特許協力条約に基づいて公開された国際出願

(19) 世界知的財産権機関
国際事務局

(43) 国際公開日
2004年9月23日 (23.09.2004)

(10) 国際公開番号
WO 2004/081559 A1

(51) 国際特許分類*: G01N 30/60, 30/48, 37/00, 27/447

(21) 国際出願番号: PCT/JP2004/003096

(22) 国際出願日: 2004年3月10日 (10.03.2004)

(25) 国際出願の言語: 日本語
(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願2003-64912 2003年3月11日 (11.03.2003) JP

(54) Title: MICRO FLUID DEVICE AND PROCESS FOR PRODUCING THE SAME

発明の名称: マイクロ流体素子及びその製造方法

(57) Abstract: A process for producing a micro fluid device in which a porous resin layer capable of fixing a most appropriately large amount of proteins, such as enzymes and antigens, catalysts, etc. on the inner surface of minute channels of the micro fluid device without clogging of the channels is provided with a uniform thickness on the surface of the channels. Providing of a porous resin layer with a uniform thickness on the surface of the channels can be easily accomplished through a process comprising forming in advance on a support a porous resin layer having a multiplicity of pores on its surface, applying an actinic energy radiation hardening composition onto the porous resin layer so as to form deformed portions having the porous resin layer at bottoms thereof, and thereafter securing a covering member to the deformed portions so as to provide channels.

要: 本発明は、マイクロ流体素子の微細な流路の内表面に該流路を閉塞することなく、また、例えば酵素や抗原などのタンパク質、あるいは触媒などを最適に固定できる多孔質樹脂層を該流路の表面に均一厚さで形成するマイクロ流体素子の製造方法を提供することを課題としている。本発明においては、支持体上にあらかじめ表面に多数の細孔を有する多孔質樹脂層を形成し、該多孔質樹脂層の上に活性エネルギー硬化性の組成物を使用して底面に多孔質樹脂層を有する凹部を形成した後、該凹部上に盖となる被体を

/続業有/

添付公開書類:
— 国際調査報告書
2文字コード及び他の略語については、定期発行される各PCGガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。
明細書

マイクロ流体素子及びその製造方法

技術分野

本発明は、流路の内表面に三次元網目構造の多孔質樹脂層を有するマイクロ流体素子、およびその製造方法に関する。

背景技術

近年、医療診断や生化学的試験をはじめとする様々な分野において、DNAや生化学物質などを含有した微量流体の成分を分析するために、マイクロ流体素子を用いる試みが始まっている。

マイクロ流体素子は、マイクロ流体デバイス、マイクロ・フルイディック・デバイス、マイクロ・ファブリケイテッド・デバイス、ラボ・オン・チップ、またはマイクロ・トータル・アナリティカル・システム（μ-TAS）とも呼ばれるものであり、内部に数る微細な毛細管状の流路の中で反応や分析を行うことにより、反応や分析の迅速化、必要試料量の減少、さらには廃棄物の減少が可能となる。

このようなマイクロ流体素子を使用して、流路の内表面に酵素、触媒、官能基などを固定して流体中の試料と反応させる場合や、特定配列のDNA断片などのプローブを固定して試料中のDNA断片を検出する場合には、反応速度や分析感度を向上させるために、より多くの酵素や触媒、あるいはDNA断片などのプローブを固定化することが重要となる。

流路中に、上述のような官能基、（生）化学物質、あるいは生体物質などの固定量を増加させるには、流路内を多孔質状にすることが好ましい。内部に多孔質体が形成された流路としては、シリコンやアルミニウム製の板の表面から一定深さまでの範囲をエッチングと熱処理により多孔質化し、該多孔質化した面に蓋を固定する方法で形成された、内部全体が多孔質体であるような流路が知られている（特開平6－169756号公報参照）。しかしながら、この流路は、内部全体が
多孔質体であり、流路を流れる液体は該多孔質体の細孔を通って流れるため、流路に十分な流速で液体を流すためには数百kPa以上の高圧を要した。そのため、マイクロ流体素子本体や液体を導入するための接続口を高圧に耐える頑丈な構造にする必要があった。また、これらの無機素材は、表面に導入される官能基の種類が限定される上、官能基の固定化密度も小さいため、多孔質化しても不十分な程度にとどまっていた。さらに、シリコンや金属は光学的に不透明であり、多孔質体の内部に固定された色素や蛍光色素は外部から観察できないため、光吸収や蛍光検出の感度向上には寄与しなかった。そして、やはり光学的に不透明であることから、蛍光測定に於いては励起光の散乱量が多く、フィルターでは完全にカットされない励起光が受光側に入り込むため、測定される蛍光強度のベースラインが高くなり、S/N比の低下と信頼性の低下を招いていた。さらに、シリコンや金属は熱伝導率が高いため、流路に温度勾配を設けることが困難であり、マイクロ流体素子としての使用上の制約もあった。

一方、樹脂（有機重合体）は、表面に導入できる官能基の種類が多く、官能基の固定化密度も高くすることが可能であり、流路内表面を構成する素材としては好ましいものである（特開2000-27055号公報参照）。しかしながら、樹脂のマイクロ流体素子の製造方法として知られているような、溝状の流路を形成する方法（例えば特開2000-46797号公報参照）においては、基材の表面に電子エッチング法で微細な凹凸を形成し、その上に活性エネルギー線硬化性化合物を塗布し、流路とす部分以外にエネルギー線を照射して活性エネルギー線硬化化合物を硬化させ、未照射部の未硬化の活性エネルギー線硬化性化合物を除去することにより、底面に微細な凹凸を有する溝状の流路を形成する方法が記載されているが、該マイクロ流体素子の流路底面には、単に親水性を付与するためにの凹凸が設けられているだけであって、三次元網目状の多孔質層は形成されていない。かかる凹凸を有する内表面のマイクロ流体素子は、内表面を処理しないマイクロ流体素子に比べてブローブを固定する量が多くなるかどうかについては知られていないが、本発明者らの確認実験によると、その増加の程度は小さく、十分とは言えないものであった。

一方、流路の表面ではなく、プレートなどの表面に酵素や触媒の固定量を増す
方法としては、該プレートの表面に薄い多孔質層を形成し、ここに固定する方法が開示されている（特開２０００－２７０５号公報参照）。しかしながら、マイクロ流体素子の微細な流路内面の一面に、このような多孔質層を設ける方法はこれまで知られていなかった。

また、エネルギー線硬化性樹脂と鎖状重合体と溶剤の混合溶液を基材に塗布し、エネルギーを照射した後、前記鎖状重合体の非溶剤と接触させて相分離させる方法で親水性の多孔質膜を作製する方法が開示されている（特開１０－００７，８３５号公報参照）。しかし、この方法についても、マイクロ流体素子の微細な流路内面に、このような樹脂を均一な厚みで設ける方法はこれまで知られていなかった。

本発明が解決しようとする課題は、マイクロ流体素子の微細な流路の内表面に該流路を閉塞することなく、また、例えば酵素や抗原などのタンパク質、あるいは触媒などを最適に多く固定できる三次元網目構造の多孔質樹脂層が該流路の表面に均一な厚さで形成されたマイクロ流体素子、該多孔質樹脂層が流路の流れ方向の任意の位置に形成されたマイクロ流体素子、該多孔質樹層が流路の断面の一部に形成されたマイクロ流体素子、および該マイクロ流体素子の製造方法を提供することにある。

発明の開示

本発明者らは、前記課題を解決する方法について鋭意検討した結果、支持体上にあらかじめ表面に三次元網目構造の多孔質樹脂層を形成し、該多孔質樹脂層の上に活性エネルギー線硬化性の組成物を使用して底面に三次元網目構造の多孔質樹脂層を有する凹部を形成した後、該凹部に蓋となる部材を固定して流路を形成することにより上記課題を解決できることを見出し、本発明を完成するに至った。

即ち、支持体と三次元網目構造の多孔質樹脂層と流路と蓋部とからなるマイクロ流体素子において、（I）支持体の上部に該多孔質樹脂層を有し、（II）該多孔質樹脂層が流路部分を除いて含浸した活性エネルギー線硬化性樹脂組成物（X）の硬化樹脂で充填され、（III）流路が活性エネルギー線硬化性樹脂組成物（X）の硬化樹脂で充填されていない三次元網目構造の多孔質樹脂層と、活性エネルギー
線硬化性樹脂組成物（X）の硬化樹脂で充填された三次元網目構造の多孔質樹脂層の上部に形成された活性エネルギー線硬化性樹脂組織物（X）の硬化樹脂層と、
蓋部とを壁面としてなり、空洞状を形成していることを特徴とするマイクロ流体素子を提供するものである。

また、本発明は、（1）支持体の表面に多数の細孔を有する三次元網目構造の多孔質樹脂層を形成する工程、（2）該多孔質樹脂層の上に活性エネルギー線重合性化合物（a）を含有する活性エネルギー線硬化性組成物（X）を塗装し、該組成物（X）の未硬化塗膜を形成し、流路と成すべき部分以外の前記未硬化塗膜に活性エネルギー線を照射して前記組成物（X）の硬化又は半硬化塗膜を形成し、非照射部分の未硬化の前記組成物（X）を除去して、三次元網目構造の多孔質樹脂層が底面に露出した凹部を形成する工程、及び、（3）前記凹部を有する部材の凹部に蓋となる他の部材を密着して前記凹部を空洞状の流路と成す工程を有することを特徴とするマイクロ流体素子の製造方法、好ましくは、前記支持体の表面に三次元網目構造の多孔質樹脂層を形成する工程が、支持体上に活性エネルギー線重合性化合物（b）と、該化合物（b）とは相溶するが、該化合物（b）から生成する重合体とは相溶しない雑溶剤（R）とを含有する活性エネルギー線硬化性の製膜液（J）を塗布した後、該製膜液（J）に活性エネルギー線を照射して、
支持体の表面に三次元網目構造の多孔質樹脂層を形成する工程であるマイクロ流体素子の製造方法を提供するものである。

本発明のマイクロ流体素子を液体クロマトグラフィー用部材として使用した場合には、展開液を低い圧力で流しても高速分析が可能であるため、分離カラムや、
展開液の導入配管との接続部分などに高い耐圧性を持たせる必要が無く、また、
μ－TASに組み込むことが容易で、その場合にμ－TASのデバイス全体を頑丈な構造にする必要もないため、試料が極微量の場合にも好適に分離対象物質を分離できる。また、官能基や分子認識機能を有する（生）化学物質の固定量を従来に比べて極めて多くすることが出来るため、試料導入量の許容量の拡大、定量性や精度の向上、感度の向上、が図れる。さらに生産性が高く、安価に製造できるため、ディスポーザブル用途にも使用可能である。

また、三次元網目構造の多孔質樹脂層を流路の底面のみに形成することが出来
るため、流路を通じて、該多孔質樹脂層の表面を光学的に観察することが可能であり、高感度かつ定量化の高い測定が可能である。

また、本発明のマイクロ流体素子をアフィニティー電気泳動用部材として使用した場合には、電気泳動媒体として、ゾルやゲルを使用しなくても分析が可能であるため、使用に先立ち煩雑な準備操作が不要で、市場流通時の性能劣化も少なく、乾燥状態での保存も可能であるため、保存や市場の流通も容易である。また、官能基や分子認識機能を有する（生）化学物質の固定量を従来に比べて極めて多くすることが出来るため、試料導入量の許容量の拡大、定量化や精度の向上、感度の向上が図られる。さらに、三次元網目構造の多孔質樹脂層を流路の底面のみに形成することが出来るため、流路を通して、該多孔質樹脂層の表面を光学的に観察することが可能であり、高感度かつ定量化の高い測定が可能である。

本発明のマイクロ流体素子をDNA分析や免疫診断などのマイクロアレイ用部材として使用した場合には、プローブの固定量を従来に比べて極めて多くすることが出来るため、検出感度の向上、定量化の向上、分析の迅速化が図られる。また、三次元網目構造の多孔質樹脂層を流路内にスポットとして形成し、各スポットに異なるプローブを固定できるため、一本の流路で多項目の分析が出来る。さらに、フローチャネルの多孔質樹脂層を流路の底面のみに形成することが出来るため、流路を通して、該多孔質樹脂層の表面を光学的に観察することが可能であり、高感度かつ定量化の高い測定が可能である。

本発明のマイクロ流体素子をマイクロリアクターの反応槽や反応管として使用した場合には、触媒や酵素などの固定量を多くすることが出来るため、反応速度の向上や収率の向上が図られる。また、三次元網目構造の多孔質樹脂層を流路内の任意の領域に形成でき、各領域に異なる触媒などを固定できるため、一本の流路で多段階の反応を行うことが可能である。

本発明の製造方法を使用することにより、細い流路の内部に後から多孔質樹脂層を形成する困難さと制約から解放されるため、マイクロ流体素子の微細な流路の内表面に該流路を閉塞することなく、また、該流路の表面に均一な厚さの三次元網目構造の多孔質樹脂層を有するマイクロ流体素子を容易に製造することができる。また、該多孔質樹脂層の厚みや細孔形状や孔径を、使用目的に最適の値に
調節することが容易にできる。さらに、流路の流れ方向の一部に任意の長さの三次元網目構造の多孔質樹脂層形成部分、例えばスポット状の該多孔質樹脂層部分を設けることも容易である。また、流路底面の多孔質樹脂層以外の多孔質樹脂層部分を通じて流路内の流体が漏れることもない。

本発明の製造方法によれば、微細な流路内表面に形成される三次元網目構造の多孔質樹脂層の孔径や厚みを、使用目的に最適な値に調節することが容易にできることから、比表面積が大きく、多くの物質を固定化でき、極少量の試験液で、感度や精度の高い（生）化学的分析や検出を短時間で行うことができる。また、流路の底面のみに三次元網目構造の多孔質樹脂層を形成することができるため、流路を通して該多孔質樹脂層表面を光学的に観察することが可能であり、分析に使用した場合に高感度の測定が可能である。さらに、流路の流れ方向の一部に任意の長さの多孔質樹脂層形成部分、例えばスポット状の多孔質樹脂層部分を設けることも容易である。

また、三次元網目構造の多孔質樹脂層を形成する工程の後に、該多孔質樹脂層の表面を表面処理または修飾する工程を設けることにより、該多孔質樹脂層の表面に反応性を有する官能基を導入でき、これらの官能基と反応させて、各種の（生）化学物質や生体物質を共有結合で該多孔質樹脂層の表面に固定することができる。勿論、イオン結合や疎水結合による吸着によってもこれらの物質を固定することも出来る。このとき、前記のように複数の多孔質樹脂層スポットを形成し、該複数の多孔質スポットにそれぞれ異なる種類や濃度の官能基を導入したり、異なる種類の物質を固定することも容易にできる。

さらに、25℃における組成物（X）の粘度を30〜3000mPa・sとすることにより、組成物（X）を三次元網目構造の多孔質樹脂層の上に塗工した際に組成物（X）が速く該多孔質樹脂層内へ浸透し、流路底面の多孔質樹脂層以外の多孔質樹脂層部分を通じて流路内の流体が漏れることができないマイクロ流体素子を容易に製造できる。また、粘度を上記範囲とすることにより、活性エネルギー線照射後に、非照射部分の未硬化の組成物（X）を除去する際に、組成物（X）が完全に多孔質樹脂層から除去される。
図面の簡単な説明

図1 実施例1において作成した、三次元網目構造の多孔質樹脂層の走査型電子顕微鏡写真である。

発明を実施するための最良の形態

本発明の流路の内表面に三次元網目構造の多孔質樹脂層を有するマイクロ流体素子の製造方法は、少なくとも以下の（1）〜（3）の工程を有する。

（1）支持体の表面に多数の細孔を有する三次元網目構造の多孔質樹脂層を形成する工程。

（2）該多孔質樹脂層の上に活性エネルギー線重合性の化合物（a）を含有する活性エネルギー線硬化性の組成物（X）を塗布し、該組成物（X）の未硬化塗膜を形成し、流路と成すべき部分以外の前記未硬化塗膜に活性エネルギー線を照射して前記組成物（X）の硬化又は半硬化塗膜を形成し、非照射部分の未硬化の前記組成物（X）を除去して、三次元網目構造の多孔質樹脂層が底面に露出した凹部を形成する工程。

（3）前記凹部を有する部材の凹部に蓋となる他の部材を固着して前記凹部を空洞状の流路と成す工程。

工程（1）において多数の細孔を有する三次元網目構造の多孔質樹脂層を形成する方法としては、該多孔質樹脂層が形成できれば任意であり、例えば下記の四つの方法を好適に使用することができる。ここでいう三次元網目構造とは、細孔（空隙）およびそのマトリックスと成る樹脂がそれぞれ三次元方向につながっていて、該細孔が樹脂多孔質層の表面に開口している構造を言い、例えば、気泡状の空洞が互いに連続してつながった構造（スポンジ状構造とも言う）、互いに固着した樹脂粒子間の空隙が連続した細孔となる構造（凝集粒子状構造又は焼結体状構造とも言う）、これら二者の中間的な構造であり、細孔と樹脂がほぼ同等な構造を有し、それぞれの層が互いに連続している構造（変調構造もしくはギロイド構造とも言う）、不織布状構造（マット状構造とも言う）などを例示できる。

三次元網目構造の多孔質樹脂層を形成する第一の方法は、支持体上に活性エネルギー線重合性の化合物（b）（以下、該化合物を重合性化合物（b）と称する）
と、前記化合物（b）とは相溶するが、化合物（b）から生成する重合体とは相溶しない機能剤（R）を含有する活性エネルギー線硬化性の製膜液（J）（以下、該製膜液を製膜液（J）と称する。）を塗布した後、該製膜液（J）に活性エネルギー線を照射し、前記化合物（b）を重合させると共に相分離を生じさせることにより、三次元網目構造の多孔質樹脂層を形成する方法（以下、該方法を反応誘発型相分離法と称する。）である。該方法では、化合物（b）の重合により、生成した重合体が機能剤（R）と相溶しなくなり、重合体と機能剤（R）が相分離を生じ、重合体内部や重合体間に機能剤（R）が取り込まれた状態になる。この機能剤（R）を除去することにより、機能剤（R）が占めていた領域が孔となり三次元網目構造の多孔質樹脂層を形成できる。

重合性化合物（b）としては、重合開始剤の存在下または非存在下で活性エネルギー線により重合するものであり、付加重合性の化合物や、活性エネルギー線重合性官能基として重合性の炭素＝炭素二重結合を有するものが好ましく、なかでも、反応性的高い（メタ）アクリル系化合物やビニルエーテル類、また光重合開始剤の存在下でも硬化するマレイミド系化合物が好ましい。さらに、半硬化状態で形状保持を高くでき、硬化後の強度も高くできることから、重合して架橋重合体を形成する化合物であることが好ましい。そのために、1分子中に2つ以上の重合性の炭素＝炭素二重結合を有する化合物（以下、「1分子中に2つ以上の付加重合性の官能基を有する」ことを「多官能」と称する。）であることが更に好ましい。

このような重合性化合物（b）としては、例えば、（メタ）アクリル系モノマー、マレイミド系モノマー、あるいは、分子鎖に（メタ）アクリロイル基やマレイミド基を有する重合性のオリゴマー（プレポリマーともいう。）などが使用できる。

上記（メタ）アクリル系モノマーとしては、例えばジビニルテトラメタクリレート、ネオペンチルグリコールジ（メタ）アクリレート、1,6-ヘキサジアールジ（メタ）アクリレート、2,2'-ビス（4-（メタ）アクリロイルオキシポリエチレンオキシフェニル）プロパン、2,2'-ビス（4-（メタ）アクリロイルオキシポリプロピレンオキシフェニル）プロパン、ヒドロキシジビパリル酸ネオペンチルグリコールジ（メタ）アクリレート、ジシクロベ
エタニアルギクリート、ビス（アクリロキシエチル）二クロキシエチルイソシアヌレート、Ｎ－メチレンビスアクリルアミドなどの２官能モノマー；トリメチロールプロパントリ（メタ）アクリレート、トリメチロールエタントリ（メタ）アクリレート、トリス（アクリロキシエチル）イソシアヌレート、カプロラクトン変性トリス（アクリロキシエチル）イソシアヌレートなどの３官能モノマー；ベンタエリスリトールテトラ（メタ）アクリレートなどの４官能モノマー；ジベンタエリスリトールヘキサ（メタ）アクリレートなどの６官能モノマーが挙げられる。

マレイミド系モノマーとしては、例えば、4, 4'－メチレンビス（N－フェニルマレイミド）、2, 3－ビス（2, 4, 5－トリメチル－3－チエン）マレイミド、1, 2－ビスメイミドエタシ、1, 6－ビスメイミドヘキサシ、トリエチレンジコールビスマレイミド、N, N'－m－フェニレンジマレイミド、m－トリレンジマレイミド、N, N'－1, 4－フェニレンジマレイミド、N, N'－ジフェニルメタンジマレイミド、N, N'－ジフェニルエーテルジマレイミド、N, N'－ジフェニルスルホンジマレイミド、1, 4－ビス（マレイミドエチル）－1, 4－ジアゾニアビシンクロ[2, 2, 2]オクタンジクロリド、4, 4'－イソプロピリデンジフェニル＝ジシナート・N, N'－（メチレンジ－p－フェニレニン）ジマレイミド等の２官能マレイミド；N－（9－アクリジニューラ）マレイミドなどのマレイミド基とマレイミド基以外の重合性官能基とを有するマレイミドが挙げられる。これらマレイミド系モノマーは、ビニルモノマー、ビニルエーテル類、アクリル系モノマーなどの重合性炭素・炭素二重結合を有する化合物と共重合させることもできる。

分子鎖に（メタ）アクリロイル基やマレイミド基を有する重合性のオリゴマーとしては、質量平均分子量が500～5000のものが挙げられ、例えば、エポキシ樹脂の（メタ）アクリロ酸エステル、ポリエーテル樹脂の（メタ）アクリロ酸エステル、ポリブタジエン樹脂の（メタ）アクリロ酸エステル、分子末端に（メタ）アクリロイル基を有するポリウレタン樹脂などが挙げられる。

これら重合性化合物（b）は、単独で、又は、2種類以上を混合して用いることもできる。また、粘度の調節、接着性や半硬化状態での粘着性の調節、あるいは反応性や親水性などの機能を付与する目的で、単官能（メタ）アクリル系モノ
マーヤ、単官能マレイミド系モノマーなどの単官能モノマーと混合して使用してもよい。例えば、後述の親媒性化合物（c）を添加しても良い。

単官能（メタ）アクリル系モノマーとしては、例えば、メチルメタクリレート、アルキル（メタ）アクリレート、イソプロポニル（メタ）アクリレート、アルコキシポリエチレングリコール（メタ）アクリレート、フェノキシジアルキル（メタ）アクリレート、フェノキシポリエチレングリコール（メタ）アクリレート、アルキルフェノキシポリエチレングリコール（メタ）アクリレート、ノニルフェノキシポリエチレングリコール（メタ）アクリレート、ヒドロキシアルキル（メタ）アクリレート、グリセロールアクリレートメタクリレート、プタンジオールモノ（メタ）アクリレート、2－ヒドロキシ－3－フェノキシプロピルアクリレート、2－アクリロイルオキシエチル－2－ヒドロキシプロピルアクリレート、エチレンオキサイド変性フタル酸アクリレート、w－カルボキシアプロラクトンモノアクリレート、2－アクリロイルオキシプロピルハイドロジェンフタレート、2－アクリロイルオキシエチルコハク酸、アクリル酸ダイマー、2－アクリロイルオキシプロピルヘキサヒドロハイドロジェンフタレート、フッ素置換アルキル（メタ）アクリレート、塩素置換アルキル（メタ）アクリレート、スルホン酸ソーダエトキシ（メタ）アクリレート、スルホン酸－2－メチルプロパン－2－アクリルアミド、硝酸エステル基含有（メタ）アクリレート、グリシジル（メタ）アクリレート、2－イソシアナートエチル（メタ）アクリレート、（メタ）アクリロイルクロライド、（メタ）アクリルアルデヒド、スルホン酸エステル基含有（メタ）アクリレート、シラノ基含有（メタ）アクリレート、((ジ）アルキル）アミノ基含有（メタ）アクリレート、4級（（ジ）アルキル）アンモニウム基含有（メタ）アクリレート、(N－アルキル）アクリルアミド、(N、N－ジアルキル）アクリルアミド、アクロロイルモノオリンなどが挙げられる。

単官能マレイミド系モノマーとしては、例えば、N－メチルマレイミド、N－エチルマレイミド、N－ブチルマレイミド、N－デシルマレイミドなどのN－アルキルマレイミド；N－シクロヘキシルマレイミドなどのN－脂環族マレイミド；N－ペンジルマレイミド；N－フェニルマレイミド、N－（アルキルフェニル）マレイミド、N－ジアルコキシフェニルマレイミド、N－（2－クロロフェ
ニル）マレイミド、2, 3-ジクロロ-N-(2, 6-ジエチルフェニル) マレイミド、2, 3-ジクロロ-N-(2-エチル-6-メチルフェニル) マレイミドなどのN-(置換又は非置換フェニル) マレイミド；N-ベンジル-2, 3-ジクロロマレイミド、N-(4'-フルオロフェニル)-2, 3-ジクロロマレイミドなどのハロゲンを有するマレイミド；ヒドロキシフェニルマレイミドなどの水酸基を有するマレイミド；N-(4-カルボキシ-3-ヒドロキシフェニル) マレイミドなどのカルボキシ基を有するマレイミド；N-メトキシフェニルマレイミドなどのアルコキシ基を有するマレイミド；N-[3-(ジエチルアミノ)プロピル] マレイミドなどのアミノ基を有するマレイミド；N-(1-ピレニル) マレイミドなどの多環芳香族マレイミド；N-(ジメチルアミノ-4-メチル-3-クマリニル) マレイミド、N-(4-アミリノ-1-ナフチル) マレイミドなどの複素環を有するマレイミドなどが挙げられる。

これらの単官能モノマーとして、(生)化学物質や生体物質を固定するためのアンカーとなりうる官能基やイオン性の官能基、例えば、後述の三次元網目構造の多孔質樹脂層に好ましく導入できる官能基として例示された官能基を分子内に有するモノマーを使用することも好ましい。

反応誘発型相分離法で使用する塩溶液（R）としては、重合性化合物（b）とは相溶するが、重合性化合物（b）から生成する重合体は塩溶（相互に溶解）しないものを使用する。塩溶液（R）と重合性化合物（b）との相溶の程度は、均一な製膜液（J）が得られればよい。塩溶液（R）は、単一溶剤であっても混合溶剤であってもよく、混合溶剤の場合には、その構成成分単独では重合性化合物（b）と相溶しないものや、重合性化合物（b）の重合体を溶解させるものであっても良い。このような塩溶液（R）としては、例えば、デカン酸メチル、オクタン酸メチル、アジビン酸ジソプチルなどの脂肪酸のアルキルエステル類；ジソプチルケトンなどのケトン類；デカノールなどのアルコール類；2-プロパノールやエタノールと水との混合物などのアルコールと水との混合物などが挙げられる。

反応誘発型相分離法においては、製膜液（J）に含まれる化合物（b）の含有量によって、得られる三次元網目構造の多孔質樹脂層の孔径や強度が変化する。
化合物（b）の含有量が多いほど該多孔質樹脂層の強度が向上するが、孔径は小さくなる傾向にある。化合物（b）の好ましい含有量としては15～50質量％の範囲、更に好ましくは25～40質量％の範囲が挙げられる。化合物（b）の含有量が15質量％以下になると、該多孔質樹脂層の強度が低くなり、化合物（b）の含有量が50質量％以上になると、該多孔質部の孔径の調整が難しくなる。

製膜液（J）には、重合速度や重合度、あるいは孔径分布などを調整するために、重合開始剤、溶剤、界面活性剤、重合禁止剤、あるいは重合遅延剤などの各種添加剤を添加してもよい。

光重合開始剤としては、活性エネルギー線に対して活性で、重合性化合物（b）を重合させることが可能なものであれば、特に制限はなく、ラジカル重合開始剤、アニオン重合開始剤、カチオン重合開始剤などが使用でき、例えば、p− tert−ブチルトリクロロアセトフェノン、2, 2′−ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロバン−1−オノなどのアセトフェノン類、ペンゾフェノン、4, 4′−ビスジメチルアミノペンゾフェノン、2−クロロチオキサントン、2−メチルチオキサントン、2−エチルチオキサントン、2−イソプロピルチオキサントンなどのケトン類、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソプロピルエーテルなどのベンゾインエーテル類、ベンジルメチルケタール、ヒドロキシシクロヘキシルフェニルケトンなどのベンジルケタール類、N−アジドスルフォニルフェニルメライミドなどのアジドが挙げられる。また、マレイミド系化合物などの重合性光重合開始剤を使用することもできる。

重合遅延剤や重合禁止剤としては、α−メチルスチレン、2, 4−ジフェニル−4−メチル−1−ペンテンなどの活性エネルギー線重合性化合物としては重合速度の低いビニル系モノマー、tert−ブチルフェノールなどのヒンダントフェノール類などが挙げられる。

また、添加する溶剤としては、特に限定されないが、例えば、エタノールなどのアルコール類、アセトンなどのケトン類、N, N−ジメチルホルムアミドの如くアミド系溶剤、塩化メチレンなどの塩素系溶剤等が挙げられる。

また、塗工性、平滑性などの機能付与、あるいは、フォトリソグラフィーによ
るパターン形成時のパターンの解像度や親水性の度合いなどを調整するために、公知慣用の界面活性剤、疎水性化合物、増粘剤、成膜剤、着色剤、蛍光色素、紫外線吸収剤、酵素、蛋白、細胞、触媒などを添加することもできる。
反応誘発型層分離法において使用できる支持体には、製膜液（J）や使用する活性エネルギー線によって実質的に侵されず、例えば、溶解、分解などが生じないものであればよい。
このような支持体としては、例えば、重合体；ガラス；石英などの結晶；セラミック；シリコンなどの半導体；金属などが挙げられるが、これらの中でも、重合体が特に好ましい。支持体に使用する重合体は、単独重合体であっても、共重合体であっても、熱可塑性重合体であっても、熱硬化性重合体であっても良い。また、支持体は、ポリマープレンドやポリマーアロイで構成されていても良いし、積層体その他の複合体であっても良い。更に、支持体は、改質剤、着色剤、充填材、強化材などの添加物を含有しても良い。
反応誘発型相分離法を使用すると、直径約0.1μm～1μmの粒子状の重合体が互いに凝集した凝集粒子状構造や、直径約0.1μm～1μmの気泡が互いにつながったスポンジ状構造であるような、三次元網目構造の多孔質樹脂層を形成することができる。また、反応誘発型相分離法においては、通常、細孔の孔径が膜の厚み方向に均一な、いわゆる等方性膜が形成されるが、製膜液（J）に揮発性の溶剤を添加し、塗布した後、活性エネルギー線照射前にその一部を揮発除去することで、膜の厚み方向に孔径の分布を有する、いわゆる不均質膜（非対称膜ともいう）を形成することもできる。このとき、揮発性の良溶剤を添加することで、製膜液（J）を塗工する支持体との接触面に孔径の小さな層（繊密層ともいう）を形成することができ、揮発性の良溶剤又は非溶剤を添加することで、支持体と反対の面に繊密層を形成することができる。反応誘発型相分離法により、例えば、孔径が0.05〜5μmの三次元網目構造の多孔質樹脂層を形成できる。
本反応誘発型相分離法において、三次元網目構造の多孔質樹脂層を限定された領域あるいは複数の領域に形成する場合には、例えば、（イ）活性エネルギー線硬化性樹脂組成物（X）をシルクスクリーン法などによって支持体の一部に塗布し
て露光する方法や、(ロ) 活性エネルギー線硬化性樹脂組成物（X）を支持体上の全体に塗布した後、パターン露光する方法によって、支持体上の一部に該多孔質樹脂層を形成することが出来る。本第一の方法は、官能基を有する化合物（b）を使用することで、該多孔質樹脂層に容易に官能基を導入できる。

三次元網目構造の多孔質樹脂層を形成する第二の方法は、支持体と、該支持体を溶解あるいは膨潤できる溶剤（S）とを接触させた後、該支持体を溶解あるいは膨潤させないが溶剤（S）を用いて溶剤（S）を洗浄除去し、該多孔質樹脂層を形成する方法（以下、該方法を「表面膨潤法」と称する。）である。該方法では、支持体として、溶剤により溶解あるいは膨潤する重合体を使用し、該重合体の表面に溶剤を接触させて、該支持体の一部を溶解または膨潤させた後、該重合体と相溶しない溶剤で洗浄することにより、該重合体が網目状に凝集し三次元網目構造の多孔質樹脂層が形成される。

表面膨潤法における支持体としては、例えば、ポリスチレン、ポリーチ－メチルスチレン、ポリスチレン／マレイン酸共重合体、ポリスチレン／アクリロニトリル共重合体などのスチレン系重合体；ポルスルホン、ポリエーテルスルホンなどのポリスルホン系重合体；ポリメチルメタクリレート、ポリアクリロニトリルなどの（メタ）アクリル系重合体；ポリメラエミド系重合体；ビスフェノールA系ポリカーポネート、ビスフェノールF系ポリカーポネート、ビスフェノールZ系ポリカーポネートなどのポリカーポネート系重合体；酢酸セルロース、メチルセルロースなどのセルロース系重合体；ポリウレタン系重合体；ポリアミド系重合体；ポリイミド系重合体などが挙げられる。

表面膨潤法における溶剤（S）は、前記支持体を溶解あるいは膨潤できるものであれば、特に限定されず、例えば、Ｎ、Ｎ－ジメチルホルムアミド、Ｎ、Ｎ－ジメチルアセトアミドなどのアミド系溶剤、ジメチルホキシド、塩化メチレンなどの塩素系溶剤が挙げられる。また、これら溶剤（S）は混合して混合溶剤として使用することもできる。

溶剤（T）としては、溶剤（S）と混和し、支持体を溶解しないものである。溶剤（T）としては、例えば水、プロパノールなどのアルコール類、水とアルコールの混合物などが挙げられる。
支持体を溶剤（S）と接触させる方法としては、例えば、支持体の溶剤（S）への浸漬、溶剤（S）の支持体表面への噴霧、流延などが挙げられる。

溶剤（T）による溶剤（S）の洗浄方法としては、例えば、溶剤（T）中へ浸漬して洗浄する方法や、あるいは溶剤（T）を噴霧して洗浄する方法などが挙げられるが、支持体ごと溶剤（T）へ浸漬する方法が好ましい。

表面膨潤法で製造された三次元網目構造の多孔質樹脂層は、支持体と一体化されており、スポンジ状や凝集粒子構造を形成できる。該多孔質樹脂層の厚みは、支持体と溶剤（S）との接触時間によって制御でき、接触時間が短いほど、該多孔質樹脂層の厚みが薄くなる。支持体と溶剤（S）との接触時間は、使用する支持体の素材や厚さ、あるいは溶剤の種類などにより適宜調整する必要がある。接触時間が短すぎると、支持体の溶解が十分に進まず孔が十分に形成されない。また、接触時間が長すぎると、支持体の強度が低下する。

本表面膨潤法において、三次元網目構造の多孔質樹脂層を限定された領域あるいは複数の領域に形成する場合には、例えば、マスキングテープで該多孔質樹脂層を形成する箇所以外の部分を覆っておく方法で、支持体上の一部に三次元網目構造の多孔質樹脂層を形成することが出来る。

三次元網目構造の多孔質樹脂層を形成する第三の方法は、鎖状重合体（P）を溶剤（U）に溶解してなる製膜液（K）を支持体に塗布し、該支持体と、該鎖状重合体（P）を溶解または膨潤させず、かつ溶剤（U）とは相溶する溶剤（V）とを接触させることにより、鎖状重合体（P）を多孔質状に凝集させ、支持体表面に三次元網目構造の多孔質樹脂層を形成する方法（以下、該方法を湿式法と称する。）である。

湿式法において使用できる鎖状重合体（P）としては、溶剤（U）に溶解して三次元網目構造の多孔質樹脂層を形成するものが使用でき、スチレン系重合体、スルホン系重合体、ビニール系重合体、アミド系重合体、イミド系重合体、セルロース系重合体、ポリカーポネート、アクリル系重合体などの鎖状重合体（P）がコストを低くでき、取り扱いが容易であることから好ましい。

湿式法における溶剤（U）は前記表面膨潤法において使用し得る溶剤（S）と同様の溶剤が使用でき、溶剤（V）としては前記表面膨潤法における溶剤（T）
と同様の溶剤が使用できる。

また、必要に応じて、前記した反応誘発型相分離法において使用できる添加剤などの各種添加剤を製膜液（K）に添加してもよい。

湿式法において使用できる支持体は任意であり、鎖状重合体（P）を溶剤（U）に溶解した製膜液（K）によって実質的に侵されないものが好ましいが、上記製膜液（K）に溶解または膨潤するものを用いれば、本湿式法に前記膨潤法が加わった機構で三次元網目構造の多孔質樹脂層を形成することも出来る。このような支持体としては、例えば、重合体；ガラス；石英などの結晶；セラミック；シリコンなどの半導体；金属などが挙げられるが、これらの中でも、重合体が特に好ましい。

湿式法により得られる多孔質の構造は、スポンジ状構造、凝集粒子状構造、モロイド構造、その他にマクロロイドを有する複雑な形状の構造であり得る。

湿式法を使用した場合には、通常、塗工支持体の反対の面に緻密層を有する不均質膜（非対称膜）が形成されるが、塩やその他の低分子化合物（孔形成剤）などの添加や、予溶剤、良溶剤の沸点調整などにより、等方性膜とすることも可能である。また、鎖状重合体（P）の濃度、溶剤の添加量などを調製することにより、孔径が0.005〜2μmの三次元網目構造の多孔質樹脂層を形成できる。

本湿式法において、三次元網目構造の多孔質樹脂層を限定された領域あるいは複数の領域に形成する場合には、例えば、スクリーン印刷などにより、該多孔質樹脂樹脂層を形成する部分にのみ製膜液（K）を塗布する方法や、マスキングテープで該多孔質樹脂層を形成する箇所以外の部分を覆っておく方法で、支持体上の一部に三次元網目構造の多孔質樹脂層を形成することが出来る。

三次元網目構造の多孔質樹脂層を形成する第四の方法は、活性エネルギー線重合性化合物（d）、鎖状重合体（Q）、およびこれら両者を溶解させる溶剤（W）を均一に混合した製膜液（L）を支持体に塗布し、活性エネルギー線を照射して重合性化合物（d）を溶液中で重合させた後、該支持体と、該鎖状重合体（Q）を溶解させず、かつ溶剤（W）とは相溶する溶剤（N）とを接触させることにより、鎖状重合体を多孔質状に凝集させ、支持体表面に三次元網目構造の多孔質樹脂層を形成する方法（以下、該方法をエネルギー線一湿式法と称する。）である。
本方法は、活性エネルギー線重合性化合物（b）の項で述べたと同様に、活性エネルギー線重合性化合物（d）に水酸基、アミノ基、カルボキシル基、アルデヒド基、エポキシ基その他の任意の官能基を有する活性エネルギー線重合性化合物を用いることで、三次元網目構造の多孔質樹脂層の表面に、前記重合誘発層分離法より効率よくこれらの官能基を導入することが出来る。

活性エネルギー線重合性化合物（d）は架橋重合性の化合物が好ましく、前記活性エネルギー線重合性化合物（b）として例示したものの中から好適に選択して用いることが出来る。活性エネルギー線重合性化合物（d）の硬化物は、溶剤（W）に可溶であっても不溶であっても良いが、該化合物（d）が有する官能基を細孔表面に効率よく配置するためには、可溶であることが好ましい。なお、該化合物（d）の硬化物が架橋重合体であるときには、「可溶」は「ゲル化する」、「不溶」は「ゲル化しない」に置き換えることとする（以下同様）。

また、該化合物（d）は溶剤（N）に対して、可溶であっても不溶であっても良いが、該化合物（d）が有する官能基を細孔表面に効率よく配置するためには、該化合物（d）の硬化物が架橋重合体であるときにはゲル化するものであることが好ましく、非架橋重合体である場合には、流失を避けるため、不溶であることが好ましい。

鎖状重合体（Q）も任意であり、例えば前記鎖状重合体（P）として例示したものを使用できる。鎖状重合体（Q）は、2種以上の鎖状重合体（Q）を混合して使用することが、三次元網目構造の多孔質樹脂層表面の細孔径が適度に小さくならず、また、三次元網目構造の多孔質樹脂層内部にマクロポイドが形成されにくいため好ましい。

溶剤（W）は、活性エネルギー線重合性化合物（d）から生成する重合体を溶解または膨潤させるものであってもさせないものであっても良いが、溶解または膨潤させるものであることが、官能基を細孔表面に高密度に固定することが出来るため好ましい。溶剤（W）は、前記溶剤（S）として例示したものから好適に選択して使用できる。

溶剤（N）は、活性エネルギー線重合性化合物（d）から生成する重合体が非架橋重合体である場合には溶解させないものであることが好ましいが、該重合体
が架橋重合体である場合には膨潤させるものであってもさせないものであっても良い。溶剤（N）は、前記溶剤（T）として例示したものから好適に選択して使用できる。

本第四の方法において、三次元網目構造の多孔質樹脂層を限定された領域あるいは複数の領域に形成する場合には、例えば、スクリーン印刷などにより、該多孔質樹脂層を形成する部分にのみ製膜液（L）を塗布する方法や、マスキングテープで該多孔質樹脂層を形成する箇所以外の部分を覆っておく方法で、支持体上の一部に該多孔質樹脂層を形成することが出来る。

本第四の方法は、官能基を有する活性エネルギー線重合性化合物（d）を使用することで、三次元網目構造の多孔質樹脂層の細孔表面に容易に、高密度に官能基を導入できる。

上記例示した方法により形成できる三次元網目構造の多孔質樹脂層は、支持体の一面上全体に形成しても良いし、支持体の一部に形成しても良い。後者の場合、該多孔質樹脂層の形成部分と非形成部分の双方を通過する流路を形成しても良い。こうすることによって、流路底面の一部に三次元網目構造の多孔質樹脂層部分を有し他の部分には有さないマイクロ流体素子を形成することが出来る。このとき、支持体上の一部に形成された三次元網目構造の多孔質樹脂層の平面寸法を、流路の平面寸法より大きくしておくことで、該多孔質樹脂層と流路の位置を厳密に合わせる必要が無くなり、製造が容易になる。流路部分以外の三次元網目構造の多孔質樹脂層は、活性エネルギー線硬化性樹脂組成物（X）硬化物で充填される。例えば、支持体上にn本（nは正の整数）の平行な線状に該多孔質樹脂層を形成し、流路をこれと直交する向きに形成することによって、厳密な位置合わせをすること無く、流路内にn箇所の三次元網目構造の多孔質樹脂層スポットを形成することが出来る。

上記例示した四つ的方法において使用する支持体の形状は特に限定されず、使用目的の応じて任意の形状のものを使用できる。例えば、シート状（フィルム状、リボン状、ベルト状を含む）、板状、ロール状、球状などの形状が挙げられるが、組成物（X）をその上に塗工し易く、また、活性エネルギー線を照射し易いという観点から、塗工面が平面状または2次曲面状の形状であることが好ましい。
支持体はまた、重合体の場合もそれ以外の素材の場合も、表面処理されていて良く、表面処理は、反応誘発型相分離法、または混入式の製膜液による溶解防止を目的としたもの、製膜液の漏れ性向上及び三次元網目構造の多孔質樹脂層の接着性向上を目的としたものなどが挙げられる。

支持体の表面処理方法は任意である、例えば、重合性化合物（a）として列挙した化合物群から選ばれるものを含有する組成物を支持体の表面に塗布し、活性エネルギー線を照射して硬化させる処理、コロナ処理、プラズマ処理、火炎処理、酸又はアルカリ処理、スルホン化処理、フッ素化処理、シランカップリング剤等によるプライマー処理、表面グラフト重合、界面活性剤や離型剤等の塗布、ラビングやサンドブラストなどの物理的処理などが挙げられる。

上記に例示した方法によれば、支持体の表面に、スポンジ状構造、凝集粒子状構造、ギロイド構造、マクロボイドを有する形状の構造、あるいはこれらの中和形状の構造を有する多孔質樹脂層を形成できる。また、得られる三次元網目構造の多孔質樹脂層は多数の細孔の表面として大きな表面積を有するため、触媒や酵素、あるいはDNA、糖鎖、細胞、タンパク質などを多く固定できる。

三次元網目構造の多孔質樹脂層の表面を疎水性にすると、多孔質の表面に官能基を導入しなくても酵素や抗原などのタンパク質を疎水性相互作用で三次元網目構造の多孔質樹脂層の表面に固定させることができる。一方、タンパク質やDNA、糖鎖などを固定させる場合には、予め三次元網目構造の多孔質樹脂層の細孔表面に反応性を有する官能基（例えばアミノ基、カルボキシル基、水酸基、エポキシ基、アルデヒド基、イソシアナート基、一C=O-基等）を導入し、次いで、直接または他の官能基を介して、上記タンパク質やDNA、糖鎖などのアミノ基や水酸基、リン酸基、カルボキシル基を反応させることにより、共有結合で三次元網目構造の多孔質樹脂層の表面に固定することができる。

三次元網目構造の多孔質樹脂層の厚みは、使用目的に応じて適宜選択すればよい。例えばアフィニティークロマトグラフィーとして使用する場合には、該多孔質樹脂層の厚さは3〜100μmであることが好ましく、5〜50μmであることが更に好ましい。

得られた三次元網目構造の多孔質樹脂層は、その表面を用途に応じて上記支持
体の表面処理に挙げた方法で表面処理を行っても良い。例えば、タンパク質やDNAなどの溶媒の該当孔樹脂層表面への非特異的吸着を抑制する目的で、該当孔樹脂層の表面に親水基、疎水基及びその他の官能基を導入する目的で、重合金化物（a）として列挙した化合物群から選ばれる一種以上の化合物（特に親水性及び両親媒性の重合金化物）を含む組成物を該当孔質樹脂層の表面に塗布し、活性エネルギー線を照射して硬化させる方法などにより表面処理ができる。

工程（2）においては、三次元網目構造の多孔質樹脂層に組成物（X）を塗布することにより、該当孔質樹脂層内に組成物（X）が含浸し、該当孔質樹脂層内、および該当孔質上に組成物（X）の未硬化塗膜が形成される。その後、流路と成すべき部分以外の未硬化塗膜に活性エネルギー線を照射し、非照射部分の未硬化の組成物（X）を除去することにより、底面が該当孔質樹脂層、壁面が組成物（X）の硬化又は半硬化塗膜からなる凹部が得られ、流路となる部分以外の該当孔質樹脂層は、含浸した組成物（X）の硬化または半硬化物により孔が閉塞される。

工程（2）において使用する活性エネルギー線重合性の化合物（a）（以下、該化合物を重合金化物（a）と称する。）は、重合開始剤の存在下、あるいは非存在下で活性エネルギー線により重合し得る化合物であり、付加重合性の化合物や、活性エネルギー線重合性官能基として重合性の炭素－炭素二重結合を有するものが好ましい。なかでも、変性性の高い（メタ）アクリル系化合物やビニルエーテル類や、光重合開始剤の存在下でも硬化するマレイミド系化合物などが好ましい。

また、重合金化物（a）が多官能の化合物であると、重合して架橋構造となるため、硬化後の強度も高くなる。

このような重合金化物（a）としては、例えば、前記した反応誘発型相分離法において使用できる重合金化物（b）と同様の化合物を使用できる。

重合金化物（a）は単独で、あるいは二種以上を混合法して使用することができ、また、粘度の調節や、あるいは接着性、粘着性、親水性などの機能を付与するために、単官能モノマーと混合法して使用してもよい。

混合法できる単官能モノマーとしては、例えば前記した反応誘発型相分離法において使用できる単官能モノマーと同様の化合物を使用できる。
組成物（X）は、少なくとも上記重合性化合物（a）を含有する。該組成物（X）は、重合性化合物（a）の他に、重合性化合物（a）と共重合可能な該亜醸媒性の重合性化合物（以下、該亜亜醸媒性の重合性化合物を亜亜醸媒性化合物（c）と称する。）を含有することが好ましい。組成物（X）が亜亜醸媒性化合物（c）を含有することで、得られる硬化物を水に膨潤しにくくでき、かつ硬化物の表面を生体成分に対して吸着性の低い親水性にすることができる。

亜亜醸媒性化合物（c）としては、分子内に親水基と疎水基の両者を含有し、活性エネルギー線の照射により、組成物（X）に含有される活性エネルギー線重合性化合物（a）と共重合可能な重合性官能基を有する化合物を使用できる。亜亜醸媒性化合物（c）は架橋重合体となるもののである必要はないが、架橋重合体となる化合物であってもよい。また、重合性化合物（a）と均一に相溶するものであればよい。ここで相溶とは、微視的に相分離しないことを言い、ミセルを形成して安定的に分散している状態も含まれる。

重合性化合物（a）が1分子中に2個以上の重合性炭素−炭素不飽和結合を有する化合物である場合には、亜亜醸媒性化合物（c）は、1分子中に1個以上の重合性炭素−炭素不飽和結合を有する化合物であることが好ましい。

亜亜醸媒性化合物（c）は、分子中に親水基と疎水基を有し、水、あるいは疎水性溶媒のそれぞれに相溶する化合物である。この場合に従来、相溶とは巨視的に相分離しないことをいい、ミセルを形成して安定的に分散している状態も含まれる。

亜亜醸媒性化合物（c）は、0℃において、水に対する溶解度が0.5質量％以上で、且つ25℃のシクロヘキサン：トルエン＝5：1（質量比）混合溶媒に対する溶解度が25質量％以上であることが好ましい。ここで言う溶解度とは、例えば、溶解度が0.5質量％以上であるとは、少なくとも0.5質量％の化合物が溶解可能であることをいう。水に対する溶解度、あるいはシクロヘキサン：トルエン＝5：1（質量比）混合溶媒に対する溶解度の少なくとも一方がこれらの値より低い化合物を使用すると、表面親水性と耐水性の両特性に優れる硬化物を得ることが困難となる。

亜亜醸媒性化合物（c）は、ノニオン性親水基、特にポリエーテル系の親水基を
有する場合には、親水性と疎水性のバランスが、グリフィンのHLB（エイチ・エル・ビー）値にして11〜16の範囲にあるものが好ましく、11〜15の範囲にあるものが更に好ましい。この範囲外では、高い親水性と耐水性に優れた成形物を得ることが困難であるか、それを得るための化合物の組み合わせや混合比率が限定されてしまう。

両親媒性化合物（c）が有する親水基は任意であり、例えば、アミノ基、四級アンモニウム基、フォスフォニウム基などのカチオン基；スルホン基、磷酸基、カルボニル基などのアニュオン基；水酸基、ポリエチレングリコール鎖、アミド基などのノニオン基；アミノ酸残基などの両性イオン基であってよい。両親媒性化合物（c）は、親水基としてポリエーテル基を有する化合物が好ましく、繰り返し数6〜20のポリエチレングリコール鎖を有する化合物が特に好ましい。

両親媒性化合物（c）の疎水基としては、例えば、アルキル基、アルキレン基、アルキルフェニル基、長鎖アルコキシ基、フッ素置換アルキル基、シロキサン基などが挙げられる。両親媒性化合物（c）は、疎水基として炭素数6〜20のアルキル基又はアルキレン基を有する化合物であることが好ましい。炭素数6〜20のアルキル基又はアルキレン基は、例えば、アルキルフェニル基、アルキルフェニル基、アルコキシ基、フェニルアルキル基などの形で含有されていてもよい。

両親媒性化合物（c）は、親水基として繰り返し数6〜20のポリエチレングリコール鎖を有し、かつ、疎水基として炭素原子数6〜20のアルキル基又はアルキレン基を有する化合物であることが好ましい。これらの両親媒性化合物（c）の中でも、ノニルフェノキシポリエチレングリコール（n＝8〜17）（メタ）アクリレート、ノニルフェノキシポリプロピレングリコール（n＝8〜17）（メタ）アクリレートが特に好ましい。

組成物（X）に含まれる、重合性化合物（a）と両親媒性化合物（c）の好ましい割合は、重合性化合物（a）及び両親媒性化合物（c）の種類や組み合わせによって異なるが、重合性化合物（a）1質量部に対して、両親媒性化合物（c）0、1〜5質量部であることが好ましく、0、2〜3質量部であることが更に好ましい。重合性化合物（a）1質量部に対して、両親媒性化合物（c）が0、1
質量部未満であると、高い親水性の表面を形成することが困難となり、また、5質量部よりも多いと、水に対して膨潤し、組成物（X）の重合体がゲル化するおそれがある。

重合性化合物（a）と両親媒性化合物（c）との混合比を適宜選択することにより、湿潤状態でゲル化せず、かつ高親水性、および低吸着性を示す硬化物を製造することができる。両親媒性化合物（c）の親水性の度合いが強いほど、例えばグリフィンのHLB値が大きなものほど、両親媒性化合物（c）の添加量を少なくすることが好ましい。

組成物（X）には、三次元網目構造の多孔質樹脂層表面に導入する官能基を有する重合性化合物（b）を混合することも好ましい。特に、三次元網目構造の多孔質樹脂層表面に、ある官能基を導入する場合には、該官能基を有する樹脂を三次元網目構造の多孔質樹脂層を形成する樹脂に使用し、かつ、組成物（X）に、該官能基を有する重合性化合物（b）を混合することが好ましい。これにより、後述の、非照射部分の未硬化の前記組成物（X）を除去する工程において、組成物（X）の除去が不完全であっても、該組成物の降下物で細孔表面が覆われて、該官能基が露出しないなくなる不都合を防ぐことが出来る。

また、組成物（X）には、必要に応じて、光重合開始剤、重合遅延剤、重合禁止剤、溶剤、増粘剤、改質剤、着色剤などを混合して使用することができる。

組成物（X）に添加できる光重合開始剤、重合遅延剤、および重合禁止剤としては、例えば、前記した反応誘発型相分離法において製膜液（J）の光重合開始剤、重合遅延剤、および重合禁止剤と同様の化合物を好ましく使用できる。

溶剤としては、特に限定されないが、使用する重合性化合物（a）や組成物（X）に添加された添加剤、あるいは要求される粘度などによって溶剤の種類や添加量を適宜調整する必要があるが、例えば、エタノールなどのアルコール類、アセトンなどのケトン類、N, N−ジメチルホルムアミドの如くアミド系溶剤、塩化メチレンなどの塩素系溶剤などが挙げられる。

組成物（X）の粘度は、三次元網目構造の多孔質樹脂層の孔径に応じて変わりうるものであるが、三次元網目構造の多孔質樹脂層の上に塗工した際に、組成物（X）が速く三次元網目構造の多孔質樹脂層内へ浸透すること、および活性エネ
エネルギー線照射後に、非照射部分の未硬化の組成物（X）を除去する際に、組成物（X）が完全に三次元網目構造の多孔質樹脂層から除去される観点から、組成物（X）の粘度が25℃において30〜3000mPasの範囲であることが好ましく、100〜1000mPasの範囲であることが更に好ましい。粘度が30mPas未満であると、凹部の深さ制御が困難になり、一方、粘度が3000mPasより大きいと、組成物（X）の三次元網目構造の多孔質樹脂層内部への浸透が困難になり、また、非照射部分の未硬化の組成物（X）の除去も困難になる。

工程（2）において、三次元網目構造の多孔質樹脂層の上に組成物（X）を塗工する方法としては任意の塗工方法を用いることができ、例えば、スピンコート法、ローラーコート法、流延法、ディッシング法、スプレー法、パーコーター法、X−Yアプリケータ法、スクリーン印刷法、凸版印刷法、グラビア印刷法、ノズルからの押し出しや注型などの方法が挙げられる。また、組成物（X）が高粘度である場合や特に薄く塗工する場合には、組成物（X）に溶剤を含有させて塗工した後、該溶剤を揮発させる方法により塗工することもできる。

組成物（X）を塗工する厚さは、活性エネルギー線照射後に三次元網目構造の多孔質樹脂層の上部に硬化又は半硬化塗膜が得られれば特に制限されないが、例えば底面の該多孔質樹脂層に特定の物質を固定して、アフィニティークロマトグラフィーとして使用する場合には、活性エネルギー線照射後に該多孔質樹脂層の上部に形成される硬化又は半硬化塗膜の厚さ、すなわち凹部の壁面高さが3〜150μmとなる範囲が好ましく、5μm〜50μmとなる範囲であれば更に好ましい。3μmより薄いと凹部が蓋となる他の部材を固着して該凹部を空洞状の流通とする際に、流れが閉塞するおそれがある。一方、150μmより厚いと、水溶液が流路内を通過しながら、水溶液中の物質が底面の三次元網目構造の多孔質樹脂層に吸着（相互作用）しにくくなり、アフィニティークロマトグラフィーの用途には不向きとなる。

活性エネルギー線硬化性樹脂組成物（X）に溶媒を添加した場合には、塗工後、該溶媒を揮発除去する。除去方法は任意であり、例えば、風乾、熱風乾燥、赤外線乾燥、真空乾燥、マイクロ波乾燥などを利用できる。溶剤の除去は、活性エネ
ルギー線照射の後でも良いが、流路の寸法や形状を正確に制御するためには、活性エネルギー線照射の前であることが好ましい。

照射する活性エネルギー線としては、紫外線、可視光線、赤外線、レーザー光線、放射光などの光線；エックス線、ガンマ線、放射光などの電離放射線；電子線、イオンビーム、ベータ線、重粒子線などの粒子線が挙げられる。これらの中でも、取り扱い性や硬化速度の面から紫外線及び可視光が好ましく、紫外線が特に好ましい。硬化速度を速め、硬化を完全に行う目的で、活性エネルギー線の照射を低酸素濃度空気で行うことが好ましい。低酸素濃度空気中では、窒素気流中、二酸化炭素気流中、アルゴン気流中、真空又は減圧空気中が好ましい。

三次元網目構造の多孔質樹脂層を底面全体または底面の一部に形成された凹部を形成するために、上記活性エネルギー線を照射する際に、活性エネルギー線をパターニング照射する。パターニング照射の方法は任意であり、例えば、活性エネルギー線を照射しない部分をマスキングして照射する、あるいはレーザーなどの活性エネルギー線のビームを走査するなどのフォトリソグラフィーの手法が利用できる。フォトマスクを使用する場合には、フォトマスクは塗膜と非接触の方式でも接触方式でも良い。

組成物（X）の未硬化塗膜の硬化を半硬化とすることによって、接着剤を使用することなく蓋となる他の部材と固着することが可能であり、また、接着剤を使用する場合にも接着強度が向上する。組成物（X）の硬化状態を半硬化とした場合には、最終的なマイクロ流体素子と成る前のいずれかの工程において後硬化を行い、完全に硬化させることが好ましいが、本発明のマイクロ流体素子の機能に差し障りがなければ必ずしも完全に硬化させる必要はない。後硬化は、活性エネルギー線による硬化の場合には、半硬化させるのに使用した活性エネルギー線と同じものであっても異なるものであっても良い。後硬化はまた、活性エネルギー線による硬化の他に、熱硬化により硬化してもよい。

工程（3）は、工程（2）において形成された凹部を有する部材の凹部に蓋となる他の部材を固着して前記凹部を空洞状の流路と成す工程である。

蓋となる部材としては、使用目的に応じて適宜選択し得るものであり、流路に流す流体に侵されないものを使用すればよく、該部材は粘着性を有するテープや
シートまたは板状のものであっても良い。

蓋となる部材で凹部に蓋をするには、蓋部材と凹部を有する部材を貼り合わせればよい。上記したように、凹部を有する部材が半硬性塗膜で、蓋部材との接着性が良好で有れば、そのまま貼り付ければよい。また、凹部を有する部材の接着性が低いか、あるいは硬性塗膜である場合には、接着剤などを使用して両部材を貼り合わせればよい。

また、活性エネルギー線重合性化合物を含む組成物を高分子のフィルムやシートのような支持体に塗布し、活性エネルギー線を照射して、該組成物の塗膜を半硬性させて、上記凹部を有する部材の凹部に貼り合わせて、再び活性エネルギー線を照射して完全に硬化させる方法もある。ここで使用される活性エネルギー線重合性化合物及びその組成物は、上記工程（2）で使用される重合性化合物（a）及び組成物（X）と同じものを使用してもよく、使用可能な重合性化合物（a）として列挙した化合物群から選ばれる一組以上の化合物であっても良い。重合性化合物の塗布方法も工程（2）に準じて行って良い。

蓋部材と凹部を有する部材を貼り合わせる際の接着剤としては、例えば、エポキシ樹脂系接着剤、ステレンブタジエン樹脂系接着剤、（メタ）アクリル系接着剤などが使用できる。

本発明の製造方法を使用すると、微細な流路の内表面に、該流路を閉塞することなく、均一な厚さの三次元網目構造の多孔質樹脂層を有するマイクロ流体素子を容易に得ることができる。また、該製造方法により、複数の微小なマイクロ流体素子を、一枚の支持体（露光現像版）上に、位置合わせする必要なく容易に作成することができることから、良好な再現性、優れた寸法安定性で多数のマイクロ流体素子を一度に生産することができる。

上記方法により得られるマイクロ流体素子のなかでも、支持体と多孔質樹脂層と流路と蓋部とからなるマイクロ流体素子において、（I）支持体の上部に三次元網目構造の多孔質樹脂層を有し、（II）該多孔質樹脂層が流路部分を除いて含浸した活性エネルギー線硬化性樹脂組成物（X）の硬化樹脂で充填され、（III）流路が活性エネルギー線硬化性樹脂組成物（X）の硬化樹脂で充填されていない三次元網目構造の多孔質樹脂層と、活性エネルギー線硬化性樹脂組成物（X）の硬化
樹脂で充填された三次元網目構造の多孔質樹脂層の上部に形成された活性エネルギー線硬化性樹脂組成物（X）の硬化樹脂層と、蓋部を壁面としてなり、空洞状を形成していることを特徴とするマイクロ流体素子は、特に好ましく使用できる。

前記流路断面の大きさとしては、流路を流動する流体に含まれる分離対象物質が三次元網目構造の多孔質樹脂層と相互作用を生じる大きさであればよく、前記流路の三次元網目構造の多孔質樹脂層を有する部分における流路断面において、該断面中の任意の点をx、該任意の点と直線距離で最も近い三次元網目構造の多孔質樹脂層の部分をy、x y間の直線距離をrとし、rが該断面内でとり得る最大距離をr_{max}とした際に、該r_{max}が1〜50μmの範囲となるように設計することが好ましい。ここで定義したr_{max}が、50μm以下であると、流路内を流動する流体に含まれる分離対象物質が、流路内壁の三次元網目構造の多孔質樹脂層と良好に相互作用を生じることができる。また、r_{max}を1μm以上とするこことにより、流体を流動させるのに必要な圧力が過度に大きくならない。

流路断面におけるr_{max}を前記範囲内とするには、三次元網目構造の多孔質樹脂層の配置や、流路の断面形状により適宜設計すればよい。例えば、内壁の底面と天井面に三次元網目構造の多孔質樹脂層を有する、断面が矩形または台形状の流路の場合は、流路断面の高さを100μm以下とすればよく、内壁の一面にのみ三次元網目構造の多孔質樹脂層を有する矩形または台形状の流路の場合には、該多孔質樹脂層と、該多孔質樹脂層に対向する面との距離を1〜50μmとするかよい。流路断面の形状が円形や三角形の場合にも同様に、内壁の三次元網目構造の多孔質樹脂層に応じて適宜設計すればよい。なお、本発明においては、矩形や台形は、角が丸められた形状も含む。

一方、流路内を流れる分析対象物質スポットの光学的な読み取りの容易さ、流速及び温度などの制御のし易さ、並びに製造しやすさの点から、流路断面の最大幅と最大高さとの比が、（最大幅）/（最大高さ）で表される比で、1/20〜20/1の範囲であることが好ましく、1/10〜10/1であることが特に好ましい。

流路の長さは任意であり、用途目的により好適な長さをとり得るが、1mm〜
500 mmが好ましく、5 mm〜200 mmが更に好ましい。上記下限以上とすることで、十分な分離能を得ることができ、上記上限以下とすることで、必要な送液速度の低下、分離時間の短縮、流路の小型化が計れる。

また流路の流体の流動方向と平行な方向の形態も任意であり、直線であっても、曲線であっても、それらの組み合わせであっても、分岐していても構わない。流路の幅も一定でなくてもよい。また本流路の開口部の位置、および個数は任意であり、一本の流路に複数の開口部があっても構わない。また、一つの部材中に存在する独立した流路の本数も任意である。

本発明のマイクロ流体素子の流路は、その内壁面の一面又は対向する二面に、三次元網目構造の多孔質樹脂層を有する。

三次元網目構造の多孔質樹脂層を流路内的一面に形成するには、蓋として非多孔質の部材を使用することで実施できる。三次元網目構造の多孔質樹脂層を流路内壁の対向する二面に形成するには、蓋として、例えば上記の、支持体上に三次元網目構造の多孔質樹脂層が形成された部材や、該多孔質樹脂層の上に溝を有する部材を用いることで形成できる。

上記三次元網目構造の多孔質樹脂層は、流路壁面の一面又は対向する二面に形成されており、流路内部を流れる分析対象物質は該多孔質樹脂層と相互作用しつつ流路内を移動することによって分離される。また、該多孔質樹脂層にプローブが固定されている場合には、該プローブと相互作用しつつ流路内を移動することによって分離される。

流路の流体の流動方向と平行方向における、三次元網目構造の多孔質樹脂層の形成部位は、流路の全体であっても、途切れていてもよい。本マイクロ流体素子がクロマトグラフィー用デバイス又は電気泳動分析用デバイスである場合などには、途切れずに形成されていることが、分離能が向上するため好ましい。

上記三次元網目構造の多孔質樹脂層の厚みは、0.5 μm〜30 μmが好ましく、1 μm〜20 μmが更に好ましく、2 μm〜10 μmが最も好ましい。この下限以上とすることで、分析対象物質と相互作用するための表面积が十分に大きくなり、分離能が高くなる。また、プローブを固定する場合には、十分に多量のプローブを固定可能となり、分離能が高くなる。一方、この上限以下とすること
で、溶液中の分離対象物質が、深く細孔の内部にまで入り込んで移動速度が低下することを防止し、分離や分析の時間短縮が計られる。

上記三次元網目構造の多孔質樹脂層の細孔の孔径も任意であるが、0.05 μm～3 μmが好ましく、0.1 μm～1 μmが更に好ましい。この下限以上とすることで、十分な量のプローブが固定可能となる。また、前記上限以下とすることで、タンパクのような巨大分子もプローブとして固定可能である上、三次元網目構造の多孔質樹脂層の深い部分と表面間の物質移動速度が高くなり、迅速な分離が可能になる。なお、前記細孔径は、多量に存在する細孔の孔径であり、必ずしも平均径とは限らない。前記孔径は分布が狭い方が、分離効率が高くなり、好ましい。

上記三次元網目構造の多孔質樹脂層の空隙率は任意であるが、30～90％が好ましく、40～70％が更に好ましい。この範囲をすることによって、力学的な強度低下を招くことなく十分な表面積の増加が計れる。

上記三次元網目構造の多孔質樹脂層の素材は、上記した有機重合体を使用でき、活性エネルギー線硬化性樹脂であることが、形成が容易であるため更に好ましい。

プローブを固定する場合には、固定が容易な素材を任意に選択できるが、有機重合体であることが、製造が容易であり好ましく、活性エネルギー線硬化性樹脂であることが、形成が容易であり更に好ましい。

また、上記三次元網目構造の多孔質樹脂層には任意の官能基を導入できる。親水性官能基として、例えば水酸基、ポリエチレンゴリール基、アミド基、ニトロ基などのノニオン性の官能基、カルボキシル基、スルホン基、リン酸基、亜リン酸基、（置換）ヒドロキシフェニル基、シラノール基などのアニオン性の官能基、（N置換）アミノ基、4級アンモニウム基、フォスフォニウム基、スルホニウム基などのカチオン性官能基などを挙げることが出来る。疎水性官能基として、例えばフッ素、塩素基、シロキサン構造、アルキル基、フェニル基、などを挙げることが出来る。両性官能基としてはアミノ酸残基を挙げることが出来る。その他に、両親媒性基などを挙げることが出来る。その他、アミドなどの共反応性の基などを例示できる。なお、これらの官能基は例えば選択的吸着性の付与など、それ自身で機能させることも出来るし、化学反応で機能性官能基に変換することも
できるし、（生）化学物質や生体物質などを固定するためのアンカーとすることも出来る。

上記二次元目層構造の多孔質樹脂層にはその他の物質を固定化することも好ましい。その他の物質としては、例えば、各種の触媒、酵素、抗体、抗原その他の蛋白、DNA、RNAなどのオリゴヌクレオチド、糖鎖、糖脂質などの糖含有物質、細胞膜、細胞内組織、細胞などの生体組織、バクテリアなどの生物などが挙げられる。もちろん、これらは化学修飾体であっても良い。なかでも、固定化したプローブとしてオリゴヌクレオチドを使用した場合には、遺伝子の分離や検出が可能であり、遺伝子の一塩基変異の検出にも有効に使用できる。

プローブとしてオリゴヌクレオチドを使用する場合、オリゴヌクレオチドの長さは、塩基数にして5〜30が好ましく、5〜20がさらに好ましく、5〜10が最も好ましい。オリゴヌクレオチドの長さをこの範囲とすることによって、室温〜60℃という実施が容易な温度で、十分な信頼性と高い分離速度を、得ることが出来る。また、同じ目的で、プローブのオリゴヌクレオチドは、分析対象のポリヌクレオチドやオリゴヌクレオチドに対して意図的にミスマッチを有する塩基配列のオリゴヌクレオチドを用いることも好ましい。

本発明のマイクロ流体素子を液体クロマトグラフィー用カラムとして使用する場合には、流路の表面に固定されるプローブ（官能基を含む）の量は、プローブとのアフィニティーを有する分析対象物質の量に対して過剰量であることが好ましい。プローブ量が過剰量である場合には、過少量である場合と比較して、プローブとの相互作用に関与する分析対象物質の量が増え、局所的に分析対象物質濃度が高くなるために、分析対象物質を高感度に検出することが可能となる。このような理由から、二次元目層構造の多孔質樹脂層に固定されるプローブの量は多い方が好ましい。

また、本発明のマイクロ流体素子をアフィニティー電気泳動用部材として使用する場合にも上記液体クロマトグラフィーの場合と同様に、プローブの固定量は多いことが好ましい。

実施例
以下、実施例を用いて、本発明を更に詳細に説明するが、本発明はこれら実施例の範囲に限定されるものではない。なお、以下の実施例において、「部」及び「％」は、特に断らない限り、各々「質量部」及び「質量％」を表わす。

実施例中における粘度測定、および紫外線ランプの照射は、以下の方法による。

[粘度測定]
25℃における組成物の粘度を芝浦システム株式会社製のVDH-K型粘度計を用いて測定した。

[紫外線ランプ１による照射]
3000Wメタルハライドランプを光源とするアイグラフィックス株式会社製のUE031－353CHC型UV照射装置を用い、365nmにおける紫外線強度が40mW/c㎡の紫外線を特に指定が無い限り室温、窒素雰囲気内で照射した。

[紫外線ランプ２による照射]
200Wメタルハライドランプを光源とするウシオ電機株式会社製のマルチライト200型露光装置用光源ユニットを用い、365nmにおける紫外線強度が100mW/c㎡の紫外線を、特に指定が無い限り室温、窒素雰囲気内で照射した。

（実施例1）
本実施例1は、三次元網目構造の多孔質樹脂層を「反応誘発型相分離法」によって製造した例である。

[製膜液（J）の調製]
平均分子量2000の3官能ウレタンアクリレートオリゴマー「ユニディックV－4263」（大日本インキ化学工業株式会社製）72部、ジシクロペンタデニルジアクリレート「R－684」（日本化薬株式会社製）18部、メタクリル酸グリシジル（和光純薬工業株式会社製）10部、デカン酸メチル（和光純薬工業株式会社製）を150部、揮発性の良溶剤としてアセトンを10部、紫外線重合開始剤として1－ヒドロキシシクロヘキシルフェニルケトン「イルガキュア－184」（チバガイシー社製）3部を、均一に混合して製膜液（J1）を調製した。

[組成物（X）の調製]
平均分子量2000の3官能ウレタンアクリレートオリゴマー「ニューディックV－4263」（大日本インキ化学工業株式会社製）50部、ヘキサンジオールジアクリレート「ニューフロンティアHDDA」（第一工業製薬株式会社製）40部、メタクリル酸グリシジル（和光純薬工業株式会社製）10部、光重合開始剤として1－ヒドロキシクロヘキシルフェニルケトン「イルガキュアー184」（チバガイギ社製）5部、及び重合延長剤として2, 4－ジフェニル－4－メチル－1－ベンレン（関東化学株式会社製）0.5部を混合して、組成物（X1）を調製した。該組成物（X1）の粘度は192mPa·sであった。

【工程1：三次元網目構造の多孔質樹脂層の形成】

厚さ1mmのアクチル板を支持体として使用し、該支持体上にスピンコーター（ミカサ株式会社製）を用いて、600rpmの回転で製膜液（J1）を塗工し、該製膜液（J1）に紫外線ランプ1により紫外線を40秒照射して製膜液（J1）を硬化させ、n－ヘキサンで脱溶剤（R）を洗浄除去して三次元網目構造の多孔質樹脂層（1）を形成した。

【工程2：三次元網目構造の多孔質樹脂層が底面に露出した凹部（流路）の形成】

上記三次元網目構造の多孔質樹脂層（1）の上に、スピンコーター（ミカサ株式会社製）を用いて800rpmの回転数で組成物（X1）を塗工し、該組成物（X1）の未硬化塗膜を形成し、流路と成すべき部分以外の該未硬化塗膜にフォトマスクを通して紫外線ランプ2による紫外線照射を120秒行って前記組成物（X1）の半硬化塗膜を形成し、非照射部分の未硬化の前記組成物（X1）をエタノールで除去して、三次元網目構造の多孔質樹脂層（1）が底面に露出した凹部（流路1）を支持体上に形成した。

【DNAの固定】

（アミノ基の導入）

上記工程2で作製した凹部（流路1）に5質量％ポリアリルアミン（分子量15000、日東紡株式会社製）水溶液を接触させ、50℃、2時間反応させた（ポリアリルアミン中の一部のアミノ基を三次元網目構造の多孔質樹脂層中のエポキシ基と反応させた）後、流水中で15分洗浄して、該多孔質樹脂層へのアミノ基の導入を行った。
（アルデヒド基の導入）

上記アミノ基を導入した凹部（流路1）を有する支持体を5質量%のグルタルアルデヒド（和光純薬工業株式会社製）水溶液中に入れ、50℃、2時間反応させた（ポリアリルアミン中のはば全てのアミノ基をグルタルアルデヒド中の片方のアルデヒド基と反応させた）後、流水で10分洗浄して、三次元網目構造の多孔質樹脂層へのアルデヒド基の導入を行った。

（DNAの固定）

上記アルデヒド基を導入した凹部（流路1）に、5'末端にアミノ修飾、3'末端にイソチオシアン酸フルオレシイン-イソマーI型（FITC-I）修飾したDNA（長さ25塩基、エスペックオリゴサービス株式会社製）水溶液（濃度50μM）を1μL滴下して、湿度100%、50℃にて15時間反応（DNAの末端アミノ基を三次元網目構造の多孔質樹脂層のアルデヒド基と反応）させ後、0.2質量%のテトラヒドロピジン酸ナトリウム水溶液中に入れ、5分間還元反応させ、次いで、0.2×SSC/0.1%SDS溶液でリンスし、次に、0.2×SSCでリンスして、更に蒸留水でリンスして、自然乾燥させて、凹部（流路1）底面の三次元網目構造の多孔質樹脂層にDNAを固定した。（ここで、0.2×SSCは0.03MNaCl, 3mMクロニ酸ナトリウム水溶液であり、0.1%SDSは0.1質量%デシル硫酸ナトリウム水溶液である。）

【工程3：蓋の固着】

平均分子量約20000の3官能ウレタンアクリレートオリゴマー「ユニディックV4263」（大日本インキ化学工業株式会社製）72部、ヘキサンジオールアクリレート「ニューフロンティアHDDA」（第一工業製薬株式会社製）18部、メタクリル酸グリシジル（和光純薬工業株式会社製）10部、及び光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン「イルガキュア184」（チバガイギー社製）2部を均一に混合した組成物を、片面にコロナ放電処理された厚さ30μmの2軸延伸ポリプロピレンフィルム（二沢化学株式会社製）の上にスピンコーテー（ミカサ株式会社製）を用いて800rpmの回転で塗工した。該当硬化塗膜に、紫外線ランプ1により紫外線を1秒照射し、前記組成物の半硬化塗膜を形成し、上記工程2で作製した凹部（流路1）に張り合わせ、再
び紫外線ランプ1により、紫外線を40秒照射して完全に硬化させて、三次元網目構造の多孔質樹脂層が底面に露出した毛細管状の流路（流路1）を有するマイクロ流体素子（1）を製造した。

【三次元網目構造の多孔質樹脂層の構造観察】

上記工程1で作製した三次元網目構造の多孔質樹脂層（1）の表面を走査型電子顕微鏡にて観察したところ、直径約0.5μmの凝集粒子の間隙として、孔径約0.4μm程度の細孔が観察された。また、三次元網目構造の多孔質樹脂層の断面を観察したところ、該三次元網目構造の多孔質樹脂層の厚みは約10μmであり、該三次元網目構造の多孔質樹脂層の走査型電子顕微鏡写真を図1に示す。

【四部（流路）の構造観察】

上記工程2で作製した四部（流路1）の断面を走査型電子顕微鏡にて観察したところ、四部の断面形状は、幅約250μm、三次元網目構造の多孔質樹脂層を除く深さ約30μmの矩形であった。

【DNAの定量】

上記DNAを固定し、底面の三次元網目構造の多孔質樹脂層のFITC-Iが発する蛍光強度を、フルオロイメージングスキャナーフラ－3000G（富士写真フィルム株式会社製）で測定した結果、蛍光強度値が1069LAU（上記測定装置に表示される蛍光強度の単位）/mm²であった。

（実施例2）

本実施例2は、三次元網目構造の多孔質樹脂層を「表面膨潤法」によって製造した例である。

【組成物（X）の調製】

ヘキサンジオールジアクリレート「ニューフロンティアHD」（第一工業製薬株式会社製）40部の代わりに1,6－ヘキサンジオールエトキシレートジアクリレート「フォトマー－4361」（コグニスジャパン株式会社製）40部を混合したこと、メタクリル酸グリシジル（和光純薬工業株式会社製）10部の代わりにノニルフェノキシポリエチレングリコール（n＝17）アクリレート「N－177E」（第一工業製薬株式会社製）10部を混合した以外は、実施例1に於ける組成物（X1）の調製と同様して組成物（X2）を調製した。該組成物（X2）の
粘度は220 mPa・sであった。

[工程1：三次元網目構造の多孔質樹脂層の形成]
（三次元網目構造の形成）

厚さ150 μmのポリステレンシート（大日本インキ化学工業株式会社製）を支持体として使用して、該支持体をN,N-ジメチルアセトアミド（和光純薬工業株式会社製）に室温にて5秒間浸漬後、水中に投じ、更に流水で約5分洗浄して、三次元網目構造の多孔質樹脂層と支持体が一体化したポリステレンシートが得られた。

（エポキシ基の導入）

更に、該三次元網目構造の多孔質樹脂層の上に、平均分子量約2000の3官能ウレタンアクリレートオリゴマー「ユニディックV-4263」（大日本インキ化学工業株式会社製）2.5部、1,6-ヘキサンジオールエトキシレートジアクリレート「フォトマー4361」（コグニスジャパン株式会社製）2部、メタクリル酸グリシジル（和光純薬工業株式会社製）0.5部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン「イルガキュア184」（チバガイギー社製）0.25部、及び溶剤としてエタノール95部を混合した組成物を、スピンコーターを用いて1500 rpmの回転数で塗布し、紫外線ランプ1で紫外線を40秒照射して、細孔の表面にエポキシ基を導入した三次元網目構造の多孔質樹脂層（2）を形成した。

[工程2：多孔質樹脂層が底面に露出した凹部（流路）の形成]

組成物（X1）の代わりに、組成物（X2）を用いたこと以外は実施例1と同じ方法で三次元網目構造の多孔質樹脂層が底面に露出した凹部（流路2）を形成した。

（DNAの固定）

実施例1と同様にして、アミノ基の導入、アルデヒド基の導入、及びDNAの固定を行った。

[工程3：蓋の固着]

実施例1の場合と同じ組成物及び同じ方法で蓋を凹部（流路2）に固着させ三次元網目構造の多孔質樹脂層が底面に露出した毛細管状の流路（流路2）を有す
るマイクロ流体素子（2）を製造した。

[二次元網目構造の多孔質樹脂層の構造観察]

上記工程1で作製した二次元網目構造の多孔質樹脂層（2）の表面を走査型電子顕微鏡にて観察したところ、孔径約0.8μm程度のスポンジ状の細孔が観察された。また、該多孔質樹脂層の断面を観察したところ、該多孔質樹脂層の厚みは約2μmであった。

[四部（流路）の構造観察]

上記工程2で作製した四部（流路2）の断面を走査型電子顕微鏡にて観察したところ、四部の断面形状は、幅約250μm、二次元網目構造の多孔質樹脂層を除く深さ約30μmの矩形であった。

[DNAの定量]

上記工程2において形成した四部（流路2）に、上記実施例1に示したDNAの固定方法と同様の方法によりDNAを固定した。該四部（流路2）に固定されたFITC-1が発する蛍光強度を、実施例1のDNAの定量と同様の方法により測定した結果、蛍光強度値は954LAU/mm²であった。

（実施例3）

本実施例3は、二次元網目構造の多孔質樹脂層を「浸没法」によって製造した例である。

[製膜液（K）の調製]

顕状重合体（P）として芳香族ポリアミド（帝人株式会社製の「コーネックス」）5部、溶剤（U）としてN,N-ジメチルアセトアミド（和光純薬工業株式会社製）90部、添加剤としてエチレングリコール5部を均一に混合し製膜液（K）3を得た。

[組成物（X）の調製]

トリテトラエチレングリコールビスマレイミド「ルミキュアMIA200」（大日本インキ化学工業株式会社製）50部、1,6-ヘキサンジオールエトキシレートジアクリレート「フォトマー4361」（コグニスジャパン株式会社製）40部、N,N-ジメチルアクリルアミド「DMAA」（株式会社興人製）10部、及び重合還延剤として2,4-ジフェニル-4-メチル-1-ベンゼン（関東化学株式
会社製）0. 5部を混合して組成物（X 3）を調製した。該組成物（X 3）の粘度は100 mPa・sであった。

[工程1：三次元網目構造の多孔質樹脂層の形成]
（三次元網目構造の形成）

厚さ1 mmのアクリル板の支持体上に、50 µmのバーコーターを用いて、製膜液（K）3を塗布し、該支持体を水中に投入し、乳白色の凝固塗膜を得た。得られた凝固塗膜を更に流水で10分洗浄し、40℃の真空中で1時間乾燥して三次元網目構造の多孔質樹脂層（3）を得た。

[工程2：三次元網目構造の多孔質樹脂層が底面に露出した凹部（流路）の形成]

組成物（X 1）の代わりに、組成物（X 3）を用いたこと以外は実施例1と同じ方法で三次元網目構造の多孔質樹脂層（3）が底面に露出した凹部（流路3）を形成した。

（DNAの固定）

実施例1と同様にして、アミノ基の導入、アルデヒド基の導入、及びDNAの固定を行った。

[工程3：蓋の固着]

実施例1の場合と同じ組成物及び同じ方法で蓋を凹部（流路3）に固着させ三次元網目構造の多孔質樹脂層が底面に露出した毛細管状の流路（流路3）を有するマイクロ流体素子（3）を製造した。

[三次元網目構造の多孔質樹脂層の構造観察]

上記工程1で作製した三次元網目構造の多孔質樹脂層（3）の表面を走査型電子顕微鏡にて観察したところ、孔径約0.6 µm程度のスポンジ状の細孔が観察された。また、該多孔質樹脂層の断面を観察したところ、該多孔質樹脂層の厚みは約35 µmであった。

[凹部（流路）の構造観察]

上記工程2で作製した凹部（流路3）の断面を走査型電子顕微鏡にて観察したところ、凹部の断面形状は、幅約250 µm、三次元網目構造の多孔質樹脂層を除く深さ約30 µmの矩形であった。

（比較例1）
本比較例は、公知のアミノ基固定ガラス基板の表面を流路の底面とするマイクロ流体素子に関し、DNA固定化密度が低いことを示す。

【四部（流路）の形成】
表面にアミノ基を導入されたスライドガラス「Amine Silane」（松浪硝子工業株式会社製）の上に、スピノコーティング（ミカサ株式会社製）を用いて800 rpmの回転数で、実施例1において作成した組成物（X1）を塗工して、該組成物（X1）の未硬化塗膜を形成し、紫外線ランプ2により流路と成すべき部分以外の前記未硬化塗膜にフォトマスクを通して紫外線を120秒照射して該組成物（X1）の半硬化塗膜を形成し、非照射部分の未硬化の組成物（X1）をエタノールで除去して、ガラスが底面に露出された四部（流路4）を形成した。

【DNAの固定】
上記アミノ基を底面に有する四部（流路4）を実施例1と同様の方法でグルタルアルデヒド処理し、底面へのアルデヒド基の導入を行った。
次いで、上記アルデヒド基を導入した四部（流路4）を実施例1と同様の方法で処理し、DNAの固定を行った。

【DNAの定量】
上記の底面ガラスにDNAを固定した四部（流路4）を実施例1と同様の方法で測定した結果、蛍光強度値が73LAU/mm²であった。
（比較例2）
本比較例は、シリコン基板表面へのDNA固定化量が低いことを示す。但し、流路を形成しない状態で測定した。

【アミノ基の導入】
シリコンウェーハーを真空紫外線照射（セン光機社製）により処理した後、アミノ基を有するシランカップリング剤、3-アミノプロピルトリエトキシシラン（信越シリコン社製LS-3150）の1mMイソプロパノール溶液に25℃にて3時間浸漬し、エタノール洗浄および80℃で30分間熱風乾燥して、シリコンウェーハー表面にアミノ基を導入した。

【DNAの固定】
上記アミノ基を導入したシリコンウェーハー表面を実施例1と同様の方法でグ
ルタルアルデヒド処理とアミノ基修飾DNA処理を行い、シリコンウェーハー表面へのDNAの固定を行った。

【DNAの定量】

上記のDNAを固定したシリコンウェーハーの表面を実施例1と同様の方法で測定した結果、蛍光強度値は約78LAU/㎡であった。
(比較例3)

本比較例は、シリコン多孔質層へのDNA固定化量が低いことを示す。但し、流路を形成しない状態で測定した。

【多孔質流路の形成】

シリコンウェーハー用い、特開平6−169756号公報の方法に従って、幅250μm、シリコンウェーハー表面からの深さ、約30μmの多孔質層を形成した。

【アミノ基の導入】

比較例2と同様にして、この多孔質層にアミノ基を導入した。

【DNAの固定】

比較例2と同様にして、この多孔質層へのDNAの固定を行った。

【DNAの定量】

上記の底面多孔質シリコンにDNAを固定した多孔質層を実施例1と同様の方法で測定した結果、蛍光強度値は約114LAU/㎡であった。即ち、滑らかなシリコンウェーハーの表面に比べて約1.46倍しか増加していなかった。
(比較例4)

本比較例は、電子線エッチングにより形成された凹凸を有する表面へのDNA固定化量が低いことを示す。

【凹凸表面の形成】

日立製作所製E1030型イオンスパッターを用い、15mAで5分間、アクリル板を電子線エッチングして、表面に深さ約0.4μmの凹凸を設けた。

【マイクロ流体素子の作製】

三次元網目構造の多孔質層を形成したアクリル板を使用する代わりに、上記により凹凸を形成したアクリル板を使用したこと以外は、実施例2と同様にして、
エポキシ基の導入、流路の形成、アミノ基の導入、アルデヒド基の導入、DNAの固定、及び蓋の固着をを行い、マイクロ流体素子を作製した。

[DNAの定量]
実施例2と同様にして測定した結果、蛍光強度値は約228LAU/m^2であった。

上記実施例1〜3、および比較例1〜4におけるDNAの定量結果より、比較例1の多孔質樹脂層を有さない流路や、シリコン製の多孔質底面を持つ流路、あるいは三次元網目構造の多孔質流路でない平な面を有する流路に比べ、実施例の三次元網目構造の多孔質樹脂層を有する流路の比表面積が非常に大きく、多くの物質を固定化できることが明らかであった。

産業上の利用の可能性
本発明のマイクロ流体素子は、流路内表面に固着した、薄い多孔質樹脂層を有することから、流路を閉塞することなく、微細な領域においても、官能基、(生)化学物質、あるいは生体物質の多量の固定化を実現できる。また、該多孔質樹脂層が三次元網目構造であることから、該多孔質樹脂層は非常に大きな表面積を有し、多量のプローブを固定化することが可能である。さらに、矩形または台形状である前記流路の内面の一部又は二面に形成された二次元網目構造の多孔質樹脂層を有するもの、特に該多孔質樹脂層と対向する内壁までの平均距離が1〜50μmの範囲にあるものは、該多孔質部分を移動する分析対象物質と固定化されたプローブとの間に有効にアフィニティを生じさせることができる。このため、本発明のマイクロ流体素子を使用すると、正確で迅速な合成、分離、分析などの処理が可能となる。なかでも、固定化されたプローブをオリゴヌクレオチドとすることができ、DNA分析にも好適に利用できる。
請求の範囲

1. 支持体と三次元網目構造の多孔質樹脂層と流路と蓋部とからなるマイクロ流体素子において、(I) 支持体の上部に該多孔質樹脂層を有し、(II) 該多孔質樹脂層が流路部分を除いて含浸した活性エネルギー線硬化性樹脂組成物（X）の硬化樹脂で充填され、(III) 流路が活性エネルギー線硬化性樹脂組成物（X）の硬化樹脂で充填されていない三次元網目構造の多孔質樹脂層と、活性エネルギー線硬化性樹脂組成物（X）の硬化樹脂で充填された三次元網目構造の多孔質樹脂層の上部に形成された活性エネルギー線硬化性樹脂組成物（X）の硬化樹脂層と、蓋部を一壁面としてなり、空洞状を形成していることを特徴とするマイクロ流体素子。

2. 前記三次元網目構造の多孔質樹脂層が、活性エネルギー線硬化性樹脂組成物からなる請求項1に記載のマイクロ流体素子。

3. 前記流路の三次元網目構造の多孔質樹脂層を有する部分における流体の流動方向と垂直な方向の断面において、該断面中の任意の点をx、該任意の点と直線距離で最も近い多孔質樹脂層の部分をy、x y間の直線距離をrとし、rが該断面内でとり得る最大距離をr_{max}とした際に、該r_{max}が1～50μmの範囲にある請求項1又は2に記載のマイクロ流体素子。

4. 前記流路の流体の流動方向と垂直な方向の断面形状が矩形または台形である請求項1～3のいずれかに記載のマイクロ流体素子。

5. 前記三次元網目構造の多孔質樹脂層が流路内壁の一面向のどみ形成されており、該多孔質樹脂層と対向する内壁までの平均距離が1～50μmの範囲にある請求項4に記載のマイクロ流体素子。

6. 前記三次元網目構造の多孔質樹脂層の厚さが0．5～30μmの範囲にある
る請求項１～５のいずれかに記載のマイクロ流体素子。

7. 前記三次元網目構造の多孔質樹脂層の平均孔径が0.05～3μmの範囲にある請求項１～６のいずれかに記載のマイクロ流体素子。

8. 前記三次元網目構造の多孔質樹脂層が、分析対象物質とアフィニティーを有するプローブが固定された多孔質樹脂層である請求項１～７のいずれかに記載のマイクロ流体素子。

9. 前記プローブが、オリゴヌクレオチドである請求項８に記載のマイクロ流体素子。

10. 請求項１～９のいずれかに記載のマイクロ流体素子からなる液体クロマトグラフィー用部材。

11. 請求項１～９のいずれかに記載のマイクロ流体素子からなる電気泳動用部材。

12. （1）支持体の表面に多数の細孔を有する三次元網目構造の多孔質樹脂層を形成する工程、（2）該多孔質樹脂層の上に活性エネルギー線重合性化合物（a）を含有する活性エネルギー線硬化性組成物（X）を塗工し、該組成物（X）の未硬化塗膜を形成し、流路と成すべき部分以外の前記未硬化塗膜に活性エネルギー線を照射して前記組成物（X）の硬化又は半硬化塗膜を形成し、非照射部分の未硬化の前記組成物（X）を除去して、三次元網目構造の多孔質樹脂層が底面に露出した凹部を形成する工程、及び、（3）前記凹部を有する部材の凹部に蓋となる他の部材を囲着して前記凹部を空洞状の流路と成す工程を有することを特徴とするマイクロ流体素子の製造方法。

13. 前記支持体の表面に三次元網目構造の多孔質樹脂層を形成する工程の後
に、該樹脂層の表面を表面処理する工程を有する請求項12に記載のマイクロ流体素子の製造方法。

14. 前記活性エネルギー線硬化性組成物（X）が、活性エネルギー線重合性化合物（A）と、該活性エネルギー線重合性化合物（A）と共重合可能な両親媒性の重合性化合物とを含有する組成物である請求項12または13に記載のマイクロ流体素子の製造方法。

15. 前記組成物（X）の粘度が25℃において30～3000mPa・sである請求項12～14に記載のマイクロ流体素子の製造方法。

16. 前記支持体の表面に三次元網目構造の多孔質樹脂層を形成する工程が、支持体上に活性エネルギー線重合性化合物（B）と、該化合物（B）とは相溶するが、該化合物（B）から生成する重合体とは相溶しない親媒剤（R）を含有する活性エネルギー線硬化性の製膜液（J）を塗布した後、該製膜液（J）に活性エネルギー線を照射して、支持体の表面に三次元網目構造の多孔質樹脂層を形成する工程である請求項12または13に記載のマイクロ流体素子の製造方法。
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/003096

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl. G01N30/60, G01N30/48, G01N37/00, G01N27/447

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl. G01N30/60, G01N30/48, G01N37/00, G01N27/447

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

JICST (JOIS), CA (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2000-288301 A (Zaidan Hojin Kawamura Rikagaku Kenkyusho), 17 October, 2000 (1710.00), (Family: none)</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-122597 A (Mitsubishi Chemical Corp.), 26 April, 2002 (26.04.02), (Family: none)</td>
<td>1-16</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.
[] See patent family annex.

* Special categories of cited documents:

 "A" document defining the general state of the art which is not considered to be of particular relevance

 "E" earlier application or patent but published on or after the international filing date

 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

 "O" document referencing to an oral disclosure, use, exhibition or other means

 "P" document published prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
06 April, 2004 (06.04.04)

Date of mailing of the international search report
27 April, 2004 (27.04.04)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2000-001565 A (Zaidan Hojin Kawamura Rikagaku Kenkyusho), 07 January, 2000 (07.01.00), (Family: none)</td>
<td>1-16</td>
</tr>
<tr>
<td>E,X</td>
<td>JP 2004-097209 A (Zaidan Hojin Kawamura Rikagaku Kenkyusho), 02 April, 2004 (02.04.04), (Family: none)</td>
<td>1-16</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））
 Int. Cl. G01N30/60, G01N30/48, G01N37/00, G01N27/447

B. 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 Int. Cl. G01N30/60, G01N30/48, G01N37/00, G01N27/447

最小限資料以外の資料で調査を行った分野に含まれるもの
 日本国実用新案公報 1922-1996年
 日本国公開実用新案公報 1971-2004年
 日本国登録実用新案公報 1994-2004年
 日本国実用新案登録公報 1996-2004年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
 JICST (JOIS), CA (STN)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2000-288301 A（財団法人川村理化学研究所）2000.10.17（ファミリーなし）</td>
<td></td>
</tr>
</tbody>
</table>

区 C欄の続きにも文献が列挙されている。

* 引用文献のカテゴリ
 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を棄却するために引用する文献（理由を付す）
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日以降、かつ優先権の主張の基礎となる出願

国際調査を完了した日 06.04.2004
国際調査報告の発送日 27.4.2004

国際調査機関の名称及びあて先
 日本国特許庁（ISA／JP）
 郵便番号100-8915
 東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
 山村 聡子
 電話番号 03-3581-1101 内線 3251

様式 PCT／ISA／210（第2ページ）（2004年1月）
<table>
<thead>
<tr>
<th>カテゴリー*</th>
<th>引用文献名</th>
<th>及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2000-001565 A (財団法人川村理化学研究所) 2000.01.07 (ファミリーなし)</td>
<td>1-16</td>
<td></td>
</tr>
<tr>
<td>EX</td>
<td>JP 2004-097209 A (財団法人川村理化学研究所) 2004.04.02 (ファミリーなし)</td>
<td>1-16</td>
<td></td>
</tr>
</tbody>
</table>