(12) 发明专利申请

(10) 申请公布号 CN 103183687 A
(43) 申请公布日 2013.07.03

(21) 申请号 201110453676.2
(22) 申请日 2011.12.30

(71) 申请人 山东天绿制药有限公司
地址 251200 山东省禹城市高新技术开发区
振兴大道路西
申请人 苏州天绿制药有限公司

(72) 发明人 秦笃伟

(74) 专利代理机构 北京路浩知识产权代理有限公司 11002
代理人 王明飞 张庆敏

(51) Int. Cl.
C07D 501/22 (2006.01)
C07D 501/04 (2006.01)

(54) 发明名称
一种相转移催化法制备头孢地尼的方法

(57) 摘要
本发明涉及本发明公开了一种相转移催化法制备头孢地尼的方法，该方法包括以下步骤：乙酰基头孢地尼活性酯与7-AVCA、相转移催化剂反应。本发明的特点在于，对现有制备方法采用相转移催化剂，使反应时间显著缩短，产品转化率和成品质量显著提高，使用的溶剂单一，容易回收。
1. 一种相转移催化法制备头孢地尼的方法，该方法包括以下步骤：乙酰基头孢地尼活性酯与 7-AVCA、相转移催化剂反应。

2. 根据权利要求 1 所述的方法，其特征在于，所述相转移催化剂为苄基三乙基氯化铵、
四丁基溴化铵、二丁基氯化铵、四丁基硫酸氢铵、三辛基甲基氯化铵、十二烷基三甲基氯化
铵或十四烷基三甲基氯化铵。

3. 根据权利要求 2 所述的方法，其特征在于，所述相转移催化剂为苄基三乙基氯化铵、
四丁基溴化铵或十四烷基三甲基氯化铵。

4. 根据权利要求 1 所述的方法，其特征在于，所述 7-AVCA 与乙酰基头孢地尼活性酯、相
转移催化剂的摩尔比为 1 ： 1-2.0 ： 0.010-0.080。

5. 根据权利要求 1 所述的方法，其特征在于，所述 7-AVCA 与乙酰基头孢地尼活性酯、相
转移催化剂的摩尔比为 1 ： 1-1.5 ： 0.010-0.050，优选为 1 ： 1.5 ： 0.039。

6. 根据权利要求 1-5 任一项所述的方法，其特征在于，该方法包括以下步骤：

 1) 投料：将乙酰基头孢地尼活性酯加入到二氯甲烷和纯化水的混合溶剂中，搅拌并加
热至 25-30℃，加入 7-AVCA；

 2) 反应：向步骤 1) 中的混合物中加入相转移催化剂，再将三乙胺的二氯甲烷溶液滴入
反应液中，待反应结束后，加入纯化水，搅拌，分离得到水层；

 3) 脱乙酰基：水层用二氯甲烷洗涤，除去残留有机溶剂，进行脱乙酰基反应，然后加入
乙醇，用稀硫酸调 pH 值，析出产品，抽滤，纯化水洗涤，得头孢地尼粗品；

 4) 精制品：粗品溶于有机溶剂中，干燥，过滤，浓缩，静置，待析出白色产品后，抽滤，
滤饼用丙酮洗涤，烘干，即得头孢地尼。

7. 根据权利要求 6 所述的方法，其特征在于，所述步骤 1) 中所述二氯甲烷和纯化水的
混合溶剂是由二氯甲烷和纯化水按照体积比为 2 ： 1 组成；所述乙酰基头孢地尼活性酯
与二氯甲烷和纯化水的混合溶剂的重量体积比 g ： ml 为 1 ： 4-1 ： 15，优选为 1 ： 10。

8. 根据权利要求 6 所述的方法，其特征在于，所述步骤 2) 中所述三乙胺的二氯甲烷
溶液，为三乙胺与二氯甲烷按照体积比为 1 ： 2-1 ： 10 配制；优选的体积比为 1 ： 6；所述
反应结束是指根据 TLC 显色，在紫外灯下 7-AVCA 点已不明显或根据 HPLC 检测 7-AVCA 含量
≤0.05%，反应结束，反应液呈澄清透明状，颜色为红色。

9. 根据权利要求 6 所述的方法，其特征在于，所述步骤 3) 中所述除去残留的有机溶剂
的方法是旋转蒸发仪，40℃以下旋蒸除去残留的有机溶剂；除去残留的有机溶剂后，还包
括活性炭脱色；所述 pH 值为 1-3，优选为 2.5。

10. 根据权利要求 6 所述的方法，其特征在于，所述步骤 4) 中所述有机溶剂为无水乙
醇或无水甲醇，优选为无水甲醇。
一种头孢地尼的方法

技术领域
[0001] 本发明涉及化学合成工艺，具体涉及一种头孢地尼的方法。

背景技术
[0003] 该品为口服第三代头孢菌素，抗菌谱广，对葡萄球菌和链球菌属的抗菌作用与头孢泊肟酯相仿，对肠杆菌科细菌的抗菌活性低于头孢克肟 2-4 倍，肠球菌、铜绿假单胞菌和其他假单胞菌属、不动杆菌属等多数对本品耐药。
[0004] 该品可用于治疗鼻窦炎、中耳炎。扁桃体炎、咽喉炎、急性支气管炎、肺炎。肾盂肾炎、膀胱炎、淋菌性尿道炎。附件炎，宫颈感染，前庭腺炎。乳腺炎，肛周周围脓肿，外伤或手术伤口的继发感染。毛囊炎、疖、疖肿、脓、传染性脓疱病、丹毒、蜂窝组织、淋巴管炎、甲沟炎、皮下脓肿、粉瘤感染、慢性脓皮症。眼睑炎，麦粒肿，睑板腺炎。
[0005] 该品具有抗菌谱广、抗菌作用强、临床疗效高、毒性低、过敏反应少、方便使用等特点。与头孢克肟、头孢泊肟、头孢呋辛、头孢克洛和头孢丙烯等药物相比，对葡萄球菌的抗菌活性最强。对 β-内酰胺酶稳定。
[0006] 理化特性和化学结构式，头孢地尼为白色至浅黄色的结晶性粉末，无味或略有轻微异味，略溶于 0.1mol/L 的磷酸盐缓冲液（pH 值为 7.0），难溶于水、甲醇、乙醚。其分子式为 C13H17N3O6S2，相对分子量为 395.42，化学结构式如图 I 所示：
[0007]

![化学结构式](image)

[0008] 头孢地尼是在头孢克肟的基础上开发的第三代头孢菌素，其化学结构特点是在 7-氨基头孢烷酸的 7 位侧链上引入氨基隑唑基、羟亚氨基，3 位侧链上引入乙烯基，3 位侧链上的乙烯基可提高其口服吸收效果，且不仅保持了头孢克肟对 G-的抗菌效力，而且还增强了现有口服头孢类抗菌素对 G+菌的作用。
[0009] 目前合成头孢地尼的方法有多种，其中原料为在头孢菌素抗生素头孢地尼的制造中，通常在强酸性介质，例如氯化酸中进行羧基保护的头孢地尼的羧基保护反应（见美国专利第 4559334 号），但是，这种强酸处理步骤产生不期望的副产物，包括头孢地尼的 E 异构体（反式），因此，已经开发了许多方法来除去污染物 E 异构体，例如，在国际公布
WO9845299 中公开的方法包括将粗品头孢地尼转化成环己胺盐，除去杂质，并将纯化的盐再转化成头孢地尼。但是，这种方法步骤多，效率低且收率低。

【0010】中国专利申请 20091099380.8 采用 7- 氨基 -3- 乙烯基 -8- 氧代 -5- 硫杂 -1- 氟
杂双环 [4.2.0] 辛 -2- 烯 -2- 羈酸 (7-AVCA) 在有机碱作用下与 (Z)-2-(2- 氨基噻唑
唑 -4- 基)-2- 乙酰氧基氨基硫代乙酸 (S-2- 苯并噻唑) 酯 (乙酰基头孢地尼活性酯) 低温
反应，经萃取，调节 pH，制备头孢地尼中间体。再除去头孢地尼中间体的酯基保护基，得
到头孢地尼。这种方法采用低温反应，反应时间长，产生的杂质比较多。

【0011】相转移催化反应是 20 世纪 70 年代以后发展起来的一种新型合成手段。利用相转移
的方法可以实现许多传统合成方法所不能完成的反应，而且产率高，反应条件温和，产物
易于处理。

【0012】到目前为止，相转移催化反应在羧化、酰化、氟化以及偶联等各种类型的有机合成
中有着广泛的应用。

发明内容

【0013】本发明提供了一种相转移催化法制备头孢地尼的方法，该方法包括以下步骤：乙
酰基头孢地尼活性酯 (Z)-2-(2- 氨基噻唑 -4- 基)-2- 乙酰氧基氨基硫代乙酸 (S-2- 苯
并噻唑) 酯) 与 7-AVCA (7- 氨基 -3- 乙烯基 -8- 氧代 -5- 硫杂 -1- 氟双环 [4.2.0] 辛 -2- 烯 -2- 羚酸)，相转移催化剂反应。

【0014】所述相转移催化剂为苄基三乙基氯化铵 (TEBA)、四丁基溴化铵、四丁基氯化铵、四
丁基硫酸氢铵 (TBAB)、三辛基甲基氯化铵、十二烷基三甲基氯化铵或十四烷基三甲基氯化
铵，优选为苄基三乙基氯化铵 (TEBA)、四丁基溴化铵或十四烷基三甲基氯化铵。

【0015】所述 7-AVCA 与乙酰基头孢地尼活性酯，相转移催化剂的摩尔比为
1 : 1-2.0 : 0.010-0.080，优选为 1 : 1-1.5 : 0.010-0.050，进一步优选为：
1 : 1.5 : 0.039。

【0016】具体地，本发明提供的相转移催化法制备头孢地尼的方法包括以下步骤：

【0017】1) 投料：将乙酰基头孢地尼活性酯加入到二氯甲烷和纯化水的混合溶剂中，搅拌
并加热，加入 7-AVCA，搅拌均匀；

【0018】2) 提纯反应：向步骤 1) 中的混合物中加入相转移催化剂，再将三乙胺的二氯甲烷
溶液滴入反应液中，待反应结束后，加入纯化水，搅拌，分离得到水层；

【0019】3) 调乙酰基：水层用二氯甲烷洗涤 2-3 次，除去残留有机溶剂，进行脱乙酰基反
应，然后加入乙醇，用稀硫酸调 pH 值，析出产品，抽滤，纯化水洗涤，得头孢地尼粗品；

【0020】4) 精品精制：粗品溶于有机溶剂中，干燥，过滤掉絮状不溶物，浓缩，低温静置，待
析出白色产品后，抽滤，滤饼用丙酮洗涤，烘干，即得头孢地尼。
[0022] 上述反应中：
[0023] 所述步骤 1) 中：
[0024] 所述二氯甲烷和纯化水的混合溶剂是由二氯甲烷和纯化水按照体积比为 2 : 1 组成；
[0025] 所述乙酰基头孢地尼活性酯与二氯甲烷和纯化水的混合溶剂的重量体积比为 1 : 4-1 : 15，优选为 1 : 10；
[0026] 所述加热温度为 25-30℃，优选为 25℃。
[0027] 所述步骤 2) 中：
[0028] 所述三乙胺的二氯甲烷溶液，为三乙胺与二氯甲烷按照体积比为 1 : 2-1 : 10 配制，优选的体积比为 1 : 6；
[0029] 加入水的用量与步骤 1) 加入的纯化水的量相同；
[0030] 所述反应结束是指根据 TLC 显色，在紫外灯下 7-AVCA 点已不明显或根据 HPLC 检测 7-AVCA 含量≤ 0.05％，反应结束，反应液呈澄清透明状，颜色为红色。
[0031] 所述步骤 3) 中：
[0032] 所述每次洗涤水层的二氯甲烷的用量与步骤 2) 所用纯化水体积相同；
[0033] 所述除去残留的有机溶剂的方法是旋转蒸发仪，40℃以下旋蒸除去残留的有机溶剂；
[0034] 除去残留的有机溶剂后，还包括活性炭脱色；在脱乙酰基反应结束后，再加入乙醇；
[0035] 在调节 pH 值时，还加入氯化铵，起到缓冲作用，稳定反应液的酸碱性，避免因碱性过大，引起产品的分解。其用量为 7-AVCA 的摩尔数的 5.2 倍。
[0036] 所述脱乙酰基反应是采用常规的方法，反应式如下：
[0037]
所述乙醇的用量是步骤1) 所用纯化水体积的五分之一, 如步骤1) 所用纯化水为50ml, 步骤3) 中加入乙醇的量为10ml。

所述pH值为1-3, 优选为2.5。

所述步骤4) 中：
所述有机溶剂为无水乙醇或无水甲醇, 优选为无水甲醇。
所述粗品的精制过程中的干燥剂为无水硫酸钠、氯化钙、氧化钙、五氧化二磷、硅胶、分子筛、硅藻土, 优选为无水硫酸钠；
所述低温静置, 是将其放入 -4℃的冰箱中, 静置时间为2小时。
本发明的反应式如下：
说明书

[0046] 本发明提供的头孢地尼的制备方法具有以下优点：
[0047] 1) 本发明旨在专利 ZL20091009380.8 方法的基础上，将相转移催化剂应用到头孢地尼合成反应中。在原有的头孢地尼合成反应系统中，用水和四氢呋喃作溶剂，反应完之后加入二氯甲烷进行分层、洗涤，在溶剂回收时混合溶剂的分离增大了难度和成本。
[0048] 2) 在相转移催化剂存在下，该反应以新的机理进行：相转移催化剂于水中与反应物交换负离子，而后交换了负离子的催化剂以离子对形式转移到有机相中，此反应物的负离子在有机相中溶剂化程度大大减小，因而反应活性很高，能迅速和反应底物发生反应。其后，催化剂带着反应底物负离子返回水相，如此连续不断穿过界面转送负离子。最终，使反应变得更易进行，副反应减少，从而使收率和质量提高。
[0049] 3、本发明的特点在于：对原有制备方法采用相转移催化剂，使反应时间显著缩短，产品转化率和成品质量显著提高，使用的溶剂单一，容易回收。

附图说明
[0050] 图 1：头孢地尼对照品红外吸收图谱；
[0051] 图 2：实施例 1 制备的样品的红外吸收图谱，L01 为实施例 1；
[0052] 图 3：实施例 2 制备的样品的红外吸收图谱，L02 为实施例 2；
[0053] 图 4：实施例 3 制备的样品的红外吸收图谱，L03 为实施例 3；
[0054] 图 5：对比例 1 制备的样品的红外吸收图谱，L04 为对比例 1；
说明书

具体实施方式

以下实施例用于说明本发明，但不用于限制本发明的范围。

实施例1：相转移催化法制备头孢地尼的方法

1. 制备方法：

(0063) 1) 将 (Z)-2-[(2-氨基噻唑-4-基)-2-乙酰氧亚氨基硫代乙酸(5-2-苯并噻唑)酯(乙酰基头孢地尼活性酯)15克 (0.044mol)，加入到二氯甲烷100ml和纯化水50ml的混合溶剂，搅拌控制温度为25℃，加入7-氨基-3-乙烯基-8-氧化-5-硫杂-1-氮杂双环[4.2.0]辛-2-烯-2-羧酸(7-AVCA)10克 (0.041mol)，保温25℃搅拌20分钟；

(0064) 2) 加入苄基三乙基氯化铵(TBA)0.5g (0.002mol)，搅拌溶解后，将三乙胺-二氯甲烷 (体积比为1：6) 溶液慢慢滴入反应液中，在25℃下继续反应3.5小时。反应结束后，加入纯化水50ml，搅拌，分离得水层；

(0065) 3) 水层用二氯甲烷洗涤三次，每次用50ml二氯甲烷，旋转蒸发仪在水浴温度不高于40℃下，除去残留有机溶剂，活性炭脱色。脱色后，加入碳酸钠水溶液，控制pH值在8.0-8.2，加入氯化铵12.2g (0.23mol)，继续滴加碳酸钾水溶液使氯化铵溶解，控制pH值在8.0-8.2，温度调至38℃，反应40分钟。反应结束，降至室温。加入10ml乙醇，用稀硫酸调pH值至2.5，析出产品，继续搅拌30分钟。抽滤，滤饼用纯化水60ml洗涤三次，得头孢地尼粗品；

(0066) 4) 粗品溶于无水甲醇中，加无水硫酸钠干燥，干燥后，过滤掉絮状不溶物，浓缩，放入-4℃冰箱中静置，析出白色产品，抽滤，滤饼用丙酮洗涤，45℃烘干，得头孢地尼15.56g。

(0067) 2. 按7-AVCA计，头孢地尼的收率为89%，含量为98%，有关物质杂质个数为4个，最大杂质为0.16%，杂质总量为0.41%。样品经红外、核磁共振氢谱检测，结果（见附图2、7），与头孢地尼的对照品的红外图（见附图1）、核磁共振氢谱图（见附图6）一致。

实施例2：相转移催化法制备头孢地尼的方法

1. 制备方法

(0070) 1) 将乙酰基头孢地尼活性酯15克 (0.044mol)，加入到二氯甲烷100ml和纯化水50ml的混合溶剂，搅拌控制温度25℃，加入7-AVCA10克 (0.044mol)，保温25℃搅拌20分钟；

(0071) 2) 加入四甲基氯化铵0.43g (0.001mol)，搅拌溶解后，将三乙胺-二氯甲烷 (体积比为1：6) 溶液慢慢滴入反应液中，在25℃下继续反应3小时。反应结束后，加入纯化水50ml，搅拌，分离得水层；

(0072) 3) 水层用二氯甲烷洗涤三次，每次用50ml二氯甲烷，旋转蒸发仪在水浴温度不高于40℃下，除去残留有机溶剂，活性炭脱色。脱色后，加入碳酸钠水溶液，控制pH值在8.0-8.2，加入氯化铵12.2g (0.23mol)，继续滴加碳酸钾水溶液使氯化铵溶解，控制pH值在...
8.0~8.2，温度调至38℃，反应40分钟。反应结束，降至室温。加入10ml乙醇，用稀硫酸调
pH值至2.5，析出产品，继续搅拌30分钟。抽滤，滤饼用纯化水60ml洗涤三次，得头孢地尼
粗品；
[0073] 4）粗品溶于无水甲醇中，加无水硫酸钠干燥，干燥后，过滤掉絮状不溶物，浓缩，放
入-4℃冰箱中静置，析出白色产品，抽滤，滤饼用丙酮洗涤，45℃烘干，得头孢地尼15.73g。
[0074] 2）按7-AVCA计，收率90%，含量98%，有关物质：杂质个数为4个，最大杂质为
0.15%，杂质总量为0.36%。样品经红外、核磁共振氢谱检测，结果（见附图3和附图8）与
头孢地尼的对照品的红外图（见附图1）、核磁共振氢谱图（见附图6）一致。
[0075] 实施例3：相转移催化法制备头孢地尼的方法
[0076] 1.制备方法
[0077] 1）将乙酰氨基头孢地尼活性酯23克（0.066mol），加入到二氯甲烷100ml和纯化水
50ml的混合溶剂中，搅拌控制温度25℃，加入7-AVCA10克（0.044mol），保温25℃搅拌20
分钟；
[0078] 2）加入十四烷基三甲基氯化铵0.5g（0.002mol），搅拌溶解后将三乙胺-二氯甲烷
（体积比为1：6）溶液慢慢滴入反应液中，在25℃下继续反应2.5小时，反应结束后，加入
纯化水50ml，搅拌，分离得水层；
[0079] 3）水层用二氯甲烷洗涤两次，每次用50ml二氯甲烷，旋转蒸发仪在水浴温度不
高于40℃下，除去残留有机溶剂，活性炭脱色。脱色后，加入碳酸钾水溶液，控制pH值在
8.0~8.2，加入氯化铵12.2g（0.23mol），继续滴加碳酸钾水溶液使氯化铵溶解，控制pH值在
8.0~8.2，温度调至38℃，反应40分钟。反应结束，降至室温。加入10ml乙醇，用稀硫酸调
pH值至2.5，析出产品，继续搅拌30分钟。抽滤，滤饼用纯化水60ml洗涤三次，得头孢地尼
粗品；
[0080] 4）粗品溶于无水甲醇中，加无水硫酸钠干燥，干燥后，过滤掉絮状不溶物，浓缩，放
入-4℃冰箱中静置，析出白色产品，抽滤，滤饼用丙酮洗涤，45℃烘干，得头孢地尼16.08g。
[0081] 2）按7-AVCA计，收率92%。含量98.5%，有关物质：杂质个数为5个，最大杂质为
0.13%，杂质总量为0.35%。样品经红外、核磁共振氢谱检测，结果（见附图4和附图9）与
头孢地尼的对照品红外、核磁共振氢谱（见附图1和附图6）一致。
[0082] 对比例1：未用相转移催化法制备头孢地尼的方法
[0083] 1.制备方法
[0084] 1）将乙酰氨基头孢地尼活性酯15克（0.044mol），加入到二氯甲烷100ml和纯化水
50ml的混合溶剂中，搅拌控制温度25℃，加入7-AVCA10克（0.044mol），保温25℃搅拌20
分钟；
[0085] 2）将三乙胺-二氯甲烷（体积比为1：6）溶液慢慢滴入反应液中，在25℃下继续
反应5小时，反应结束后，加入纯化水50ml，搅拌，分离得水层；
[0086] 3）水层用二氯甲烷50ml洗涤两次，旋转蒸发仪在水浴温度不高于40℃下，除去残
留有机溶剂，活性炭脱色。脱色后，加入碳酸钾水溶液，控制pH值在8.0~8.2，加入氯化铵，
继续滴加碳酸钾水溶液使氯化铵溶解，控制pH值在8.0~8.2，温度调至38℃，反应40分钟。反
应结束，降至室温。加入10ml乙醇，用稀硫酸调pH值至2.5，析出产品，继续搅拌30分
钟。抽滤，滤饼用纯化水洗涤三次，得头孢地尼粗品；
[0087] 4) 纯品溶于无水甲醇中，加无水硫酸钠干燥，干燥后，过滤掉絮状不溶物，浓缩，放入-4℃冰箱中静置，析出白色产品，抽滤，滤饼用丙酮洗涤，45℃烘干，得头孢地尼 1.75g。

[0088] 2) 按 7-AVCA 计，收率 10%，含量 98.5%，有关物质：杂质个数为 8 个，最大杂质为 0.19%，杂质总量为 3.56%。样品经红外、核磁共振氢谱检查，结果（见附图 5.10）与头孢地尼的对照品的红外、核磁共振氢谱（见附图 1.6）一致。

[0089] 对比例 2：参照中国专利申请 200910099380.8 方法

[0090] 1) 制备头孢地尼中间体

[0091] 在 500ml 三口烧瓶中投入 20 克 7-AVCA (0.088mol), 36 克头孢地尼活性甲酯 36g(0.106mol), 100ml 水, 200ml 甲醇, -10℃滴加三丁基胺 / 甲醇混合液 20 克 /50ml, 滴加毕，-10℃保温反应 24 小时，取样做 HPLC 至 7-AVCA 残留至合格，用稀盐酸调节 PH 至 5, 减压回收大部分甲酯；加水 100ml 和 200ml 乙酸乙酯，搅拌 30 分钟，静置 30 分钟。分出水层，油层再加入 50ml 水，搅拌 30 分钟，静置 30 分钟。油层回收溶剂得到副产品氟苯并噻唑。
合并水层加入 5 克活性炭，25℃下脱色 1 小时，过滤，滤液 25℃用稀盐酸调节 PH 至 3.0, 降温到 5℃搅拌 1 小时，过滤得到头孢地尼中间体。

[0092] 2) 制备头孢地尼

[0093] 将上步头孢地尼中间体加入 200ml 水，在 -10℃下滴加氢氧化钠 / 水溶液 12g/100ml, -10℃下水解 30 分钟，用稀盐酸调 PH 值至 5.0, 搅拌 30 分钟，再用活性炭 5 克，保持 25℃下，脱色 1 小时，过滤，升温至 30℃，滴加稀盐酸调 PH 至 2.5, 保温 30 分钟，降温至 0℃, 搅拌 3 小时，静置 1 小时，过滤，滤饼用 100ml 水洗涤，烘干得到 18 克头孢地尼。

[0094] 2) 按 7-AVCA 计，收率为 52%，含量为 94%，有关物质：杂质个数为 4 个，最大杂质为 0.5%，杂质总量为 2.80%。样品品经红外、核磁共振氢谱检查，结果与头孢地尼的对照品的红外、核磁共振氢谱一致。

[0095] 实验例 1: 重复实施例 1-3, 对比例 1, 2, 试验结果见表 1:

[0096] 表 1:

<table>
<thead>
<tr>
<th>实施例</th>
<th>某转移催化剂原液 (与 7-AVCA 的摩尔比)</th>
<th>某转移催化剂用量 (与 7-AVCA 的摩尔比)</th>
<th>活性酯用量</th>
<th>热反应温度</th>
<th>反应时间</th>
<th>含量</th>
<th>收率 (%)</th>
<th>有关物质</th>
<th>收率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>丙基二乙基氯化铵 (TBA)</td>
<td>0.050</td>
<td>1</td>
<td>25</td>
<td>3.5</td>
<td>99%</td>
<td>杂质个数为 4 个，最大杂质为 0.41%</td>
<td>89%</td>
<td></td>
</tr>
<tr>
<td>实施例 2</td>
<td>丁基氯化铵</td>
<td>0.030</td>
<td>1</td>
<td>25</td>
<td>3</td>
<td>98%</td>
<td>杂质个数为 4 个，最大杂质为 0.15%</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>实施例 3</td>
<td>十四烷基三甲基氯化铵</td>
<td>0.039</td>
<td>1.5</td>
<td>25</td>
<td>2.5</td>
<td>99%</td>
<td>杂质个数为 5 个，最大杂质为 0.35%</td>
<td>92%</td>
<td></td>
</tr>
<tr>
<td>对比例 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td>对比例 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52%</td>
</tr>
</tbody>
</table>

[0098] 由表 1 结果可以看出, 在二氯甲烷与水的反应体系中，转移催化剂的存</br> 在能够极大的促进反应的进行，提高产品的收率，并缩短反应时间，使反应的条件温和。十四烷基三甲基氯化铵作为转移催化剂效果比较好。
虽然，上文中已经用一般性说明、具体实施方式及试验，对本发明作了详尽的描述，但在本发明基础上，可以对之作一些修改或改进，这对本领域技术人员而言是显而易见的。因此，在不偏离本发明精神的基础上所做的这些修改或改进，均属于本发明要求保护的范围。
图 1
图 2
图 3
图 4
图 5
图 6
图 7
图 8
图 9
图10