677, FIN-05801 Hyvinkää (FI).

(21) International Application Number: **PCT/FI02/00767**

(22) International Filing Date:
24 September 2002 (24.09.2002)

(25) Filing Language: **Finnish**

(26) Publication Language: **English**

(30) Priority Data:
20012244 19 November 2001 (19.11.2001) FI

(71) Applicant (for all designated States except US): **KONE CORPORATION** [FI/FI]; Kartanontie 1, FIN-00330 Helsinki (FI).

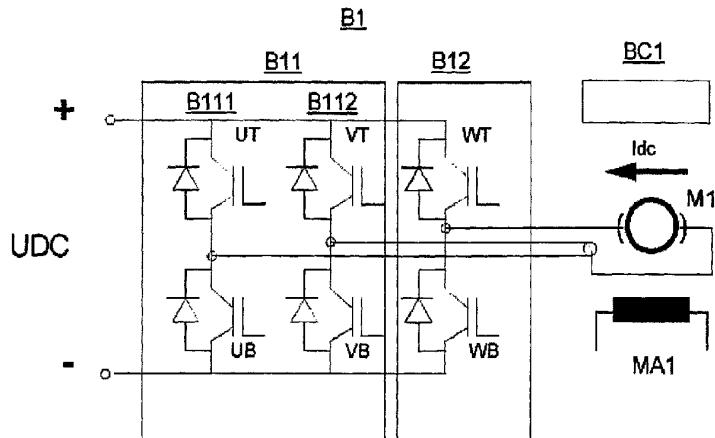
(72) Inventors; and

(75) Inventors/Applicants (for US only): **JAHKONEN, Pekka** [FI/FI]; Marjamäenkatu 18, FIN 05820 Hyvinkää (FI). **PUTKINEN, Esa** [FI/FI]; Yli-Anttilantie 12 as. 1, FIN-05830 Hyvinkää (FI).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, IR, IJU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:


— with international search report

[Continued on next page]

(54) Title: FULL WAVE DC/DC CONVERTER

WO 03/044935 A1

(57) **Abstract:** A control unit of controlling a direct-current load (M1), said control unit comprising a DC/DC bridge (B1) provided with controllable semiconductor switches (UT, UB, VT, VB, WT, WB) and having two bridge sections (B11, B12), one (B12) of which conducts direct current while the other one (B11) is controlled via PWM to regulate the current magnitude. The bridge section controlled via PWM consists of two bridge arms (B11, B12), and the semiconductor switches (UT, UB, VT, VB) in these bridge arms are turned on alternately.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Full wave DC/DC converter.

The present invention relates to a control unit for controlling a direct-current load, said control unit comprising a DC/DC bridge provided with controllable semiconductor switches, said bridge having two bridge sections, one of which bridge sections conducts direct current while the other one is controlled via PWM to regulate the current magnitude.

10 Elevator motor drives may be either alternating-current or direct-current motor drives. The drives may be controlled e.g. via PWM (Pulse Width Modulation). Today, alternating-current motor drives are fairly common, especially because of the simple construction of alternating-current motors. However, direct-current motor drives are still in use. Neither is it always appropriate to replace a direct-current motor drive with an alternating-current motor drive, because e.g. gearless direct-current motor drives and the direct-current motors used in them are durable and it is therefore unnecessary to replace them with alternating-current motor drives. Besides, replacing the motor entails relatively high costs.

20 Since the trend is towards alternating-current motor drives, it is also hardly rational to specifically develop power electronics systems for use in the control of direct-current drives. In addition, semiconductor components, such as IGBTs, used in alternating-current drives are all the time becoming increasingly efficient and economical. Moreover, it is to be expected that especially new regulations concerning network harmonics may alter the situation in future so that the use of traditional thyristor bridges used in direct-current drives will become more difficult.

30 The object of the invention is to eliminate the drawbacks of prior-art technology and achieve a new type of PWM-controlled control unit for controlling a direct-current load, such as a direct-current motor. The solution of the invention is based on a new principle of power electronics topology, wherein it is possible to utilize the technology of alternating-current drives in the control of direct-current motors. In the solution of the invention, a PWM-controlled bridge section consists of two bridge arms, and the semiconductor switches of the bridge arms are turned alternately into the conducting state.

35

The preferred embodiments of the solution of the invention are presented in the claims below.

5 By using the technology of the invention, it is possible to manufacture modern and economical PWM-controlled direct-current motor drives e.g. for elevator applications. By applying the invention, the power electronics technology and components of alternating-current drives manufactured in large production series can be utilized in direct-current drives. The conductor rails and other structures of the power stage can be identical to those used in alternating-current drives. In addition, the use of semiconductor switches, such as IGBTs can be optimized even in direct-current applications. And, in particular, cost savings are achieved in development and production methods as the same methods can be used in both alternating-current and direct-current drives.

10

15

In the following, the invention will be described in detail by the aid of an example with reference to the attached drawings, wherein

20 Fig. 1 presents a prior-art direct-current bridge
Fig. 2 presents the network bridge of an alternating-current drive,
Fig. 3 presents a direct-current drive according to the invention, comprising a DC/DC bridge according to the invention,
Fig. 4 presents a timing diagram for a DC/DC bridge according to the invention, and
25 Fig. 5 illustrates the layout and cooling of the semiconductor switches of the DC/DC bridge of the invention.

30 Fig. 1 presents a prior-art PWM-controlled H-bridge H1 of a direct-current motor drive intended e.g. for an elevator application. It consists of two bridge arms H11 and H12 connected to a direct-current source UDC, each arm containing controllable semiconductor switches S11 - S14 for the positive and negative poles, consisting of e.g. an inverse parallel connection of an IGBT transistor and a diode. The bridge feeds a direct-current load L1, such as the direct-current motor of an elevator.

35

Fig. 2 correspondingly presents a network bridge A1 as used in a prior-art three-phase alternating-current drive to rectify the alternating voltage of

3

the network UAC into a direct voltage UDC, and an alternating-current inductor unit P1 connected before it. The bridge has in the upper and lower arms controllable semiconductor switches S21 - S26, which are connected to each network phase and which may also consist of e.g. an 5 inverse parallel connection of an IGBT transistor and a diode.

In principle, the electric motor drive of the invention is like a prior-art three-phase alternating-current drive comprising a network converter (rectifier bridge), a motor bridge and inductors. The present invention relates expressily to the DC/DC bridge feeding the motor. The network bridge and the inductors may be e.g. as presented in Fig. 2. According to the invention, the same type of controllable semiconductor switches can be used in 10 both the rectifier bridge and the motor bridge.

15 Fig. 3 presents a DC/DC bridge B1 according to the invention, which is used to feed a direct-current motor M1, a direct current I_{dc} flowing in the motor. The bridge is controlled by a control unit BC1. Magnetization of the motor is accomplished using a separate magnetizing unit MA1, which is controlled in a manner known in itself.

20 The DC/DC bridge presented in Fig. 3 comprises two bridge sections B11, B12. The first bridge section in the bridge according to Fig. 3 comprises two arms B111 and B112, each containing controllable semiconductor switches UT, UB, VT, VB for the positive pole and the negative pole. The 25 second bridge section B12 consists of a single arm with controllable semiconductor switches WT and WB for the positive and negative poles. Thus, the bridge as a whole has three arms, corresponding to a three-phase DC/AC bridge.

30 The modulation of the DC/DC bridge of the invention is done as follows: The PWM-controlled direct-current drive of the invention can use the same kind of semiconductor switches for PWM control as are used in an alternating-current drive. Instead of alternating current, a zero-frequency is used (field not rotating). In the direct-current drive of the invention, not all 35 of the semiconductor switches have to switch a high-frequency PWM control signal, typically of a frequency of a few kHz; two of the switches, WT and WB, can be used so select the torque direction (up/down), and the switches in question conduct pure DC current. The switches UT, UB, VT,

4

VB used for PWM control are turned on/off at a frequency of a few kHz to control the magnitude of the current Icd (the torque).

The greatest power dissipation occurs in the switches used for PWM control. In the control method of the invention, the switches used for PWM control are turned into conduction alternately in different arms, so the switches in question are only operated for about 50% of normal conduction time or less. This action is visualized in the timing diagram in Fig. 4, which represents the conduction times of switches UT, VT and WT as well as the conduction times of switches UB and diodes VB.

From a thermal point of view, the invention provides the advantage that the power stage of an alternating-current drive can be fully utilized in a direct-current drive. Thermal dissipation in the IGBTs used in the circuit is typically double the dissipation in switches that are not used in PWM control. Therefore, according to the invention, switches UT, VT and WT are only kept conducting for at most 50% of the time in a cyclic manner. The conduction period varies according to the voltage (current) required.

In practice, direct-current switches may have higher dissipation because direct-current losses are slightly greater than switching-PWM-losses. Therefore, switches WT and WB are placed on the air intake side of the cooling segment COOL1 (Fig. 5) as it is cooler than the middle part of the segment or the air exit side, as indicated by the temperature curve TEMP.

It is obvious to the person skilled in the art that different embodiments of the invention are not limited to the examples described above, but that they may be varied within the scope of the claims presented below. Besides IGBT, the switches used may also consist of other fully gate-controlled components. Besides a direct-current motor, the load may also consist of e.g. a braking magnet of an elevator.

The arrangement of the invention can be used in a wide range of electric drives. By applying the operating principle of the invention, it will be possible to cover the power range of direct-current elevator drives using the latest IGBT technology. Alternating-current and direct-current drive modules can be assembled on the same production line, and the application can be selected mainly via software control.

CLAIMS

1. Control unit of controlling a direct-current load (M1), said control unit comprising a DC/DC bridge (B1) provided with controllable semiconductor switches (UT, UB, VT, VB, WT, WB), said bridge having two bridge sections (B11, B12), one (B12) of which bridge sections conducts direct current while the other one (B11) is controlled via PWM to regulate the current magnitude,
 - 10 **characterized** in that the bridge section controlled via PWM consists of two bridge arms (B111, B112), in which bridge arms the semiconductor switches (UT, UB, VT, VB) are so controlled that they conduct alternately.
 - 15 2. Control unit according to claim 1, **characterized** in that the semiconductor switches used for PWM control are so controlled that they conduct substantially for at most 50% of the conduction time of the bridge section (B11).
 - 20 3. Control unit according to claim 1, wherein the semiconductor switches are mounted on a cooling base (COOL1), to which a cooling medium, such as air, is supplied, **characterized** in that the semiconductor switches (WT, WB) of the bridge section conducting direct current are disposed on the medium intake side.
 - 25 4. Control unit according to claim 1, **characterized** in that the direct-current load is a direct-current motor.
 - 30 5. Control unit according to claim 1, **characterized** in that the direct-current load is a braking magnet of an elevator.

1/3

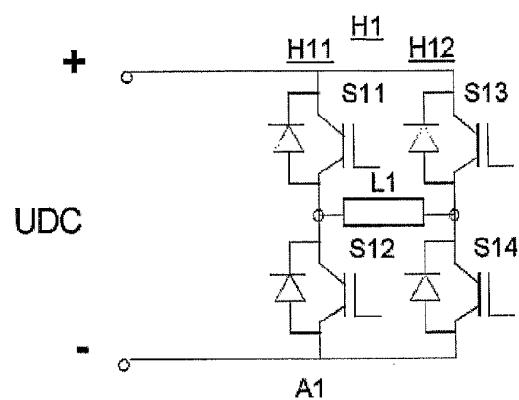


Fig. 1

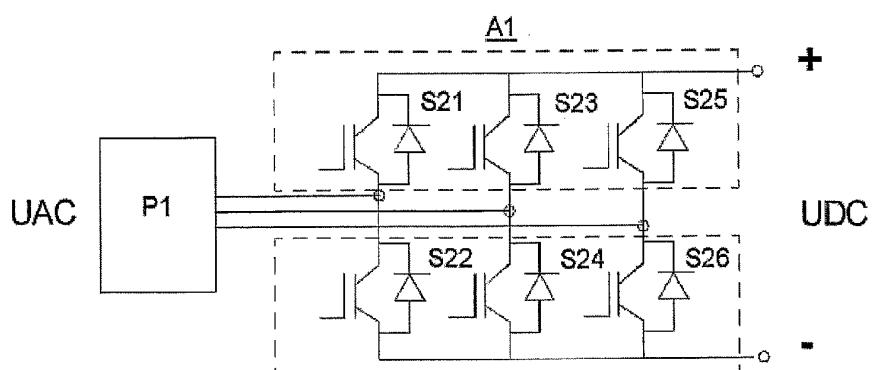


Fig. 2

SUBSTITUTE SHEET (RULE 26)

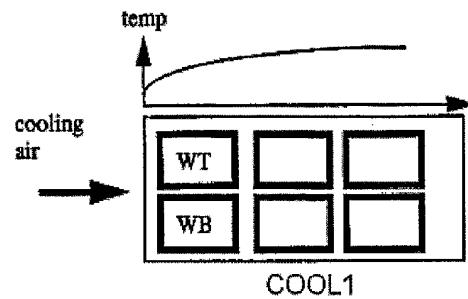


Fig. 5

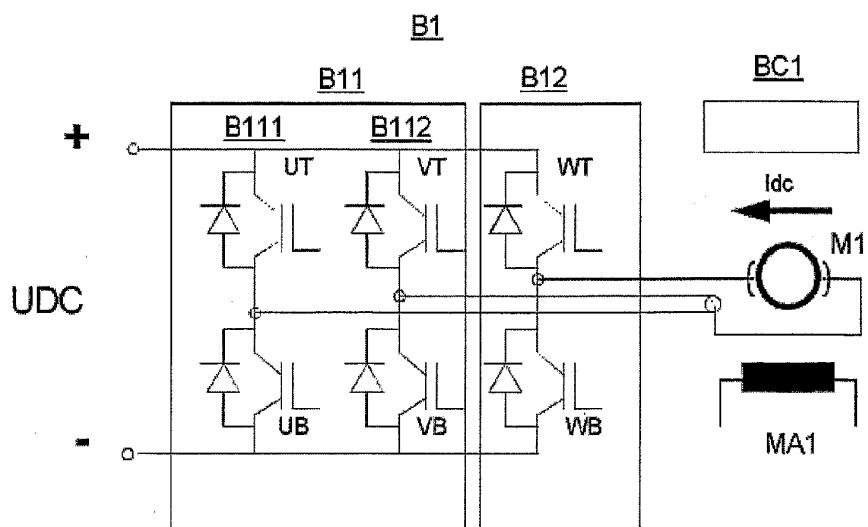


Fig. 3

SUBSTITUTE SHEET (RULE 26)

3/3

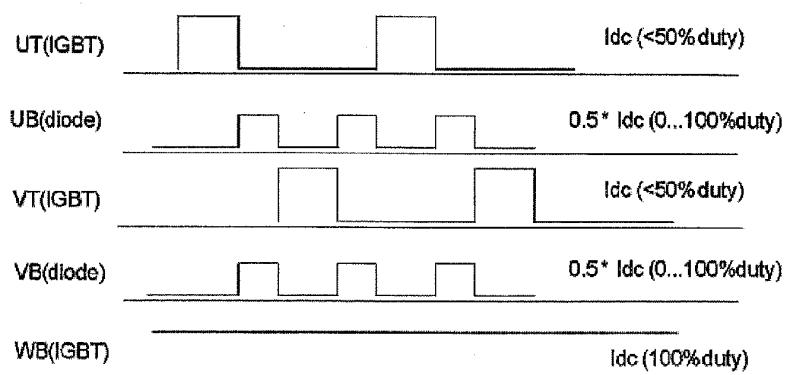


Fig. 4

SUBSTITUTE SHEET (RULE 26)