US008656375B2

a2 United States Patent 10) Patent No.: US 8,656,375 B2
Krishnamurthy et al. (45) Date of Patent: Feb. 18, 2014
(54) CROSS-LOGICAL ENTITY ACCELERATORS 8,375,374 B2* 2/2013 O’Brienetal. .o 717/149
2002/0010844 Al 1/2002 Noel et al.
R s s 2005/0039184 Al* 2/2005 Kunzeetal ... 718/103
(75) Inventors: Rajaram B. Krishnamurthy. 2005/0081201 Al* 4/2005 Aguilar etal. 718/100
Wappingers Falls, NY (US); Thomas A. 2005/0108687 Al* 52005 Mountain et al. 717/127
Gregg, Highland, NY (US) 2005/0193113 Al* 9/2005 Kokusho et al. 709/225
2005/0229140 Al* 10/2005 Tsaietal. 716/17
(73) Assignee: International Business Machines %88?;85222‘3‘% i}: lggggg gou;let al't o - ;}5; }gg
O asahara etal.
Corporation, Armonk, NY (US) 2007/0300036 Al 12/2007 Abbey
2008/0028408 Al 1/2008 Day et al.
(*) Notice: Subject to any disclaimer, the term of this 2008/0034366 Al 2/2008 T:r?aliai,t al.
patent is extended or adjusted under 35 2008/0235686 Al* 9/2008 Brenner 718/101
U.S.C. 154(b) by 785 days. 2008/0263207 Al* 10/2008 Popescu et al. ... 709/226
2010/0088673 Al* 4/2010 Chenetal. 717/110
(21) Appl. No.: 12/610,583 2010/0161759 Al* 6/2010 Brand ... 709/218
.No.: R
(22) Filed: Nov. 2. 2009 FOREIGN PATENT DOCUMENTS
: L 2,
(65) Prior Publication Data i{) 200%521‘332 ﬁz 1%%88%
US 2011/0107035 Al May 5, 2011 OTHER PUBLICATIONS
(51) Int.ClL “z/ Architecture—Principles of Operation,” IBM Publication No.
GOG6F 9/45 (2006.01) SA22-7832-07, 8" Edition, Feb. 2009, pp. 1-1344.
GO6F 15/16 (2006.01)))
GOGF 9/00 (2006.01) * cited by examiner
(52) US.CL . . .
USPC oo 717/149; 717/151; 717/159; 717/164; Lrimary Examiner — Michael Sun .
709/205; 712/227; 718/106 (74) Attorney, Agent, or Firm — Steven Chiu, Esq.; Blanche
(58) Field of Classification Search E. Schiller, Esq.; Heslin Rothenberg Farley & Mesiti P.C.
None 57 ABSTRACT
See application file for complete search history. (7
A cross-logical entity group is created that includes one or
(56) References Cited more accelerators to be shared by a plurality of logical enti-

U.S. PATENT DOCUMENTS

6,772,415 B1*
6,990,663 Bl
7,299,468 B2
7,721,144 B2 *

8/2004 Danckaert et al. 717/161
1/2006 Arndt
11/2007 Casey et al.

5/2010 Brownetal. ... 714/6.12

102

SERVER

LPAR
2

LPQR | 104

LPAR
1

110
HYPERVISOR

CENTRAL
PROCESSOR(S)

/|OPTIMIZER [\
/ AN
/ \
’ \

116

™~106

1303j

ties. Instantiated on the accelerators are functions that are

common across multiple logical entities. The functions to be
instantiated are determined, for instance, dynamically during
run-time.

17 Claims, 4 Drawing Sheets

120

ACCELERATOR
CLUSTER

130b
—

ACCELERATOR
GROUP
LPAR 1

ACCELERATOR
GROUP
LPAR 2

ACCELERATOR
GROUP
LPAR 3

-—~130c

CROSS -LPAR
ACCELERATOR
GROUP

U.S. Patent Feb. 18, 2014 Sheet 1 of 4 US 8,656,375 B2

100 120

102

\I\ SERVER

ACCELERATOR

LPAR | LPAR | LPAR 130a CLUSTER 130b
1 2 3 |104 N (
ACCELERATOR | | ACCELERATOR
os] | [os] | [0s] GROUP GROUP
10 LPAR 1 LPAR 2

HYPERVISOR
ACCELERATOR
CENTRAL 106 GROUP }—~130c
PROCESSOR(S) LPAR 3

CROSS - LPAR
ACCELERATOR
GROUP

/| OPTIMIZER |\
/ \

/ \ \

! 116

\

FIG. 1a

f_130

ACCELERATOR
GROUP

| ACCELERATOR 1™\ 132

| ACCELERATOR |

| ACCELERATOR |

FIG. 1b

U.S. Patent Feb. 18, 2014 Sheet 2 of 4

(OPTIMIZER)

US 8,656,375 B2

LOAD FUNCTION MODULE ON ACCELERATOR [™-200

Y

AND /O UTILIZATION TO OPTIMIZER

ACCELERATOR SENDS FUNCTION MODULE COMPUTE

202

'

OPTIMIZER UPDATES FUNCTION TABLE

204

{

OPTIMIZER UPDATES SHARED TABLE

206

SELECT FUNCTION IN FUNCTION TABLE

208

210

NUMBER ™\ no

f—212

IN CROSS - LPAR SHARED GROUP

SEARCH FOR APPROPRIATE ACCELERATOR

214

ACCELERATORSNO

{

ACCELERATOR SET WITH FUNCTION

UPDATE SHARED TABLE |—216

DIRECT LPARTOLOADSHARED | 54g

220

MORE
ENTRIES ?

YES

FIG. 2

U.S. Patent Feb. 18, 2014 Sheet 3 of 4 US 8,656,375 B2
300
FUNCTION TABLE
302\ FUNCTION | LINKEDLIST | LISTOF VO C'ngTF,8$E
NAME OF SHARERS | UTILIZATION | (SOMATisy
304 306 308 310
LIST OF
FUNCTION | LINKEDLIST | LIST OF /O
COMPUTE
NAME OF SHARERS | UTILIZATION | [SOMPUIE
FIG. 3
400
SHARED TABLE
402\ ACCEL. | LINKEDLIST e COMPUTE
ID OF FUNCTIONS | UTILIZATION | UTILIZATION
404 406 408 410
ACCEL. | LINKED LIST /0 COMPUTE
ID OF FUNCTIONS | UTILIZATION | UTILIZATION

FIG. 4

U.S. Patent Feb. 18, 2014 Sheet 4 of 4 US 8,656,375 B2

COMPUTER
PROGRAM
PRODUCT

500

504

PROGRAM
CODE LOGIC

COMPUTER
READABLE

_ MEDIUM
502

~—

FIG. 5

US 8,656,375 B2

1
CROSS-LOGICAL ENTITY ACCELERATORS

BACKGROUND

This invention relates, in general, to facilitating processing
within a computing environment, and in particular, to improv-
ing the use of accelerators within the computing environment.

Accelerators are used today to increase the processing
capabilities of a server. In particular, accelerators coupled to
the server are optimized to perform certain functions,
enabling those functions to be performed at higher speeds
than if those functions were performed by the server. When a
function is reached in a program executed by the server, the
server sends a request to the accelerator to perform the func-
tion. The accelerator performs the function and forwards the
result back to the server. The server either performs further
processing on the returned result or simply forwards the result
to another accelerator, which then performs processing and
sends the result back to the server, again.

In computing environments that include logical partitions
(or other logical entities), each logical partition has its own set
of accelerators to perform functions for the programs execut-
ing within that logical partition.

BRIEF SUMMARY

To improve efficiency, however, a cross-logical entity
group of one or more accelerators is provided. In this group of
accelerators, functions that are common across logical enti-
ties are instantiated on the accelerators of the group. Then, a
request for a shared function is forwarded from a logical
entity to the cross-logical entity accelerator group to be per-
formed by an accelerator of that group.

The shortcomings of the prior art are overcome and addi-
tional advantages are provided through the provision of a
computer program product for facilitating processing within
a computing environment. The computer program product
includes a storage medium readable by a processing circuit
and storing instructions for execution by the processing cir-
cuit for performing a method. The method includes, for
instance, determining, by a processor, whether a function is to
be included in a group of one or more accelerators to be
shared by a plurality of logical entities of the computing
environment; and including, by the processor, the function in
the group, in response to the determining indicating the func-
tion is to be included in the group.

Methods and systems relating to one or more aspects of the
present invention are also described and claimed herein. Fur-
ther, services relating to one or more aspects of the present
invention are also described and may be claimed herein.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

One or more aspects of the present invention are particu-
larly pointed out and distinctly claimed as examples in the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of the invention
are apparent from the following detailed description taken in
conjunction with the accompanying drawings in which:

FIG. 1A depicts one example of a computing environment
to incorporate and use one or more aspects of the present
invention;

20

25

30

35

40

45

50

55

60

65

2

FIG. 1B depicts one example of an accelerator group used
in accordance with an aspect of the present invention;

FIG. 2 depicts one embodiment of the logic used to instan-
tiate accelerator functions on a cross-LPAR accelerator
group, in accordance with an aspect of the present invention;

FIG. 3 depicts one example of a function table used in
accordance with an aspect of the present invention;

FIG. 4 depicts one example of a shared table used in accor-
dance with an aspect of the present invention; and

FIG. 5 depicts one embodiment of a computer program
product incorporating one or more aspects of the present
invention.

DETAILED DESCRIPTION

In accordance with an aspect of the present invention, a
cross-logical entity accelerator group is provided. Accelera-
tor functions that are common across a plurality of logical
entities are instantiated on accelerators within this group. The
determination of which functions are to be instantiated on the
cross-logical entity group is made, for instance, dynamically
during runtime.

A logical entity (or system software logical abstraction)
represents, for instance, a granularity of computation.
Examples of logical entities include threads; processes or
address spaces; logical partitions (LPAR); and containers. A
process/address space includes one or more threads, and a
logical partition or container includes one or more address
spaces/processes. As an example, a container provides a
mechanism for isolating resources and security in an operat-
ing system framework without using a hypervisor. In a par-
ticular example described herein, the logical entity is a logical
partition, and therefore, the cross-logical entity group is
referred to as a cross-LPAR group. Although the examples
refer to logical partitions, one or more aspects of the present
invention are applicable to other logical entities.

One embodiment of a computing environment to incorpo-
rate and use one or more aspects of the present invention is
described with reference to FIG. 1A. Computing environment
100 is based, for instance, on the z/Architecture® offered by
International Business Machines Corporation, Armonk, N.Y.
The z/Architecture® is described in an IBM® publication
entitled, “z/Architecture Principles of Operation,” IBM Pub-
lication No. SA22-7832-07, February 2009, which is hereby
incorporated herein by reference in its entirety. IBM® and
7/Architecture® are registered trademarks of International
Business Machines Corporation, Armonk, N.Y., U.S.A.
Other names used herein may be registered trademarks, trade-
marks or product names of International Business Machines
Corporation or other companies.

As one example, computing environment 100 includes a
server 102, such as a System z® server offered by Interna-
tional Business Machines Corporation, which includes, for
instance, one or more partitions or zones 104 (e.g., logical
partitions LP1-L.Pn), one or more central processors 106
(e.g., CP1-CPm), and a hypervisor 108 (e.g., a logical parti-
tion manager), each of which is described below.

Each logical partition 104 is capable of functioning as a
separate system. That is, each logical partition can be inde-
pendently reset, initially loaded with an operating system, if
desired, and operate with different programs. An operating
system or application program running in a logical partition
appears to have access to a full and complete system, but in
reality, only a portion of it is available. A combination of
hardware and Licensed Internal Code (also referred to as
microcode or millicode) keeps a program in a logical partition
from interfering with a program in a different logical parti-

US 8,656,375 B2

3

tion. This allows several different logical partitions to operate
on a single or multiple physical processors in a time sliced
manner. In this particular example, each logical partition has
a resident operating system 110, which may differ for one or
more logical partitions. In one embodiment, operating system
110 is the z/OS® operating system, offered by International
Business Machines Corporation, Armonk, N.Y. System z®
and z/OS® are registered trademarks of International Busi-
ness Machines Corporation.

Central processors 106 are physical processor resources
that are allocated to the logical partitions. For instance, a
logical partition 104 includes one or more logical processors,
each of which represents all or a share of a physical processor
resource 106 allocated to the partition. The logical processors
of a particular partition 104 may be either dedicated to the
partition, so that the underlying processor resource is
reserved for that partition; or shared with another partition, so
that the underlying processor resource is potentially available
to another partition.

Logical partitions 104 are managed by hypervisor 108
implemented by microcode running on processors 106. Logi-
cal partitions 104 and hypervisor 108 each comprise one or
more programs residing in respective portions of central stor-
age associated with the central processors. One example of
hypervisor 108 is the Processor Resource/Systems Manager
(PR/SM), offered by International Business Machines Cor-
poration, Armonk, N.Y.

In this embodiment, one or more of the central processors
executes an optimizer 116 used in accordance with one or
more aspects of the present invention to instantiate functions
on a cross-LPAR accelerator group, as described in further
detail below.

Server 102 is coupled to and communicates with an accel-
erator cluster 120 via, for instance, a network, such as PCI
express, Infiniband, Ethernet, etc. Accelerator cluster 120
includes, for instance, a plurality of accelerator groups 130
(e.g., groups 130a-130c¢), in which each group 130 includes
one or more hardware accelerators 132 (FIG. 1B), such as
blades in a blade center or chassis. As examples, accelerators
could be IBM® Cell BE blades; IBM® Datapower units;
nVidia GPUs; and/or System p® or System x® blades,
offered by International Business Machines Corporation. A
group of accelerators may include the same accelerators or a
mix of accelerators. Similarly, one group can have the same or
different accelerators than another group. System p® and
System x® are registered trademarks of International Busi-
ness Machines Corporation.

In one example, each accelerator has a switch associated
therewith having at least one port as an input port from the
server and one port as an output port to the server. Each
accelerator group 130 is assigned to a particular logical par-
tition. For instance, accelerator group 130a (FIG. 1a) is
assigned to LPAR1; accelerator group 1305 is assigned to
LPAR2; and accelerator group 130c¢ is assigned to LPAR 3, in
this example. Although, in this example, three accelerator
groups (130) are shown, it will be understood that more or less
accelerator groups may be included. Further, each group can
have more or less accelerators than shown in FIG. 1B, and one
accelerator group can have a different number or the same
number of accelerators as another group.

Additionally, accelerator cluster 120 includes at least one
cross-LPAR accelerator group 134. This accelerator group
includes one or more accelerators having functions thereon
usable by multiple logical partitions. In particular, accelerator
functions that are common across multiple LPARs are instan-
tiated on the accelerators of this group. For instance, a func-
tion F1 that is used by LPAR1 and LPAR3 may be instantiated

20

25

30

35

40

45

50

55

60

65

4

on accelerator 1 of cross-LPAR group 134. In one example,
each accelerator in the group can support a separate queue for
each LPAR, in which a request received from a particular
LPAR is placed in the queue of that LPAR awaiting execution.
In another embodiment, each accelerator has one queue that is
used to store requests for multiple LPARs.

One embodiment of the logic used to instantiate functions
on the cross-LPAR group is described with reference to FIG.
2. In one embodiment, optimizer 116 (FIG. 1A) executing on
the server is used to perform this logic, unless otherwise
specified.

Referring to FIG. 2, initially, the server (e.g., an address
space of the server) loads a function module on an accelerator
assigned to that address space, STEP 200. For instance,
LPART1 loads a function module on an accelerator within the
LPAR1 accelerator group. Further, LPAR1 updates the opti-
mizer with the name of the accelerator function, and the
optimizer updates its function table, described below. As the
function executes, compute utilization and I/O utilization
(e.g., utilization on link to storage and/or utilization on net-
work link to server) are measured by, for instance, a run-time
profiler running on the accelerator. As an example, compute
utilization is an ordered pair that includes, for instance, pro-
cessor core utilization and memory bandwidth utilization.
Processor core utilization is, for example the percentage of
time the compute core of an accelerator is busy (e.g., sum of
% user and % kernel time queried from, for instance, an OS
kernel). Memory bandwidth utilization is the percentage of
memory bandwidth used up by all cores of an accelerator.
This can be queried from an OS kernel or a memory bus
controller, as examples. I/O utilization is, for example, the
percentage of time in total from I/O, storage and network
operations; again polled from an OS kernel, as an example.

In response thereto, the accelerator sends the function
module compute and I/O utilization values (e.g., average of
those values over a specified time) to the application opti-
mizer running on the server, STEP 204. The application opti-
mizer updates this information in a data structure, such as a
table, STEP 204. For instance, a function table 300 (FIG. 3)
includes one or more entries 302, and each entry includes, for
instance, a function name 304; a linked list of sharers 306; a
list of I/O utilization for that function on each accelerator 308;
and a list of compute utilization for the function on each
accelerator 310.

The optimizer also maintains a data structure of accelera-
tors in the cross-LPAR shared group, STEP 206. For example,
a shared table 400 (FIG. 4) is maintained that includes, for
instance, an accelerator identifier 404 for each accelerator in
the shared group; a linked list of functions 406 executing on
that accelerator; total I/O utilization 408 for the accelerator;
and total compute utilization 410 for the accelerator.

The optimizer loops through entries in the function table to
determine which functions are to be placed on the cross-
LPAR accelerator group. For instance, a function in the func-
tion table is selected, STEP 208. A determination is made as
to whether the number of sharers (e.g., LPARs) of this func-
tion is greater than one, INQUIRY 210. If the linked list of
sharers indicates that the number of sharers is greater than 1,
then the function is a candidate for sharing. The optimizer
may also use, in other embodiments, additional rules to
choose a candidate function for sharing. For example, it may
choose a function that has a number of sharers greater than a
designer defined threshold, and aggregate I/O/compute utili-
zation greater than a designer defined threshold. Other
examples also exist.

A search is performed for an appropriate accelerator in the
cross-LPAR shared group to which this function may be

US 8,656,375 B2

5

added, STEP 212. In particular, a search of the shared accel-
erators in the group is performed to find one that is capable of
performing the function. For instance, a search is undertaken
for an accelerator in the cross-LPAR shared group in which
n+N<Nmax and c+C<Cmax, where n, ¢ are function I/O (n)
and compute (c) utilization values aggregated across the
LPAR-private accelerators (e.g., the sum (or other statistical
operation) of values in columns 308, 310, respectively, in
table 300 (FIG. 3)); N,C are /O (N) and compute (C) utili-
zation totals for a given accelerator in a shared accelerator
group (see, e.g., columns 408, 410, respectively, in shared
table 400 (FIG. 4)); and Nmax and Cmax are designer chosen
values (e.g., 80%) that can be changed at runtime.

Should an accelerator in the shared group meet the above
criteria, then it is chosen for placement of the function,
INQUIRY 214 (FIG. 2). If more than one accelerator meets
the criteria, then one of them is chosen either randomly or
based on a further criterion (e.g., first one found, more utili-
zation available, etc.). In response to selecting the accelerator,
the shared table is updated with, for instance, a function name
(406; FIG. 4), and n and ¢ are added to the totals of N (408)
and C (410), respectively, STEP 216. Further, one LPAR is
selected and directed to load the function on the accelerator of
the shared accelerator group, STEP 218. The LPAR then
steers subsequent requests to the shared accelerators.

Thereafter, or if the number of sharers is equal to one,
INQUIRY 210, or if an accelerator is not found, INQUIRY
214, a determination is made as to whether there are more
entries in the function table to be processed, INQUIRY 220. If
there are more entries, then processing continues with STEP
208. Otherwise, processing is complete, STEP 222. The
above steps may be invoked by the optimizer periodically
and/or can be event triggered. For example, a triggering event
may be that at least one function has more than one sharer, or
the I/O and compute utilization totals for a function with
multiple LPAR sharers is greater than a designer defined
threshold. Other examples also exist.

Described in detail above is a technique for dynamically
determining which functions, if any, are to be placed on
accelerators within a cross-LPAR accelerator group. It is
likely that certain accelerator functions are common between
accelerator groups. If so, these functions may be placed on
accelerators that can be shared between LPARs. The accel-
erator within the group to be selected to have a particular
function instantiated thereon depends, in one example, on the
compute and [/O utilization of the function. Using the tech-
nique described herein, in one example, a function F can be
extracted from each ofthe LPAR 1, 2 and 3 accelerator groups
and installed on a new accelerator cross-L.LPAR group. Assum-
ing theutilization of F in LPARs 1, 2and 3 are 0.2,0.2 and 0.3,
the utilization of F on the shared group is U=0.2+0.2+
0.3=0.7. This allows the accelerator function to be run with
maximal utilization in the cross-LPAR shared accelerator
group. This also reduces the accelerator count in a given
application which has direct implications on accelerator foot-
print size and energy consumption. It allows the LPAR-pri-
vate (i.e., non-shared) accelerators to be used for other func-
tions as the shared function F is now running in the cross-
LPAR shared accelerator group.

In another aspect of the present invention, shared functions
may be pre-located (instead of or in addition to dynamically
locating during workload execution) on cross-LPAR accel-
erator groups, if, for instance, certain functions are known to
be highly utilized. In this embodiment, .LPARs communicate
use of all functions to the optimizer before the LPAR makes
requests to accelerators. Known functions of high utilization
are provided by the system programmer to the optimizer.

20

25

30

35

40

45

50

55

60

65

6

Knowledge of highly utilized functions may be gleaned from
a previous workload run. The optimizer can then place these
shared functions on the cross-LPAR shared group. The opti-
mizer can activate these functions when run-time conditions
(shared, I/O/compute utilization) warrant use of the shared
accelerator group. Alternatively, the optimizer can commu-
nicate the locations to the LPARs before they begin to submit
request for acceleration. LPARs may then use these pre-
located shared functions directly upon address space invoca-
tion.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system”. Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable signal medium
may include a propagated data signal with computer readable
program code embodied therein, for example, in baseband or
as part of a carrier wave. Such a propagated signal may take
any ofa variety of forms, including, but not limited to, electro-
magnetic, optical or any suitable combination thereof. A
computer readable signal medium may be any computer read-
able medium that is not a computer readable storage medium
and that can communicate, propagate, or transport a program
for use by or in connection with an instruction execution
system, apparatus or device.

A computer readable storage medium may be, for example,
but not limited to, an electronic, magnetic, optical, electro-
magnetic, infrared or semiconductor system, apparatus, or
device, or any suitable combination of the foregoing. More
specific examples (a non-exhaustive list) of the computer
readable storage medium include the following: an electrical
connection having one or more wires, a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

Referring now to FIG. 5, in one example, a computer
program product 500 includes, for instance, one or more
computer readable media 502 to store computer readable
program code means or logic 504 thercon to provide and
facilitate one or more aspects of the present invention.

Program code embodied on a computer readable medium
may be transmitted using an appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language, such as Java,
Smalltalk, C++ or the like, and conventional procedural pro-

US 8,656,375 B2

7

gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

In addition to the above, one or more aspects of the present
invention may be provided, offered, deployed, managed, ser-
viced, etc. by a service provider who offers management of

20

25

30

35

40

45

50

55

60

65

8

customer environments. For instance, the service provider
can create, maintain, support, etc. computer code and/or a
computer infrastructure that performs one or more aspects of
the present invention for one or more customers. In return, the
service provider may receive payment from the customer
under a subscription and/or fee agreement, as examples.
Additionally or alternatively, the service provider may
receive payment from the sale of advertising content to one or
more third parties.

In one aspect of the present invention, an application may
be deployed for performing one or more aspects of the present
invention. As one example, the deploying of an application
comprises providing computer infrastructure operable to per-
form one or more aspects of the present invention.

As a further aspect of the present invention, a computing
infrastructure may be deployed comprising integrating com-
puter readable code into a computing system, in which the
code in combination with the computing system is capable of
performing one or more aspects of the present invention.

As yet a further aspect of the present invention, a process
for integrating computing infrastructure comprising integrat-
ing computer readable code into a computer system may be
provided. The computer system comprises a computer read-
able medium, in which the computer medium comprises one
or more aspects of the present invention. The code in combi-
nation with the computer system is capable of performing one
or more aspects of the present invention.

Although various embodiments are described above, these
are only examples. For example, computing environments of
other architectures can incorporate and use one or more
aspects of the present invention. Additionally, other types of
accelerators may be used. Further, there may be more or less
accelerator groups, more or less accelerators in each group,
and an accelerator may run one or more functions. Further,
there may be more than one shared accelerator group, and
each shared group may have more or less accelerators than
described herein or with respect to one another. Moreover,
data structures other than tables may be used, and other infor-
mation may be stored. Still further, other criteria may be used
to select the accelerators to execute the functions. Many other
variations are possible.

Further, other types of computing environments can benefit
from one or more aspects of the present invention. As an
example, an environment may include an emulator (e.g., soft-
ware or other emulation mechanisms), in which a particular
architecture (including, for instance, instruction execution,
architected functions, such as address translation, and archi-
tected registers) or a subset thereof is emulated (e.g., on a
native computer system having a processor and memory). In
such an environment, one or more emulation functions of the
emulator can implement one or more aspects of the present
invention, even though a computer executing the emulator
may have a different architecture than the capabilities being
emulated. As one example, in emulation mode, the specific
instruction or operation being emulated is decoded, and an
appropriate emulation function is built to implement the indi-
vidual instruction or operation.

In an emulation environment, a host computer includes, for
instance, a memory to store instructions and data; an instruc-
tion fetch unit to fetch instructions from memory and to
optionally, provide local buffering for the fetched instruction;
an instruction decode unit to receive the fetched instructions
and to determine the type of instructions that have been
fetched; and an instruction execution unit to execute the
instructions. Execution may include loading data into a reg-
ister from memory; storing data back to memory from a
register; or performing some type of arithmetic or logical

US 8,656,375 B2

9

operation, as determined by the decode unit. In one example,
each unit is implemented in software. For instance, the opera-
tions being performed by the units are implemented as one or
more subroutines within emulator software.

Further, a data processing system suitable for storing and/
or executing program code is usable that includes at least one
processor coupled directly or indirectly to memory elements
through a system bus. The memory elements include, for
instance, local memory employed during actual execution of

5

the program code, bulk storage, and cache memory which 10

provide temporary storage of at least some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.
Input/Output or 1/O devices (including, but not limited to,
keyboards, displays, pointing devices, DASD, tape, CDs,
DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening
1/0O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modems, and Ethernet cards are just a
few of the available types of network adapters.
The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising”, when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components and/or groups thereof.
The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below, if any, are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiment with various modifications as are suited to the
particular use contemplated.
What is claimed is:
1. A computer program product for facilitating processing
within a computing environment, the computer program
product comprising:
a non-transitory storage medium readable by a processing
circuit and storing instructions for execution by the pro-
cessing circuit for performing a method comprising:
determining whether a function is to be included in a
group of one or more accelerators to be shared by a
plurality of logical entities of the computing environ-
ment, the group of one or more accelerators being
separate from the plurality of logical entities, and the
determining comprising checking whether the func-
tion is to be shared by multiple logical entities of the
plurality of logical entities; and

including the function in the group, based on the check-
ing indicating the function is to be shared by the

20

25

30

35

40

45

50

55

60

65

10

multiple logical entities, wherein the function is
executable by the multiple logical entities that are to
share the group of one or more accelerators.

2. The computer program product of claim 1, wherein the
method further comprises selecting an accelerator of the
group on which to include the function.

3. The computer program product of claim 2, wherein the
selecting comprises:

searching the group of one or more accelerators for at least

one accelerator in which n+N <N max and ¢ +C <C max
, where n is I/O utilization of a function across private
accelerators, ¢ is compute utilization of a function across
private accelerators, N is 110 utilization for an accelera-
tor in the group, C is compute utilization for an accel-
erator in the group, N max is a selected value for /0
utilization and C max is a selected value for compute
utilization; and

choosing from the at least one accelerator found in the

search, the accelerator on which to include the function.

4. The computer program product of claim 3, wherein at
least one of N max and C max are changeable at runtime.

5. The computer program product of claim 1, wherein the
including comprises:

loading the function on an accelerator of the group; and

updating a data structure with one or more attributes of the

function.

6. The computer program product of claim 5, wherein the
attributes include at least one of an identifier of the function,
compute utilization for the function across accelerators, and
1/O utilization for the function across accelerators.

7. The computer program product of claim 5, wherein the
method further comprises sending multiple requests for the
function to the accelerator, wherein the multiple requests are
from multiple logical entities.

8. The computer program product of claim 1, wherein a
logical entity of the plurality of logical entities also has asso-
ciated therewith a private accelerator group that includes one
or more functions exclusive to the logical entity.

9. The computer program product of claim 1, wherein the
determining is performed by an optimizer executing on a
processor, the processor separate from the plurality of logical
entities.

10. A computer system for facilitating processing within a
computing environment, the computer system comprising:

a memory; and

a processor in communications with the memory, wherein

the computer system is configured to perform a method,

said method comprising:

determining whether a function is to be included in a
group of one or more accelerators to be shared by a
plurality of logical entities of the computing environ-
ment, the group of one or more accelerators being
separate from the plurality of logical entities, and the
determining comprising checking whether the func-
tion is to be shared by multiple logical entities of the
plurality of logical entities; and

including the function in the group, based on the check-
ing indicating the function is to be shared by the
multiple logical entities, wherein the function is
executable by the multiple logical entities that are to
share the group of one or more accelerators.

11. The computer system of claim 10, wherein the method
further comprises selecting an accelerator of the group on
which to include the function.

12. The computer system of claim 11, wherein the selecting
comprises:

US 8,656,375 B2

11

searching the group of one or more accelerators for at least
one accelerator in which n +N <N max and ¢ +C <C max
, where n is I/O utilization of a function across private
accelerators, ¢ is compute utilization of a function across
private accelerators, N is /O utilization for an accelera-
tor in the group, C is compute utilization for an accel-
erator in the group, N max is a selected value for /O
utilization and C max is a selected value for compute
utilization; and

choosing from the at least one accelerator found in the

search, the accelerator on which to include the function.

13. The computer system of claim 10, wherein the includ-
ing comprises:

loading the function on an accelerator of the group; and

updating a data structure with one or more attributes of the

function.

14. The computer system of claim 13, wherein the method
further comprises sending multiple requests for the function
to the accelerator, wherein the multiple requests are from
multiple logical entities.

15. The computer system of claim 10, wherein a logical
entity of the plurality of logical entities also has associated
therewith a private accelerator group that includes one or
more functions exclusive to the logical entity.

16. A method of facilitating processing within a computing
environment, said method comprising:

determining, by a processor, whether a function is to be

included in a group of one or more accelerators to be

—_
w

20

12

shared by a plurality of logical entities of the computing
environment, the group of one or more accelerators
being separate from the plurality of logical entities, and
the determining comprising checking whether the func-
tion is to be shared by multiple logical entities of the
plurality of logical entities; and

including, by the processor, the function in the group,

based on the checking indicating the function is to be
shared by the multiple logical entities, wherein the func-
tion is executable by the multiple logical entities that are
to share the group of one or more accelerators.

17. The method of claim 16, further comprising selecting
an accelerator of the group on which to include the function,
wherein the selecting comprises:

searching the group of one or more accelerators for at least

one accelerator in which n+N <N max and ¢ +C <C max
, where n is I/O utilization of a function across private
accelerators, ¢ is compute utilization of a function across
private accelerators, N is /O utilization for an accelera-
tor in the group, C is compute utilization for an accel-
erator in the group, N max is a selected value for /0
utilization and C max is a selected value for compute
utilization; and

choosing from the at least one accelerator found in the

search, the accelerator on which to include the function.

#* #* #* #* #*

